1
|
Yang W, Jiang H, Zhang L, Gu J, Wang X. SiO 2 nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. BIORESOURCE TECHNOLOGY 2024; 414:131577. [PMID: 39374833 DOI: 10.1016/j.biortech.2024.131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
SiO2 nanoparticles (SiO2 NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO2 NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg-1 SiO2 NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO2 NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg-1 SiO2 NPs. In summary, 0.5 g kg-1 SiO2 NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.
Collapse
Affiliation(s)
- Wenshan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China.
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Tian P, Yang S, Yang M, Xie D, Yu H, Wang X. Effect of iron-based nanomaterials on organic carbon dynamics and greenhouse gas emissions during composting process. ENVIRONMENTAL RESEARCH 2024; 263:120281. [PMID: 39489273 DOI: 10.1016/j.envres.2024.120281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Iron-based nanomaterials as effective additives can enhance the quality and safety of compost. However, their influence on organic carbon fractions changes and greenhouse gas emissions during composting remains unclear. This study demonstrated that iron-based nanomaterials facilitate the conversion of light organic carbon fraction into heavy organic carbon fraction, with the iron-based nanomaterials group showing a significantly higher heavy organic carbon fraction content (41.88%) compared to the control group (35.71%). This shift led to an increase in humic substance content (77.5 g/kg) and a reduction in greenhouse gas emissions, with CO2, CH4, and N2O emissions decreasing by 20.5%, 39.7%, and 55.4%, respectively. Additionally, CO2-equivalent emissions were reduced by 42.9%. Microbial analysis revealed that iron-based nanomaterials increased the abundance of Bacillus and reduced the abundance of methane-producing archaea such as Methanothermobacter and Methanomassiliicoccus. These results indicated that the role of iron-based nanomaterials in regulating reactive oxygen species production and specific microbial communities involved in humification process. This study provides a practical strategy for improving waste utilization efficiency and mitigating climate change.
Collapse
Affiliation(s)
- Pengjiao Tian
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Shentao Yang
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Mingxin Yang
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Duo Xie
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Haizhong Yu
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Xiqing Wang
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China.
| |
Collapse
|
3
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Liu J, Hu Y, Gu S, Li X, Ji Z, Qin H, Zhang L, Zhang J, Huang H, Yan B, Luo L. Insight into mitigation mechanisms of N 2O emission by biochar during agricultural waste composting. BIORESOURCE TECHNOLOGY 2024; 406:130970. [PMID: 38876285 DOI: 10.1016/j.biortech.2024.130970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The effects and mitigation mechanisms of biochar added at different composting stages on N2O emission were investigated. Four treatments were set as follows: CK: control, BB10%: +10 % biochar at beginning of composting, BB5%&T5%: +5% biochar at beginning and + 5 % biochar after thermophilic stage of composting, BT10%: +10 % after thermophilic stage of composting. Results showed that treatment BB10%, BB5%&T5%, and BT10% reduced total N2O emissions by 55 %, 37 %, and 36 %, respectively. N2O emission was closely related to most physicochemical properties, while it was only related to amoA gene and hydroxylamine oxidoreductase. Different addition strategies of biochar changed the contributions of physicochemical properties, functional genes and enzymes to N2O emission. Organic matter and C/N contributed 23.7 % and 27.6 % of variations in functional gene abundances (P < 0.05), respectively. pH and C/N (P < 0.05) contributed 37.3 % and 17.3 % of variations in functional enzyme activities. These findings provided valuable insights into mitigating N2O emissions during composting.
Collapse
Affiliation(s)
- Jun Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yunlong Hu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Sijia Gu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xuemei Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhanglong Ji
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hao Qin
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Lihua Zhang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiachao Zhang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hongli Huang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Binghua Yan
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Luo
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
5
|
Du X, Xing R, Lin Y, Chen M, Chen Z, Zhou S. Reduced greenhouse gas emission by reactive oxygen species during composting. BIORESOURCE TECHNOLOGY 2024; 404:130910. [PMID: 38821423 DOI: 10.1016/j.biortech.2024.130910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Reactive oxygen species (ROS) is produced in the composting, which effectively promote organic matter transformation and humification process, but the effect of ROS on greenhouse gas emissions in this process has not been understood. This study proposed and validated that ROS can effectively reduce greenhouse gas emissions intheprocessofcomposting. Compared with ordinary thermophilic composting (oTC), thermophilic composting (imTC) that was supplemented by iron mineral increased ROS production by 1.38 times, and significantly reduced greenhouse gas emissions by 45.12%. Microbial community analysis showed no significant difference in the abundance of microbes involved in greenhouse gas production between oTC and imTC. Further correlation analysis proved that ROS played a crucial role in influencing greenhouse gas emissions throughout the composting process, especially in the initial phase. These findings provide new strategies for managing livestock and poultry manure to mitigate climate change.
Collapse
Affiliation(s)
- Xian Du
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ying Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mingli Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
7
|
Xiang F, Han L, Jiang S, Xu X, Zhang Z. Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33347-33359. [PMID: 38676863 DOI: 10.1007/s11356-024-33308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- JiaXing FuKang Biotechnology Company Limited, TongXiang Economic HiTech Zone, Building 1-19#, Development Ave 133, Tongxiang, 314515, People's Republic of China
| | - LuYing Han
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ShuoYun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, Hangzhou, 311121, People's Republic of China
| | - XinHua Xu
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
- China Academy of West Region Development, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
8
|
Shi S, Bao J, Guo Z, Han Y, Xu Y, Egbeagu UU, Zhao L, Jiang N, Sun L, Liu X, Liu W, Chang N, Zhang J, Sun Y, Xu X, Fu S. Improving prediction of N 2O emissions during composting using model-agnostic meta-learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171357. [PMID: 38431167 DOI: 10.1016/j.scitotenv.2024.171357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Nitrous oxide (N2O) represents a significant environmental challenge as a harmful, long-lived greenhouse gas that contributes to the depletion of stratospheric ozone and exacerbates global anthropogenic greenhouse warming. Composting is considered a promising and economically feasible strategy for the treatment of organic waste. However, recent research indicates that composting is a source of N2O, contributing to atmospheric pollution and greenhouse effect. Consequently, there is a need for the development of effective, cost-efficient methodologies to quantify N2O emissions accurately. In this study, we employed the model-agnostic meta-learning (MAML) method to improve the performance of N2O emissions prediction during manure composting. The highest R2 and lowest root mean squared error (RMSE) values achieved were 0.939 and 18.42 mg d-1, respectively. Five machine learning methods including the backpropagation neural network, extreme learning machine, integrated machine learning method based on ELM and random forest, gradient boosting decision tree, and extreme gradient boosting were adopted for comparison to further demonstrate the effectiveness of the MAML prediction model. Feature analysis showed that moisture content of structure material and ammonium concentration during composting process were the two most significant features affecting N2O emissions. This study serves as proof of the application of MAML during N2O emissions prediction, further giving new insights into the effects of manure material properties and composting process data on N2O emissions. This approach helps determining the strategies for mitigating N2O emissions.
