1
|
Stolecka A, Mielczarek P, Koziarska M, Gruszecka-Kosowska A. Organic ultraviolet filters (OUVF) in freshwater bathing areas: Necessary sunscreen protection versus environmental threat. WATER RESEARCH 2025; 279:123423. [PMID: 40056475 DOI: 10.1016/j.watres.2025.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
This study presents the first comprehensive assessment of seven organic ultraviolet filters (OUVFs), namely benzophenone-3 (BP3), 4-methylbenzylidene camphor (4MBC), octocrylene (OC), ethylhexyl methoxycinnamate (EHMC), isoamyl p-methoxycinnamate (IAMC), butyl methoxydibenzoylmethane (BMDBM), and homosalate (HMS), in Polish freshwater ecosystems, providing novel insights into their seasonal variability and ecological risks. Water samples from three recreational lakes and a reference reservoir were collected in April and July from both surface and water column layers were analysed to quantify OUVFs concentrations and calculate aquatic risk quotients (RQs). Our results revealed a clear seasonal pattern, with significantly higher OUVF concentrations in July, particularly at Kryspinów reservoir, coinciding with peak tourist activity. IAMC, HMS, and BMDBM were the main contributors to moderate cumulative risk values with localized high-risk values at Kryspinów, while the reference site exhibited consistently low contamination and negligible risks. This study not only establishes a baseline for OUVF contamination in Central European recreational waters but also demonstrates the utility of a multi-depth sampling approach in assessing pollution dynamics. The findings contribute to the growing understanding of emerging contaminants in freshwater ecosystems and underline the need for enhanced environmental monitoring and regulatory measures.
Collapse
Affiliation(s)
- Agata Stolecka
- AGH University of Krakow, Faculty of Geology, Geophysics, and Environmental Protection, Department of Environmental Protection, al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Przemysław Mielczarek
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, al. A. Mickiewicza 30, 30-059, Krakow, Poland; Polish Academy of Sciences, Maj Institute of Pharmacology, Laboratory of Proteomics and Mass Spectrometry, Smetna 12 str., 31-343, Krakow, Poland.
| | - Marta Koziarska
- AGH University of Krakow, Faculty of Geology, Geophysics, and Environmental Protection, Department of Environmental Protection, al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Agnieszka Gruszecka-Kosowska
- AGH University of Krakow, Faculty of Geology, Geophysics, and Environmental Protection, Department of Environmental Protection, al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| |
Collapse
|
2
|
Chang F, Yin X, Ju H, Zhang Y, Yin L, Zhou X, Feng Y, Diao X. Organic ultraviolet filters in Hainan coral reefs: Distribution, accumulation, and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125541. [PMID: 39706560 DOI: 10.1016/j.envpol.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Organic ultraviolet filters (OUVFs) have been widely used as functional ingredients of sunscreen products and have entered into marine ecosystems, particularly in tropical areas where solar UV radiation is strong. These chemicals, with their potential toxicity and ecological risk, have raised widespread concern for the protection of the fragile marine ecosystem of coral reefs. In this study, fourteen OUVFs were analyzed among 24 coral species, together with their habitats including seawater and sediment from the coastal coral reef regions of Hainan Island, South China Sea. Surprisingly, all of fourteen OUVFs were detected in each sample, indicating the wide distribution of OUVFs among sites and samples. Among the fourteen OUVFs, benzophenone-3 (BP-3) and 4-methylbenzylidene camphor (4-MBC) were the most abundant, with concentrations ranging from 35.3 to 75.6 and 38.3 to 61.4 ng/L in seawater, from 13.2 to 25.9 and 7.0 to 17.4 ng/g dw in sediment, and from 4.5 to 21.3 and 4.4 to 19.7 ng/g dw in corals, respectively. Analysis of OUVFs in 24 coral species pointed that OUVFs accumulation in corals is morphology dependent: the highest concentration of OUVFs was identified in Galaxea fascicularis with abundant of polyps and tentacles while the lowest levels of OUVFs were found in Porites mayeri (smooth or lobed surface). In corals, we found that these OUVFs accumulated, depending on the coral species and the types of OUVFs. The ecological risk assessment further indicated that BP-3, 4-MBC and BP-8 had posed risks to corals. In addition, significantly higher concentrations of OUVFs were observed in Sanya (a seaside tourist resort) than in the other sites, suggesting that tourist activity and use of sunscreen products are the key to high inputs of sunscreen agents into marine ecosystem. Overall, our study demonstrates a potential risk role for OUVFs in coral protection in tropical areas where coral bleaching events occur.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; School of Environment and Ecology, Hainan University, Haikou, 570228, China.
| | - Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Hanye Ju
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Yankun Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, Haikou, 570228, China; Center for Advanced Studies in Precision Instruments, Hainan University Haikou, 570228, China.
| | - Yujie Feng
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, 571100, China; Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Science, Haikou, 571100, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Qi Z, Zhai Y, Han Y, Li K, Wang T, Li P, Li J, Zhou X, Zhao X, Song W. Genetic Evidence for Estrogenic Effects of Benzophenone-2 on Zebrafish Neurodevelopment and Its Signaling Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21433-21449. [PMID: 39579127 DOI: 10.1021/acs.est.4c06892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Estrogens play a crucial role in regulating various biological responses during the early stages of neurodevelopment. Benzophenone-2 (BP2), a widely used organic ultraviolet (UV) filter, has been proven as an estrogenic compound, whereas the estrogenic effects of BP2 on neurodevelopment remain largely unknown. Here, we investigated the neurodevelopmental toxicity of BP2 by exposing zebrafish embryos from 2 to 120 h postfertilization (hpf) at environmentally relevant concentrations. We demonstrated that early life exposure to BP2 induced multiple concentration-dependent impairments in the nervous system, including hypoactivity, abnormal brain morphology, impaired neurocyte proliferation, shortened axon, and increased neurocyte apoptosis. Moreover, metabolomic profiling revealed a decrease in dopamine (DA) and its metabolites in BP2-treated larvae. Using E2 treatment and morpholino knockdown assays, we provided strong genetic evidence that the BP2-induced behavioral disorders were associated with estrogen-dependent signaling, especially estrogen receptors 2a and 2b (esr2). Subsequently, transcriptomic profiling indicated that the activation of esr2 further inhibited the expression of LIM homeobox transcription factor 1 β a (lmx1ba), which is vital for normal neurodevelopment. Consistently, the overexpression of lmx1ba and inhibition of esr2 obviously alleviated BP2-caused neurotoxicity, uncovering a seminal role of esr2 and lmx1ba in BP2-induced neurodevelopmental toxicity. Our findings provide the first evidence in fish that BP2 can induce neurodevelopmental deficits and brain dysfunction and offer novel insights into the mechanisms of toxicity of BP2 as well as other emerging benzophenones.
Collapse
Affiliation(s)
- Zhipeng Qi
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhai
- School of Nursing, Jilin University, Changchun 130021, China
| | - Yi Han
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Keying Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Tianchen Wang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Jianan Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaomai Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinying Zhao
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, Center for Medical Statistics and Data Analysis, Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
4
|
Ju YR, Su CR, Chen CF, Shih CF, Gu LS. Single and mixture toxicity of benzophenone-3 and its metabolites on Daphnia magna. CHEMOSPHERE 2024; 366:143536. [PMID: 39419330 DOI: 10.1016/j.chemosphere.2024.143536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Benzophenone-3 (BP-3) is one of the organic ultraviolet (UV) filters widely used in personal care products, resulting in its ubiquitous occurrence in aquatic systems. This study discovered the potential risks of benzophenone-3 and its metabolites (BP-1 and BP-8) in aquatic environments. This study investigated the toxicity of three single BPs and their mixtures' effects on the survival of Daphnia magna. All three BP types were found to have toxic effects on D. magna, with median effective concentration (EC50) values of 22.55 mg/L for BP-1, 1.89 mg/L for BP-3, and 2.36 mg/L for BP-8, after 48 h of exposure. When the three BPs were binary and ternary mixtures, the EC50 values fell within 2.74-32.26 mg/L. Binary and tertiary mixtures of the three BPs indicated no strong synergistic or antagonistic effects. The mixture toxicity predictions using the classical mixture concept of concentration addition and measured toxicity data showed good predictability. The ecological risks of BPs were assessed using the maximum measured environmental concentrations of BPs collected from a river in Taiwan, divided by their respective predicted no-effect concentration (PNEC) values derived from the assessment factor (AF) method. The result showed a low ecological risk for the sum of three BPs. However, BP-3 had the highest potential risk, while BP-1 was the lowest among the three BPs. Therefore, BP-3 should pay attention to long-term environmental monitoring and management. This study provides valuable information for establishing scientifically-based water quality criteria for BPs and evaluating and managing the potential risk of BPs in the aquatic environment.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan.
