1
|
Tong Y, Zhang W, Zhou J, Liu S, Kang B, Wang J, Jiang S, Leng L, Li H. Machine learning prediction and exploration of phosphorus migration and transformation during hydrothermal treatment of biomass waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176780. [PMID: 39395490 DOI: 10.1016/j.scitotenv.2024.176780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Hydrothermal treatment (HTT) held promise for phosphorus (P) recovery from high-moisture biomass. However, traditional experimental studies of P hydrothermal conversion were time-consuming and labor-intensive. Thus, based on biomass characteristics and HTT parameters, Random Forest (RF) and Gradient Boosting Regression machine learning (ML) models were constructed to predict HTT P migration between total P in hydrochar (TP_HC) and process water (TP_PW) and hydrochar P transformation among inorganic P (IP_HC), organic P (OP_HC), non-apatite inorganic P (NAIP_HC), and apatite P (AP_HC). Results demonstrated that the RF models (test R2 > 0.86) exhibited excellent performance in both single-target and multi-target predictions. Feature importance analysis identified TP_feed, O, C, and N as critical features influencing P distribution in hydrothermal products. TP_feed, NAIP_feed, temperature, and IP_feed were crucial factors affecting P form transformation in HC. This study provided valuable insights into understanding the migration and transformation of P and further guided experimental research.
Collapse
Affiliation(s)
- Ying Tong
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Junhui Zhou
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Shengqiang Liu
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410100, China
| | - Bingyan Kang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Jinghan Wang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Shaojian Jiang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Rasaq WA, Thiruchenthooran V, Wirkijowska K, Valentin M, Bobak Ł, Adaobi Igwegbe C, Białowiec A. Hydrothermal carbonization of combined food waste: A critical evaluation of emergent products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:44-57. [PMID: 39173471 DOI: 10.1016/j.wasman.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Hydrothermal carbonization (HTC) increasingly appears as an eco-friendly method for managing food waste (FW). In this work, a combination of FW was subjected to HTC, and products were critically evaluated. This involved a lab-scale pressure reactor and optimization of HTC conditions: temperature (220-340 °C) and residence time (90-260 min) via central composite design type of response surface methodology (CCD-RSM). Results showed varying temperatures and residence time to impact the hydrochar (HC) and hydrothermal carbonization aqueous phase (HTC-AP) properties. Although HC produced through HTC exhibited lower ash content (<2%) despite higher fixed carbon (>55 %) with respect to the raw FW, the heating value of HC ranged from 19.2 to 32.5 MJ/kg. Temperature primarily influenced FW conversion, affecting carbonaceous properties. Saturated fatty acids (SFA) were found to be predominant in the HTC-AP under all tested operating conditions (77.3, 48.4, and 37.1 wt% for HTC at 340, 280, and 220 °C in 180 min, respectively). Total phosphorus recovery in HC and HTC-AP respectively peaked at 340 °C and 220 °C in 180 min. The study concludes that HTC holds promise for energy-dense biofuel production, nutrient recovery, and fostering a circular economy.
Collapse
Affiliation(s)
- Waheed A Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| | - Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland.
| | - Katarzyna Wirkijowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| | - Marvin Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wrocław 51-630, Poland.
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland; Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria.
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| |
Collapse
|
3
|
Tang T, Wang Z, Chen L, Wu S, Liu Y. Opportunities, challenges and modification methods of coal gangue as a sustainable soil conditioner-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58231-58251. [PMID: 39287737 DOI: 10.1007/s11356-024-34895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The persistent reliance on coal has resulted in the accumulation of substantial coal gangue, a globally recognized problematic solid waste with environmental risks. Given the coal gangue properties and global land degradation severity, the resourceful utilization of coal gangue as soil conditioners is believed to be a universally applicable, cost-effective, high-demand and environment-friendly model with broad application prospect. The direct application of raw coal gangue faces challenges of low active beneficial ingredients, inadequate water and fertilizer retention, presence of potentially toxic elements, resulting in limited efficacy and environmental contamination. This paper provided a comprehensive review of various modification methods (including mechanical, chemical, microbiological, thermal, hydrothermal and composite modifications) employed to enhance the soil improvement performance and reduce the environmental pollution of coal gangue. Furthermore, an analysis was conducted on the potential application of modified coal gangue as a muti-function soil conditioner based on its altered properties. The modified coal gangue is anticipated to effectively enhance soil quality, exhibiting significant potential in mitigating carbon emissions and facilitating soil carbon sequestration. This paper provided innovative ideas for future research on the comprehensive treatment of coal gangue and restoration of degraded soil in order to achieve the dual goals of zero-coal gangue waste and sustainable agriculture.
Collapse
Affiliation(s)
- Tian Tang
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Shu Wu
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Wang J, Luo L, Yang S, Shang Y, Wang J, Liu Z. Molecular understanding of speciation transformation of phosphorus and sulfur in food waste digestate during hydrothermal treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:55-62. [PMID: 39276505 DOI: 10.1016/j.wasman.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Recovering phosphorus (P) and sulfur (S) from biowaste is a key strategy to address the current P resources shortage and soil S deficiency. Food waste digestate (FWD) contains high contents of P and S, while its direct application is severely limited by available nutrient leaching loss and pollutant exposure. Hydrothermal treatment (HT) is an effective technique for biowaste disposal, enabling detoxification and resource recovery. The study systematically investigated the speciation transformation of P and S in FWD during HT, using chemical extraction and in-situ X-ray absorption near-edge structure (XANES) spectroscopy. The results revealed that up to 98% of P in FWD was enriched in the solid product (hydrochar) after HT, with organic P and labile P being converted into stable Ca-bound forms, predominantly hydroxyapatite. This transformation reduced the risk of P leakage loss compared to untreated FWD. Interestingly, the S speciation evolution exhibited more complexity. The highest S proportion in hydrochar of 73.6% was observed at 140 °C under HT. As the temperature increased from 140 °C to 180 °C, S in the hydrochar gradually dissolved into the liquid phase, attributed to unstable aliphatic compounds (mercaptan) and the sulfides oxidizing to sulfates. Above 180 °C, intermediate oxidation states and sulfates were reduced and formed metal sulfides. These findings have important implications for understanding the viability of HT for FWD disposal and the value-added utilization of FWD.
Collapse
Affiliation(s)
- Jiaxiao Wang
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Luo
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengshu Yang
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yewen Shang
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Wang
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhengang Liu
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhang Q, Tang T, Cui G, Wang Z, Liu Y. Pressurized electro-osmotic dewatering treatment of sludge: focusing on the influences on nutrients for agricultural application. ENVIRONMENTAL TECHNOLOGY 2024; 45:4805-4819. [PMID: 37970842 DOI: 10.1080/09593330.2023.2283090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/09/2023] [Indexed: 11/19/2023]
Abstract
Sewage sludge requires effective dewatering and high nutrients retention before disposal for agricultural application. Pressurized electro-osmotic dewatering (PEOD) process with low energy consumption can effectively remove water from sludge, but the influences of PEOD process on nutrients for agricultural application still lacks in-depth research. In this study, the influences of PEOD process on nutrients for agricultural application were investigated, including organic matter, nitrogen, phosphorus, potassium and silicon contents. Layered experiments were conducted to investigate the layered variation of nutrients in sludge and to understand the potential change mechanisms. The experimental results showed that PEOD process caused small losses (<10%) of organic matter and total phosphorus (TP) in sludge, but caused 11.2-18.4% loss of total nitrogen (TN). PEOD process also caused 18.6-27.0% loss of total potassium (TK) and over 80% loss of available potassium in sludge, and could weaken the potential salt damage during the agricultural application of sludge. Furthermore, the available phosphorus content of sludge in the anode area increased significantly after the PEOD process, indicating that PEOD process could enhance the phosphorus bioavailability of sludge in the anode area. Besides, PEOD process caused a slight loss of silicon components in sludge, but improved the long-term silicon dissolution and release ability of sludge. This work could expand the knowledge about the influences of PEOD process on sludge nutrients and provide scientific guidance for the agricultural application of PEOD sludge.
Collapse
Affiliation(s)
- Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhang R, Liu H, Sariola-Leikas E, Tran KQ, He C. Practical strategies of phosphorus reclamation from sewage sludge after different thermal processing: Insights into phosphorus transformation. WATER RESEARCH 2024; 255:121524. [PMID: 38569360 DOI: 10.1016/j.watres.2024.121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
In the context of circular economy and global shortage of phosphorus (P) fertilizer production, it is crucial to effectively recover P during the treatment and disposal of sewage sludge (SS). Although thermal treatment of SS has been widely applied, a targeted P reclamation route is not yet well established. This study has comprehensively investigated and compared the physicochemical properties of SS and solid residues (hydrochar (HC), biochar (BC), sewage sludge ash (SSA), hydrochar ash (HCA), and biochar ash (BCA)) after application of three typical thermal treatment techniques (i.e., hydrothermal carbonization (180‒240 °C), pyrolysis (400‒600 °C) and combustion (850 ℃). P speciation and transformation during thermal processes were extensively explored followed by a rational proposal of effective P reclamation routes. Specifically, thermal processing decomposed organic P and converted non-apatite P to apatite P. Orthophosphate-P was found to be the main species in all samples. Physicochemical properties of the resulting thermal-derived products were significantly affected by the thermal techniques applied, thereby determining their feasibility for different P reclamation purposes. In particular, ash is not recommended for agricultural use due to higher harmful metals content, while acid leaching can be an alternative solution to synthesize non-Fe-containing P products because of the lower co-dissolved Fe content in the leachate. HC and BC offer the option for synthesis of Fe containing products. Eventually, HC and BC demonstrate great potential for agriculture application, however, a comprehensive risk assessment should be conducted before their real-world applications.