Collapse
Affiliation(s)
- Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Bao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhiheng Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Song Fu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150030, China.
| |
Collapse
|
9
|
Zhao M, Zhao Y, Gao W, Xie L, Zhang G, Song C, Wei Z. Exploring the nitrogen fixing strategy of bacterial communities in nitrogen cycling by adding calcium superphosphate at various periods during composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166492. [PMID: 37611701 DOI: 10.1016/j.scitotenv.2023.166492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Chicken manure, as an organic solid waste with a high nitrogen content, generates large amounts of ammonia during composting, which leads to pollution of the surrounding environment, and causes a reduction in the quality of the compost product. Nitrogen is transformed through the nitrogen cycle and bacterial communities are the main contributors to the transformation of the nitrogen cycle. The microbial composition changes dramatically at different stages during composting. Therefore, calcium superphosphate (SSP) was added to compost as a nitrogen-fixing agent to elucidate the strategy and function of the bacterial community involved in the nitrogen cycle. The results showed that the addition of SSP at the initial, high temperature and cooling stages increased the inorganic nitrogen (NH4+-N, NO3--N) content by 51.99 %, 202.72 % and 173.37 % compared to CK, respectively. In addition, nitrogen cycle functional genes (gdh, nifH, pmoA-amoA, hao, nxrA, nirK, napA, nosZ, narG) abundance were determined by real-time qPCR. The nitrogen cycle genetic results showed that SSP addition at high temperature phase resulted in a 62.43 % down-regulation of ammonification genes, while nitrogen fixation and nitrification genes were enhanced. Random forests revealed a shift in the participation strategy of bacterial communities (e.g., Mycobacterium, Izemoplasmatales, Paracoccus, Ruminococcus) within the nitrogen cycle, leading to altered importance rankings despite involvement in different nitrogen cycle pathways. Moreover, Regression analysis and structural equation modelling revealed that SSP addition at high temperature stage stimulated the bacterial community engaged in nitrogen fixation and nitrification, resulting in increased nitrogen accumulation as NO3--N during composting. This paper offers the potential to yield novel scientific insights into the impact of microbially mediated nitrogen transformation processes and reduce gaseous pollution.
Collapse
Affiliation(s)
- Meiyang Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
10
|
Xu Z, Gao X, Li G, Nghiem LD, Luo W. Microbes from mature compost to promote bacterial chemotactic motility via tricarboxylic acid cycle-regulated biochemical metabolisms for enhanced composting performance. BIORESOURCE TECHNOLOGY 2023; 387:129633. [PMID: 37544546 DOI: 10.1016/j.biortech.2023.129633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
This study aims to reveal the underlying mechanisms of mature compost addition for improving organic waste composting. Composting experiments and metagenomic analysis were conducted to elucidate the role of mature compost addition to regulate microbial metabolisms and physiological behaviors for composting amelioration. Mature compost with or without inactivation pretreatment was added to the composting of kitchen and garden wastes at 0%, 5%, 10%, 15%, and 20% (by wet weight) for comparison. Results show that mature compost promoted pyruvate metabolism, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation to produce heat and energy to accelerate temperature increase for composting initiation and biological contaminant removal (>78%) for pasteurization. Energy requirement drives bacterial chemotactic motility towards nutrient-rich regions to sustain organic biodegradation. Nevertheless, when NADH formation exceeded NAD+ regeneration in oxidative phosphorylation, TCA cycle was restrained to limit continuous temperature increase and recover high intracellular NAD+/NADH ratio to secure stable oxidation reactions.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Technology and Model for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Technology and Model for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
11
|
Lu M, Guo R, Feng Q, Qin K, Zhang F, Shi X. Effect of calcium peroxide assisted microwave irradiation pretreatment on humus formation and microbial community in straw and dairy manure composting. BIORESOURCE TECHNOLOGY 2023; 374:128780. [PMID: 36828220 DOI: 10.1016/j.biortech.2023.128780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of four pretreatment methods on the crystallinity of maize straw were compared, and the CaO2 assisted microwave pretreatment was selected for straw and dairy manure composting. The humification and microbial community were investigated. Results showed that the pretreatment increased the initial water-soluble carbon, which favored the microbial activity, and the CO2 release increased by 15.71%. Pretreatment promoted the lignocellulose degradation, with total degradation ratio of 37.06%. The final humic acid content was 11.39 g/kg higher than the control. Spearman correlation analysis indicated that polyphenols and amino acids were significantly related to humus formation. In addition, pretreatment rendered the Firmicutes the most dominant phylum, and increased the metabolic intensity of reducing sugar metabolism, aromatic amino acid biosynthesis and carbon fixation pathways. Redundancy analysis revealed that the dominant genus of Firmicutes was significantly positively correlated with humus, while that of Actinobacteriota was correlated with CO2 release.
