1
|
Lin J, Han D, Chen F, Zhang X, Yang Y, Yang L, Guo H, Yu Z, Cao L, Shi J, Jiang G. Atmospheric black carbon (BC) in Hangzhou, China: Temporal variation, source apportionment, and case study of the 19th Asian Games. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125852. [PMID: 39952589 DOI: 10.1016/j.envpol.2025.125852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Black carbon (BC) is a refractory form of carbonaceous aerosol generated from fossil fuel and biomass incomplete combustion, which has adverse influence on global warming, air pollution, and human health. However, the relative importance of different sources and meteorology on atmospheric BC evolution was not well understood yet, especially during special periods when series of rigorous emission reduction measures were employed. Here, over one-year observation of BC concentration was conducted in urban of Hangzhou, China from Dec. 2022 to Jan. 2024. The annual mean BC concentration was 1.99 ± 1.25 μg/m3, and displayed strong seasonal and diurnal variability. The BC aerosol in winter (-22.7 ± 3.3‰) was 2.3‰ enriched in stable carbon isotope (δ13C) compared to BC in summer, this discrepancy indicated enhanced liquid fossil fuel combustion and C3 plant biomass combustion in cold season. Furthermore, Aethalometer model revealed that BC aerosols in Hangzhou were primarily derived from fossil fuel combustion (73.8 ± 9.1%). Specifically, backward trajectory and potential source contribution factor (PSCF) results suggested that the relative high BC concentrations were mainly originated from local sources direct emission in Yangtze River Delta. The BC concentrations during the 19th Asian Games (1.40 ± 0.87 μg/m3) decreased by 41.9% in comparison with that after Asian Games, which was attributed to the vehicle and industrial emissions reduction, and biomass burning prohibition in Hangzhou. These findings highlight the influence of anthropogenic sources emission on temporal variation of BC in urban agglomeration, which was of benefit to further developing effective emission reduction strategies to mitigate climate change and improve air quality.
Collapse
Affiliation(s)
- Jian Lin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Deming Han
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Feng Chen
- Hangzhou Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou, 310058, China
| | - Xiaorong Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Lin Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zechen Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Liuyan Cao
- Zhejiang Marine Ecology and Environment Monitoring Center, Zhoushan, 316021, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Cai X, Yang M, Liu M, Chen Y, Yu C, Zhang H, Zhang Q, Ma S, Dou X, Meng J, Wang X. China's municipal wastewater policies enhanced seafood safety and offset health risks from atmospheric mercury emissions in the past four decades. NATURE FOOD 2025; 6:182-195. [PMID: 39748033 DOI: 10.1038/s43016-024-01093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
The neurotoxin methylmercury in seafood threatens food safety worldwide. China has implemented stringent wastewater policies, established numerous treatment facilities and enforced rigorous water quality standards to address pollution in its waterways. However, the impact of these policies on seafood safety and methylmercury exposure remains unknown. Here we developed a process-based model showing that, although mercury reductions from municipal wastewater policies accounted for only 9% of atmospheric mercury emissions during 1980-2022, these measures unexpectedly prevented102,000 - 6,600 + 11,000 mercury-related deaths and counteracted nearly two thirds of potential deaths from those emissions. Furthermore, these policies ensured that146 - 9 + 8 megatonnes of freshwater seafood met the World Health Organization and China's mercury-safety standards, preventing US $ 498 - 29 + 32 billion in economic losses. Finally, we explore how China, as the primary global seafood producer and exporter, could develop municipal wastewater policies at the regional level to reduce aquatic pollutants and unlock the health benefits of seafood consumption.
Collapse
Affiliation(s)
- Xingrui Cai
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | - Mengqi Yang
- School of Environment, Tsinghua University, Beijing, China
| | - Maodian Liu
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Yuang Chen
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenghao Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Haoran Zhang
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Qianru Zhang
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Shijun Ma
- The Bartlett School of Sustainable Construction, University College London, London, UK
| | - Xinyu Dou
- Department of Earth System Science, Tsinghua University, Beijing, China
- Department of Earth System Science, Stanford University, Stanford, USA
| | - Jing Meng
- The Bartlett School of Sustainable Construction, University College London, London, UK.