Collapse
Affiliation(s)
- Ruichi Zhang
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Huan Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Essi Sariola-Leikas
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Khanh-Quang Tran
- Department of Energy and Process Engineering, Norwegian University of Science and Technology NTNU, Kolbjørn Hejes Vei 1B, Trondheim, 7491, Norway
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland.
| |
Collapse
|
7
|
Fang Y, Xu Y, Chen G, Wang L, Pan W, Zou B, Wang Q, Qian G. Preparation of phosphorus containing products by co-incineration of sludge ash and calcium-based additives: Focusing one-step and multi-step method. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:67-75. [PMID: 38537600 DOI: 10.1016/j.wasman.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Due to the irreplaceable nature of phosphorus (P) in biological growth and the shortage of P rock, it is necessary to recover P from waste, such as sludge ash. P-containing products were prepared using sludge ash and calcium-based additives (CaCO3 and eggshell). In addition, the effects of different incineration methods (one-step method (OSM) and multi-step method (MSM)), additive doses, and incineration temperature on the P content and species in the products were investigated. The results indicated that as the dose of calcium-based additives increased, total P (TP) content in P-containing products reduced, apatite P (AP) content increased, non-apatite P (NAIP) content declined, and P solubility in citric acid content decreased. The amount of AP increased, NAIP reduced, and P solubility in citric acid decreased as the incineration temperature climbed. Although P in P-containing products prepared by OSM and MSM changed in a similar way at different additive doses and temperatures, P-containing products prepared by MSM had at least a 6.1% increase in P solubility in citric acid. Compared with OSM, MSM could save 10% of calcium-based additives when reaching the maximum AP value. Additionally, pure materials were employed to investigate how P species changed during the incineration procedure. The advantage of the MSM-prepared product over the OSM-prepared product may be explained by the high concentration of Ca3(PO4)2 and low concentration of amorphous calcium bound P (Ca-P). Overall, MSM is an effective method to reduce the dose of calcium-based additives and increase the bioavailability of P in P-containing products.
Collapse
Affiliation(s)
- Yangfan Fang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China.
| | - Guang Chen
- Shanghai Chengtou Sewage Treatment Co., Ltd, No.1851 Longdong Avenue, Shanghai 201203, China
| | - Lihua Wang
- Shanghai Chengtou Sewage Treatment Co., Ltd, No.1851 Longdong Avenue, Shanghai 201203, China
| | - Wei Pan
- Shanghai Chengtou Sewage Treatment Co., Ltd, No.1851 Longdong Avenue, Shanghai 201203, China
| | - Boyuan Zou
- Shanghai Chengtou Sewage Treatment Co., Ltd, No.1851 Longdong Avenue, Shanghai 201203, China
| | - Qian Wang
- Shanghai Baoning Environmental Protection Technology Co., Ltd, No. 318 Haihuan Road, Shanghai 200949, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
8
|
Zeng Y, Lin Y, Ma M, Chen H. Adsorption effect and mechanism of Cd(II) by different phosphorus-enriched biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16642-16652. [PMID: 38319416 DOI: 10.1007/s11356-024-32308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
The resource utilization of agricultural and forestry waste, especially the high-value transformation of low-grade phosphate rock and derivatives, is an important way to achieve sustainable development. This study focuses on the impregnation and co-pyrolysis of rice straw (RS) with fused calcium magnesium phosphate (FMP), FMP modified with citric acid (CA-FMP), and calcium dihydrogen phosphate (MCP) to produce three phosphorous-enriched biochars (PBC). The Cd(II) removal efficiency of biochars before and after phosphorus modification was investigated, along with the adsorption mechanism and contribution of biochars modified with different phosphorus sources to Cd(II) adsorption. The result indicated that CA-FMP and MCP could be more uniformly loaded onto biochar, effectively increasing the specific surface area (SSA) and total pore volume. The adsorption of Cd(II) onto PBC followed a mono-layer chemisorption process accompanied by intraparticle diffusion. The adsorption of Cd(II) by PBC involved ion exchange, mineral precipitation, complexation with oxygen-containing functional groups (OFGs), cation-π interaction, electrostatic interaction, and physical adsorption. Ion exchange was identified as the primary adsorption mechanism for Cd(II) by BC and FBC (51.53% and 53.15% respectively), while mineral precipitation played a major role in the adsorption of Cd(II) by CBC and MBC (51.10% and 47.98% respectively). Moreover, CBC and MBC significantly enhanced the adsorption capacity of Cd(II), with maximum adsorption amounts of 128.1 and 111.5 mg g-1 respectively.
Collapse
Affiliation(s)
- Yang Zeng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuhan Lin
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Three Gorges Reservoir Area, Chongqing, 400715, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China
| | - Hong Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering Research Center for Agricultural Non-Point Source Pollution Control, Three Gorges Reservoir Area, Chongqing, 400715, China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China.
| |
Collapse
|
9
|
Nan H, Yang F, Wang C, Xu X, Qiu H, Cao X, Zhao L. Phosphorus Footprint in the Whole Biowaste-Biochar-Soil-Plant System: Reservation, Replenishment, and Reception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:166-175. [PMID: 38109361 DOI: 10.1021/acs.jafc.3c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two phosphorus (P)-rich biowastes, sewage sludge (SS) and bone dreg (BD), were selected to clarify P footprints among biowaste, biochar, soil, and plants by introducing a novel "3R" concept model. Results showed that pyrolysis resulted in P transformation from an unstable-organic amorphous phase to a stable-inorganic crystalline phase with a P retention rate of 70-90% in biochar (P reservation). In soil, SSBC released more P in acid red soil and alkaline yellow soil than BDBC, while the opposite result appeared in neutral paddy soil. The P released from SSBC formed AlPO4 by combining with Al in soil, whereas P from BDBC transformed into Ca5(PO4)3F(or Cl) in conjunction with Ca in the soil (P replenishment). Various plants exhibited an uptake of approximately 2-6 times more P from biochar-amended soil than from the original soil (P reception). This study can guide the application of biochar in various soil-plant systems for effective nutrient reclamation.
Collapse
Affiliation(s)
- Hongyan Nan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200240, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| |
Collapse
|
10
|
Guo M, He Z, Tian J. Fractionation and Lability of Phosphorus Species in Cottonseed Meal-Derived Biochars as Influenced by Pyrolysis Temperature. Molecules 2024; 29:303. [PMID: 38257216 PMCID: PMC10819703 DOI: 10.3390/molecules29020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defatted cottonseed meal (CSM), the residue of cottonseeds after oil extraction, is a major byproduct of the cotton industry. Converting CSM to biochar and utilizing the goods in agricultural and environmental applications may be a value-added, sustainable approach to recycling this byproduct. In this study, raw CSM was transformed into biochar via complete batch slow pyrolysis at 300, 350, 400, 450, 500, 550, and 600 °C. Thermochemical transformation of phosphorus (P) in CSM during pyrolysis was explored. Fractionation, lability, and potential bioavailability of total P (TP) in CSM-derived biochars were evaluated using sequential and batch chemical extraction techniques. The recovery of feed P in biochar was nearly 100% at ≤550 °C and was reduced to <88% at 600 °C. During pyrolysis, the organic P (OP) molecules predominant in CSM were transformed into inorganic P (IP) forms, first to polyphosphates and subsequently to orthophosphates as promoted by a higher pyrolysis temperature. Conversion to biochar greatly reduced the mobility, lability, and bioavailability of TP in CSM. The biochar TP consisted of 9.3-17.9% of readily labile (water-extractable) P, 10.3-24.1% of generally labile (sequentially NaHCO3-extractable) P, 0.5-2.8% of moderately labile (sequentially NaOH-extractable) P, 17.0-53.8% of low labile (sequentially HCl-extractable) P, and 17.8-47.5% of residual (unextractable) P. Mehlich-3 and 1 M HCl were effective batch extraction reagents for estimating the "readily to mid-term" available and the "overall" available P pools of CSM-derived biochars, respectively. The biochar generated at 450 °C exhibited the lowest proportions of readily labile P and residual P compounds, suggesting 450 °C as the optimal pyrolysis temperature to convert CSM to biochar with maximal P bioavailability and minimal runoff risk.
Collapse
Affiliation(s)
- Mingxin Guo
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA
| | - Zhongqi He
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Southern Regional Research Center, 1100 Allen Toussaint Blvd., New Orleans, LA 70124, USA;
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China;
| |
Collapse
|
11
|
Zhang S, Wei L, Trakal L, Wang S, Shaheen SM, Rinklebe J, Chen Q. Pyrolytic and hydrothermal carbonization affect the transformation of phosphorus fractions in the biochar and hydrochar derived from organic materials: A meta-analysis study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167418. [PMID: 37774876 DOI: 10.1016/j.scitotenv.2023.167418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Carbonized organic materials are widely used to achieve soil improvement and alleviate soil pollution. The carbonization process significantly changes the total phosphorus (P) content and the P form in the solid phase derived from organic materials, which in turn has a significant impact on the P fertilizer effect in soils. In the present study, a meta-analysis with 278 observational data was conducted to detect the impact of the carbonization process (including pyrolytic carbonization and hydrothermal carbonization) on the transformation of P fractions in biochar or hydrochar derived from different organic materials. The results showed that the carbonization process significantly increased the total P content of the solid phase by 67.9%, and that the rate of P recovery from raw materials stayed high with a mean value of 86.8%. Among them, the impact of sludge-derived char was smaller when compared to the manure-derived char and biomass-derived char. The increase of total P in the biochar (or hydrochar) produced at >500 °C (or >200 °C) was more notable than that at <500 °C (or <200 °C). Simultaneously, the carbonization process significantly decreased the proportion of available P pool in the solid phase by 51.7% on average and increased the proportion of stable P pool in the solid phase by 204%. Appropriate production temperature helps to adjust the proportion of stable P pool in the solid phase. This meta-analysis pointed out that the carbonized solid phase recovers most of the P in the feedstock and that it promotes a significant transformation of available P pool in the feedstock to stable P in the carbonized solid phase. These findings provide useful information for the rational use of carbonization technology, the development of corresponding field management strategies, and the potential value of carbonized solid phase utilization.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China.
| |
Collapse
|
12
|
Hämäläinen A, Kokko M, Tolvanen H, Kinnunen V, Rintala J. Towards the implementation of hydrothermal carbonization for nutrients, carbon, and energy recovery in centralized biogas plant treating sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:99-108. [PMID: 37984264 DOI: 10.1016/j.wasman.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, extensive experimental research on hydrothermal carbonization (HTC) of sewage sludge has been performed, to study the effects of process conditions on hydrochar characteristics and nutrient, carbon, and energy recovery from sewage sludge. To promote the implementation of HTC, this study assessed HTC (230 °C, 30 min) integration into an advanced centralized biogas plant by analyzing its theoretical effects on the fates of sewage sludge solids, nitrogen, phosphorus, and carbon. The study used the mass and nutrient flows and concentrations obtained from laboratory studies, and the studied biogas plant had an original layout that employed hygienization. HTC integration decreased the solid product volume by up to 56 % and, increased the recovery of ammonium in ammonia water by 33 % and methane by 1.4 %, while increasing the biogas plant energy demand by 4 %. The changes in the nutrient and solids flows and their recovery potentials show the need to consider the rearrangements of the liquid and gas flows in the biogas plant and the re-dimensioning of stripping process.