Collapse
Affiliation(s)
- Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Kang Qin
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Fengyuan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
12
|
Li D, Kumar R, Johnravindar D, Luo L, Zhao J, Manu MK. Effect of different-sized bulking agents on nitrification process during food waste digestate composting. ENVIRONMENTAL TECHNOLOGY 2023:1-11. [PMID: 36546563 DOI: 10.1080/09593330.2022.2161950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Food waste digestate (FWD) disposal is a serious bottleneck in anaerobic digestion plants to achieve a circular bioeconomy. FWD could be recycled into nitrogen-rich compost; however, the co-composting process optimisation along with bulking agents is required to reduce nitrogen loss and unwanted gaseous emissions. In the present study, two different-sized bulking agents, namely, wood shaving (WS) and fine sawdust (FS), were used to investigate their impact on FWD composting performance along with the nitrogen dynamics. The mixing of FWD with different bulking agents altered the physiochemical characteristics of composting matrix and the effective composting performance was observed through reduced ammonium nitrogen and increased seed germination index during 28 days of composting. The carbon loss of 19-22% through CO2 emission indicated similar carbon mineralisation with both types of sawdust; however, the nitrogen transformation pathways were different. Only WS treatment demonstrated the nitrification process, whereas the nitrogen loss was higher with FS. A total nitrogen loss of ∼15% was observed in treatments with FS, whereas WS treatments displayed a nitrogen loss of 12%. The outcome of the present study could significantly contribute to the practical aspect of the FWD composting operation with the promotion of the bio-recycling economy.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Rajat Kumar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
13
|
Sun X, Huang G, Huang Y, Fang C, He X, Zheng Y. Large Semi-Membrane Covered Composting System Improves the Spatial Homogeneity and Efficiency of Fermentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15503. [PMID: 36497578 PMCID: PMC9737267 DOI: 10.3390/ijerph192315503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Homogenous spatial distribution of fermentation characteristics, local anaerobic conditions, and large amounts of greenhouse gas (GHGs) emissions are common problems in large-scale aerobic composting systems. The aim of this study was to examine the effects of a semi-membrane covering on the spatial homogeneity and efficiency of fermentation in aerobic composting systems. In the covered group, the pile was covered with a semi-membrane, while in the non-covered group (control group), the pile was uncovered. The covered group entered the high-temperature period earlier and the spatial gradient difference in the group was smaller compared with the non-covered group. The moisture content loss ratio (5.91%) in the covered group was slower than that in the non-covered group (10.78%), and the covered group had a more homogeneous spatial distribution of water. The degradation rate of organic matter in the non-covered group (11.39%) was faster than that in the covered group (10.21%). The final germination index in the covered group (85.82%) was higher than that of the non-covered group (82.79%) and the spatial gradient difference in the covered group was smaller. Compared with the non-covered group, the oxygen consumption rate in the covered group was higher. The GHG emissions (by 30.36%) and power consumption in the covered group were reduced more significantly. The spatial microbial diversity of the non-covered group was greater compared with the covered group. This work shows that aerobic compost covered with a semi-membrane can improve the space homogeneity and efficiency of fermentation.
Collapse
Affiliation(s)
| | | | | | | | - Xueqin He
- Correspondence: (X.H.); (Y.Z.); Tel./Fax: +86-10-6273-6778 (X.H.); +86-10-6273-6385 (Y.Z.)
| | - Yongjun Zheng
- Correspondence: (X.H.); (Y.Z.); Tel./Fax: +86-10-6273-6778 (X.H.); +86-10-6273-6385 (Y.Z.)
| |
Collapse
|
14
|
Chen Y, Qin H, Lu Y, Liu H, Zhang J. A novel method to measure air-immobile regions of the composting pile by inverse calculation combined with gas tracer test. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:131-140. [PMID: 35830767 DOI: 10.1016/j.wasman.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Air-immobile regions in composting piles obstruct O2 mass transport and exacerbate the formation and emission of harmful off-gases. However, effective methods for measuring the parameters of these air-immobile regions are lacking. With quartz sand piles, this study first adjusted the circumstances of a gas tracer test (gas tracer, its injection volume, and chamber type) using the two-region model (TRM). The effects of β (proportional coefficient of gas in the air-mobile region) and ω (mass exchange coefficient) on the breakthrough curves (BTCs) of the gases were then explored. Finally, an inverse calculation method was used to measure the feature parameters of air-immobile regions in two composting piles (temperature-increasing and thermophilic phases) and estimate the O2 concentrations in different composting piles (50, 100, 200 cm whole height; layers of 50, 100, 200 cm height in a 200-cm high pile). The results showed that the optimal conditions were achieved when 100 mL helium (He) as the gas tracer and a cylinder with a height/diameter ratio of 3 as the chamber were used. With the simulating composting piles, increasing β or ω slowed breakthrough and decreased peak concentration in BTCs of a gas tracer. Tracer-inverse calculation protocol can be used to efficiently estimate the volume ratios of air-immobile regions (φ) and first-order mass transfer coefficient (α), with the values of 39%/46% and 0.001/0.006 min-1 in the composting piles during temperature-increasing /thermophilic phase. The TRM also predicted the O2 concentration in the off-gas or air-mobile/immobile regions of the temperature-increasing-phase composting piles.
Collapse
Affiliation(s)
- Yixiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Haiguang Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yulan Lu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
15
|
Xiong J, Su Y, He X, Han L, Guo J, Qiao W, Huang G. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes. BIORESOURCE TECHNOLOGY 2022; 354:127205. [PMID: 35462015 DOI: 10.1016/j.biortech.2022.127205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated and assessed the effect of the functional-membrane covering technique (FMCT) on nitrogen succession during aerobic composting. By comparative experiments involving high-throughput sequencing and qPCR, nitrogen metabolism (including the ko00910 pathway and functional enzyme and gene abundances) was analyzed, and the nitrogen succession mechanism was identified. The FMCT created a micro-positive pressure, improved the aerobic conditions, and increased the oxygen utilization rate and temperature. This strongly affected the nitrogen metabolism pathway and down-regulated the nitrifying and denitrifying bacteria abundances. The FMCT up-regulated the relative abundance of glutamate dehydrogenase and down-regulated the absolute abundances of AOB and nxrA. This and the high temperature increased NH3 emissions by 13.78%-73.37%. The FMCT down-regulated the abundances of denitrifying gene groups (nirS + nirK)/nosZ and nitric oxide reductase associated with N2O emissions and decreased N2O emissions by 16.44%-41.15%. The results improve the understanding of the mechanism involved in nitrogen succession using the FMCT.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Wei Qiao
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S. Free radicals accelerate in situ ageing of microplastics during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128405. [PMID: 35236030 DOI: 10.1016/j.jhazmat.2022.128405] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 μmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Miranda-Carrazco A, Ramírez-Villanueva DA, Dendooven L. Greenhouse gas emissions of biosolid and cow manure during composting and vermicomposting and when applied to soil cultivated with wheat (Triticum sp. L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24968-24982. [PMID: 34837621 DOI: 10.1007/s11356-021-17624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Biosolids are a by-product of wastewater treatment, and their nutritional composition makes them ideal for fertilizing crops. However, pre-treatments, such as conditioning and/or (vermi)composting, are often required to stabilize the product and remove pathogens. Biosolids, cow manure, and a 50-50% mixture were conditioned for 21 days, composted or vermicomposted with Eisenia fetida (Savigny 1826) for 28 days, and applied to soil cultivated with wheat (Triticum sp. L.), while emissions of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were monitored. Emissions of CH4 were large from the biosolid and N2O from the cow manure during conditioning. Emissions of CH4 remained high during (vermi)composting of the biosolids, while the emissions of N2O from the cow manure dropped. The addition of E. fetida did not affect the emissions of greenhouse gases during (vermi)composting. The emission of N2O was higher when (vermi)composted biosolid was applied to soil cultivated with wheat than when (vermi)composted cow manure was applied. The global warming potential (GWP) of the sum of the emitted greenhouse gases (GHG) during conditioning, (vermi)composting, and when the final product was applied to soil was 3 times larger from the cow manure than from the biosolid, but mixing biosolid with cow manure eliminated that difference. It was concluded that mixing biosolid with cow manure might be a simple way to reduce the GWP of the emitted GHG during storage, (vermi)composting, and when applied to soil.