| | - Chang-Rui Su
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Fu Shih
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Li-Siang Gu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| |
Collapse
|
5
|
Casiano-Muñiz IM, Ortiz-Román MI, Carmona-Negrón JA, Román-Velázquez FR. UV filter benzophenone-2: Effects on zebrafish (Danio rerio) cytochrome P450. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106973. [PMID: 38861792 DOI: 10.1016/j.aquatox.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024]
Abstract
Benzophenone-2 (2,2', 4,4'- Tetrahydroxybenzophenone; BP-2) is widely used as a sunscreen in Personal and Care Products (PCPs) for protection against ultraviolet (UV) radiation. The effects of BP-2 on random-sex adult zebrafish (Danio rerio) cytochrome P450 (CYP450) were studied. The main goal was to investigate the detoxification mechanisms underlying the adverse consequences of exposure to xenobiotic chemicals such as BP-2. Total protein content, CYP450 content, and erythromycin N-demethylase (ERND) activity were evaluated as indicators of protein CYP3A expression. Five sets of pooled random-sex adult zebrafish were exposed to 0.0, 0.1, 5.0, and 10.0 mg/L of BP-2 to evaluate their acute and chronic toxicity (4 and 15 days, respectively). ERND activity was significantly increased in the chronic toxicity group compared to that in the control group, whereas CYP450 remained unchanged. The results suggest a sufficiently fast catalytic process that does not alter the total CYP450 content. It implies a mediation of CYP450 3A induction by BP-2 and the pregnane X receptor ligand-binding domain (PXR LBD) interaction. Ligand-protein interactions were confirmed via in silico docking with AutoDock Vina. Further computational studies indicate BP-2 potential binding affinity for the Estrogen receptor alpha ligand binding domain (ERα LBD). These results suggest that CYPs effects may result in significant toxicity in the zebrafish. Our study highlights the importance of studying biomarkers in aquatic organisms to assess xenobiotic exposure and the potential toxicity of UV filters to humans.
Collapse
|
6
|
Shen N, Tang J, Chen J, Sheng C, Han T, He X, Liu C, Han C, Li X. Occurrence and prevalence of per- and polyfluoroalkyl substances in the sediment pore water of mariculture sites: Novel findings of PFASs from the Bohai and Yellow Seas using a newly established analytical method. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134256. [PMID: 38640673 DOI: 10.1016/j.jhazmat.2024.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.
Collapse
Affiliation(s)
- Nan Shen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Cancan Sheng
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Chenguang Liu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Pastorino P, Barceló D, Prearo M. Alps at risk: High-mountain lakes as reservoirs of persistent and emerging contaminants. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104361. [PMID: 38735086 DOI: 10.1016/j.jconhyd.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Despite their remote locations, high-mountain lakes located in the Alps are vulnerable to chemical pollution. This discussion explores the important aspects of these lakes as repositories of Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs), elucidating their sources and implications for both the environment and human health. In terms of the presence of POPs in high-altitude lakes of the Alps, 14 studies have been identified examining the occurrence of polychlorinated biphenyls, dichlorodiphenyltrichloroethane an its metabolites, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons. The bulk of research on POPs in high-mountain lakes is concentrated in the Italian Alps (63%), followed by Switzerland (22%), Austria (12%), and France (3%), respectively. Sediment is predominantly investigated (65%), followed by fish (33%) and water (2%). Similarly, in relation to the presence of CECs in high-mountain lakes of the Alps, six studies have been identified investigating the occurrence of musks, perfluorinated compounds, and microplastics. Investigations into CECs predominantly occur in Switzerland (42%), France (33%), and Italy (25%), with fish samples (muscle and liver) being the primary focus (46%), followed by sediment (17%) and water (17%). Other compartments like zooplankton, frog/tadpoles, and snow remain less explored. The discussion also shed light on various pathways through which pollutants reach these remote landscapes, including atmospheric transport, glacial meltwater, and human activities. Protecting these pristine peaks demands concerted efforts encompassing ongoing research, vigilant monitoring, and dedicated conservation initiatives.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria, e Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Chemistry and Physics Department, University of Almeria, 04120 Almería, Spain
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria, e Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
8
|
Tong X, Goh SG, Mohapatra S, Tran NH, You L, Zhang J, He Y, Gin KYH. Predicting Antibiotic Resistance and Assessing the Risk Burden from Antibiotics: A Holistic Modeling Framework in a Tropical Reservoir. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6781-6792. [PMID: 38560895 PMCID: PMC11025116 DOI: 10.1021/acs.est.3c10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.
Collapse
Affiliation(s)
- Xuneng Tong
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Shin Giek Goh
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Sanjeeb Mohapatra
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
- Northeast
Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Shenzhen
Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen518055,China
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| |
Collapse
|
9
|
Lyu Y, He Y, Li Y, Tang Z. Tissue-specific distributions of organic ultraviolet absorbents in free-range chickens and domestic pigeons from Guangzhou, China. ENVIRONMENTAL RESEARCH 2024; 246:118108. [PMID: 38184061 DOI: 10.1016/j.envres.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The ecological risks of organic ultraviolet absorbents (UVAs) have been of increasing concern. Studies have found that these chemicals could be accumulated in terrestrial animals and pose toxicities. However, tissue distribution of UVAs in terrestrial species was far from well understood. In this study, free-range chickens and domestic pigeons were selected to investigate the occurrence and tissue distribution of UVAs. Total concentrations of eleven UVAs in muscles ranged from 778 to 2874 (mean 1413 ± 666) ng/g lipid weight, which were higher than those in aquatic species worldwide. Since low UVA concentrations in local environment were previously reported, the results implied the strong accumulation of UVAs in studied species. Brain, stomach and kidney were main target organs for studied UVAs, differentiating from the strong liver sequestration in aquatic species. The mean tissue-to-muscle ratios of 1.02-4.23 further indicated the preferential accumulation of target UVAs in these tissues. The tissue-to-blood ratios of benzophenone (BP), 2-ethylhexyl salicylate (EHS) and homosalate (HMS) in brain were 370, 1207 and 52.0, respectively, implying their preferential accumulation in brain. More research is needed to characterize the toxicokinetics and tissue distribution of UVAs in terrestrial wild species, in order to further understand their potential risks.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
10
|
Ma Y, Wang P, Hua Z, Dong Y, Yu L, Huang S. Field study on endogenous perfluoroalkyl acid release and their spatiotemporal distribution processes induced by inland navigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170394. [PMID: 38280584 DOI: 10.1016/j.scitotenv.2024.170394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Dense populations and industries in regions with developed inland waterways have caused the significant discharge of perfluoroalkyl acids (PFAAs) into surrounding waterways. Despite being the dominant energy input in the waterways, the impact of ship navigation on endogenous PFAA release is unclear. In this study, a field experiment was carried out in the Wangyu River (Taihu Basin, China) to investigate the spatiotemporal distribution processes of PFAAs in the water column after passage of ships with different tonnages, speeds, and draughts. The results showed that the PFAA contents did not decrease continuously with time but increased with a lag after the passing ship triggered a transient massive dissolution of PFAAs into the overlying water. In addition, PFAA contents in suspended particulate matter (SPM) exhibited a fluctuating downward trends after their peak at the moment of ship passage. Vertically, the PFAA concentrations among the layers of overlying water were relatively homogeneous, whereas SPM exhibited substantial heterogeneity in its distribution and adsorption of PFAAs. Moreover, the differences in jet scouring velocity (u), disturbance duration (t), and draught (h) of ships resulted in large variability in PFAA contents in the water column. Variance partitioning analysis further quantified the effects of u, t, and h on total PFAAs in the water column, with individual contributions of 53 %, 12 %, and 6 %, respectively. Furthermore, the release of endogenous PFAAs induced by ship passage involved rapid and slow processes, the former determining the overall PFAA release and the latter affecting PFAA concentration recovery in the water column. The findings provide in-situ observational data on spatiotemporal variations of PFAAs in multiphase media following ship passage, enhancing our understanding of endogenous pollution in inland waterways.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Shanheng Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
11
|
Li X, Liu M, Wu N, Sharma VK, Qu R. Enhanced removal of phenolic compounds by ferrate(VI): Unveiling the Bi(III)-Bi(V) valence cycle with in situ formed bismuth hydroxide as catalyst. WATER RESEARCH 2024; 248:120827. [PMID: 37956606 DOI: 10.1016/j.watres.2023.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The use of 2-hydroxybenzophenone (2-HBP) in personal care products is of great concern due to its potential negative effects on the ecosystem and public health. This paper presents the degradation of 2-HBP by bismuth(III) (Bi3+)-ferrate(VI) (FeVIO42-, Fe(VI)) (Bi3+-Fe(VI) system). Experimental studies at different pH and dosages of Bi3+ and Fe(VI) showed that the Bi3+-Fe(VI) system increased the degradation rate and removal efficiency of 2-HBP compared to Fe(VI) alone. The in situ formed flake-like white flocculent precipitate of Bi(OH)3 showed catalytic performance through the Bi(III)-Bi(V)-Bi(III) valence cycle which was demonstrated through spectroscopic measurements. The hydrogen transfer-mediated reactions between Fe(VI) and Bi(OH)3 as well as subsequent formation of Bi(V) were supported by performing density functional theoretical (DFT) calculations. Seventeen identified transformation products of 2-HBP by Fe(VI) with and without Bi3+ revealed hydroxylation, bond breaking, carboxylation, and polymerization reaction pathways. Significantly, Bi3+ facilitated the polymerization reaction and the dioxygen transfer-mediated hydroxylation reaction pathways. The ions (anions and cations) and humic acids (HA) present in the Bi3+-Fe(VI) system had minimal influence on the removal efficiency of 2-HBP. Reusability tests and use of real water samples as well as toxicity assessments of transformation products unveiled the practical application aspect of the Bi3+-Fe(VI) system. Finally, the results showed that the system exhibits good removal efficiency for all 12 phenolic compounds, indicating theuniversality. The Bi3+-Fe(VI) system may be an easy-to-implement cost-effective method for the catalytic degradation of benzophenones by Fe(VI).