Collapse
Affiliation(s)
- Anna Hämäläinen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland
| | - Henrik Tolvanen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland
| | - Viljami Kinnunen
- Gasum Ltd. Revontulenpuisto 2 C, P.O. Box 21, 02151 Espoo, Finland
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland
| |
Collapse
|
13
|
Kwapinska M, Pisano I, Leahy JJ. Hydrothermal carbonization of milk/dairy processing sludge: Fate of plant nutrients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118931. [PMID: 37688960 DOI: 10.1016/j.jenvman.2023.118931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Dairy processing sludge (DPS) is a byproduct generated in wastewater treatment plants located in dairy (milk) processing companies (waste activated sludge). DPS presents challenges in terms of its management (as biosolids) due to its high moisture content, prolonged storage required, uncontrolled nutrient loss and accumulation of certain substances in soil in the proximity of dairy companies. This study investigates the potential of hydrothermal carbonization (HTC) for recovery of nutrients in the form of solid hydrochar (biochar) produced from DPS originating from four different dairy processing companies. The HTC tests were carried out at 160 °C, 180 °C, 200 °C and 220 °C, and a residence time of 1h. The elemental properties of hydrochars (biochars), the content of primary and secondary nutrients, as well as contaminants were examined. The transformation of phosphorus in DPS during HTC was investigated. The fraction of plant available phosphorus was determined. The properties of hydrochar (biochar) were compared against the European Union Fertilizing Products Regulation. The findings of this study demonstrate that the content of nutrient in hydrochars (biochars) meet the requirements for organo-mineral fertilizer with nitrogen and phosphorus as the declared nutrients (13.9-26.7%). Further research on plant growth and field tests are needed to fully assess the agronomic potential of HTC hydrochar (biochar).
Collapse
Affiliation(s)
- Marzena Kwapinska
- Dairy Processing Technology Centre, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Italo Pisano
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - James J Leahy
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
14
|
Sui Q, Liu L, Hu L, Zhou Y, Li J, Zhou L, Fang D. Elemental sulfur redox bioconversion for selective recovery of phosphorus from Fe/Al-bound phosphate-rich anaerobically digested sludge: Sulfur oxidation or sulfur reduction? WATER RESEARCH 2023; 244:120449. [PMID: 37572462 DOI: 10.1016/j.watres.2023.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The biological oxidation of elemental sulfur (S0) to sulfate and the reduction of S0 to sulfide provide a potential route for extracting and reclaiming phosphorus (P) from anaerobically digested sludge (ADS). However, the treatment performance, stability, and cost-effectiveness of the two opposing bioprocesses based on S° for selective P recovery from ADS remain unclear. This study aimed to compare the roles of S0-oxidizing bacteria (S0OB) and S0-reducing bacteria (S0RB) in liberating insoluble P from ADS through single-batch and consecutive multibatch experiments. Changes in P speciation in the sludge during the biological extraction processes were analyzed by using complementary sequential extraction and P X-ray absorption near-edge spectroscopy. Results showed that S0OB treatment extracted more phosphate from the sludge compared with S0RB treatment, but it also released a considerable amount of metal cations (e.g., heavy metals, Mg2+, Al3+, Ca2+) and negatively affected sludge dewaterability due to intense sludge acidification and cell lysis. At pH 1.2, the S0OB treatment released 92.9% of P from the sludge, with the dissolution of HAP, Fe-PO4, Mg3(PO4)2, and P-fehrrihy contributing 26.8%, 22.1%, 12.8%, and 10.5%, respectively. The S0RB treatment released 63.6% of P from the sludge at pH 7.0, with negligible dissolution of metal cations, thereby avoiding costly purification of the extract and alkali neutralization for pH adjustment. This treatment involved the replacement of phosphates bounded with Fe-PO4 (FePO4 and P-fehrrihy) and Al-PO4 (P-Alumina and AlPO4) with biogenic sulfides, with contributions of 72.7%, and 20.9%, respectively. Consecutive bioprocesses for P extraction were achieved by recirculating the treated sludge. Both S0OB and S0RB treatments did not affect the extent of sludge dewatering but considerably weakened the dewatering rate. The S0OB-treated sludge exhibited prolonged filtration time (from 3010 s to 9150 s) and expressing time (from 795 s to 4690 s) during compression dewatering. After removing metal cations using cation exchange resin (CER) and neutralizing using NaOH, a vivianite product Fe3(PO4)2·8H2O (purity: 84%) was harvested from the S0OB-treated extract through precipitation with FeSO4·7H2O. By contrast, a vivianite product Fe3(PO4)2·8H2O (purity: 81%) was directly obtained from the S0RB-treated extract through precipitation with FeSO4·7H2O. Ultimately, 79.8 and 57.9wt% of P were recovered from ADS through S0OB extraction-CER purification-alkali neutralization-vivianite crystallization, and S0RB extraction-vivianite crystallization, respectively. Collectively, biological S0 reduction is more applicable than biological S0 oxidation for selectively reclaiming P from Fe/Al-associated phosphate-rich ADS due to better cost-effectiveness and process simplicity. These findings are of significance for developing sludge management strategies to improve P reclamation with minimal process inputs.
Collapse
Affiliation(s)
- Qinghong Sui
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Liu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Hu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lixiang Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Di Fang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
15
|
Khoury O, Gaur R, Zohar M, Erel R, Laor Y, Posmanik R. Phosphorus recycling from waste activated sludge using the hydrothermal platform: Recovery, solubility and phytoavailability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:23-31. [PMID: 37393753 DOI: 10.1016/j.wasman.2023.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
To address the grand challenge of increasing the sustainability of wastewater treatment plants, hydrothermal carbonization was studied as a nutrient recovery platform, transforming sludge into a valuable hydrochar. Carbonization was achieved at different temperatures (200-300 °C) and durations (30-120 min). The highest mass recovery (73%) was observed in the lowest temperature, while the lowest (49%) was obsereved at the highest temperature. Under all reaction conditions, phosphorus recovery values exceeded 80%, with the dominated fraction of inorganic-P in the hydrochar being HCl-extractable. Although HCl-extractable P is considered a moderately labile P fraction, P phytoavailability assays indicate that sewage sludge hydrochar is an excellent source for P, surpassing soluble P, likely due to its slow-release nature. We postulate that polyphosphates constitute a significant portion of this P pool. Overall, we emphasize the benefits of using HTC as a circular economy approach to convert sludge into a valuable hydrochar.
Collapse
Affiliation(s)
- Osama Khoury
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel; Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Rubia Gaur
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel
| | - Matat Zohar
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel
| | - Ran Erel
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 85820, Israel
| | - Yael Laor
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel
| | - Roy Posmanik
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel.
| |
Collapse
|
16
|
Liu H, Lyczko N, Nzihou A, Eskicioglu C. Phosphorus recovery from municipal sludge-derived hydrochar: Insights into leaching mechanisms and hydroxyapatite synthesis. WATER RESEARCH 2023; 241:120138. [PMID: 37267708 DOI: 10.1016/j.watres.2023.120138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Hydrothermal liquefaction has the potential to exploit resources from municipal sewage sludge. It converts most organics into a liquid biofuel (biocrude), concentrates P in the solid residue (hydrochar), and consequently enables its efficient recovery. This study thoroughly evaluated the effects of extraction conditions on P and metal release from hydrochar by nitric acid. Among assessed factors, acid normality (0.02-1 N), liquid-to-solid ratio (5-100 mL/g), and contact time (0-24 h) had positive effects while decreasing eluate pH (0.5-4) improved leaching efficiencies of P and metals. Notably, eluate pH played a dominant role in P leaching and pH < 1.5 was crucial for complete extraction. P and metal leaching from hydrochar have strong interactions and their leaching mechanism was identified as product layer diffusion using the shrinking core model. This suggests that the leaching efficiency is susceptible to agitation and particle size but not temperature. Using 10 mL/g of 0.6 N HNO3 for 2 h was considered the best extraction condition for efficient P leaching (nearly 100%) and minimization of cost and contaminants (heavy metals). Following extraction, adding Ca(OH)2 at a Ca:P molar ratio of 1.7-2 precipitated most P (99-100%) at pH 5-6, while a higher pH (13) synthesized hydroxyapatite. The recovered precipitates had high plant availability (61-100%) of P and satisfactory concentrations of heavy metals as fertilizers in Canada and the US. Overall, this study established reproducible procedures for P recovery from hydrochar and advanced one step closer to wastewater biorefinery.
Collapse
Affiliation(s)
- Huan Liu
- UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| | - Nathalie Lyczko
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR 5302, Campus Jarlard, F.81013 Albi Cedex 09, France
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR 5302, Campus Jarlard, F.81013 Albi Cedex 09, France; Princeton University, School of Engineering and Applied Science, Princeton, NJ 08544, United States; Princeton University, Andlinger Center for Energy and the Environment, Princeton, NJ 08544, United States
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
17
|
Chang H, Zhao Y, Bisinella V, Damgaard A, Christensen TH. Climate change impacts of conventional sewage sludge treatment and disposal. WATER RESEARCH 2023; 240:120109. [PMID: 37244017 DOI: 10.1016/j.watres.2023.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Sewage sludge (SS) management remains a challenge across the world. We quantified the potential climate change impacts of eight conventional technology configurations (TCs) for SS treatment and disposal by considering four different energy exchanges and using a life cycle assessment (LCA) model that employed uncertainty distributions for 104 model parameters. All TCs showed large climate change loads and savings (net values ranging from 123 to 1148 kg CO2-eq/t TS) when the energy exchange was with a fossil-based energy system, whereas loads and savings were approximately three times lower when the energy exchange was with a renewable energy system. Uncertainty associated with the climate change results was more than 100% with fossil-energy exchange and low TS content of SS but was lower for renewable energy. Landfilling had the greatest climate change impact, while thermal drying with incineration had the highest probability of providing better climate change performance than other TCs. The global sensitivity analysis identified nine critical technological parameters. Many of them can be easily measured for relevant SS and technology levels to improve specific estimates of climate change impact. When all scenarios were optimized to the 20% best cases, thermal drying with incineration outperformed the other TCs. This paper contributes to better quantifying the climate change impacts of different technologies used for sludge treatment given changing energy systems and identifies crucial parameters for further technological development.