Collapse
Affiliation(s)
| | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
18
|
Fu T, Shangguan H, Wei J, Wu J, Tang J, Zeng RJ, Zhou S. In-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127846. [PMID: 34838365 DOI: 10.1016/j.jhazmat.2021.127846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Aerobic composting is an effective recycling method for the disposal and resource utilization of organic solid waste. However, the inappropriate aeration mode used during conventional aerobic composting (CAC) often results in low oxygen utilization efficiency and loss of temperature, which further leads to a long maturation period and large odorous gas (NH3) pollution. Herein, a novel electrolytic oxygen aerobic composting (EOAC) process was invented first using in-situ oxygen generation for aeration by the electrolysis of water in compost. Our results demonstrated that the germination index (GI) significantly increased during EOAC, and the maturation time of compost was shortened by nearly 50% during EOAC compared to CAC, indicating higher oxygen utilization efficiency during EOAC. Meanwhile, NH3 emissions, N2O emissions, and nitrogen loss during the EOAC process decreased by 61%, 46%, and 21%, respectively, compared to CAC. The total relative abundance of thermophilic and electroactive bacteria during EOAC increased remarkably. EOAC inhibited ammoniation, nitrification, and denitrification, and weakened N-associated functional genes. A techno-economic analysis indicated that EOAC had greater technical superiority and cost advantages compared to CAC. This study represents proof-of-principle for EOAC and suggests that in-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting.
Collapse
Affiliation(s)
- Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junrong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Ma Q, Li Y, Xue J, Cheng D, Li Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022; 27:472. [PMID: 35056787 PMCID: PMC8777752 DOI: 10.3390/molecules27020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.
Collapse
Affiliation(s)
- Qianqian Ma
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Xue
- SCION, Private Bag 29237, Christchurch 8440, New Zealand;
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Cao Y, Wang X, Zhang X, Misselbrook T, Bai Z, Ma L. Nitrifier denitrification dominates nitrous oxide production in composting and can be inhibited by a bioelectrochemical nitrification inhibitor. BIORESOURCE TECHNOLOGY 2021; 341:125851. [PMID: 34523577 DOI: 10.1016/j.biortech.2021.125851] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Targeted options to reduce nitrous oxide (N2O) emission from composting is scarce due to challenges in disentangling the complex N2O production pathways. Here, combined approaches of nitrogen form analysis, isotopocule mapping, quantitative PCR, and Illumina MiSeq sequencing were used to differentiate N2O production pathways and decipher the underlying biochemical mechanisms. Results suggested that most N2O was produced at the latter stage through nitrifier denitrification. The bioelectrochemical assistance through applying an electric potential reduced N2O emissions by 28.5-75.5%, and the underlying mitigation mechanism was ammonia oxidation repression, as evidenced by the observed reduction in the proportion of the amoA containing family Nitrosomonadaceae from 99% to 83% at the lower voltage and to a negligible level at the higher voltage assessed, which was attributed to their depressed competitiveness for oxygen with heterotrophs. The findings provide evidence that the bioelectrochemical assistance could function as a nitrification inhibitor to minimize compost derived N2O emissions.
Collapse
Affiliation(s)
- Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; University of Chinese Academy of Science, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Xinyuan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Tom Misselbrook
- Sustainable Agricultural Sciences, Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China.
| |
Collapse
|
21
|
Deng L, Zhao M, Bi R, Bello A, Uzoamaka Egbeagu U, Zhang J, Li S, Chen Y, Han Y, Sun Y, Xu X. Insight into the influence of biochar on nitrification based on multi-level and multi-aspect analyses of ammonia-oxidizing microorganisms during cattle manure composting. BIORESOURCE TECHNOLOGY 2021; 339:125515. [PMID: 34332859 DOI: 10.1016/j.biortech.2021.125515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, influence of biochar on nitrification was explored using multi-level (DNA, RNA, protein) and multi-aspect (diversity, structure, key community, co-occurrence pattern and functional modules) analyses (M-LAA) of ammonia-oxidizing microorganisms (AOMs) during cattle manure composting. Biochar addition increased the copy numbers and diversity of AOMs, restricted (36.02%) the amoA gene transcripts of archaea but increased (24.53%) those of bacteria, and reduced (75.86%) ammonooxygenase (AMO) activity. Crenarchaeota and Thaumarcheota mediated NH4+-N, Unclassified_k_norank_d_Archaea and Crenarchaeota regulated AMO activity and potential ammonia oxidation (PAO) rates. Nitrosomonas and Nitrosospira were the predominant microbial taxa influencing NH4+-N variation and PAO rates, respectively. Additionally, both Crenarchaeota and Nitrosospira played crucial roles in mediating NO3--N and NO2--N. Furthermore, biochar altered the network patterns of AOMs community by changing the keystone species and the interactivity among communities. These findings indicated that influence of biochar on nitrification could be better explained using M-LAA of AOMs.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Shanshan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yanhui Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Li X, Shi X, Feng Q, Lu M, Lian S, Zhang M, Peng H, Guo R. Gases emission during the continuous thermophilic composting of dairy manure amended with activated oil shale semicoke. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112519. [PMID: 33862318 DOI: 10.1016/j.jenvman.2021.112519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
NH3 and greenhouse gases emission are big problems during composting, which can cause great nitrogen nutrient loss and environmental pollution. This study investigated effects of the porous bulking agent of oil shale semicoke and its activated material on the gases emission during the continuous thermophilic composting. Results showed addition of semicoke could significantly reduce the NH3 emission by 74.65% due to its great adsorption capacity to NH4+-N and NH3, further the effect could be enhanced to 85.92% when utilizing the activated semicoke with larger pore volume and specific surface area. In addition, the CH4 emission in the semicoke and activated semicoke group was also greatly mitigated, with a reduction of 67.23% and 87.62% respectively, while the N2O emission was significantly increased by 93.14% and 100.82%. Quantification analysis of the functional genes found the abundance of mcrA was high at the massive CH4-producing stage and the archaeal amoA was dominant at the N2O-producing stage in all the composting groups. Correlation and redundancy analysis suggested there was a positive correlation between the CH4 emission and mcrA. Addition of semicoke especially activated semicoke could reduce the CH4 production by inhibiting the methanogens. For the NH3 and N2O, it was closely related with the nitrification process conducted by archaeal amoA. Addition of semicoke especially activated semicoke was beneficial for the growth of ammonia-oxidizing archaea, causing the less NH4+-N transformation to NH3 but more N2O emission.