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Virender K Sharma
- Program of Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
12
|
Zheng X, Zhong Z, Xu Y, Lin X, Cao Z, Yan Q. Response of heavy-metal and antibiotic resistance genes and their related microbe in rice paddy irrigated with treated municipal wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165249. [PMID: 37406708 DOI: 10.1016/j.scitotenv.2023.165249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Paddy irrigation with secondary effluents from municipal wastewater treatment plants (MWTPs) is a well-established practice to alleviate water scarcity. However, the reuse might lead to more complicated contamination caused by interactions between residual antibiotics in effluents and heavy metals in paddy soil. To date, no information is available for the potential effects of dual stress of heavy metals and antibiotics on heavy-metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). Here, this study investigated the response of heavy metal and antibiotic resistance genes, and related microorganisms to the dual threat of antibiotics and heavy metals under the long-term MWTP effluent irrigation for rice paddy using metagenome. The results showed that there was not a negative effect on rice consumption if MWTP effluent was used to irrigate rice for a long time. The concentration of antibiotics could reshape the ARGs and MRG profiles in rice paddy soil. The findings revealed the co-occurrence of ARGs and MRGs in rice paddy soils, thus highlighting the need for simultaneous elimination of antibiotics and heavy metals to effectively reduce ARGs and MRGs. Acn and sul1 genes encoding Iron and sulfonamides resistance mechanisms are the most abundant MRG and ARG, respectively. Network analysis revealed the possibility that IntI1 plays a role in the co-transmission of MRG and ARG to host microbes, and that Proteobacteria are the most dominant hosts for MRG, ARG, and integrons. The presence of antibiotics in irrigated MWTP effluents has been found to stimulate the proliferation of heavy metal and antibiotic resistances by altering soil microbial communities. This study will enhance our comprehension of the co-selection between ARGs and MRGs, as well as reveal the concealed environmental impacts of combined pollution. The obtained results have important implications for food safety and human health in rice.
Collapse
Affiliation(s)
- Xiaolong Zheng
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection and Supervision Testing Center of Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhengzheng Zhong
- China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yuan Xu
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection and Supervision Testing Center of Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaoyan Lin
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection and Supervision Testing Center of Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhaoyun Cao
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection and Supervision Testing Center of Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Qing Yan
- China National Rice Research Institute, Hangzhou 310006, PR China; Rice Product Quality Inspection and Supervision Testing Center of Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
13
|
Li J, Jong MC, Gin KYH, He Y. Size-dominated biotoxicity of microplastics laden with benzophenone-3 and ciprofloxacin: Enhanced integrated biomarker evaluation on mussels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122018. [PMID: 37315882 DOI: 10.1016/j.envpol.2023.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging pollutants with diverse sizes in aquatic environments. This paper investigates the toxicity of micron- and nano-scale polystyrene (50 μm, 5 μm, 0.5 μm) loaded with 2-hydroxy-4-methoxy-benzophenone (BP-3) and ciprofloxacin (CIP) by eight biomarker responses in mussels, perna viridis. The mussels were exposed to MPs and chemicals for 7 days before 7 days of depuration. Eight biomarkers were measured to determine biotoxicity over time by using the weighted integrated biomarkers index evaluation (EIBR). Mussels exposed to MPs on a daily basis demonstrated a cumulative toxic effect. The toxicity of MPs for mussels was inversely related to the size at which they can be ingested. Then toxicity was reversed when exposure was halted. EIBR mold has shown a significant difference in the biotoxicity of each biological level under different exposure scenarios. In general, the mussel toxicity influenced by BP-3 and CIP exposure without an adsorbent was insignificant. MPs laden with them increased the toxicity of mussels. Under condition of lower concentration of ECs (Emerging contaminants), the presence of MPs as a component of a combined pollutant in water dominated the biotoxicity for mussels. The EIBR assessment further validated that the biotoxicity of mussels was size-dependent. Its application simplified the biomarkers' response index and enhanced the accuracy of evaluation by weighing on molecular, cellular and physiological level. Specifically, mussels were physiologically sensitive to nano-scale plastics, with nano-scale plastics causing a higher level of cellular immunity destruction and genotoxicity than micron-scale plastics. Enzymatic antioxidant systemswere upregulated based on size-differential plastics; however, the total antioxidant effect of non-enzymatic defenses appeared to be least affected by the size effect.
Collapse
Affiliation(s)
- Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Mui-Choo Jong
- National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Block E1A07-03, 1 Engineering Drive 2, Singapore, 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
14
|
Broniowska Ż, Tomczyk I, Grzmil P, Bystrowska B, Skórkowska A, Maciejska A, Kazek G, Budziszewska B. Benzophenone-2 exerts reproductive toxicity in male rats. Reprod Toxicol 2023; 120:108450. [PMID: 37543253 DOI: 10.1016/j.reprotox.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Benzophenone derivatives such as benzophenone-2 (BP-2) belong to the group of endocrine disrupting compounds (EDCs). Increased exposure to EDCs is considered to be an important factor behind the decline of human fertility. The main aim of the present study was to determine the effect of BP-2 on testicular function specified by sperm analysis, the level of sex hormones and their receptors. Since BP-2 has been shown to activate the immune system, another aim of the research was to verify the hypothesis that the immune system may be contributing to the testis toxicity of this compound and for this purpose changes in macrophage and lymphocyte populations in the testes were determined. BP-2 at a dose of 100 mg/kg was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks. It was shown that BP-2 reduced the number and motility of sperm and increased the number of sperm showing morphological changes. By determining the concentration of sex hormones, a significant decrease in testosterone levels and an increase in the blood levels of 17β-estradiol were demonstrated. Similar to the results obtained from the blood samples, testosterone levels in the testes were lowered, which could affect sperm parameters. The effect of BP-2 on lowering testosterone levels and the number of sperm cells may be due to immunoactivation in the testes, because it has been detected that this compound significantly decreased the number of the immunosuppressive resident testicular macrophages (TMs) (CD68-CD163+), but increased pro-inflammatory TMs with monocyte-like properties (CD68+CD163-).
Collapse
Affiliation(s)
- Żaneta Broniowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland.
| | - Igor Tomczyk
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Beata Bystrowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Skórkowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Maciejska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| |
Collapse
|
15
|
Liu M, Wu N, Li X, Zhang S, Sharma VK, Ajarem JS, Allam AA, Qu R. Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products. WATER RESEARCH 2023; 238:120034. [PMID: 37150061 DOI: 10.1016/j.watres.2023.120034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and •OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - ShengNan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, United States.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China.
| |
Collapse
|
16
|
Carstensen L, Beil S, Schwab E, Banke S, Börnick H, Stolte S. Primary and ultimate degradation of benzophenone-type UV filters under different environmental conditions and the underlying structure-biodegradability relationships. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130634. [PMID: 36599278 DOI: 10.1016/j.jhazmat.2022.130634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ten common benzophenone-based UV filters (BPs), sharing the same basic structure and differing only in their substituents, were investigated with respect to their primary and ultimate biodegradability. This study was carried out in order to gain deeper insights into the relationship between structure and biodegradability. The primary biodegradation of the selected BPs was studied in river water at environmentally relevant concentrations (1 µg/L) while varying specific, crucial environmental conditions (aerobic, suboxic, supplementation of nutrients). For this purpose, both batch and column degradation tests were performed, which allowed a systematic study of the effects. Subsequently, the ultimate biodegradation, i.e. the potential to achieve full mineralization of BPs, was examined according to OECD guideline 301 F. The results indicate that mineralization is limited to derivatives in which both aromatic rings contain substituents. This hypothesis was supported by docking simulations showing systematic differences in the orientation of BPs within the active site of the cytochrome P450 enzyme. These differences in orientation correspond to the substitution pattern of the BPs. This study provides valuable insights for assessing the environmental hazards of this class of trace organic compounds.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Ekaterina Schwab
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Sophie Banke
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technical University of Dresden, 01069 Dresden, Germany.