Collapse
Affiliation(s)
- Huimin Chang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Valentina Bisinella
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Anders Damgaard
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Thomas H Christensen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
18
|
Wang L, Zhou J, Jia Q, Ma X, Zhao Y, Gong L, Zhang H. Anaerobic digestion of hydrothermally pretreated dewatered sewage sludge: effects of process conditions on methane production and the fate of phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66767-66780. [PMID: 37099108 DOI: 10.1007/s11356-023-26990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/09/2023] [Indexed: 05/25/2023]
Abstract
The hydrothermal pretreatment (HTP) characteristics and the fate of phosphorus (P) and anaerobic digestion (AD) performance of dewatered sewage sludge (DSS) were investigated at different hydrothermal conditions. The maximum methane yield reached 241 mL CH4/g COD when the hydrothermal conditions were 200 °C-2 h-10% (A4), and the yield was 78.28% higher than that without pretreatment (A0) and 29.62% higher than that of the initial hydrothermal conditions (A1, 140 °C-1 h-5%). Proteins, polysaccharides, and volatile fatty acids (VFAs) were the main hydrothermal products of DSS. 3D-EEM analysis revealed that tyrosine, tryptophan proteins, and fulvic acids decreased after HTP, but the content of humic acid-like substances increased, and this phenomenon was more noticeable after AD. Solid-organic P was converted into liquid-P during the hydrothermal process, and nonapatite inorganic P was converted into organic P during AD. All samples achieved positive energy balance, and the energy balance of A4 was 10.50 kJ/g VS. Microbial analysis showed that the composition of the anaerobic microbial degradation community changed as the sludge organic composition was altered. Results showed that the HTP improved the anaerobic digestion of DSS.
Collapse
Affiliation(s)
- Luyu Wang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Qinwei Jia
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Xiaofan Ma
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Yuhang Zhao
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China.
| | - Haonan Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| |
Collapse
|
19
|
Nan H, Yang F, Li D, Cao X, Xu X, Qiu H, Zhao L. Calcium enhances phosphorus reclamation during biochar formation: Mechanisms and potential application as a phosphorus fertilizer in a paddy soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:83-91. [PMID: 36948116 DOI: 10.1016/j.wasman.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Transformation of phosphorus (P) species during pyrolytic production of biochar from P-rich biowastes with a subsequent soil amendment is important to P reclamation. Aiming at increasing the content of plant-available P and restraining the formation of easily mobile P in pyrolysis product, this study used exogenous calcium ions (20 wt% CaCl2) addition prior to pyrolysis to regulate the pyrolytic transformation of P chemical fractions from sewage sludge and bone dreg. Results showed that active Ca catalyzed the decomposition of organic P to transform into inorganic orthophosphate. Based on Hedley's sequential extraction method, this study found that addition of Ca ions remarkably reduced the content of soluble P, exchange P, Fe/Al bound P, and occluded P in biochar, while increased Ca bound P from 78 to 85% to 85-96%. Liquid 31P NMR indicated that exogenous Ca induced the crack of the P-O-P bond in pyrophosphate to become orthophosphates. It also explained why new orthophosphates including chlorapatite (Ca5(PO4)3Cl) and calcium hydroxyapatite (Ca10(PO4)6(OH)2) appeared in the Ca-composite biochar compared to pristine biochar. Combined with rapid P-release test in paddy soil (pH 6.27) and 30-days rice seedling growth test under flooded condition (10 wt% biochar addition ratio), it was confirmed that compared to pristine biochar, Ca-composite biochar released more P in paddy soil, but also promoted more P to be taken in by rice root and stalk. These results suggested that pretreating biowaste with Ca ion was a friendly approach to enhance P reclamation during biochar formation, making it a promising P fertilizer.
Collapse
Affiliation(s)
- Hongyan Nan
- School of Chemical Engineering, Zhengzhou University, Henan 450001, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Yang Y, Kou L, Chen H, Wang J. Synthesis of magnetic adsorbents from titanium gypsum and biomass wastes for enhanced phosphate removal. BIORESOURCE TECHNOLOGY 2023; 371:128609. [PMID: 36640817 DOI: 10.1016/j.biortech.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A novel scheme was proposed to prepare magnetic adsorbents by co-pyrolysis of titanium gypsum (TiG) and agricultural biomass wastes for phosphate (P) recovery. Co-presence of biomass wastes could improve TiG decomposition in inert atmosphere to generate magnetic centers and active sites, and P adsorption correlated well with organic volatiles of biomass wastes. The adsorption process evolved from a biomass-controlled process to a TiG-controlled process when increasing the mass ratio of corncob above 10 %. The optimal adsorbent (i.e. GC10) exhibited higher P adsorption capacity (Qm 183 mg/g) than many previous adsorbents; moreover, it can be magnetically separated from water after P adsorption. Active sites including CaO, CaS and Fe3O4 were deemed as the main factors for P chemisorption and surface precipitation. Most of adsorbed P could be released continuously and slowly by dilute NaHCO3. These results highlight potential applications of TiG and biomass waste derived adsorbents in P purification and recovery.
Collapse
Affiliation(s)
- Yuhong Yang
- School of Water Conservancy, Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, PR China
| | - Lidong Kou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, PR China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450002, PR China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jing Wang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
21
|
Su L, Hu L, Sui Q, Ding C, Fang D, Zhou L. Improvement of fungal extraction of phosphorus from sewage sludge ash by Aspergillus niger using sludge filtrate as nutrient substrate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:25-35. [PMID: 36516581 DOI: 10.1016/j.wasman.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fungal extraction is a promising approach for reclaiming phosphorus (P) from sewage sludge ash (SSA). However, this approach faces notable technical and economic challenges, including an unknown P speciation evolution and the addition of expensive chemical organic carbon. In this study, the use of an organic-rich effluent produced in sludge dewatering as nutrient source is proposed to initiate the fungal extraction of SSA-borne P with Aspergillus niger. The changes in P speciation in the ash during fungal treatment was analyzed by combined sequential extraction, solid-state 31P nuclear magnetic resonance, and P X-ray absorption near edge spectroscopy. Results showed that after 5 days of fungal treatment using sludge-derived organics, 85 % of P was leached from SSA. Dominantly, this considerable release of P resulted from the dissolution of Ca3(PO4)2, AlPO4, FePO4, and Mg3(PO4)2 in the ash, and their individual contribution rates to P released accounted for 28.0 %, 24.3 %, 20.6 %, and 18.8 %, respectively. After removal of metal cations (e.g., Mg2+, Al3+, Fe3+, and heavy metals) by cation exchange resin (CER), a hydroxyapatite (HAP) product with a purity of > 85 % was harvested from the extract by precipitation with CaCl2. By contrast, without CER purification, a crude product of Ca/Mg-carbonates and phosphates mixture were obtained from this extract. A total of 73.2 wt% of P was ultimately recovered from SSA through integrated fungal extraction, CER purification, and HAP crystallization. These findings provide a mechanistic basis for the development of waste management strategies for improved P reclamation with minimal chemical organics consumption.
Collapse
Affiliation(s)
- Long Su
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Lingyu Hu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghong Sui
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Di Fang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Lixiang Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
22
|
Sarvajith M, Nancharaiah Y. Properties of alginate-like exopolymers recovered from flocculent and granular microbial sludges of different biological treatment systems treating real municipal wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
23
|
Zheng X, Ying Z, Feng Y, Wang B, Dou B. CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors. CHEMOSPHERE 2022; 308:136391. [PMID: 36096311 DOI: 10.1016/j.chemosphere.2022.136391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Dewatering of sewage sludge (SS) was the prerequisite for saving its drying energy and sustaining its stable combustion. Hydrothermal treatment (HT) has been a promising technology for improving SS dewaterability with high energy efficiency. However, the knowledge of phosphorus (P) transformation and heavy metals (HMs) behaviors in the combined HT and incineration process was still lack. P fractions, P-bioavailability, HMs speciation, and their environmental risk in the ash samples from this combination process were evaluated and compared with those from the co-incineration of SS and CaO. The combination process was superior to the latter one in the light of P and HMs. CaO preferred to enhance the transformation of non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP) initially with enriched P and increased P-bioavailability in the resultant ash samples. The combination process further reduced the values of risk assessment code and individual contamination factor with the increment of the stable F4 fraction in HMs. Significant reduction of potential ecological risk was observed with the lowest global risk index of 43.76 in the combination process. Optimum CaO addition of 6% was proposed in terms of P and HMs. The work here can provide theoretical references for the potential utilization of P from SS to mitigate the foreseeable shortage of P rocks.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Heat Transfer and Multiphase Flow in Power Engineering, Shanghai, 200093, China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, 200092, China.
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
24
|
Ebrahimi M, Hassanpour M, Rowlings DW, Bai Z, Dunn K, O'Hara IM, Zhang Z. Effects of lignocellulosic biomass type on nutrient recovery and heavy metal removal from digested sludge by hydrothermal treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115524. [PMID: 35717693 DOI: 10.1016/j.jenvman.2022.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Sludge is a nutrient-rich organic waste generated from wastewater treatment plants. However, the application of sludge as a nutrient source is limited by its high contents of water and pollutants. In this study, the effects of biomass type on nutrient recovery and heavy metal removal from digested sludge by hydrothermal treatment (HTT) were investigated. Blending biomass with digested sludge for HTT at 180-240 °C increased the recovery of nitrogen in the treated solids. At the HTT temperature of 240 °C, HTT with hardwood sawdust led to the highest nitrogen recovery of 70.6%, compared to the lowest nitrogen recovery of 36.5% without biomass. Blending biomass slightly decreased the recovery of phosphorus compared to those without biomass. Nevertheless, the lowest phosphorus recovery of 91.3% with the use of hardwood sawdust at the HTT temperature of 240 °C was only ∼7.0% less than that without biomass. Blending biomass reduced the contents of macro-metals such as Ca, Fe, Mg and Al in treated solids but the metal contents varied with different biomasses. Regarding the heavy metals, the use of rice husk did not decrease the contents of Ni and Co while blending bagasse did not decrease the content of Cr at HTT temperatures of 210 °C and 240 °C compared to the use of other biomasses. The different effects of biomass type on nutrient recovery and heavy metals were likely related to the types and abundances of organic acids such as acetic acid, oxygen-containing functional groups such as C-OH and COOH, oxide minerals such as silica from biomasses and the overall effects of these factors. This study provides very useful information in selection of lignocellulosic biomass for HTT of sludge for nutrient recovery and heavy metal removal.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - David W Rowlings
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kameron Dunn
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia.