Collapse
Affiliation(s)
- Xu Li
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China.
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mengdan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Peng
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| |
Collapse
|
23
|
Xiong J, Ma S, He X, Han L, Huang G. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. BIORESOURCE TECHNOLOGY 2021; 332:125087. [PMID: 33831791 DOI: 10.1016/j.biortech.2021.125087] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The effects of functional membrane covering (FMC) on nitrogen transformation and related functional genes during aerobic composting were investigated by performing a comparable experiment. The FMC increased the pile temperature, promoted compost maturity, and decreased nitrogen loss. The FMC reduced NH3 and N2O emissions by 7.34% and 26.27%, respectively. The water film and the micro-positive pressure environment under the membrane effectively prevented NH3 escaping. The FMC up-regulated the amoA gene copy number (promoting NH3/NH4+ oxidation). The reduction of N2O emission by the FMC was mainly related to denitrifying genes (nirK, nirS, and nosZ). The FMC down-regulated the nirK and nirS gene copy numbers, but up-regulated the nosZ gene copy number. Pearson correlation analysis indicated that the functional membrane characteristics and differences between the composting pile environments caused by the FMC significantly affected the nitrogen forms and the related functional genes. The FMC strongly decreased nitrogen emissions and therefore conserved nitrogen.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuangshuang Ma
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Xie X, Pu L, Zhu M, Meadows M, Sun L, Wu T, Bu X, Xu Y. Differential effects of various reclamation treatments on soil characteristics: an experimental study of newly reclaimed tidal mudflats on the east China coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144996. [PMID: 33453526 DOI: 10.1016/j.scitotenv.2021.144996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Reclamation of coastal land is increasingly being used as a means of raising agricultural productivity and improving food security in China. Applications of organic and inorganic supplements on reclaimed soils can significantly adjust a range of soil properties, C, N, P content and stoichiometry, and extracellular enzyme activities. However, the linkages between soil C꞉N꞉P stoichiometry and extracellular enzyme activities following reclamation of coastal saline soil remain largely unclear. In this experimental study, treatments included control (CK), chicken manure (OM), polyacrylamide plus chicken manure (PAM+OM), straw mulching plus chicken manure (SM + OM), buried straw plus chicken manure (BS + OM), and bio-organic manure plus chicken manure (BM + OM) were conducted to explore the linkages between soil physicochemical characteristics in reclaimed soils under different treatments and to evaluate their impact on oat yield. Soils under all reclamation treatments exhibited higher moisture content and, with the exception of SM + OM, lower soil pH compared to the control. The reclamation treatments also significantly decreased soil bulk density (BD) and soil salt content (SSC), and increased soil organic carbon (SOC), total nitrogen (TN) and organic phosphorus (OP). Our study of soil C꞉N꞉P stoichiometry revealed that newly reclaimed soils in the study area are N limited. Additionally, soil invertase (INV), urease (URE) and alkaline phosphatase (ALP) activity under different reclamation treatments were significantly enhanced compared with CK in surface soil, while soil catalase (CAT) activity was observed to be much higher in BM + OM than in other treatments. Mean oat yields for each of the treatments were ranked as follows: BM + OM > SM + OM > PAM + OM > BS + OM > OM > CK treatment. Our results also indicate that TN (12.1% and 12.4%) was the main factor affecting URE and ALP, whereas BD (13.5%) and pH (8.5) were key factors affecting INV and CAT activity, respectively.
Collapse
Affiliation(s)
- Xuefeng Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of the Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China
| | - Lijie Pu
- Key Laboratory of the Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Ming Zhu
- Key Laboratory of the Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China; School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Michael Meadows
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Department of Environmental and Geographical Science, University of Cape Town, Rondebosch 7701, South Africa; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Licai Sun
- East China Mineral Exploration and Development Bureau for Non-ferrous Metals, Institute of Geochemical Exploration and Marine Geological Survey, Nanjing 210007, China
| | - Tao Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinguo Bu
- Jiangsu Province Land Surveying and Planning Institute, Nanjing 210017, China
| | - Yan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
25
|
Li M, Zhang J, Yang X, Zhou Y, Zhang L, Yang Y, Luo L, Yan Q. Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil. J Environ Sci (China) 2021; 102:263-272. [PMID: 33637252 DOI: 10.1016/j.jes.2020.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal pollution affects soil ecological function. Biochar and compost can effectively remediate heavy metals and increase soil nutrients. The effects and mechanisms of biochar and compost amendments on soil nitrogen cycle function in heavy-metal contaminated soils are not fully understood. This study examined how biochar, compost, and their integrated use affected ammonia-oxidizing microorganisms in heavy metal polluted soil. Quantitative PCR was used to determine the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB). Ammonia monooxygenase (AMO) activity was evaluated by the enzyme-linked immunosorbent assay. Results showed that compost rather than biochar improved nitrogen conversion in soil. Biochar, compost, or their integrated application significantly reduced the effective Zn and Cd speciation. Adding compost obviously increased As and Cu effective speciation, bacterial 16S rRNA abundance, and AMO activity. AOB, stimulated by compost addition, was significantly more abundant than AOA throughout remediation. Correlation analysis showed that AOB abundance positively correlated with NO3--N (r = 0.830, P < 0.01), and that AMO activity had significant correlation with EC (r = -0.908, P < 0.01) and water-soluble carbon (r = -0.868, P < 0.01). Those seem to be the most vital factors affecting AOB community and their function in heavy metal-polluted soil remediated by biochar and compost.