| |
Collapse
|
17
|
Yang F, Wei Z, Long C, Long L. Toxicological effects of oxybenzone on the growth and bacterial composition of Symbiodiniaceae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120807. [PMID: 36464119 DOI: 10.1016/j.envpol.2022.120807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Oxybenzone, a common ultraviolet (UV) filter, is a growing environmental concern due to its ecotoxicological effects. However, the responses of Symbiodiniaceae and their bacterial communities to oxybenzone are largely unknown. In this study, the effects of oxybenzone on Effrenium voratum and Cladocopium goreaui were investigated. The results revealed that sensitivity of Symbiodiniaceae to oxybenzone was species-dependent. 50 μg L-1 of oxybenzone significantly impacted the cell density of C. goreaui, causing a 36.73% decrease. When oxybenzone concentration increased to 500 μg L-1 and 5000 μg L-1, cell division was completely suppressed; meanwhile, chl-a content declined to zero. Compared to C. goreaui, E. voratum had higher resistance to oxybenzone. There was no significant difference in cell density between 50 μg L-1 group and control group. At higher dosage of oxybenzone (500 μg L-1 and 5000 μg L-1), the cell density declined 32.02% and 45.45% compared to the control group, respectively. Additionally, we revealed that the diversity and structure of bacterial community were affected by oxybenzone. Briefly, 500 μg L-1 and 5000 μg L-1 of oxybenzone altered the diversity of bacterial community in C. goreau. Furthermore, the relative abundances of Costertonia, Roseitalea, Rhodopirellula, and Roseobacter were negatively affected by oxybenzone ranging 50 μg L-1 to 5000 μg L-1. Compare to C. goreaui, the bacterial community composition associated with E. voratum was more stable. As revealed by KEGG pathway analysis, oxybenzone affected energy metabolism and inhibited the metabolism of cofactors and vitamins in C. goreaui, while 5000 μg L-1 of oxybenzone significantly altered the carbohydrate metabolism, membrane transport and amino acid metabolism in E. voratum. The changes of bacterial composition may contribute to the variation in algal growth. These results indicated that oxybenzone pollution could injury Symbiodiniaceae, even threaten coral reef ecosystems.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Chao Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
18
|
Mao JF, Li W, Ong CN, He Y, Jong MC, Gin KYH. Assessment of human exposure to benzophenone-type UV filters: A review. ENVIRONMENT INTERNATIONAL 2022; 167:107405. [PMID: 35843073 DOI: 10.1016/j.envint.2022.107405] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
To avoid the harmful effects of UV radiation, benzophenone-type UV filters (BPs) are widely used in personal care products and other synthetic products. Biomonitoring studies have shown the presence of BPs in various human biological samples, raising health concerns. However, there is a paucity of data on the global human exposure to this group of contaminants. In this study, we compiled data on the body burden of BPs along with the possible exposure routes and biotransformation pathways. BPs can easily penetrate the skin barrier and thus, they can be absorbed through the skin. In the human body, BPs can undergo Phase I (mainly demethylation and hydroxylation) and Phase II (mainly glucuronidation and sulfation) biotransformations. From a total of 158 studies, most of the studies are related to urine (concentration up to 92.7 mg L-1), followed by those reported in blood (up to 0.9 mg L-1) and milk (up to 0.8 mg L-1). Among BPs, benzophenone-1 and benzophenone-3 are the most commonly detected congeners. The body burden of BPs is associated with various factors, including the country of residence, lifestyle, income, education level, and ethnicity. The presence of BPs in maternal urine (up to 1.1 mg L-1), placenta (up to 9.8 ng g-1), and amniotic fluid (up to 15.7 μg L-1) suggests potential risks of prenatal exposure. In addition, transplacental transfer of BPs is possible, as demonstrated by their presence in maternal serum and cord serum. The possible association of BPs exposure and health effects was discussed. Future human biomonitoring studies and studies on the potential health effects are warranted. Overall, this review provides a summary of the global human exposure to BPs and can serve as supporting evidence to guide usage in order to protect humans from being exposed to BPs.
Collapse
Affiliation(s)
- Jason Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
19
|
Tong X, Mohapatra S, Zhang J, Tran NH, You L, He Y, Gin KYH. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. WATER RESEARCH 2022; 217:118418. [PMID: 35417822 DOI: 10.1016/j.watres.2022.118418] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of emerging contaminants (ECs), such as pharmaceuticals and personal care products (PPCPs), perfluoroalkyl and polyfluoroalkyl substances (PFASs) and endocrine-disrupting chemicals (EDCs) in aquatic environments represent a major threat to water resources due to their potential risks to the ecosystem and humans even at trace levels. Mathematical modelling can be a useful tool as a comprehensive approach to study their fate and transport in natural waters. However, modelling studies of the occurrence, fate and transport of ECs in aquatic environments have generally received far less attention than the more widespread field and laboratory studies. In this study, we reviewed the current status of modelling ECs based on selected representative ECs, including their sources, fate and various mechanisms as well as their interactions with the surrounding environments in aquatic ecosystems, and explore future development and perspectives in this area. Most importantly, the principles, mathematical derivations, ongoing development and applications of various ECs models in different geographical regions are critically reviewed and discussed. The recommendations for improving data quality, monitoring planning, model development and applications were also suggested. The outcomes of this review can lay down a future framework in developing a comprehensive ECs modelling approach to help researchers and policymakers effectively manage water resources impacted by rising levels of ECs.
Collapse
Affiliation(s)
- Xuneng Tong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen, 518055, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
20
|
Yan S, Wang J, Zheng Z, Ji F, Yan L, Yang L, Zha J. Environmentally relevant concentrations of benzophenones triggered DNA damage and apoptosis in male Chinese rare minnows (Gobiocypris rarus). ENVIRONMENT INTERNATIONAL 2022; 164:107260. [PMID: 35486964 DOI: 10.1016/j.envint.2022.107260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Benzophenone-type ultraviolet (UV) filters (BPs) are commonly used as sunscreen agents, fragrance enhancers and plastic additives, and are great threats to aquatic organisms due to their high detected concentrations in the aquatic environment. However, few studies on their toxicity and mechanism in fish have been clearly reported. In this study, Chinese rare minnows (Gobiocypris rarus) were exposed to benzophenone (BP), 2,4-dihydroxybenzophenone (BP-1), and 5-benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4) at 5, 50, 500 µg/L for 28 d to assess their toxicity. Transcriptomics screening showed that cell cycle, DNA replication and repair were significantly altered pathways (p < 0.05). The altered transcripts were similar to those identified by RNA-seq. DNA damage and 8-OHdG levels were significantly increased at 50 and 500 μg/L groups (p < 0.05). The DNA methylcytosine level was not significantly changed exposure to BP, BP-1 and BP-4. TUNEL assays indicated that hepatic apoptosis was significantly improved at 500 μg/L BP and BP-4 and 50 and 500 μg/L BP-1 (p < 0.05), with the significantly increasing the activity of caspase-3, -8 and -9 (p < 0.05). Molecular docking analysis revealed that BP, BP-1 and BP-4 could bind differently to caspase-3 through different binding interactions. Therefore, BP-1 induced more serious oxidative DNA damage and apoptosis by activating caspase-3 than BP and BP-4, which will provide theoretical basis and data support for ecological evaluation of aquatic organisms induced by BPs.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Ziting Zheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Fenfen Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Lihua Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
21
|
Carstensen L, Beil S, Börnick H, Stolte S. Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128495. [PMID: 35739676 DOI: 10.1016/j.jhazmat.2022.128495] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-type UV filters (BPs) represent a very diverse group of chemicals that are used across a range of industrial sectors around the world. They are found within different environmental compartments (e.g. surface water, groundwater, wastewater, sediments and biota) at concentrations ranging from ng/L to mg/L. Some are known as endocrine disruptors and are currently within the scope of international regulations. A structural alert for high potential of endocrine disrupting activity was assigned to 11 BP derivatives. Due to the widespread use, distribution and disruptive effects of some BPs, knowledge of their elimination pathways is required. This review demonstrates that biodegradation and photolytic decomposition are the major elimination processes for BP-type UV filters in the environment. Under aerobic conditions, transformation pathways have only been reported for BP, BP-3 and BP-4, which are also the most common derivatives. Primary biodegradation mainly results in the formation of hydroxylated BPs, which exhibit a structure-related increase in endocrine activity when compared to their parent substances. By combining 76 literature-based transformation products (TPs) with in silico results relating to their receptor activity, it is demonstrated that 32 TPs may retain activity and that further knowledge of the degradation of BPs in the environment is needed.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
22
|
Tong X, You L, Zhang J, He Y, Gin KYH. Advancing prediction of emerging contaminants in a tropical reservoir with general water quality indicators based on a hybrid process and data-driven approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128492. [PMID: 35739673 DOI: 10.1016/j.jhazmat.2022.128492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Monitoring and predicting the occurrence and dynamic distributions of emerging contaminants (ECs) in the aquatic environment has always been a great challenge. This study aims to explore the potential of fully utilizing the advantages of combining traditional process-based models (PBMs) and data-driven models (DDMs) with general water quality indicators in terms of improving the accuracy and efficiency of predicting ECs in aquatic ecosystems. Two representative ECs, namely Bisphenol A (BPA) and N, N-diethyltoluamide (DEET), in a tropical reservoir were chosen for this study. A total of 36 DDMs based on different input datasets using Artificial Neural Networks (ANN) and Random Forests (RF) were examined in three case studies. The models were applied in prognosis validation based on easily accessible data on water quality indicators. Our results revealed that all the models yielded good fits when compared to the observed data. These new insights into the advantages using the combination of traditional PBMs and DDMs with general water quality datasets help to overcome the constraints in terms of model accuracy and efficiency as well as technical and budget limitations due to monitoring surveys and laboratory experiments in the study of fate and transport of ECs in aquatic environments.