| | - Xuejun Wang
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Qiu X, Liu M, Zhang Y, Zhang Q, Lin H, Cai X, Li J, Dai R, Zheng S, Wang J, Zhu Y, Shen H, Shen G, Wang X, Tao S. Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South. Nat Commun 2025; 16:1179. [PMID: 39885122 PMCID: PMC11782624 DOI: 10.1038/s41467-025-56274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Human activities have emitted substantial mercury into the atmosphere, significantly impacting ecosystems and human health worldwide. Currently, consistent methodologies to evaluate long-term mercury emissions across countries and industries are scant, hindering efforts to prioritize emission controls. Here, we develop a high-spatiotemporal-resolution dataset to comprehensively analyze global anthropogenic mercury emission patterns. We show that global emissions increased 330% during 1960-2021, with declines in developed Global North countries since the 1990s and China since the 2010s completely offset by rapid growth in Global South countries (excluding China). Consequently, global emissions have continued to rise slightly since the 2013 Minamata Convention. In 2021, Global South countries produced two-thirds of global emissions, despite comprising only one-fifth of the global economy. We predict that, although large uncertainties exist, continued emission growth in Global South countries under a business-as-usual scenario could increase 10%-50% global mercury emissions by 2030. Our findings demonstrate that global control of anthropogenic mercury emissions has reached a critical juncture, highlighting the urgent need to target reductions in Global South countries to prevent worsening health and environmental impacts.
Collapse
Affiliation(s)
- Xinran Qiu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- School of the Environment, Yale University, New Haven, CT, USA.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Yuanzheng Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qianru Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xingrui Cai
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jin Li
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Rong Dai
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shuxiu Zheng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jinghang Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yaqi Zhu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Shu Tao
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| |
Collapse
|
4
|
Cho IG, Lee H, Kwon SY, Jo MJ, Hwang DW, Lim JH, Choi SD. Isotopic fractionation of gaseous mercury in a large industrial city: Spatio-temporal variations and source apportionment. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137162. [PMID: 39818054 DOI: 10.1016/j.jhazmat.2025.137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The source-receptor relationship of atmospheric mercury is a critical environmental concern. However, comprehensive evaluations of mercury pollution based on spatially resolved and time-averaged data have not yet been conducted in Korea. In this study, the spatio-temporal variations of total gaseous mercury (TGM) and mercury isotopes were examined using passive air samplers at 30 sites in Ulsan over one year. TGM concentrations ranged from 2.26 ng/m3 to 68.5 ng/m3 with a mean of 6.89 ng/m3. Mean TGM concentrations by season were the highest in summer (9.28 ng/m3), followed by spring (7.31 ng/m3), winter (6.57 ng/m3), and fall (4.41 ng/m3). The highest concentration occurred in a non-ferrous industrial complex (21.9 ng/m3). Seasonal winds significantly influenced gaseous mercury dispersion to surrounding areas. The mean contributions of anthropogenic emissions, surface evasion, and background effects to TGM levels were 73 %, 2 %, and 25 % during summer and 49 %, 12 %, and 39 % during winter, respectively. The results indicate that anthropogenic emissions are the major source of gaseous mercury in the coastal city of Ulsan, particularly during summer when southeasterly winds are prevalent. This study is the first to present spatial and seasonal distribution maps of source contributions to TGM concentrations using mercury isotope analysis and a ternary mixing model.
Collapse
Affiliation(s)
- In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoin Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min-Jae Jo
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong-Woon Hwang
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, Republic of Korea
| | - Jae-Hyun Lim
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Wang H, Li T, Wang G, Peng Y, Zhang Q, Wang X, Ren Y, Liu R, Yan S, Meng Q, Wang Y, Wang Q. Significant spatiotemporal changes in atmospheric particulate mercury pollution in China: Insights from meta-analysis and machine-learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177184. [PMID: 39454773 DOI: 10.1016/j.scitotenv.2024.177184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
PM2.5 bound mercury (PBM2.5) in the atmosphere is a major component of total mercury, which is a pollutant of global concern and a potent neurotoxicant when converted to methylmercury. Despite its importance, comprehensive macroanalyses of PBM2.5 on large scales are still lacking. To explore the driving factors, spatiotemporal pollution distribution, and associated health risks, we compiled a comprehensive dataset consisting of PBM2.5 concentrations and spatiotemporal information across China from 2000 to 2023 that was collected from the published scientific literature with valid data. By incorporating corresponding multidimensional predicting variables, the best-fitted random forest model was applied to predict PBM2.5 concentrations with a high spatial resolution of 0.25° × 0.25°, and the health risk assessment model was used for subsequent health risk assessment. Our results indicated that population density and PM2.5 emissions from power generation were the main contributors to PBM2.5 concentrations. In 2020, the pollution was primarily concentrated in northern, central, and eastern China, with the highest annual average concentration of 815.91 pg/m3 in Shanghai. Beijing experienced the most significant seasonal increase, with PBM2.5 concentrations rising by 146.92 % from summer to winter. Nationally, the annual average PBM2.5 pollution decreased extensively and markedly from 2015 to 2020. The non-carcinogenic risk of PBM2.5 alone was negligible in 2020, with HQ values generally <0.02 in winter. This study may provide an important assessment of the effectiveness of China's measures against mercury pollution and offer valuable insights for future prevention and control of PBM2.5 pollution.