Collapse
Affiliation(s)
- Mingyue Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Xiao Yang
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Wu J, Shangguan H, Fu T, Chen J, Tang J, Zeng RJ, Ye W, Zhou S. Alternating magnetic field mitigates N 2O emission during the aerobic composting of chicken manure. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124329. [PMID: 33158658 DOI: 10.1016/j.jhazmat.2020.124329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) emission is an environmental problem related to composting. Recently, the electric field-assisted aerobic composting process has been found to be effective for enhancing compost maturity and mitigating N2O emission. However, the insertion of electrodes into the compost pile causes electrode erosion and inconvenience in practical operation. In this study, a novel alternating magnetic field-assisted aerobic composting (AMFAC) process was tested by applying an alternating magnetic field (AMF) to a conventional aerobic composting (CAC) process. The total N2O emission of the AMFAC process was reduced by 39.8% as compared with that of the CAC process. Furthermore, the results demonstrate that the AMF weakened the expressions of the amoA, narG, and nirS functional genes (the maximum reductions were 96%, 83.7%, and 95.5%, respectively), whereas it enhanced the expression of the nosZ functional gene by a maximum factor of 36.5 as compared with that in CAC. A correlation analysis revealed that the nitrification and denitrification processes for N2O emission were suppressed in AMFAC, the main source of N2O emission of which was denitrification. The findings imply that AMFAC is an effective strategy for the reduction of N2O emission during aerobic composting.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjie Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
He X, Yin H, Fang C, Xiong J, Han L, Yang Z, Huang G. Metagenomic and q-PCR analysis reveals the effect of powder bamboo biochar on nitrous oxide and ammonia emissions during aerobic composting. BIORESOURCE TECHNOLOGY 2021; 323:124567. [PMID: 33401162 DOI: 10.1016/j.biortech.2020.124567] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
To investigate the emission mechanism of ammonia (NH3) and nitrous oxide (N2O) during aerobic composting and the influence of powder bamboo biochar (PBB) on this process, this paper conducted a systematic study on the nitrogen-transforming functional microbial community, including functional genes, microbial structure and metabolism pathways. PBB reduced N2O and NH3 emissions by 1.25%-8.72% and 10.4%-11.8%, respectively. The quantitative PCR results indicated that the reduced N2O emission by PBB were mainly related to denitrifying genes (nirS, nirK, nosZ, and narG). The metagenome results demonstrated that Nitrosococcus was the main genus that could oxidize ammonia to nitrite decreased by PBB. The PBB significantly affected the nitrogen metabolism pathway, reduced the activity of glutamate dehydrogenase to inhibit the formation of NH4+ to reduce NH3 emission. The higher N2O emission in the control group was also related to the higher relative contents of hydroxylamine reductase and nitrite reductase.
Collapse
Affiliation(s)
- Xueqin He
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Hongjie Yin
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Zengling Yang
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
28
|
Feng S, Yin Y, Yin Z, Zhang H, Zhu D, Tong Y, Yang H. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource. ENVIRONMENTAL RESEARCH 2021; 194:110702. [PMID: 33400950 DOI: 10.1016/j.envres.2020.110702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
In chalcocite (Cu2S) bioleaching, the lack of iron metabolism is a key restricting factor. As the most common sulfide mineral, pyrite (FeS2) can release Fe(Ⅱ) and compensate for the iron metabolism deficiency in chalcocite bioleaching. The bioleaching of chalcocite in an imitated industrial system was improved by enhancing the iron-sulfur metabolism simultaneously using pyrite and sulfur oxidizers based on the joint utilization of waste resources, while the bioleaching performance and community structure in the leachate were systematically investigated. Due to the active sulfur/iron metabolism, the pH reached 1.2, and Fe3+ was increased by 77.78%, while the biomass of planktonic cells was improved to 2.19 × 107 cells/mL. Fourier transform infrared reflection (FTIR) and X-ray diffraction (XRD) analysis results showed that more iron-sulfur crystals were produced due to more active iron-sulfur metabolism. Scanning electron microscopy (SEM) revealed that many derivative particles and corrosion marks appeared on the surface of the ore, implying that the mineral-microbe interaction was strengthened. Confocal laser scanning microscopy (CLSM) showed the accumulation of cells and extracellular polymeric substances (EPS) on the ore surface, indicating a stronger contact leaching mechanism. Furthermore, the community structure and canonical correspondence analysis (CCA) demonstrated that the introduction of sulfur-oxidizing bacteria and pyrite could maintain the diversity of dominant leaching microorganisms at a high level. Sulfobacillus (27.75%) and Leptospirllillum (20.26%) were the dominant sulfur-oxidizing and iron-oxidizing bacteria during the bioleaching process. With the accumulation of multiple positive effects, the copper ion leaching rate was improved by 44.8%. In general, this new type of multiple intervention strategy can provide an important guide for the bioleaching of low-grade ores.
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yijun Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zongwei Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yanjun Tong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, China.
| |
Collapse
|
29
|
Lv B, Cui Y, Wei H, Chen Q, Zhang D. Elucidating the role of earthworms in N 2O emission and production pathway during vermicomposting of sewage sludge and rice straw. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123215. [PMID: 32593023 DOI: 10.1016/j.jhazmat.2020.123215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Vermicomposting is a sustainable option for the recycling of biodegradable organic waste. However, it also produces nitrous oxide (N2O), which is a highly potent greenhouse gas. In this study, the N2O stable isotope and functional genes for nitrogen cycling were determined to investigate the sources of N2O during vermicomposting. The results showed that vermicomposting promoted the organic degradation and nitrogen nitrification, and the presence of earthworms increased the emission of N2O during vermicomposting compared to that during the control treatment with no earthworms. The site preference analysis of N2O stable isotope showed that both nitrification and denitrification were present during the early stages of vermicomposting, while nitrification was the dominant contributor to N2O production in the later stages. Moreover, earthworms increased the gene copies of amoA, and stimulated the nitrifying bacteria, and hence, increased the N2O emission via nitrification. In addition, the activity of earthworms reduced the gene number of nosZ during vermicomposting, while the denitrification was the main source of N2O in the earthworm gut, as the conditions inside the gut inhibited nosZ. Overall, nitrification was the major pathway (55.8-88.7 %) for N2O production, which was promoted by the introduction of earthworms through nitrification.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China.