Collapse
Affiliation(s)
- Xuneng Tong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Luhua You
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; E2S2-CREATE, NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
23
|
Du B, He Y, Liang B, Li J, Luo D, Chen H, Liu LY, Guo Y, Zeng L. Identification of Triazine UV Filters as an Emerging Class of Abundant, Ubiquitous Pollutants in Indoor Dust and Air from South China: Call for More Concerns on Their Occurrence and Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4210-4220. [PMID: 35298137 DOI: 10.1021/acs.est.1c08909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triazine UV filters are an important class of UV filters, but knowledge on their environmental occurrence and human exposure remains largely unknown. In this study, we performed a targeted analysis of 17 emerging triazine UV filters in indoor dust and indoor air from South China based on a newly developed LC-MS/MS method. A total of 12 of the 17 emerging triazine UV filters were first positively detected in the dust and air samples. Ethylhexyl triazone (EHT) and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) were identified as the most abundant compounds. The median total concentrations of triazine UV filters reached 3860 ng/g in indoor dust and 1590 pg/m3 in indoor air. Gas-particle partitioning analysis showed that triazine UV filters were predominant in the particle phase in ambient air. Significant concentration correlations were observed among most triazine UV filters. The estimated daily intake of triazine UV filters through dust ingestion and air inhalation for toddlers under high-end exposure scenarios was up to 839 ng/kg bw/day, but a lack of toxic thresholds hampers accurate risk assessment. Our work highlights another emerging class of UV filters that significantly contribute to indoor chemical mixtures and expresses concerns over their occurrence and human exposure.
Collapse
Affiliation(s)
- Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Yuqing He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bowen Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Jiehua Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
24
|
Hua Z, Lu Y, Chu K, Liu Y, Ma Y, Gu L, Wu J, Leelawattananun W, Ky S. Shift in the distribution and fate of perfluoroalkyl acids by sluice gates in the multi-environment media of rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114436. [PMID: 34999447 DOI: 10.1016/j.jenvman.2022.114436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The impact of sluice operations on the distribution and fate of perfluoroalkyl acids (PFAAs) remains poorly understood. In this study, the distribution of PFAAs was investigated in water, suspended particles, sediment, and pore water from the upstream and downstream sections of six sluice gates along the Wangyu River, China. The target PFAAs were widely distributed in the dissolved phase (∑PFAAs: 447.61 ± 180.26 ng/L), particle phase (∑PFAAs: 2040.95 ± 1870.88 ng/g dw), sedimentary phase (∑PFAAs: 39.42 ± 35.38 ng/g dw), and pore water phase (∑PFAAs: 8172.54 ± 4278.60 ng/L). Our data suggest predominant detections of short-chain PFAAs such as perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) in the four environmental media. Sediment pore water appeared as an essential repository and potential source for PFAA re-release to the river environment. The levels of PFAAs in the dissolved and suspended particle phase upstream of the sluices were significantly lower than those downstream, while the situation in the sediment and pore water phase was the opposite. Sluice operation caused PFAA redistribution among the multi-environment media but did not change the PFAA composition, which had the significant effect on the partition behavior of perfluoroalkyl carboxylic acids (PFCAs) between particles and water, as well as changed the migration pattern of PFOA, PFNA and PFOS from equilibrium to the migration state. Quantitative prediction models were developed for simulating fate of PFAAs in gate-controlled river, and the major factors affecting the distribution and fate of PFAAs were identified. Our findings provide insights into the redistribution mechanisms of PFAAs and an understanding of their environmental fate.
Collapse
Affiliation(s)
- Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jianyi Wu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wachirasak Leelawattananun
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Sereyvatanak Ky
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
25
|
Yang H, Zhang Z, Liu J, Liu Z, Zhou Z, Feng Q. Bioavailability of citalopram to Daphnia magna in the presence of suspended sediments with various properties. MARINE POLLUTION BULLETIN 2022; 175:113352. [PMID: 35092930 DOI: 10.1016/j.marpolbul.2022.113352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The influence of suspended sediment (SPS) properties on the biological effects of antidepressant citalopram (CIT) was investigated in our study. For CIT exposure alone, the feeding behavior, energy available, glutathione-S-transferase (GST) activity of D. magna were vitally induced at 10 μg/L. In the presence of SPS, significant dose-dependent reduction in the ingestion and filtration rates were observed with the increase of SPS concentration, while SPS organic content (foc) of 1% exhibited the most serious aggravation. The protein was the main contributor to detoxification and cellular protection under the stress of CIT and SPS. Obvious disturbance effects on the malonaldehyde content, catalase and GST activities were observed for SPS of 0.1 g/L, 60-90 μm and foc of 2%. Overall, the important role of SPS properties on the biological effects of CIT should be taken into consideration for the accurate risk assessment of pollutants.
Collapse
Affiliation(s)
- Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Zhiyuan Zhang
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Jiaqiang Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Zhigang Liu
- Ningbo Water Supply Co Ltd, Ningbo 315041, China
| | | | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
26
|
Prakash V, Jain V, Chauhan SS, Parthasarathi R, Roy SK, Anbumani S. Developmental toxicity assessment of 4-MBC in Danio rerio embryo-larval stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149920. [PMID: 34509837 DOI: 10.1016/j.scitotenv.2021.149920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Enormous production of cosmetic products and its indiscriminate use tends to discharge into the aquatic environment and might threaten non-target organisms inhabiting aquatic ecosystems. In the present study, developmental toxicity of 4-methylbenzylidene camphor (4-MBC), a widely used organic UV filter in personal care products has been evaluated using zebrafish embryo-larval stages. Waterborne exposure induced developmental toxicity and deduced 2.71 mg/L as 96 h LC50 whereas embryos exposed to sub-lethal concentrations (50 and 500 μg/L) caused a significant delay in hatching rate, heart rate, reduced larval length, and restricted hatchlings motility besides the axial curvature. Chronic exposure to 10 dpf resulted in significant decrease in SOD activity at 500 μg/L with no changes in CAT level besides a significant increase in GST enzyme at 5 μg/L concentration in 5 dpf sampled larvae. However, all the three enzymes were significantly elevated in 10 dpf larvae indicating differential oxidative stress during the stages of development. Similar trend is noticed for acetylcholine esterase enzyme activity. A concentration dependent increase in malondialdehyde content was noted in larvae sampled at 5 and 10 dpf. In addition, multixenobiotic resistance (MXR) activity inhibition, and elevated oxidative tissue damage were noticed at 5 dpf with no significant changes in 10 dpf larvae. Furthermore, immunoblot analysis confirms 4-MBC induced apoptosis in zebrafish larvae with promoted cleaved Caspase-3, Bax and inhibited Bcl-2 proteins expression. Subsequently, docking studies revealed the binding potential of 4-MBC to zebrafish Abcb4 and CYP450 8A1 proteins with the binding energy of -8.1 and -8.5 kcal/mol representing target proteins interaction and toxicity potentiation. Our results showed that 4-MBC exposure triggers oxidative stress at sub-lethal concentrations leading to apoptosis, deformities and locomotion perturbations in developing zebrafish.This is first of its kind in systematically demonstrating developmental toxicity of 4-MBC and the information shall be used for aquatic toxicity risk assessment.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Cui R, Jong MC, You L, Mao F, Yao D, Gin KYH, He Y. Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. CHEMOSPHERE 2022; 286:131735. [PMID: 34385031 DOI: 10.1016/j.chemosphere.2021.131735] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are global pollutants with heightened environmental and health concerns in recent years because of their worldwide distribution across aquatic environments, ability to load chemical contaminants and the potential for ingestion by animals, including human. In this study, three commonly used and environmentally detected plastics, i.e. polystyrene, polyethylene, polypropylene with sizes of 550, 250 and 75 μm, plus two submicron-sized polystyrene microplastics (5 and 0.5 μm) were assessed as solid adsorbents for a prevalent UV filter, benzophenone-3 (BP-3). The affinity and process of adsorption exhibited differentials among different sizes and types of MPs. Apparent desorption of BP-3 from MPs under simulated gastrointestinal conditions was not significantly enhanced, which might be due to the presence of the enzyme proteins, indicating potential risk of the contaminants carried by MPs. The desorption of BP-3 from MPs was affected by the size, type of MPs and the components of the gastrointestinal fluid.