Collapse
Affiliation(s)
- Haolin Wang
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Tianshuai Li
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Guoqiang Wang
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yanbo Peng
- Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China.
| | - Qingzhu Zhang
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China.
| | - Xinfeng Wang
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yuchao Ren
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Ruobing Liu
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Shuwan Yan
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Qingpeng Meng
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yujia Wang
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Qiao Wang
- Academician Workstation for Big Data Research in Ecology and Environment, Environmental Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Men D, Li X, Zhu X, Zhao C. Heavy metal(loid)s pollution in soils of a typical agricultural and rural area: Source apportionment and derived risk quantification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1224. [PMID: 39565388 DOI: 10.1007/s10661-024-13404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
In light of the pervasive contamination of soils with heavy metals (HMs) on a global scope, the precise identification and assessment of sources and areas of contamination are crucial for the effective management and utilization of land. This study combines several models to quantitatively apportion possible sources of HMs and environmental risks in agricultural and rural areas of Langfang City, Hebei Province. The findings indicate that the accumulation of HMs is influenced by human activities, with varying degrees of accumulation observed. The Positive Matrix Factorization (PMF) model identified five sources, with the order of magnitude of their contributions to the soil HMs content being as follows: coal combustion source (24.9%), industrial activities source (23.1%), agricultural activities source (19.2%), natural source (16.6%), and traffic emissions source (16.3%). The ecological risks present in the study area are not significant; however, the human health risks exceed the acceptable limits. The primary sources of pollution that pose a risk to human health are industrial, followed by natural source. As, Cr and Ni were responsible for the non-carcinogenic risk, while Cr was the dominant factor in the carcinogenic effect. The risk distribution map indicates that the areas exhibiting the highest risk are situated in the east-central region of the study area. This study had identified the priority control factors (including HMs, sources of pollution and high-risk areas) for the use and management of the land.
Collapse
Affiliation(s)
- Dongyang Men
- Langfang Integrated Natural Resources Survey Center, China Geological Survey, 93 Guangyang Road, Guangyang District, Langfang, 065000, People's Republic of China
| | - Xuan Li
- Langfang Integrated Natural Resources Survey Center, China Geological Survey, 93 Guangyang Road, Guangyang District, Langfang, 065000, People's Republic of China.
| | - Xiaozhe Zhu
- Changsha Natural Resources Comprehensive Survey Center, China Geological Survey, 258 Xuefu Road, Chengjiao Street, Changsha, 410600, People's Republic of China
| | - Chenchen Zhao
- College of Life Sciences, HeBei University, 180 Wusi East Road, Baoding, 071002, People's Republic of China
| |
Collapse
|
7
|
Feinberg A, Selin NE, Braban CF, Chang KL, Custódio D, Jaffe DA, Kyllönen K, Landis MS, Leeson SR, Luke W, Molepo KM, Murovec M, Nerentorp Mastromonaco MG, Aspmo Pfaffhuber K, Rüdiger J, Sheu GR, St. Louis VL. Unexpected anthropogenic emission decreases explain recent atmospheric mercury concentration declines. Proc Natl Acad Sci U S A 2024; 121:e2401950121. [PMID: 39378086 PMCID: PMC11494326 DOI: 10.1073/pnas.2401950121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Anthropogenic activities emit ~2,000 Mg y-1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic ("legacy") Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of -0.011 ± 0.006 ng m-3 y-1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Noelle E. Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christine F. Braban
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Kai-Lan Chang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
- National Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, CO80305
| | | | - Daniel A. Jaffe
- School of Science, Technology, Engineering & Mathematics, Physical Sciences Division, University of Washington Bothell, Bothell, WA98011
- Department of Atmospheric Sciences, University of Washington Seattle, Seattle, WA98195
| | - Katriina Kyllönen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki00560, Finland
| | - Matthew S. Landis
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC27711
| | - Sarah R. Leeson
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Winston Luke
- National Oceanic and Atmospheric Administration/Air Resources Laboratory, College Park, MD20740
| | - Koketso M. Molepo
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht21502, Germany
| | - Marijana Murovec