| |
Collapse
|
25
|
Zhang X, Qin Q, Sun X, Wang W. Hydrothermal treatment: An efficient food waste disposal technology. Front Nutr 2022; 9:986705. [PMID: 36172524 PMCID: PMC9512071 DOI: 10.3389/fnut.2022.986705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The quantities of food waste (FW) are increasing yearly. Proper disposal of FW is essential for reusing value-added products, environmental protection, and human health. Based on the typical characteristics of high moisture content and high organic content of FW, hydrothermal treatment (HTT), as a novel thermochemical treatment technology, plays unique effects in the disposal and utilization of FW. The HTT of FW has attracted more and more attention in recent years, however, there are few conclusive reviews about the progress of the HTT of FW. HTT is an excellent approach to converting energy-rich materials into energy-dense fuels and valuable chemicals. This process can handle biomass with relatively high moisture content and allows efficient heat integration. This mini-review presents the current knowledge of recent advances in HTT of FW. The effects of HTT temperature and duration on organic nutritional compositions (including carbohydrates, starch, lipids, protein, cellulose, hemicellulose, lignin, etc.) and physicochemical properties (including pH, elemental composition, functional groups, fuel properties, etc.) and structural properties of FW are evaluated. The compositions of FW can degrade during HTT so that the physical and chemical properties of FW can be changed. The application and economic analyses of HTT in FW are summarized. Finally, the analyses of challenges and future perspectives on HTT of FW have shown that industrial reactors should be built effectively, and techno-economic analysis, overall energy balance, and life cycle assessment of the HTT process are necessary. The mini-review offers new approaches and perspectives for the efficient reuse of food waste.
Collapse
Affiliation(s)
- Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Xinyan Zhang
| | - Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
- Xun Sun
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
26
|
Li CS, Cai RR. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155867. [PMID: 35568172 DOI: 10.1016/j.scitotenv.2022.155867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
With continuous recognition of green, organic and pollution-free products, the organic fertilizer plays an increasingly important role in agricultural production. Hydrothermal carbonization (HTC) is an efficient and environmentally friendly biomass treatment technology that can achieve value-added utilization of solid wastes. This study evaluated the potential of two typical agricultural and forestry wastes (corn cob and peanut residue) in preparing as solid organic fertilizers through HTC. The effects of reaction temperature, residence time, and the raw material composition on hydrochar yield, total nutrient content (TNC), nitrogen recovery, and nutrient elements transformation in HTC were investigated. Corn cob was proven to be not an ideal raw material for the preparation of organic fertilizers because of the low TNC and the high C/N ratio of its hydrochar. On the contrary, peanut residue was suitable for preparing organic fertilizers due to its high TNC and appropriate C/N ratio. The co-HTC of corn cob and peanut residue could further improve the N recovery rate from 8.52% (for peanut residue only) to 19.51% due to the synergistic effect between them. Under the optimal hydrothermal conditions of 240 °C, 120 min, and mixing ratio of 1:1, the hydrochar yield was as high as 27.86%, and the C/N value (11.98) and TNC (6.331%) were both appropriate as fertilizer. Furthermore, the potential migration and transformation paths of nutrients including N, P, K and metal elements in the co-HTC were analyzed. The thermodynamic conditions and raw materials composition significantly affect the migration and transformation of N, P and K between solid and liquid. N dissolved into process water (mainly ammonia) would migrate into hydrochar and bio-oil with increasing of reaction temperature. P was fixed in hydrochar through precipitation and adsorption reaction with metal ions. Further, adjusting pH or adding metal salts can promote the fixation of N and P in solid.
Collapse
Affiliation(s)
- Chao-Sheng Li
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Rong-Rong Cai
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
27
|
Liu Y, Li B, Guo D, Munir MT, Song L, Wu X, Huang Y. Feasibility of using different hydrothermal processes for sewage sludge management in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156154. [PMID: 35609704 DOI: 10.1016/j.scitotenv.2022.156154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Due to its tremendous volume and severe environmental concern, sewage sludge (SS) management and treatment are significant in China. The recent prohibition (June 2021) of reusing SS as organic fertilizers makes it urgent to develop alternative processes. However, there is currently little research analyzing the applicability of using HP for sewage SS treatment in China. The significant difference in SS composition and the much less land supply in urban areas might invalidate most previous localized suggestions. In this paper, the development of emerging hydrothermal processes (HPs) for SS treatment will be reviewed, focusing on their decomposition mechanisms and the benefits of HPs compared with current SS treatment technologies. The SS volume, composition, and regulatory regime in China will also be evaluated. Those efforts could address the potential SS treatment capacity shortage and provide an opportunity to recover nutrients, organics and energy embedded in SS. The results show that HPs' high investment cost is mainly limited by the process scale, while their operating costs are comparable to incineration. Minimizing equipment erosion, ensuring process safety, and designing a more efficient heat recovery system are recommended for the future commercialization of HPs in China.
Collapse
Affiliation(s)
- Yuzhi Liu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Dengting Guo
- Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
| | | | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofeng Wu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yuefei Huang
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; College of Engineering and Technology, American University of the Middle East, Kuwait
| |
Collapse
|
28
|
Yu Z, Sun M, Xiao K, Ou B, Liang S, Hou H, Yang J. Changes of phosphorus species during (hydro) thermal treatments of iron-rich sludge and their solubilization mediated by a phosphate solubilizing microorganism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156612. [PMID: 35690206 DOI: 10.1016/j.scitotenv.2022.156612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
This study systematically evaluated phosphorus (P) solubilization from pyrochar and hydrochar derived from both raw sludge and iron-rich sludge. The data indicated, that an increase in thermal treatment temperature and the presence of iron promoted the accumulation of P in both pyrochar (derived at 300, 500, and 800 °C) and hydrochar (derived at 100, 200, and 280 °C). After incubating pyrochar and hydrochar with a phosphate solubilizing microorganism (PSM) (Pseudomonas aeruginosa) for 30 days, PSM significantly promoted the solubilization of P in pyrochar and hydrochar synthesized at low temperatures rather than those at high temperatures, with a 59 % increase for the pyrolysis of raw sludge at 300 °C than that pyrolyzed at 800 °C and a 62 % increase for the hydrothermal treatment of raw sludge at 100 °C than that treated at 280 °C. And the phenomena were more obvious on the char samples derived from iron-rich sludge. The mass balance of different P species in the solid and liquid phases indicated that after incubating with PSM for 30 days, NaOH-P was the main P solubilized from the solid phase of pyrochar and HCl-P was the main P solubilized from the solid phase of hydrochar. Considering P availability to plants, the preliminary economic analysis indicated that the hydrothermal treatment of iron-rich sludge at 100 °C showed the highest economic benefits for P recovery, with the net cost of 28.79 USD/ton wet sludge. This study was useful in giving novel insights into the reuse of char samples as P fertilizer, and also suggested the importance of Pseudomonas aeruginosa and other bacteria in sludge application, particularly in terms of P solubilization.
Collapse
Affiliation(s)
- Zecong Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Mei Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Bei Ou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
29
|
Feng Y, Du H, Wulandari T, Poinern GEJ, Jiang ZT, Fawcett D, Hassan N, Xue L, Yang L. Hydrochar amendments stimulate soil nitrous oxide emission by increasing production of hydroxyl radicals and shifting nitrogen functional genes in the short term: A culture experiment. CHEMOSPHERE 2022; 302:134771. [PMID: 35500635 DOI: 10.1016/j.chemosphere.2022.134771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The application of waste biomass-derived hydrochar to soil may cause extremely intensive nitrous oxide (N2O) fluxes that can challenge our current mechanistic understanding of the global nitrogen cycle in the biosphere. In this study, two waste biomasses were used to prepare cyanobacterial biomas-derived hydrochar (CHC) and wheat straw-derived hydrochar (SHC) for short-term incubation experiments to identify their effects and mechanisms of waste biomass-derived hydrochar on soil N2O efflux, with time-series samples collected for N2O efflux and soil analysis. The results showed that CHC and SHC caused short-term bursts of N2O effluxes without nitrogen inputs. Moreover, the enrichment of exogenous organics and nutrients at the hydrochar-soil interface was identified as the key factor for enhancing N2O fluxes, which stimulated microbial nitrification (i.e., increased gene copy number of ammonia oxidizing bacteria) and denitrification (i.e., increased gene copy number of nitrate and N2O reducing bacteria) processes. The concentrations of Fe (II) and hydroxyl radicals (HO•) were 6.49 and 5.63 times higher, respectively, in the hydrochar layer of CHC than SHC amendment. Furthermore, structural equation models demonstrated that HO•, as well as soil microbiomes, played an important role in driving N2O fluxes. Together, our findings provide a deeper insight into the assessment and prognosis of the short-term environmental risk arising from agricultural waste management in integrated agriculture. Further studies under practical field application conditions are warranted to verify the findings.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Haiyan Du
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Triana Wulandari
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Zhong-Tao Jiang
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Derek Fawcett
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Naveed Hassan
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
30
|
Usman M, Shi Z, Dutta N, Ashraf MA, Ishfaq B, El-Din MG. Current challenges of hydrothermal treated wastewater (HTWW) for environmental applications and their perspectives: A review. ENVIRONMENTAL RESEARCH 2022; 212:113532. [PMID: 35618004 DOI: 10.1016/j.envres.2022.113532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal treatment (HT) is an emerged thermochemical approach for the utilization of biomass. In the last decade, intense research has been conducted on bio-oil and hydrochar, during which extensive amount of hydrothermal treated wastewater (HTWW) is produced, containing large amount of organic compounds along with several toxic chemicals. The composition of HTWW is highly dependent on the process conditions and organic composition of biomass, which determines its further utilization. The current study provides a comprehensive overview of recent advancements in HTWW utilization and its properties which can be changed by varying different parameters like temperature, residence time, solid concentration, mass ratio and catalyst including types of biomasses. HTWW characterization, parameters, reaction mechanism and its application were also summarized. By considering the challenges of HTWW, some suggestions and proposed methodology to overcome the bottleneck are provided.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China.