Collapse
Affiliation(s)
- Ruofan Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Mui-Choo Jong
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Luhua You
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Feijian Mao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Dingding Yao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Karina Yew-Hoong Gin
- National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
| |
Collapse
|
28
|
Liu X, Zhan T, Gao Y, Cui S, Liu W, Zhang C, Zhuang S. Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells via activated ERα and Wnt/β-catenin signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118370. [PMID: 34656677 DOI: 10.1016/j.envpol.2021.118370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Benzophenone-1 (BP-1) belongs to personal care product-related contaminants of emerging concern and has been recently reported to induce xenoestrogenic effects. However, the underlying mechanisms leading to the activation of target receptors and subsequent various adverse outcomes remain unclear, which is beneficial to safety and health risk assessment of benzophenone-type ultraviolet filters with their widespread occurrence. Herein, we investigated disrupting effects of BP-1 at environmentally relevant concentrations (10-9-10-6 M) on estrogen receptor (ER) α-associated signaling pathways. Molecular dynamics simulations together with yeast-based assays revealed the steady binding of BP-1 to ERα ligand binding domain (LBD) and hence the observed agonistic activity. BP-1 triggered interaction between ERα and β-catenin in human SKOV3 ovarian cancer cells and caused translocation of β-catenin from the cytoplasm to the nucleus, leading to aberrant activation of Wnt/β-catenin. BP-1 consequently induced dissemination of SKOV3 via regulating epithelial-mesenchymal transitions (EMT) biomarkers including minimally downregulating ZO-1 gene to 78.0 ± 10.1% and maximally upregulating MMP9 gene to 144.1 ± 29.7% and promoted 1.03-1.83 fold proliferation, migration and invasion of SKOV3. We provide the first evidence that the BP-1 activated ERα triggers crosstalk between ERα and Wnt/β-catenin pathway, leading to the abnormal stimulation and progression of SKOV3 cancer cells.
Collapse
Affiliation(s)
- Xujun Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingjie Zhan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX, 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Athullya MK, Dineep D, Mathew ML, Aravindakumar CT, Aravind UK. Identification of micropollutants from graywater of different complexity and remediation using multilayered membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4206-4218. [PMID: 34405325 DOI: 10.1007/s11356-021-15516-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Graywater reuse is one of the important concepts in attaining water sustainability. A major challenge in this area is to realize various components present in graywater. The present study involves the identification of the chemical components of graywater collected from three different environments and to investigate the efficiency of removal of some of these chemical components using ultrafiltration membranes (polyelectrolyte multilayer (PEM) membranes). The chemical components were analyzed using liquid chromatography connected with quadrupole time-of-flight (UPLC-Q-ToF-MS). A number of micropollutants including surfactants and certain contaminants of emerging concern (CECs) were identified from these samples. Out of 16 compounds identified, 13 were surfactants and the remaining were caffeine, oxybenzone, and benzophenone. These surfactants are mostly the ingredients of various detergents. Low-pressure filtration studies of the collected samples were carried out utilizing chitosan/polyacrylic acid (CHI/PAA) multilayer membranes. A 5.5 bilayer membrane showed more than 95% rejection of the identified compounds in the selected samples and significant improvement in the water quality parameters. This demonstrates that the membrane used in this work is effective in the removal of various chemicals from graywater as well as enhancing the water quality.
Collapse
Affiliation(s)
- Manappillil K Athullya
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Devadasan Dineep
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Mary L Mathew
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
| |
Collapse
|
30
|
Ma Y, Wang P, Hua Z, Lu Y, Yang Y. Ship navigation disturbance alters multiphase distribution of perfluoroalkyl acids and increases their ecological risk in waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148576. [PMID: 34175611 DOI: 10.1016/j.scitotenv.2021.148576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
As a global persistent organic pollutant, perfluoroalkyl acids (PFAAs) have aroused great public concern. However, little is known regarding the effect of ship navigation disturbance on the transport and fate of PFAAs in inland waterways developed regions. In the present study, overlying water, pore water, suspended particulate matter (SPM), and sediment were collected from waterways (WWs), non-navigable channels (NCs), and ports (PTs) in Taihu Lake Basin. The results revealed that the total concentrations of PFAAs (ΣPFAAs) in WWs, NCs, and PTs varied considerably in different media. In overlying water, the mean ΣPFAAs in WWs were the highest, while those of NCs were relatively higher in the remaining three media. A comparison of PFAA distribution coefficients revealed that the values in NCs were generally higher than those of WWs and PTs, suggesting the critical role of ship navigation in PFAA transport. Furthermore, a structural equation model was applied to estimate direct and indirect effects of environmental factors on PFAA partitioning behavior. The results revealed that ship traffic volume (STV) exerted indirect effects on PFAA distribution between solid and dissolved phases by influencing dissolved oxygen, total suspended solid concentration, clay and sand contents, and median diameter. PFAAs were more readily to be released into overlying water from pore water than in sediment, and the ΣPFAAs carried per gram of SPM decreased with an increase in STV. Ecological risk assessment and Monte Carlo simulation results revealed that ship navigation could exert adverse effects on aquatic organisms, making the average probability of RQmix values to exceed corresponding risk values in WWs, which were 1.3-2-fold higher than in NCs. The present study provides crucial information for simulating the environmental behaviors of PFAAs under the influence of ship navigation and is significant for the integration of inland water transport development and aquatic environmental protection.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yundong Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
31
|
Chang M, Fan S, Lu R, Tao F, Yang F, Han Q, Liu J, Yang P. Suppression of Sunscreen Leakage in Water by Amyloid-like Protein Aggregates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42451-42460. [PMID: 34486369 DOI: 10.1021/acsami.1c11307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sunscreen offers indispensable skin protection against UV damage and related skin diseases. However, due to the poor interfacial stability of sunscreen coatings on the skin, the synthetic ingredients in sunscreen creams easily fall off and enter aquatic environments, causing large ecological hazards and skin protection failure. Herein, we tackle this issue by introducing amyloid-like protein aggregates into a sunscreen to noticeably enhance the interfacial robustness of sunscreen coatings on the skin. The synthesis of such an agent to suppress sunscreen leakage can be achieved by manipulating the phase transition of bovine serum albumin (BSA) in a mild aqueous solution at room temperature. The resulting phase-transitioned BSA (PTB) aggregates effectively entrap the sunscreen ingredients to generate a uniform cream coating on the skin with robust amyloid-mediated interfacial adhesion stability. With continuous flushing in aquatic environments, such as salt water and seawater, this PTB-modified sunscreen (PTB sunscreen) coated on the skin maintains a retention ratio as high as >92%, which is 2-10 times higher than those of commercially available sunscreen products. The high retention ratio of the PTB sunscreen in aquatic environments demonstrates the great potential of amyloid-like protein aggregates in the development of leakage-free sunscreens with low ecosystem hazards and long-lasting UV protection in aquatic environments.