- Slovenian Environment Agency, Environment and Nature protection Office, Air Quality Division, Ljubljana1000, Slovenia
| | | | | | - Julian Rüdiger
- Air Monitoring Network, German Environment Agency, Langen63225, Germany
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Taoyuan320, Taiwan
| | - Vincent L. St. Louis
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
8
|
Feng X, Fu X, Zhang H, Wang X, Jia L, Zhang L, Lin CJ, Huang JH, Liu K, Wang S. Combating air pollution significantly reduced air mercury concentrations in China. Natl Sci Rev 2024; 11:nwae264. [PMID: 39220549 PMCID: PMC11362986 DOI: 10.1093/nsr/nwae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 09/04/2024] Open
Abstract
In the past decade, China has motivated proactive emission control measures that have successfully reduced emissions of many air pollutants. For atmospheric mercury, which is a globally transported neurotoxin, much less is known about the long-term changes in its concentrations and anthropogenic emissions in China. In this study, over a decade of continuous observations at four Chinese sites show that gaseous elemental mercury (GEM) concentrations continuously increased until the early 2010s, followed by significant declines at rates of 1.8%-6.1% yr-1 until 2022. The GEM decline from 2013 to 2022 (by 38.6% ± 12.7%) coincided with the decreasing concentrations of criteria air pollutants in China and were larger than those observed elsewhere in the northern hemisphere (5.7%-14.2%). The co-benefits of emission control measures contributed to the reduced anthropogenic Hg emissions and led to the GEM decline in China. We estimated that anthropogenic GEM emissions in China were reduced by 38%-50% (116-151 tons) from 2013 to 2022 using the machine-learning and relationship models.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Hao X, Wang J, Chen Y, Zheng X, Zhou L, Wang Y. Characteristics of Gaseous Elemental Mercury in a Suburban Area of Shanghai, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:4. [PMID: 38965118 DOI: 10.1007/s00128-024-03912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
To clarify gaseous elemental mercury (GEM) in suburban megacities in the Yangtze River Delta region, China, we observed GEM concentrations from December 2019 to November 2020 in Wujing town, a suburban area of Shanghai. The annual mean GEM concentration was 1.44 ± 0.88 ng m-3. Compared with the historical monitoring data of GEM in Shanghai over the past 10 years, the concentration of GEM showed a decreasing trend. The monthly mean concentrations of GEM showed clear seasonal variation, with higher values in the spring and winter. In spring and winter, typical Hg pollution events were observed, which could be mostly associated with increased local anthropogenic activity and temperature inversion. The results of the correlation analysis of the daily mean GEM concentrations with the AQI and backward trajectory calculations indicate that mercury pollution at monitoring sites can be affected by local, regional and interregional influences.
Collapse
Affiliation(s)
- Xinyi Hao
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Ji Wang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Yuanyuan Chen
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xiangmin Zheng
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Limin Zhou
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
- Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China
| | - Yongjie Wang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China.
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
10
|
Liu K, Wang K, Jia S, Liu Y, Liu S, Yin Z, Zhang X. Air quality and health benefits for different heating decarbonization pathways in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170976. [PMID: 38360321 DOI: 10.1016/j.scitotenv.2024.170976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The urgent need for decarbonization in China's heating system, comprised of approximately one hundred thousand boilers, is imperative to meet climate and clean air objectives. To formulate national and regional strategies, we developed an integrated model framework that combines a facility-level emission inventory, the Community Multiscale Air Quality (CMAQ) model, and the Global Exposure Mortality Model (GEMM). We then explore the air quality and health benefits of alternative heating decarbonization pathways, including the retirement of coal-fired industrial boilers (CFIBs) for replacement with grid-bound heat supply systems, coal-to-gas conversion, and coal-to-biomass conversion. The gas replacement pathway shows the greatest potential for reducing PM2.5 concentration by 2.8 (2.3-3.4) μg/m3 by 2060, avoiding 23,100 (19,600-26,500) premature deaths. In comparison, the biomass replacement pathway offers slightly lower environmental and health benefits, but is likely to reduce costs by approximately two-thirds. Provincially, optimal pathways vary - Xinjiang, Sichuan, and Chongqing favor coal-to-gas conversion, while Shandong, Henan, Hebei, Inner Mongolia, and Shanxi show promise in CFIBs retirement. Henan leads in environmental and health benefits. Liaoning, Heilongjiang, and Jilin, rich in biomass resources, present opportunities for coal-to-biomass conversion.