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Nalok Dutta
- Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States
| | - Muhammad Awais Ashraf
- State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Bushra Ishfaq
- Food Technology Section, Post-harvest Research Center, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada.
| |
Collapse
|
31
|
Wang H, Duan R, Zhou X, Wang J, Liu Y, Xu R, Liao Z. Efficient removal of mercury and chromium from wastewater via biochar fabricated with steel slag: Performance and mechanisms. Front Bioeng Biotechnol 2022; 10:961907. [PMID: 36091466 PMCID: PMC9453161 DOI: 10.3389/fbioe.2022.961907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Biochar derived from biomass is regarded as a promising adsorbent for wastewater treatment, but the high cost of modification is still a challenge for its large-scale practical applications. In this study, we employed steel slag as a low-cost fabricant and synthesized hydrothermally carbonized steel slag (HCSS), as a stable environmentally functional material for heavy metal removal. Typically, positively and negatively charged heavy metal contaminants of Hg2+ and Cr2O72− were employed to testify the performance of HCSS as an adsorbent, and good capacities [(283.24 mg/g for Hg (II) and 323.16 mg/g for Cr (VI)] were found. The feasibility of HCSS on real wastewater purification was also evaluated, as the removal efficiency was 94.11% and 88.65% for Hg (II) and Cr (VI), respectively. Mechanism studies revealed that the modification of steel slag on bio-adsorbents offered copious active sites for pollutants. As expected, oxygen-containing functional groups in HCSS acted as the main contributor to adsorption capacity. Moreover, some reactive iron species (i.e., Fe2+) played an essential role in chemical reduction of Cr (VI). The adsorptive reactions were pH-dependent, owing to other more mechanisms, such as coprecipitation, ion-exchange, and electrostatic attraction. This promising recycling approach of biomass waste and the design of agro-industrial byproducts can be highly suggestive of the issues of resource recovery in the application of solid waste-derived environmentally functional materials for heavy metal remediation.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Duan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Xinquan Zhou
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- School of Chemical Engineer and Pharmacy, Henan University of Science and Technology, Luoyang, China
| | - Jia Wang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- *Correspondence: Rui Xu, ; Zhuwei Liao,
| | - Zhuwei Liao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- Urban Construction Engineering Division, Wenhua College, Wuhan, China
- *Correspondence: Rui Xu, ; Zhuwei Liao,
| |
Collapse
|
32
|
Nilsson C, Sjöberg V, Grandin A, Karlsson S, Allard B, von Kronhelm T. Phosphorus speciation in sewage sludge from three municipal wastewater treatment plants in Sweden and their ashes after incineration. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1267-1276. [PMID: 34920692 DOI: 10.1177/0734242x211065231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the high efficiency in phosphorus removal at municipal wastewater treatment plants (MMWWTP), sewage sludge constitutes a promising resource for phosphorus (P) recovery. Sewage sludge is, however, a complex matrix and its direct use as fertiliser is limited by its content of metals/metalloids and organic pollutants. In order to increase its usability as a potential resource of P, there is a need for increased knowledge on phosphorus speciation in these matrices. The sludge composition is highly influenced by local conditions (i.e. wastewater composition and treatment method), and it is therefore important to study sludge from several MMWWTPs. In this study, three different protocols for sequential extraction were utilised to investigate the chemical speciation of phosphorus in sludge from three different MMWWTP sludges in Sweden, as well as in corresponding ashes following incineration. The results showed that the total amounts of phosphorus ranged from 26 to 32 mg g-1 sludge (dry weight), of which 79-94% was inorganically bound (IP). In the sludge, 21-30% of the IP was associated with calcium (Ca-P), which is the preferred species for fertiliser production. Following incineration, this fraction increased to 54-56%, mainly due to transformation of iron-associated phosphorus (Fe-P), while aluminium-associated species of phosphorus (Al-P) remained unaltered. The results from this study confirm that incineration is a suitable treatment for sewage sludge in terms of potential phosphorus recovery.
Collapse
Affiliation(s)
- Charlotte Nilsson
- MTM Research Centre, Örebro University, Örebro, Sweden
- Fortum Waste Solutions AB, Kumla, Sweden
| | | | - Anna Grandin
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | | - Bert Allard
- MTM Research Centre, Örebro University, Örebro, Sweden
| | | |
Collapse
|
33
|
Chen G, Wang J, Yu F, Wang X, Xiao H, Yan B, Cui X. A review on the production of P-enriched hydro/bio-char from solid waste: Transformation of P and applications of hydro/bio-char. CHEMOSPHERE 2022; 301:134646. [PMID: 35436456 DOI: 10.1016/j.chemosphere.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a necessary element for plant growth and animal health. Most P utilized by anthropogenic activities is released within the generation of various solid wastes such as sewage sludge, animal manure, and wetland plant, which increase the risk of water contamination. (Hydro)thermal treatment could be employed for solid waste treatment with the production of value-added hydro/bio-char, and the behavior of P during the thermochemical treatment process is critical for the further utilization of hydro/bio-char. This study provides a systematic review of the migration and transformation mechanisms of P during thermochemical treatment of various solid wastes, and special emphasis is given to the potential applications of P-enriched hydro/bio-char. Future challenges and perspectives in the thermal treatment of P-enriched solid waste are presented as well. The distribution and speciation of P were affected by feedstock properties, thermal technique, and reaction conditions, correspondingly affecting hydro/bio-char applications. The derived P-enriched hydro/bio-char was mainly applied as an agricultural soil amendment, P recovery source, and heavy metal sorbent, which could be adjusted by varying treatment process parameters. Additionally, potentially toxic substances, such as heavy metals in the solid waste, should be addressed during the production and application of hydro/bio-char. Overall, the production of P-enriched hydro/bio-char from solid waste is a promising route to simultaneously achieve P reclamation and solid waste treatment.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Junxia Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Fan Yu
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xutong Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Hui Xiao
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
34
|
Luo Y, Li Z, Xu H, Xu X, Qiu H, Cao X, Zhao L. Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154845. [PMID: 35358526 DOI: 10.1016/j.scitotenv.2022.154845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
As a porous and carbon material, biochar is focused on respectively in sequestrating carbon and stabilizing metals in soil, while few studies attempted to design biochar for simultaneously achieving these two targets. This study proposed to produce phosphorus-composite biochar for synchronously enhancing carbon sequestration and heavy metals immobilization. Two phosphorus materials from tailings, Ca(H2PO4)2 and Ca5(PO4)3(OH), were selected as modifier to load into biomass prior to pyrolysis. Results showed that incorporating P not only increased pyrolytic C retention in biochar by 36.1-50.1%, but also obtained biochar with higher stability by chemically formation of COP, C-PO3 and C2-PO2. After 90-day incubation with soil, more C was sequestrated in the P-biochar amended soil (59.6-67.0%) than those pristine biochar (43.2-46.6%). Highly soluble Ca(H2PO4)2 was more efficient than Ca5(PO4)3(OH) in this regard. Meanwhile, these P-composite biochar exhibited more Pb/Cd immobilization (31.3-92.3%) compared with the pristine biochar (9.5-47.2%), which was mainly due to the formation of stable precipitates Pb5(PO4)3Cl and Cd3(PO4)2, especially for Ca5(PO4)3(OH) modification. Additionally, P-composite biochar "intelligently" altered soil microbial community, i.e., they suppressed Actinobacteria proliferation, which is correlated to carbon degradation, while promoted Proteobacteria growth, facilitating phosphate dissolution for ready reaction with heavy metals to form precipitate, benefiting the Pb and Cd immobilization. A dual functions biochar was engineered via simply loading phosphorous prior to pyrolysis and simultaneously enhanced carbon sequestration and heavy metal immobilization.
Collapse
Affiliation(s)
- Ying Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaopeng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
35
|
Ni Z, Li Y, Wang S. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. WATER RESEARCH 2022; 220:118663. [PMID: 35661507 DOI: 10.1016/j.watres.2022.118663] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Organic phosphorus (OP) is one of the main forms of phosphorus in lake ecosystems. Mounting evidence has shown that sediment OP has become a major but underestimated issue in addressing lake eutrophication and algal bloom. However, a holistic view of sediment OP remains missing. This review aims to provide an overview of progress on the studies of OP in lake sediments, focusing on the contribution of OP to internal P loading, its potential role in algal bloom, and the migration and transformation. In addition, this work systematically summarized current methods for characterizing OP content, chemical fraction, composition, bioavailability, and assessment of OP release in sediment, with the pros and cons of each method being discussed. In the end, this work pointed out following efforts needed to deepen the understanding of sediment OP, namely: (1) In-depth literature review from a global perspective regarding the contribution of sediment OP to internal P loading with further summary about its pattern of distribution, accumulation and historical changes; (2) better mathematical models for describing drivers and the linkages between the biological pump of algal bloom and the replenishment of sediment OP; (3) fully accounting the composition and molecular size of OP for better understanding its transformation process and mechanism; ; (4) developing direct, high-sensitivity and combined techniques to improve the precision for identifying OP in sediments; (5) establishing the response of OP molecular properties and chemical reactivity to OP biodegradability and designing a comprehensive and accurate composite index to deepen the understanding for the bioavailability of OP; and (6) integrating fundamental processes of OP in current models to better describe the release and exchange of P in sediment-water interface (SWI). This work is expected to provide critical information about OP properties and deliver perspectives of novel characterization methods.
Collapse
Affiliation(s)
- Zhaokui Ni
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake Watershed, Kunming 650034, China.
| |
Collapse
|
36
|
Zakaria KA, Yatim NI, Ali N, Rastegari H. Recycling phosphorus and calcium from aquaculture waste as a precursor for hydroxyapatite (HAp) production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46471-46486. [PMID: 35508846 DOI: 10.1007/s11356-022-20521-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Water contaminated with phosphorus needs to be managed efficiently to ensure that clean water sources will be preserved. Aquaculture plays an essential role in supplying food and generating high revenue. However, the quantity of phosphorus released from aquaculture effluents is among the major concerns for the environment. Phosphorus is a non-renewable, spatially concentrated material essential for global food production. Phosphorus is also known as a primary source of eutrophication. Hence, phosphorus recovery and separation from different wastewater streams are mandatory. This paper reviews the source of phosphorus in the environment, focusing on aquaculture wastewater as a precursor for hydroxyapatite formation evaluates the research progress on maximizing phosphorus removal from aquaculture wastewater effluents and converting it into a conversion. Shrimp shell waste appears to be an essential resource for manufacturing high-value chemicals, given current trends in wealth creation from waste. Shrimp shell waste is the richest source of calcium carbonate and has been used to produce hydroxyapatite after proper treatment is reviewed. There have been significant attempts to create safe and long-term solutions for the disposal of shrimp shell debris. Through the discussion, the optimum condition of the method, the source of phosphorus, and the calcium are the factors that influence the formation of hydroxyapatite as a pioneer in zero-waste management for sustainability and profitable approach. This review will provide comprehensive documentation on resource utilization and product development from aquaculture wastewater and waste to achieve a zero-waste approach.