Collapse
Affiliation(s)
- Mengjie Chang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Simeng Fan
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Runqiu Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Facui Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jun Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
32
|
Tong X, You L, Zhang J, Chen H, Nguyen VT, He Y, Gin KYH. A comprehensive modelling approach to understanding the fate, transport and potential risks of emerging contaminants in a tropical reservoir. WATER RESEARCH 2021; 200:117298. [PMID: 34102387 DOI: 10.1016/j.watres.2021.117298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
We developed a comprehensive integrated water quality modeling approach towards a better understanding of the fate and transport of emerging contaminants and comprehensive assessment of their potential risks in a tropical reservoir. Two representative emerging contaminants, namely Bisphenol A (BPA) and N, N-diethyltoluamide (DEET), were selected for this study. Unlike the traditional water quality modeling approach, the target emerging contaminants were modelled in four multi-compartments and coupled to a 3D-dimensional eutrophication model to investigate their interactions with other water quality state variables. First, the integrated model was calibrated and validated in four multi-compartments against an observed dataset in 2014. Subsequently, the correlation analysis between emerging contaminants and general water quality parameters were conducted. The potential ecological risks in this reservoir were also assessed via the trophic state index (TSI) and coupled to a species sensitivity distribution (SSD)-Risk Quotient (RQ) method. Finally, the model was applied to describe the dynamics of the two emerging contaminants and examine the direct and indirect influences of other environmental factors on their multi-compartment distributions in the aquatic environment. The comprehensive approach provides new insights into dynamic modeling of the fate and transport of emerging contaminants, their interactions with other state variables as well as an assessment of their potential risks in aquatic ecosystems.
Collapse
Affiliation(s)
- Xuneng Tong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen, 518055, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Huiting Chen
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Viet Tung Nguyen
- PUB, Singapore's national water agency, 40 Scotts Road #22-01, Environment Building, Singapore 228231, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.
| |
Collapse
|
33
|
Jung JW, Kang JS, Choi J, Park JW. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073650. [PMID: 33807469 PMCID: PMC8037607 DOI: 10.3390/ijerph18073650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The necessity for the aquatic ecological risk assessment for benzophenone-3 (BP-3) is increasing due to its high toxic potential and high detection frequency in freshwater. The initial step in the ecological risk assessment is to determine predicted no-effect concentration (PNEC). This study derived PNEC of BP-3 in freshwater using a species sensitivity distribution (SSD) approach, whilst existing PNECs are derived using assessment factor (AF) approaches. A total of eight chronic toxicity values, obtained by toxicity testing and a literature survey, covering four taxonomic classes (fish, crustaceans, algae, and cyanobacteria) were used for PNEC derivation. Therefore, the quantity and quality of the toxicity data met the minimum requirements for PNEC derivation using an SSD approach. The PNEC derived in this study (73.3 μg/L) was far higher than the environmental concentration detected in freshwater (up to 10.4 μg/L) as well as existing PNECs (0.67~1.8 μg/L), mainly due to the difference in the PNEC derivation methodology (i.e., AF vs. SSD approach). Since the SSD approach is regarded as more reliable than the AF approach, we recommend applying the PNEC value derived in this study for the aquatic ecological risk assessment of BP-3, as the use of the existing PNEC values seems to unnecessarily overestimate the potential ecological risk of BP-3 in freshwater.
Collapse
Affiliation(s)
- Jae-Woong Jung
- Center for Defense Acquisition and Requirements Analysis, Korea Institute for Defense Analyses, Seoul 02455, Korea;
| | - Jae Soon Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Bio Anti-Aging Medical Research Center, Gyeongsang National University Medical School, Jinju 52727, Korea;
| | - Jinsoo Choi
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-55-750-3833
| |
Collapse
|
34
|
Lu Y, Hua Z, Chu K, Gu L, Liu Y, Liu X. Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China. ENVIRONMENTAL RESEARCH 2021; 194:110733. [PMID: 33434608 DOI: 10.1016/j.envres.2021.110733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Yuanyuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| |
Collapse
|
35
|
Prakash V, Anbumani S. A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:121-161. [PMID: 34554327 DOI: 10.1007/398_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
36
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
37
|
Mao F, He Y, Gin KYH. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122587. [PMID: 32335379 DOI: 10.1016/j.jhazmat.2020.122587] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Benzophenone-type ultraviolet filters (BPs) have recently been recognized as emerging organic contaminants. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to environmentally relevant levels (0.01-1000 μg L-1) of benzophenone-1 (BP-1) and benzophenone-3 (BP-3) for seven days. A battery of tested endpoints associated with photosynthetic pigments and oxidative stress was employed for a better understanding of the mode of action. The tested cyanobacterium could uptake the two BPs (27.4-54.9%) from culture media. The two BPs were able to inhibit the production of chlorophyll a (chl-a) and promote the accumulation of carotenoids, leading to unaffected chl-a autofluorescence. Slightly increased malondialdehyde (MDA) contents suggested that BP-1 and BP-3 caused moderate oxidative stress. BP-1 stimulated the activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione S-transferase (GST) in M. aeruginosa while BP-3 increased the activities of SOD, GST, and glutathione (GSH), showing a concentration- and time-dependent relationship. The activities of other biomarkers, such as catalase (CAT) and glutathione peroxidase (GPx) fluctuated depending on exposure time and concentration. The overall results suggested that the two BPs can trigger moderate oxidative stress in M. aeruginosa and the tested cyanobacterium was capable of alleviating stress by different mechanisms.
Collapse
Affiliation(s)
- Feijian Mao
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore.
| |
Collapse
|
38
|
Benzophenone-3 and benzophenone-8 exhibit obesogenic activity via peroxisome proliferator-activated receptor γ pathway. Toxicol In Vitro 2020; 67:104886. [DOI: 10.1016/j.tiv.2020.104886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022]
|
39
|
Gao L, Liu J, Bao K, Chen N, Meng B. Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138753. [PMID: 32375068 DOI: 10.1016/j.scitotenv.2020.138753] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging global environmental contaminants. Exploring the occurrence and environmental behavior of PFASs in the aquatic environment is a key step in solving global fluorine chemical pollution problems. In this study, surface water, pore water, and sediment were collected from the main tributary and the middle and lower reaches of the Daling River, adjacent to the Fuxin fluorochemical manufacturing facilities in Liaoning Province in China, to elucidate the occurrence and partition behavior of PFASs. The total concentrations of PFASs ranged from 48.4 to 4578 ng/L in the overlying water, from 173 to 9952 ng/L in the pore water, and from 2.16 to 40.3 ng/g dw in the sediment fraction. Generally, perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) were the predominant congeners in the samples, with the mean relative content fractions being almost consistently >40% in the dissolved phase and >25% in the sediment. Hexafluoropropylene oxide dimer acid (HFPO-DA) and chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) were detected, albeit at low levels. In addition, the detection frequency and the contribution of legacy long-chain PFASs in sediment were higher than those in the overlying water and pore water. Except for perfluorohexane sulfonate (PFHxS), the concentrations of the alternative PFASs in the pore water were higher than in the overlying water. The organic carbon fraction was a more important controlling factor for PFAS sediment levels than cations content. As with legacy long-chain PFASs, HFPO-DA and 6:2 Cl-PFESA tended to partition into the solid phase, whereas short-chain PFASs were readily distributed in the aqueous phase. Such research results will be helpful in modeling the transport and fate of PFASs released by point sources into coastal waters through rivers and in developing effective risk assessment and management strategies for the control of PFAS pollution.