Collapse
Affiliation(s)
- Kaiyun Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Kun Wang
- Department of Air Pollution Control, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China.
| | - Shuting Jia
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanghao Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuhan Liu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhou Yin
- Center for Pollution and Carbon Reduction, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zhang
- Center for Pollution and Carbon Reduction, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Liu X, Wang Z, Wang C, Wang B, Cao H, Shan J, Zhang X. Mercury distribution, exposure and risk in Poyang Lake and vicinity, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123409. [PMID: 38244906 DOI: 10.1016/j.envpol.2024.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Mercury (Hg), especially methylmercury (MeHg), which is highly neurotoxic, is a global pollutant that can affect human health because of its accumulation in aquatic products. Poyang Lake, an inland lake in China, has been significantly affected by human activity, yet there is limited understanding of local mercury contamination and potential exposure pathways to humans. In this study, we explored the risks of mercury exposure by sampling sediments, plants, and aquatic organisms in the lake and surrounding areas and analyzing total Hg (THg) and MeHg levels. Sediment sampling was conducted at the main lake, rivers, rice paddies, and fishponds. Two dominant species of plants and 15 species of aquatic organisms were sampled and analyzed. We assessed the characteristics of mercury in sediments using the geo-accumulation index (Igeo), mercury exposure using the biomagnification factor (BMF) and biota sediment accumulation factor (BSAF), and risks using thresholds for adverse effects. The highest THg concentrations (137.04 ± 44.3 ng g-1 dw) were detected in the main lake sediments, whereas the highest MeHg concentrations (0.47 ± 0.6 ng g-1 dw) were detected in fishpond sediments. Mercury accumulation in the main lake sediments could be assessed as contaminated (Igeo > 0: 81.6%). Yellow catfish had the highest mercury concentration (THg 770.69 ± 199.7 ng g-1 dw; MeHg 741.93 ± 168.8 ng g-1 dw). Piscivores were adversely affected by carnivorous fish (50.8%), but all fish concentrations did not exceed the food safety standards recommend by China and the WHO. The mercury exposure results revealed significant Hg biomagnification and enrichment (BMF >1: 94.55%; BSAFmax = 1218). Long-term monitoring of aquatic organisms is warranted.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunjie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jihong Shan
- Wildlife and Plant Protection Center, Jiangxi Provincial Department of Forestry, Nanchang, 330006, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Dong Q, Li Y, Wei X, Jiao L, Wu L, Dong Z, An Y. A city-level dataset of heavy metal emissions into the atmosphere across China from 2015-2020. Sci Data 2024; 11:258. [PMID: 38424081 PMCID: PMC10904851 DOI: 10.1038/s41597-024-03089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The absence of nationwide distribution data regarding heavy metal emissions into the atmosphere poses a significant constraint in environmental research and public health assessment. In response to the critical data deficiency, we have established a dataset covering Cr, Cd, As, and Pb emissions into the atmosphere (HMEAs, unit: ton) across 367 municipalities in China. Initially, we collected HMEAs data and covariates such as industrial emissions, vehicle emissions, meteorological variables, among other ten indicators. Following this, nine machine learning models, including Linear Regression (LR), Ridge, Bayesian Ridge (Bayesian), K-Neighbors Regressor (KNN), MLP Regressor (MLP), Random Forest Regressor (RF), LGBM Regressor (LGBM), Lasso, and ElasticNet, were assessed using coefficient of determination (R2), root-mean-square error (RMSE) and Mean Absolute Error (MAE) on the testing dataset. RF and LGBM models were chosen, due to their favorable predictive performance (R2: 0.58-0.84, lower RMSE/MAE), confirming their robustness in modelling. This dataset serves as a valuable resource for informing environmental policies, monitoring air quality, conducting environmental assessments, and facilitating academic research.
Collapse
Affiliation(s)
- Qi Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
- Xiangtan Experimental Station of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Xiangtan, Hunan, 411199, China
| | - Yue Li
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Xinhua Wei
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Le Jiao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
| | - Lina Wu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
| | - Zexin Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China.
- Xiangtan Experimental Station of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Xiangtan, Hunan, 411199, China.