Collapse
Affiliation(s)
- Kamalia A Zakaria
- Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Norhafiza I Yatim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nora'aini Ali
- Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
37
|
Deng H, Liu H, Jin M, Xiao H, Yao H. Phosphorus transformation during the carbonaceous skeleton assisted thermal hydrolysis of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154252. [PMID: 35247403 DOI: 10.1016/j.scitotenv.2022.154252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
On the basis of the carbonaceous skeleton assisted thermal hydrolysis that we proposed to achieve efficient sludge dewatering, this work further explored phosphorus (P) transformation in the process. The results showed that during independent thermal hydrolysis in the temperature range of 120-240 °C, organic-P was first decomposed into soluble-P and particulate-P in liquid, and then combined with Ca, Fe, and Al to form more apatite-P (AP) and less non-apatite inorganic-P (NAIP). When the skeleton assisted the sludge thermal hydrolysis, the turning point of the hydrolysis temperature would reduce from 180 °C to 150 °C, at which the liquid-P began to decrease and the organic-P generally decomposed. Moreover, the increment in the content of AP halved while that of NAIP doubled compared to that in the process without the carbonaceous skeleton. These effects come from the exogenous components introduced by adding the skeleton, which were different from the sludge. Compared with the P-rich compound and metal elements that tend to bond with phosphate introduced by the skeleton, hemicellulose as a main organic component played a leading role in the different P transformations of AP and NAIP. The hemicellulose slightly increased the acidity of sludge products, thereby inhibiting AP production and promoting the production of recyclable NAIP. Overall, the carbonaceous skeleton assisted thermal hydrolysis was beneficial for P recovery with a very low filtrate loss rate.
Collapse
Affiliation(s)
- Hongping Deng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Minghao Jin
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
38
|
Cui H, Dong T, Hu L, Xia R, Zhou J, Zhou J. Adsorption and immobilization of soil lead by two phosphate-based biochars and phosphorus release risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153957. [PMID: 35183632 DOI: 10.1016/j.scitotenv.2022.153957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus-based biochar can effectively immobilize lead (Pb) in soils, but the effects of soluble and insoluble phosphate on the remediation efficiency of Pb and phosphorus (P) release risks remain largely unknown. In this study, three biochars were produced from reed (Phragmites australis L.) straw, potassium dihydrogen phosphate (PDP, soluble) and hydroxyapatite (HAP, insoluble) modified reed straws and marked as BC, BCP, and BCH, respectively. Pb adsorptions and immobilizations by the three biochars and their P release risks were investigated. The P release kinetics of the three biochars were all fitted with the pseudo-second-order kinetic model and the P-release capacity followed the order of BCP > BCH > BC. The sorption isotherms of Pb2+ by three biochars were better described using the Langmuir model and the maximum adsorption capacities of BCP (59.3 mg/g) and BCH (58.8 mg/g) were higher than that of BC (48.1 mg/g). However, the P concentrations remained in BCP treated solution were significantly higher than those in BCH and BC under initial Pb2+ concentrations in the ranges of 5-25 mg/L. Soil pH and available P were increased with the increasing dosage of BCP and BCH, decreasing CaCl2-extractable Pb concentrations. BCH was more effective to decrease the exchangeable Pb and transform it into iron/manganese oxides and residual fractions. Compared to BC, BCH applications in the range of 2-5% can significantly increase labile P by 15.2-17.7%, but 21.0-33.6% for BCP, indicating BCP had a higher P release risk. The major implication is that HAP-modified biochar can effectively immobilize Pb and decrease P release risks compared to soluble P-modified biochar.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area With High Groundwater Level, Anhui University of Science and Technology, Huainan 232001, China.
| | - Tingting Dong
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area With High Groundwater Level, Anhui University of Science and Technology, Huainan 232001, China
| | - Longlong Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area With High Groundwater Level, Anhui University of Science and Technology, Huainan 232001, China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, United States.
| |
Collapse
|
39
|
Sun H, Luo L, Wang J, Wang D, Huang R, Ma C, Zhu YG, Liu Z. Speciation Evolution of Phosphorus and Sulfur Derived from Sewage Sludge Biochar in Soil: Ageing Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6639-6646. [PMID: 35502935 DOI: 10.1021/acs.est.2c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) and sulfur (S) are usually involved simultaneously in the immobilization of heavy metals in sewage sludge during pyrolysis, and thus their speciation in sewage sludge-derived biochar (SSB) profoundly affects the recycling of the nutrients and the environmental risks of sewage sludge. Here, we investigated the speciation evolution of P and S in SSB induced by ageing processes in soil using X-ray absorption near edge structure spectroscopy. Results showed that Ca-bound compounds like hydroxyapatite dominated the P forms, while over 60% of S existed as reduced inorganic sulfides in the SSB. The stable Ca-associated P species in SSB tended to be transformed gradually into relatively soluble species during ageing in soil. The speciation composition of S in SSB remained almost unaffected when aged in pot soils, whereas about 33.6% of reduced sulfides were transformed into oxidized species after 1-year ageing in field soils. SSB significantly increased the proportion of sulfides and the contents of available P and S in the amended soil but showed relatively weak effects on the speciation distribution of P in the soil because of their similar compositions. These findings provide insights into biogeochemistry of nutrients and behaviors of heavy metals in SSB after its application to the soil environments.
Collapse
Affiliation(s)
- Hao Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rixiang Huang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Chenyan Ma
- State Key Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Xiong Q, Xia J, Wu X, Wu X, Hou H, Lv H. Influence of persulfate on transformation of phosphorus and heavy metals for improving sewage sludge dewaterability by hydrothermal treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33252-33262. [PMID: 35025048 DOI: 10.1007/s11356-022-18624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Activated persulfate oxidation has been proven to be an efficient advanced sludge treatment technique to improve sludge dewaterability. This study investigates the influence of persulfate on the transformation of phosphorus (P) and heavy metals (HMs) during the hydrothermal treatment of sewage sludge. The hydrothermal temperature, time, and persulfate concentration are optimized by a Box-Behnken design to obtain the best sludge dewaterability, which is expressed by capillary suction time (CST). The highest CST reduction efficiency is 90.5% at the optimal hydrothermal temperature, time, and concentration of persulfate, which are 145 °C, 2 h, and 150 mg/g dry sludge (DS), respectively. The distribution and transformation of P and HMs with different persulfate concentrations (100-200 mg/g DS) during the hydrothermal process are investigated. Results show that more than 90% of the P and HMs in the sludge are retained in sludge cakes after the hydrothermal treatment. The addition of SPS can make the P in the sludge cakes transform into more stable P species according to the extraction capacity of sequential extracts. It can be found from the ecological risk indexes of the HMs that the addition of SPS during the hydrothermal treatment of sludge can reduce the environmental risk of HMs. This study provides insights into the P and HM distribution and transformation during hydrothermal treatment with persulfate, providing a reference for sludge recovery strategies.
Collapse
Affiliation(s)
- Qiao Xiong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- College of Urban and Environmental Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, China
| | - Jing Xia
- Design and Research Institute, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiang Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haobo Hou
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, China
| | - Hang Lv
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
41
|
Li H, Zhang T, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Li G, Rinklebe J. Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: Multivariate and multiscale investigations. BIORESOURCE TECHNOLOGY 2022; 351:126976. [PMID: 35278620 DOI: 10.1016/j.biortech.2022.126976] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The combined effects of microbial inoculants (MI) and magnesium ammonium phosphate (MAP; struvite) on organic matter (OM) biodegradation and nutrients stabilization during biowaste composting have not yet been investigated. Therefore, the effects of MI and MAP on OM stability and P species during swine manure composting were investigated using geochemical and spectroscopic techniques. MI promoted the degradation of carbohydrates and aliphatic compounds, which improved the degree of OM mineralization and humification. MI and MAP promoted the redistribution of P fractions and species during composting. After composting, the portion of water-soluble P decreased from 50.0% to 23.0%, while the portion of HCl-P increased from 18.5% to 33.5%, which mean that MI and MAP can stabilize P and mitigate its potential loss during composting. These findings indicate that MI can be recommended for enhancing OM biodegradation and stabilization of P during biowastes composting, as a novel trial for the biological waste treatment.
Collapse
Affiliation(s)
- Huanhuan Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Dept., Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
42
|
Witek-Krowiak A, Gorazda K, Szopa D, Trzaska K, Moustakas K, Chojnacka K. Phosphorus recovery from wastewater and bio-based waste: an overview. Bioengineered 2022; 13:13474-13506. [PMID: 36700471 PMCID: PMC9275867 DOI: 10.1080/21655979.2022.2077894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorus is one of the most important macronutrients needed for the growth of plants. The fertilizer production market uses 80% of natural, non-renewable phosphorus resources in the form of phosphate rock. The depletion of those deposits forces a search for other alternatives, including biological waste. This review aims to indicate the most important ways to recover phosphorus from biowaste, with particular emphasis on wastewater, sewage sludge, manure, slaughter or food waste. A comparison of utilized methods and directions for future research based on the latest research is presented. Combining biological, chemical, and physical methods with thermal treatment appears to be the most effective way for the treatment of wastewater sludge in terms of phosphorus recovery. Hydrothermal, thermochemical, and adsorption on thermally treated adsorbents are characterized by a high phosphorus recovery rate (over 95%). For animal by-products and other biological waste, chemical methods seems to be the most optimal solution with a recovery rate over 96%. Due to its large volume and relatively low phosphorus content, wastewater is a resource that requires additional treatment to recover the highest possible amount of phosphorus. Pretreatment of wastewater with combined methods seems to be a possible way to improve phosphorus recovery. A compressive evaluation of combined methods is crucial for future research in this area.