| | - Yuxue Cui
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Huawei Wei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Qihao Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Di Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
30
|
Zheng J, Liu J, Han S, Wang Y, Wei Y. N 2O emission factors of full-scale animal manure windrow composting in cold and warm seasons. BIORESOURCE TECHNOLOGY 2020; 316:123905. [PMID: 32777720 DOI: 10.1016/j.biortech.2020.123905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 05/15/2023]
Abstract
Emission of nitrous oxide (N2O) during animal manure composting is of great concern, and its emission factor (EF) is important for greenhouse gas emission inventory, while the EF is still uncertain due to limited on-site full-scale observations worldwide. In this study, N2O emissions were monitored during different seasons in a full-scale swine manure windrow composting with pile volume of about 76.5 m3. The results showed that the maximum N2O flux during the cold season (CS) was 23 times higher than during the warm season (WS), significant differences in the contribution to direct N2O emissions were observed in three composting stages, and shaded-side N2O emission was higher than sunny-side emission. The direct N2O emission factors of animal manure composting were 0.0046, 0.0002 kg N2O-N/kgTN (dry weight) in the CS and WS, respectively. Scenario analysis results showed that windrow composting is a suitable manure management that emits less N2O than solid storage.
Collapse
Affiliation(s)
- Jiaxi Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shenghui Han
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
31
|
Deng R, Luo H, Huang D, Zhang C. Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: Role of environmentally persistent free radicals. CHEMOSPHERE 2020; 255:126975. [PMID: 32387909 DOI: 10.1016/j.chemosphere.2020.126975] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Swine manure biochar (SBC) pyrolyzed at 300 °C, 600 °C and 900 °C were utilized to degrade sulfamethazine (SMT) in heterogeneous Fenton-like systems which achieved excellent degradation efficiency (over 85% in 30 min). Experiments results demonstrated that SBC possessed the poor SMT adsorption capacity but high catalytic performance. Electron Paramagnetic Resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that there were oxygen-centered environmentally persistent free radicals (EPFRs) and carbon-centered EPFRs with an adjacent oxygen atom in SBC. The oxygen-centered EPFRs played a major role in the catalytic process which tended to convert to carbon-centered EPFRs after the reaction. Besides, the electron transfer pathways were the most likely catalytic mechanism of SBC and the contribution of OH was dominant through Electron capture experiments and Linear sweep voltammetry (LSV) measurements. The acidic or alkaline condition can promote the catalytic ability of SBC. The presence of dissolved salts (NaCl) inhibited the catalytic process but the inhibition was slightly weakened at high concentration of NaCl, which showed the high tolerance of Cl- in Fenton/Fenton-like systems. Moreover, real wastewater application suggested that SBC600/H2O2 system possessed excellent catalytic efficiency and good adaptability. This research provides a novel swine manure reuse process with high practicability and presents a more explicit perspective about the reaction mechanisms of EPFRs in biochar.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Hao Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| |
Collapse
|
32
|
Zhong XZ, Zeng Y, Wang SP, Sun ZY, Tang YQ, Kida K. Insight into the microbiology of nitrogen cycle in the dairy manure composting process revealed by combining high-throughput sequencing and quantitative PCR. BIORESOURCE TECHNOLOGY 2020; 301:122760. [PMID: 31972401 DOI: 10.1016/j.biortech.2020.122760] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen cycling during composting process is not yet fully understood. This study explored the key genes involved in nitrogen cycling during dairy manure composting process using high-throughput sequencing and quantitative PCR technologies. Results showed that nitrogen fixation occurred mainly during the thermophilic and cooling phases, and significantly enhanced the nitrogen content of compost. Thermoclostridium stercorarium was the main diazotroph. Ammonia oxidation occurred during the maturation phase and Nitrosomonas sp. was the most abundant ammonia oxidizing bacteria. Denitrification contributed to the greatest nitrogen loss during the composting process. The nirK community was dominated by Luteimonas sp. and Achromobacter sp., while the nirS community was dominated by Alcaligenes faecalis and Pseudomonas stutzeri. The nosZ community varied in a succession of Halomonas ilicicola, Pseudomonas flexibili and Labrenzia alba dominated communities according to different composting phases. Based on these results, nitrogen cycling models for different phases of the dairy manure composting process were established.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Zhong XZ, Sun ZY, Wang SP, Tang YQ, Kida K, Tanaka A. Minimizing ammonia emissions from dairy manure composting by biofiltration using a pre-composted material as the packing media. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:569-578. [PMID: 31770691 DOI: 10.1016/j.wasman.2019.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/17/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Compost-based biofiltration is a method widely used to mitigate ammonia emissions during composting. To improve the efficiency of a composting-biofiltration system, it is necessary to determine the most effective degree of composting at which to process the packing media used in the biofiltration system. In this study, materials pre-composted for 20 and 30 d (C20 and C30, respectively), and mature compost (CM) that had been treated for 60 d, were applied as biofilter media to remove ammonia from dairy manure composting exhaust gases. A comparison of the results revealed that the C30 biofilter not only completely removed ammonia, but also produced the least nitrogen loss (1.84%). The C20 biofilter exhibited an inferior performance, indicating that enough pre-composted time is necessary for material used as the packing media. Though the CM biofilter displayed good performance with regard to ammonia removal (97.8%), it had a high nitrogen loss (6.46%). A spearman rank correlation matrix revealed that the abundance of nitrogen cycle genes including amoA, nosZ, nirK, and nirS, had a strong correlation with the physicochemical properties such as nitrate content, carbon source, moisture content, and pH of the biofilter media. C30 provided advantageous conditions and contained a relatively high abundance of nitrifiers and the lowest abundance of denitrifiers. As a result, C30 rather than CM was a more appropriate biofilter media for ammonia removal. Moreover, the occurrence of biological nitrification during the dairy manure composting process indicates the effectiveness of a material for use as biofilter media.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Akihiro Tanaka
- Division of Livestock and Grassland Research, National Agricultural Research Center for Kyushu Okinawa Region, Koshi, Kumamoto 861-1192, Japan
| |
Collapse
|
34
|
Tang J, Li X, Cui P, Lin J, Jianxiong Zeng R, Lin H, Zhou S. Nitrification plays a key role in N 2O emission in electric-field assisted aerobic composting. BIORESOURCE TECHNOLOGY 2020; 297:122470. [PMID: 31791916 DOI: 10.1016/j.biortech.2019.122470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O) emission is a serious environmental problem in composting. Previous studies have indicated that electric field assistance results in lower N2O emissions in aerobic composting; however, the exact mechanisms involved in electric-field assisted aerobic composting (EAAC) are not clear. In this study, the biological N transformation processes and the N-associated genes were investigated. The results demonstrated that electric field application inhibited nitrification, weakened the nitrifying functional genes (the hao and nxrA genes declined maximally by 86% and 86.8%, respectively), and increased the N2O consumption-related gene (nosZ) by a maximum factor of 2.76 compared with that in CAC. The correlation analysis demonstrated that nitrification was the main source of N2O emission in EAAC. The findings imply that EAAC is a promising process for mitigating N2O emission at the source during aerobic composting.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Lin
- School of Ecology and Resource Engineering, Wuyi University, Wuyishan City, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
35
|
Gruber W, Villez K, Kipf M, Wunderlin P, Siegrist H, Vogt L, Joss A. N 2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134157. [PMID: 31670036 DOI: 10.1016/j.scitotenv.2019.134157] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1-2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor but significant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.