| |
Collapse
|
13
|
Feinberg A, Jiskra M, Borrelli P, Biswakarma J, Selin NE. Deforestation as an Anthropogenic Driver of Mercury Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38328901 DOI: 10.1021/acs.est.3c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Deforestation reduces the capacity of the terrestrial biosphere to take up toxic pollutant mercury (Hg) and enhances the release of secondary Hg from soils. The consequences of deforestation for Hg cycling are not currently considered by anthropogenic emission inventories or specifically addressed under the global Minamata Convention on Mercury. Using global Hg modeling constrained by field observations, we estimate that net Hg fluxes to the atmosphere due to deforestation are 217 Mg year-1 (95% confidence interval (CI): 134-1650 Mg year-1) for 2015, approximately 10% of global primary anthropogenic emissions. If deforestation of the Amazon rainforest continues at business-as-usual rates, net Hg emissions from the region will increase by 153 Mg year-1 by 2050 (CI: 97-418 Mg year-1), enhancing the transport and subsequent deposition of Hg to aquatic ecosystems. Substantial Hg emissions reductions are found for two potential cases of land use policies: conservation of the Amazon rainforest (92 Mg year-1, 95% CI: 59-234 Mg year-1) and global reforestation (98 Mg year-1, 95% CI: 64-449 Mg year-1). We conclude that deforestation-related emissions should be incorporated as an anthropogenic source in Hg inventories and that land use policy could be leveraged to address global Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel 4056, Switzerland
| | | | - Jagannath Biswakarma
- Environmental Geosciences, University of Basel, Basel 4056, Switzerland
- Department of Water Resources and Drinking Water, Eawag, Dübendorf 8600, Switzerland
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Zhou Y, Ma S, Zhu W, Shi Q, Jiang H, Lu R, Wu W. Revealing varying relationships between wastewater mercury emissions and economic growth in Chinese cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122944. [PMID: 37981186 DOI: 10.1016/j.envpol.2023.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mercury emission from industrial wastewater has a great impact on the aquatic environment but is not well studied. Inventory analysis, decoupling and decomposition methods have been conducted based on the China Pollution Source Census dataset, which combines industry removal efficiencies to calculate mercury emissions from industrial wastewater in 340 cities in China during 2000-2010. The results show that over these 11 years, total mercury emissions and per capita mercury emissions increased by approximately 5 times, while the emission intensity increased by only about 3%. From 2000 to 2010, only 0.59% of cities showed strong decoupling between economic growth and mercury emissions, and 37.65% of cities showed weak decoupling, whereas 38.82% of cities showed negative decoupling. We attribute the decoupling of economic development and emissions in individual cities to several socioeconomic factors and find that a decline in emission intensity is the main driver. The Gini coefficient indicates a significant imbalance between cities' emissions, but this situation improved during 2000-2010. The objective of this article is to provide a historical perspective on the situation of mercury emissions from wastewater in China, thereby contributing' to the broader understanding of industrial pollution.
Collapse
Affiliation(s)
- Yuanchun Zhou
- Green Economy Development Institute, School of Economics, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, PR China
| | - Shu Ma
- Green Economy Development Institute, School of Economics, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, PR China
| | - Wenhui Zhu
- The Center for Innovation of Zero-waste Society, Chinese Academy of Environmental Planning, Beijing, 100041, PR China.
| | - Qingquan Shi
- Olin Business School, Washington University in St. Louis, St. Louis, 63130, United States
| | - Hongqiang Jiang
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Beijing-Tianjin-Hebei Regional Environment, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Eco-Environmental Accounting, Chinese Academy of Environmental Planning, Beijing, 100041, PR China
| | - Ran Lu
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Beijing-Tianjin-Hebei Regional Environment, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Eco-Environmental Accounting, Chinese Academy of Environmental Planning, Beijing, 100041, PR China
| | - Wenjun Wu
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Beijing-Tianjin-Hebei Regional Environment, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Eco-Environmental Accounting, Chinese Academy of Environmental Planning, Beijing, 100041, PR China.
| |
Collapse
|
15
|
Zhang P, Feng K, Yan L, Guo Y, Gao B, Li J. Overlooked CO 2 emissions induced by air pollution control devices in coal-fired power plants. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100295. [PMID: 37529799 PMCID: PMC10388163 DOI: 10.1016/j.ese.2023.100295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 08/03/2023]
Abstract
China's efforts to mitigate air pollution from its large-scale coal-fired power plants (CFPPs) have involved the widespread use of air pollution control devices (APCDs). However, the operation of these devices relies on substantial electricity generated by CFPPs, resulting in indirect CO2 emissions. The extent of CO2 emissions caused by APCDs in China remains uncertain. Here, using a plant-level dataset, we quantified the CO2 emissions associated with electricity consumption by APCDs in China's CFPPs. Our findings reveal a significant rise in CO2 emissions attributed to APCDs, increasing from 1.48 Mt in 2000 to 51.7 Mt in 2020. Moreover, the contribution of APCDs to total CO2 emissions from coal-fired power generation escalated from 0.12% to 1.19%. Among the APCDs, desulfurization devices accounted for approximately 80% of the CO2 emissions, followed by dust removal and denitration devices. Scenario analysis indicates that the lifespan of CFPPs will profoundly impact future emissions, with Nei Mongol, Shanxi, and Shandong provinces projected to exhibit the highest emissions. Our study emphasizes the urgent need for a comprehensive assessment of environmental policies and provides valuable insights for the integrated management of air pollutants and carbon emissions in CFPPs.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, PR China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, PR China