Collapse
Affiliation(s)
- Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Gorazda
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland,CONTACT Daniel Szopa Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wrocław50-372, Poland
| | - Krzysztof Trzaska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
43
|
Dong Y, Yu R, Yan T, Zhao X, Zhang W. Effect of Corn Straw Blending on Phosphorus Specification and Bioavailability of Incinerated Sludge Ash. ACS OMEGA 2022; 7:13057-13066. [PMID: 35474809 PMCID: PMC9026084 DOI: 10.1021/acsomega.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus is a depletable resource, and the consumption of phosphorus fertilizer increases with the growing population size. Phosphorus recycled from incinerated sludge ash can be a complement to phosphatic fertilizers in districts suffering from phosphorus resource shortages (e.g., Germany, Japan, and Sweden). The apatite inorganic phosphorus (AP) content in incinerated sludge ash is a key factor influencing the recoverability and bioavailability. Biomass straw is rich in calcium and magnesium minerals and can be used as an additive to be blended with sludge to increase the AP content. However, most of the current studies added excessive amounts of calcium-based or biomass additives, and the bioavailability of various Ca-Mg-P minerals generated after the addition of biomass has not been systematically discussed. In this study, the changes of the phosphorus form in the mixed sludge and biomass with Ca/P in the range of 1.0-2.5 are studied, and the influence of temperature and additives on the phosphorus form and the bioavailability of phosphorus in the ash samples are discussed by combining X-ray diffraction and citric acid (CA) leaching experiments. The AP content is very low in the residue of the sludge or corn straw (CS) that has been burned individually. The sludge and the blended sludge and CS were incinerated at various temperatures. As the incineration temperature increased, the conversion of non-apatite inorganic phosphorus (NAIP) to AP was promoted, but the bioavailability did not change until 1050 °C for samples with a Ca/P of 2.5. In the range from 750 to 950 °C, higher temperature promotes the formation of Ca2P2O7 and CaP2O6. CaP2O6 is insoluble in CA; thus, the bioavailability changes little from 750 to 950 °C, although the AP content increases. With the increase of Ca/P, the conversion of NAIP to AP and the bioavailability of phosphorus were promoted. For the blended sludge and CS ash, Ca7Mg2P6O24 appears at 950 and 1050 °C and the bioavailability also increases.
Collapse
Affiliation(s)
- Yang Dong
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Rongzhen Yu
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Tinggui Yan
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Xiaojiao Zhao
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, China
| | - Wei Zhang
- Research
Center of Karst Ecological Civilization, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
44
|
McIntosh S, Padilla RV, Rose T, Rose AL, Boukaka E, Erler D. Crop fertilisation potential of phosphorus in hydrochars produced from sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153023. [PMID: 35031380 DOI: 10.1016/j.scitotenv.2022.153023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludges are a rich underused source of phosphorus (P) which contributes to environmental degradation, yet if recaptured, could return significant amounts of P to agricultural systems. Hydrothermal carbonisation (HTC) can efficiently recover P, with the added ability to transform P species into potentially more desirable forms for direct application to crops. P dynamics in hydrochars have primarily examined P speciation and chemical extractability as indicators of P bioavailability, but few studies directly evaluate the agronomic effectiveness of hydrochars as P fertilisers. As such, there is a clear need to assess the suitability of hydrochar as a source of bioavailable P in plant systems and the influence of HTC synthesis conditions. Response Surface Modelling of HTC synthesis conditions (pH, temperature and time), revealed initial pH significantly influence P distribution. Mild conditions of 180 °C for 30 min at pH 8.0 maximised P recovery (99%) along with carbon (62%) and nitrogen (43%) in hydrochars. Systematic characterisation of hydrochar P by chemical extraction and P L2,3-edge X-ray absorption near edge spectroscopy revealed H2O, NaHCO3 and NaOH- P fractions were significantly (p < 0.05) reduced in all hydrochars, while HCl-P fraction increased with HTC temperatures at pH 7. In contrast, P L2,3-edge XANES spectra were remarkably similar in raw sludges and corresponding hydrochars, regardless of HTC temperature or pH, revealing P was predominantly present as ferric phosphate with some hydroxyapatite. Multiple linear regression modelling suggested a significant relationship between chemical extractability and P bioavailability to wheat present in the raw sludges and hydrochars. This research provides further insight into the potential to use hydrothermal treatment for recovery and agricultural reuse of P, the importance of operational conditions on P transformation and the relationship between P speciation and bioavailability. The value of sewage sludge in a more sustainable global P cycle is also highlighted.
Collapse
Affiliation(s)
- Shane McIntosh
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia.
| | | | - Terry Rose
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Andrew L Rose
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Exhaussée Boukaka
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Dirk Erler
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
45
|
Shi Y, Chen Z, Zhu K, Fan J, Clark JH, Luo G, Zhang S. Speciation evolution and transformation mechanism of P during microwave hydrothermal process of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152801. [PMID: 34986420 DOI: 10.1016/j.scitotenv.2021.152801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Due to the global shortage of phosphate ore, sewage sludge is an important resource for P recovery. This study aims to investigate how P was migrated and transformed during the microwave hydrothermal (MHT) process of sewage sludge. The effects of MHT and hydrothermal (HT) conversion were compared. The results reveals that there were no significant differences on the P distribution and speciation changes between the HT and MHT products, especially under high hydrothermal temperature. Ortho-P/Pyro-P was the dominant P form in the hydrothermal solid products, and high temperature promoted the transformation of C-O-P to Ortho-P/Pyro-P. The analysis of X-ray absorption near edge structure (XANES) shows that Ca5(PO4)3OH was formed after the hydrothermal processes. The relative abundance of Ca-P decreased first and then increased with increasing hydrothermal temperature. Moderate MHT temperature (170 °C) and holding time (30-60 min) promoted the transformation of P to the liquid products. Generally, the effect of MHT temperature was more significant than that of heating type and holding time on the variations of P distribution and speciations.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Green Chemistry Center of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Keliang Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Jiajun Fan
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - James H Clark
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
46
|
Zhu Y, Zhai Y, Li S, Liu X, Wang B, Liu X, Fan Y, Shi H, Li C, Zhu Y. Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. CHEMOSPHERE 2022; 291:133053. [PMID: 34861255 DOI: 10.1016/j.chemosphere.2021.133053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus is a nutrient that is essential to nature and human life and has attracted attention because of its very limited reserves. Dwindling phosphorus reserves and soaring prices have made the recovery of phosphorus from waste biosolids even more urgent. Waste activated sludge, as the final destination of most of the phosphorus in human domestic and industrial water, has been considered as a reliable source of phosphorus recovery. The thermal treatment method of sewage sludge is currently a relatively environmentally friendly disposal method, which mainly includes incineration, pyrolysis and hydrothermal carbonization. This paper reviews the methods for the recovery of different forms of phosphorus (wet chemical, thermochemical and electrodialysis) from solid products obtained from different sludge thermal treatment methods (incinerated sewage sludge ash, pyrolysis of sewage sludge char and hydrochar) and the bioavailability of the recovered phosphorus products. Incineration of sewage sludge is currently the most established and effective method for recovering phosphorus from the thermal treatment products of sewage sludge. One of the wet chemical methods has been applied on a commercial scale and is expected to be further developed for future industrial applications. Pyrolysis and hydrothermal carbonation still have many research gaps in this field. Based on their principles and laboratory performance, both of them have the potential to recover phosphorus and should be further explored.
Collapse
Affiliation(s)
- Ya Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiangmin Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yuwei Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoran Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yun Zhu
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
47
|
Synthesis of diaryl phosphates using orthophosphoric acid as a phosphorus source. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Zheng X, Shen M, Ying Z, Feng Y, Wang B, Dou B. Correlating phosphorus transformation with process water during hydrothermal carbonization of sewage sludge via experimental study and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150750. [PMID: 34624291 DOI: 10.1016/j.scitotenv.2021.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 05/06/2023]
Abstract
Recently, hydrothermal carbonization (HTC) based phosphorus (P) recovery from sewage sludge (SS) has attracted considerable interests worldwide. However, they concentrated on P transformation in the hydrochars, while ignored that the variations of process water (PW) might influence P transformation, since it exposed to water thoroughly during HTC. In this study, correlation of P transformation with PW were examined via experimental study and mathematical modelling. The results showed that statistical significance (p < 0.05) of HTC temperature and feedwater pH on NH4+-N concentration in the PW was observed due to deamination and ring opening reactions of amino acids, confirming by their excellent correlation with R2 = 0.988. NH4+-N concentration dominated increasing PW pH, which stimulated the transformation of NAIP to AP. Associated model was developed with satisfactory R2 = 0.938. Although P transformation during HTC was significantly influenced by HTC temperature and feedwater pH, supporting by their strong correlation with R2 = 0.956, its transformation was PW pH dependent. Ultimately, detailed P transformation pathways during HTC was proposed with incorporation into the impact of PW. This work can provide new insights into HTC-based P transformation in the pristine SS.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China
| | - Mengxuan Shen
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China.
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai 200092, PR China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China
| |
Collapse
|
49
|
Motavaf B, Dean RA, Nicolas J, Savage PE. Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. BIORESOURCE TECHNOLOGY 2021; 341:125872. [PMID: 34523573 DOI: 10.1016/j.biortech.2021.125872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
We conducted Hydrothermal carbonization (HTC) of simulated food waste under different reaction conditions (180 to 220 °C, 15 and 30 min), with the aim of recovering both fatty acids from the hydrochar and nutrients from the aqueous-phase products. HTC of the simulated food waste produced hydrochar that retained up to 78% of the original fatty acids. These retained fatty acids were extracted from the hydrochar using ethanol, a food-grade solvent, and gave a net recovery of fatty acid of ∼ 50%. The HTC process partitioned more than 50 wt% of the phosphorus and around 38 wt% of the nitrogen into the aqueous-phase products. A reaction path consistent with decarboxylation predominated during HTC under all of the reaction conditions investigated. A path consistent with dehydration was also observed, but only for the more severe reaction conditions. This work illustrates the potential that HTC has for valorization of food waste.
Collapse
Affiliation(s)
- Bita Motavaf
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States
| | - Robert A Dean
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph Nicolas
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States
| | - Phillip E Savage
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
50
|
Biologia Futura: potential of different forms of microalgae for soil improvement. Biol Futur 2021; 73:1-8. [PMID: 34735698 DOI: 10.1007/s42977-021-00103-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/17/2021] [Indexed: 12/24/2022]
Abstract
Products derived from microalgae have great potential in diverse field. As a part of the enhancing agriculture application, various forms of microalgae applications have been developed so far. They are known to influence soil properties. The various forms of application may enhance soil in more or less similar manner. They can help improve soil health, nitrogen, and phosphorus content, and even carbon sequestration. Thus, overall, it can enhance fertility of the soil.
Collapse
|