Collapse
Affiliation(s)
- Lijuan Gao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Jingling Liu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Kun Bao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Nannan Chen
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Bo Meng
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
40
|
Peng X, Zhu Z, Xiong S, Fan Y, Chen G, Tang C. Tissue Distribution, Growth Dilution, and Species-Specific Bioaccumulation of Organic Ultraviolet Absorbents in Wildlife Freshwater Fish in the Pearl River Catchment, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:343-351. [PMID: 31610611 DOI: 10.1002/etc.4616] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 05/14/2023]
Abstract
Tissue distributions and body-size dependent and species-specific bioaccumulation of 12 organic ultraviolet absorbents (UVAs) were investigated in 9 species of wildlife freshwater fish from the Pearl River catchment, South China. The concentrations of the 12 UVAs were from 109 to 2320 ng/g lipid weight in the fish tissue samples. The UVAs 2-hydroxy-4-methoxybenzophenone (BP-3), octocrylene (OCR), UV531, and 5 benzotriazole UV stabilizers (UVP, UV329, UV234, UV328, and UV327) were detected in more than half of the fish tissue samples. The UVA UV531 showed an obvious potential for bioaccumulation in the wild freshwater fish, with an estimated bioaccumulation factor (log BAF) and a biota-sediment accumulation factor (BSAF) of 4.54 ± 0.55 and 4.88 ± 6.78, respectively. Generally, liver (989 ± 464 ng/g lipid wt) contained the highest level of UVAs, followed in decreasing order by belly fat (599 ± 318 ng/g lipid wt), swimming bladder (494 ± 282 ng/g lipid wt), dorsal muscle (470 ± 240 ng/g lipid wt), and egg (442 ± 238 ng/g lipid wt). The bioaccumulation of UVAs in the freshwater wild fish was species specific and compound dependent. Bottom-dwelling detritus-ingesting omnivorous fish contained obviously higher UVA concentrations, suggesting that detritus/sediment ingestion is a significant pathway for exposure of the wild freshwater fish to the UVAs. The UVAs UV531 and BP-3 demonstrated a potential for growth dilution. Metabolism might play a significant role in elimination of the UVAs in the fish tissues, with the highest rate of metabolism in the liver. The UVAs did not demonstrate obvious trophic magnification in the freshwater ecosystem of the Pearl River catchment. More research is warranted to elucidate maternal transfer of the UVAs. Environ Toxicol Chem 2020;39:343-351. © 2019 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songsong Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
41
|
Yang H, Lu G, Yan Z, Liu J, Dong H, Jiang R, Zhou R, Zhang P, Sun Y, Nkoom M. Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113132. [PMID: 31520901 DOI: 10.1016/j.envpol.2019.113132] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Water diversion projects have been continuously used to alleviate water quality issues that arise during urbanization. However, studies about whether it has possible effects on the status of pharmaceutical and personal care products (PPCPs) are limited. In this study, the occurrence trends and spatial-temporal distribution characteristics of 50 PPCPs were investigated in surface water, suspended particulate matter (SPM) and sediments in Nanjing urban rivers under the background of the water diversion project from the Yangtze River to the Qinhuai River. In the four field campaigns that were embarked on April to July 2018, a total of 40, 38 and 24 PPCPs were detected in surface water, SPM and sediments, respectively, with overall concentrations of 138-1990 ng/L, 3214-33,701 ng/g and 12.1-109 ng/g dry weight (dw) among nine sampling sites. The excessive concentration of caffeine (20.6-905 ng/L) may be evidence of the direct discharge of untreated sewage and an obvious indicator of the overall concentrations of PPCPs. The PPCPs contamination levels in surface water were increased along with the direction of the water diversion in urban runoff, and decreased by 8-31% due to the increase in volume attributable to the water diversion. The distribution coefficients (Kd) of pollutants in the SPM-water phases (3.0-5.6 L/kg) were two orders of magnitude higher than those in the sediment-water phases (0.3-3.3 L/kg). And the positive correlations between their log Kow and SPM-water log Kd values indicated SPM was the important carrier determining the fate of organic UV filters. Furthermore, the results of ecological risk assessment demonstrated that although the increase in the volume of water caused by the water diversion reduced the overall ecological risks of PPCPs in urban rivers, the current contamination level still represents high risks to algae and fish.
Collapse
Affiliation(s)
- Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huike Dong
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Zhang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yu Sun
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Matthew Nkoom
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
42
|
Pérez-Coyotl I, Galar-Martínez M, García-Medina S, Gómez-Oliván LM, Gasca-Pérez E, Martínez-Galero E, Islas-Flores H, Pérez-Pastén BR, Barceló D, López de Alda M, Pérez-Solsona S, Serra-Roig MP, Montemurro N, Peña-Herrera JM, Sánchez-Aceves LM. Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:510-521. [PMID: 31103011 DOI: 10.1016/j.envpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
Collapse
Affiliation(s)
- I Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - M Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - S García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - L M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - E Gasca-Pérez
- Cátedra CONACYT. Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - E Martínez-Galero
- Laboratory of Reproductive Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - H Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Borja R Pérez-Pastén
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - D Barceló
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M López de Alda
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez-Solsona
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M P Serra-Roig
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Montemurro
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J M Peña-Herrera
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - L M Sánchez-Aceves
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
43
|
Teglia CM, Santamaría CG, Rodriguez HA, Culzoni MJ, Goicoechea HC. Determination of 2-hydroxy-4-methoxybenzophenone in mice serum and human plasma by ultra-high-performance liquid chromatography enhanced by chemometrics. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Chen H, Reinhard M, Yin T, Nguyen TV, Tran NH, Yew-Hoong Gin K. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system. WATER RESEARCH 2019; 154:227-237. [PMID: 30798177 DOI: 10.1016/j.watres.2019.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Ecotoxicological risks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface waters are difficult to model because data on PFASs distribution in multiple compartments (sediments, suspended particles and aqueous phase) are difficult to predict. This study quantified the distribution of 21 PFASs including PFCAs: C6-C13 perfluoroalkyl carboxylates, C4, C6, C8 and C10 perfluoroalkane sulfonates, 5 perfluorooctane sulfonamide substances (FOSAMs, including EtFOSA, FOSA, MeFOSAA, EtFOSAA, FOSAA), 2 N-alkyl perfluoroalkane sulfonamidoethanols (MeFOSE and EtFOSE), bis (perfluorooctyl) phosphinic acid (C8/C8 PFPIA), and 5:3 fluorotelomer carboxylic acid (5:3 acid) between bulk water and suspended particles in water column, and pore water and benthic sediments from a tropical urban water body. The distribution of PFASs between sorbed and dissolved phase was largely dependent on the perfluoroalkyl chain length (NCF2). PFCAs with NCF2 > 11 and perfluorodecane sulfonate (PFDS, NCF2 = 10) were found predominantly in the suspended particles and sediments. By contrast, short-chain PFASs (NCF2 ≤ 7) were detected predominantly in the dissolved phase. Sediment acts as a sink for long-chain PFASs while short-chain PFASs are more easily transported via the aqueous phase. Compared with benthic sediments, suspended particles, especially those in the top water layer, carried much higher concentrations of PFASs (by a factor of >100), indicating the stronger sorption capability of suspended particles. The wide variation in PFAS concentrations in suspended particles (∑PFASs concentrations: < 26.8-1,284 ng/g d.w.) suggests that some suspended particles were preloaded with different concentrations of PFASs in the water column which could highly affect the distribution of PFASs in the aquatic environment. Pore water contained 1-2 times higher concentrations of PFASs (∑PFASs: <20.25-159.34 ng/L) than overlying bulk water (∑PFASs: <14.2-79.98 ng/L), indicating the accumulation of PFASs in pore water. Distribution coefficients (KD) were calculated using paired solids concentration and dissolved concentration in both water and sediment column (KD-SP and KD-SED respectively) and were compared with values derived from a laboratory batch experiment. The averaged Log KD-SP/Log KD-SED showed significant positive correlation with NCF2, except for short-chain PFASs (NCF2 <5) which presented higher Log KD values than estimated. The discrepancies found between KD (Log KD-SP > Log KD -desorption > Log KD -sorption > Log KD-SED) suggest that the distribution of PFASs in the field, especially between suspended particles and bulk water could not be well represented by lab results and that using the water concentrations in the bottom layer for estimation of pore water concentrations could lead to bias results.
Collapse
Affiliation(s)
- Huiting Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, Yang & Yamasaki Environment & Energy Building, 473 Via Ortega, Stanford University, Stanford, CA, 94305, United States
| | - Tingru Yin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore
| | - Tung Viet Nguyen
- Environment Building, 40 Scott Road, Public Utilities Board (PUB), Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore.
| |
Collapse
|
45
|
Lu Z, Smyth SA, De Silva AO. Distribution and fate of synthetic phenolic antioxidants in various wastewater treatment processes in Canada. CHEMOSPHERE 2019; 219:826-835. [PMID: 30562689 DOI: 10.1016/j.chemosphere.2018.12.068] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 05/14/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are of emerging concern due to their potential environmental risks. However, the environmental occurrence and fate of SPAs are poorly understood. In this study, 13 SPAs were analyzed in 70 liquid and 21 solid samples from 12 wastewater treatment plants (WWTPs) in 2016 to investigate the distribution and composition of SPAs in different wastewater treatment processes in Canada. Wastewater samples were liquid-liquid extracted and biosolids were treated using ultrasonic assisted solvent extraction. SPAs were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry. The concentrations of total SPAs were in the ranges of 71-3193 ng L-1 in influent, less than method quantification limits (MQLs)-520 ng L-1 in effluent, and 479-4794 ng g-1 in biosolids (dry weight (dw)). SPAs were effectively removed (median >75%) from the liquid stream in most WWTPs. In one aerated lagoon and two primary treatment sites, low removal efficiency (median -26%-43%) was observed for 4-tert-octylphenol (4-tOP). These results indicate that wastewater effluent is a vector for SPAs, including the endocrine disruptor 4-tOP, to aquatic environments. The mass balance approximation found major removal mechanisms are sludge sorption/separation and degradation. A preliminary risk assessment suggested that most SPAs in WWTP effluent were unlikely to pose ecotoxicological risks to aquatic organisms in the receiving waters. Future research should evaluate the environmental risks of SPAs associated with land application of biosolids and investigate the occurrence and fate of the degradation products of these contaminants.
Collapse
Affiliation(s)
- Zhe Lu
- Science & Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada; Institut des Sciences de La Mer de Rimouski (ISMER), Université Du Québec à Rimouski (UQAR), 310 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | - Shirley Anne Smyth
- Science & Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| | - Amila O De Silva
- Science & Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| |
Collapse
|