- Department of Geographical Sciences, University of Maryland, College Park, USA
| | - Li Yan
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China
| | - Yaqin Guo
- Department of Earth System Science, Tsinghua University, Beijing, 100084, PR China
| | - Bei Gao
- School of Business, Shandong University, Weihai, 264209, PR China
| | - Jiashuo Li
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, PR China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, PR China
| |
Collapse
|
16
|
Yu C, Lin H, Guo J, Peng M, Liu M, Tong Y, Lu Y, Wang X, Pan X. Significant impacts of river inputs on the distributions and transports of mercury and methylmercury in nearshore and open seas - Simulation based on field surveys and mass balance modeling. ENVIRONMENT INTERNATIONAL 2023; 180:108216. [PMID: 37738696 DOI: 10.1016/j.envint.2023.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/16/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Rivers are important sources of Hg for adjacent seas, and seafood from nearshore waters is a major source of Hg exposure for humans. There is thus a key scientific concern regarding how much riverine Hg inputs influence Hg loads in nearshore waters as well as how far the impact range can extend from the river to the open sea. In addition, it is important to understand the influence of anthropogenic hydro-facilities and activities on Hg levels in downstream seas. Because of the concise mass exchange pattern between the seas and the previously demonstrated intensive Hg inputs under anthropogenic regulation from the Yellow River, the Bohai and Yellow Seas, which are key fishery and marine breeding areas for China, are an ideal research area for exploring the impacts of riverine Hg on nearshore and adjacent open seas. Field surveys were conducted in eight major rivers and two seas, and 433 water samples were collected. The main Hg input and output terms (rivers, ocean currents, underground discharge, sewage, coastal erosion, atmospheric deposition, surface evasion, sedimentation, and fisheries) were quantified in the Bohai and Yellow Seas. Owing to the high inputs from the Yellow and Yalu Rivers, elevated THg concentrations were found. Apart from direct MeHg discharge, riverine nutrients may also seemingly affect nearshore MeHg. Using mass balance models, we found that the Yellow River (9.8 t) was the dominant Hg source in the Bohai Sea, which accounted for more than half of all contributions, and the Bohai Sea played the role of a secondary source of Hg to the Yellow Sea, with a flux of 3.3 t. Anthropogenic hydro-activities in large rivers could significantly influence Hg outputs and loads in the nearshore and even open seas. This study provides useful information for water resource management applications to reduce potential MeHg risks.
Collapse
Affiliation(s)
- Chenghao Yu
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huiming Lin
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Mao Peng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Maodian Liu
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yifan Lu
- Zhejiang Construction Investment Environment Engineering Co., Ltd., Hangzhou 310014, China
| | - Xuejun Wang
- Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
17
|
Oberschelp C, Pfister S, Hellweg S. Global site-specific health impacts of fossil energy, steel mills, oil refineries and cement plants. Sci Rep 2023; 13:13708. [PMID: 37607917 PMCID: PMC10444750 DOI: 10.1038/s41598-023-38075-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/02/2023] [Indexed: 08/24/2023] Open
Abstract
Climate change and particulate matter air pollution present major threats to human well-being by causing impacts on human health. Both are connected to key air pollutants such as carbon dioxide (CO[Formula: see text]), primary fine particulate matter (PM[Formula: see text]), sulfur dioxide (SO[Formula: see text]), nitrogen oxides (NO[Formula: see text]) and ammonia (NH[Formula: see text]), which are primarily emitted from energy-intensive industrial sectors. We present the first study to consistently link a broad range of emission measurements for these substances with site-specific technical data, emission models, and atmospheric fate and effect models to quantify health impacts caused by nearly all global fossil power plants, steel mills, oil refineries and cement plants. The resulting health impact patterns differ substantially from far less detailed earlier studies due to the high resolution of included data, highlighting in particular the key role of emission abatement at individual coal-consuming industrial sites in densely populated areas of Asia (Northern and North-Eastern India, Java in Indonesia, Eastern China), Western Europe (Germany, Belgium, Netherlands) as well as in the US. Of greatest health concern are the high SO[Formula: see text] emissions in India, which stand out due to missing flue gas treatment and cause a particularly high share of local health impacts despite a limited number of emission sites. At the same time, the massive infrastructure and export capacity build-up in China in recent years is taking a substantial toll on regional and global health and requires more stringent regulation than in the rest of the world due to unfavorable environmental conditions and high population densities. The current phase-out of highly emitting industries in Europe is found not to have started with sites having the greatest health impacts. Our detailed site-specific emission and impact inventory is able to highlight more effective alternatives and to track future progress.