Collapse
Affiliation(s)
- Wenzel Gruber
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, CH-8093 Zürich, Switzerland.
| | - Kris Villez
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland
| | - Marco Kipf
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland
| | - Pascal Wunderlin
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland
| | - Hansruedi Siegrist
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland
| | - Liliane Vogt
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Adriano Joss
- Eawag: Swiss Federal Institute of Aquatic science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
36
|
Tang J, Li X, Zhao W, Wang Y, Cui P, Zeng RJ, Yu L, Zhou S. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions. BIORESOURCE TECHNOLOGY 2019; 279:234-242. [PMID: 30735933 DOI: 10.1016/j.biortech.2019.01.140] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The long maturation period and greenhouse gas (GHG) emission are two major problems that arise during aerobic composting, mainly due to the low efficiency of O2 transmission and utilization. In this study, a novel electric-field-assisted aerobic composting (EAC) process was tested by simply applying a direct-current voltage of 2 V to a conventional aerobic composting (CAC) process. Compared with the CAC process, the maturation time and the total GHG for the EAC process were reduced by 33% and 70%, respectively. Furthermore, the analyses of O2 consumption and microbial communities demonstrated that the electric field had enhanced O2 utilization by 30 ± 9% and increased the relative abundance of electroactive bacteria by about 3.4-fold compared to CAC. This work has represented a proof of principle for EAC and suggests that the electric field is an effective and environmentally friendly strategy for enhancing compost maturity and mitigating GHG emissions during aerobic composting.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqi Zhao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
37
|
Liu R, Chen J, Zhou W, Cheng H, Zhou H. Insight to the early-stage adsorption mechanism of moderately thermophilic consortia and intensified bioleaching of chalcopyrite. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Chang R, Yao Y, Cao W, Wang J, Wang X, Chen Q. Effects of composting and carbon based materials on carbon and nitrogen loss in the arable land utilization of cow manure and corn stalks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:283-290. [PMID: 30583102 DOI: 10.1016/j.jenvman.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 05/16/2023]
Abstract
Recycling organic wastes to arable land as fertilizers has been recognized as a sustainable utilization to reduce environmental pollution. Techniques used for the treatment of organic wastes determine their nutrient contents and thus fertilizer efficiency for agricultural applications. The current study investigated the influences of composting and carbon based materials (biochar and woody peat), on carbon and nitrogen loss in the process of agricultural wastes utilization in the soil batch experiments. The results indicated composting process significantly strengthened the organic matter mineralization, increased the carbon loss rates from 33.46-38.96% to 60.54-86.15% and the nitrogen loss rates from 5.01-22.22% to 48.64-58.16%, dominant lost as carbon dioxide (CO2) and ammonia (NH3) emissions. Addition of carbon based materials could effectively reduce the carbon and nitrogen loss during both composting and soil incubation process. When the composted organic wastes were used in the soil batch experiments, woody peat was more effective to reduce nitrogen loss, while biochar was more effective to control carbon loss. When organic wastes were directly fertilized to soil, biochar could effectively reduce nitrogen loss. These results suggested that fertilizing raw agricultural wastes to with carbon based materials could reduce carbon and nitrogen losses, and increased the nutrient bioavailability in soil in comparison with their farmland application after composting.
Collapse
Affiliation(s)
- Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Yao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenchao Cao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jue Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Linyi, Shandong 276700, China.
| |
Collapse
|
39
|
Jain MS, Kalamdhad AS. Drum composting of nitrogen-rich Hydrilla Verticillata with carbon-rich agents: Effects on composting physics and kinetics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:770-779. [PMID: 30415170 DOI: 10.1016/j.jenvman.2018.10.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Composting of the Hydrilla verticillata, an invasive aquatic weed, signifies aquatic waste management as a safe and hygienic method that produces a nutrient-rich end product, i.e., compost. However, its higher moisture content, higher N-losses, and lower degradation rate have shown negative impacts on the composting process. Therefore the primary objective of this study was to assess the composting physics and the degradation kinetics after addition of three different carbon-rich agents with Hydrilla verticillata. To pursue this objective, three carbon-rich agents (viz. dry leaves in Run A, grass clippings in Run B and wood chips in Run C) each were mixed (10% w/w) to the optimized control mixture of Hydrilla verticillata, cow dung and sawdust (8:1:1) as reported in the earlier study. The composting experiments were performed in 550L rotary drum composter for 20 days to evaluate variation in physical, chemical, nutritional properties as well as degradation kinetics. The Run A and Run B were the only two mixtures that attained the temperature (55-70 °C) that indicates standard sterilization capacity in both with maximum moisture reduction (17%) and total Kjeldahl N increment (48%) in the latter. Organic matter losses throughout the process followed a first-order kinetic equation in all the Run (A-C) and control with the higher loss in Run B whereas least in control. Nevertheless, the addition of all carbon-rich agents is found to be beneficial to improve composting physics. Amongst all Runs (A-C), Run B achieved maximum reduction in the initial value of bulk density (64%) and increment in the initial value of free air space (20%). The study also concluded that all the carbon-rich agents have produced compost with the nutritional concentration suitable for agricultural proposes.
Collapse
Affiliation(s)
- Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|