Collapse
Affiliation(s)
- Christopher Oberschelp
- ETH Zürich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093, Zurich, Switzerland.
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093, Zurich, Switzerland.
| | - Stephan Pfister
- ETH Zürich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093, Zurich, Switzerland
| | - Stefanie Hellweg
- ETH Zürich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093, Zurich, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093, Zurich, Switzerland
| |
Collapse
|
18
|
Hong Q, Cai X, Li J, Huang W, Qu Z, Yan N, Xu H. Sulfur Dioxide Promoted Mercury Fast Deposition over a Selenite-Chloride-Induced Surface from Wet Flue Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10882-10890. [PMID: 37436147 DOI: 10.1021/acs.est.3c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.
Collapse
Affiliation(s)
- Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangling Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Yang Y, Guo J, Zhao Z, Yang J, Cao J, Zhang Q, Liu S. Efficient removal of Hg 0 from cement kiln flue gas using Ce xFe yO z composite catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79821-79834. [PMID: 37261688 DOI: 10.1007/s11356-023-27781-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In this study, a kind of CexFeyOz composite with oxygen vacancy structure and strong oxygen storage capacity was prepared by coprecipitation method. Under the condition of no HCl of flue gas, the Hg0 in the flue gas of cement kiln was efficiently and economically removed by using 6-8% oxygen. The results showed that the optimum preparation conditions of the catalyst were Ce-Fe molar ratio of 1-11 and calcination temperature of 550 °C. In addition, the reaction temperature, space velocity, the concentration of O2, SO2, and NO had significant effects on the removal efficiency of Hg0 at different rates. More precisely, at the reaction temperature of 350 °C, low airspeed, high concentration of O2, and low concentration of SO2 and NO, the efficiency reached the highest value. According to XPS results, the elemental valence of the CexFeyOz composite changed after the reaction. The redox pairs of Ce3+-Ce4+ and Fe3+-Fe2+ had the ability to transfer electrons, which enabled more oxygen adsorbed on the catalyst surface to be converted into O2-, leading to the improvement of the oxidation efficiency of Hg0.
Collapse
Affiliation(s)
- Yiting Yang
- College of Resources and Environment, China-Serbia "The Belt and Road" Joint Laboratory on Environment and Energy, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Junyuan Guo
- College of Resources and Environment, China-Serbia "The Belt and Road" Joint Laboratory on Environment and Energy, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Ziyu Zhao
- College of Resources and Environment, China-Serbia "The Belt and Road" Joint Laboratory on Environment and Energy, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Jie Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Jing Cao
- College of Resources and Environment, China-Serbia "The Belt and Road" Joint Laboratory on Environment and Energy, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Qiang Zhang
- College of Resources and Environment, China-Serbia "The Belt and Road" Joint Laboratory on Environment and Energy, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Shengyu Liu
- College of Resources and Environment, China-Serbia "The Belt and Road" Joint Laboratory on Environment and Energy, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| |
Collapse
|
20
|
Zhang Y, Zhang L, Cao S, Liu X, Jin J, Zhao Y. Improved Anthropogenic Mercury Emission Inventories for China from 1980 to 2020: Toward More Accurate Effectiveness Evaluation for the Minamata Convention. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37262354 DOI: 10.1021/acs.est.3c01065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anthropogenic mercury (Hg) emission inventories are crucial for the effectiveness evaluation of the Minamata Convention on Mercury. In this study, we developed an integrated Dynamic Inventory for Mercury Emission (DIME) model and improved the accuracy of emission estimates for primary sources in China. Long-term historical speciated Hg emission inventories for China were established. The total Hg emissions increased from 217.0 t in 1980 to 357.8 t in 2020 with a peak value of 506.6 t in 2010. Three stages with distinct leading drivers were identified. At Stage 1 (1980-1997), Hg emissions doubled with the rapid growth of economy; the driver was offset by the increase of dust and SO2 control measures at Stage 2 (1997-2010) except for cement production; and co-benefits from strict control measures induced the decoupling of Hg emissions from the economy at Stage 3 (2010-2020). The ultralow emission (ULE) retrofits in key industries had pronounced Hg removal efficiencies. Large emission reduction potential still exists in the cement industry. The improved emission estimation methods for key sectors, the consistency in methodology for historical Hg emission inventories, and the more accurate spatial distribution of speciated Hg emissions in this study provide a practical toolkit for the effectiveness evaluation of the Minamata Convention.
Collapse
Affiliation(s)
- Yang Zhang
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Lei Zhang
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Shuzhen Cao
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xia Liu
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jingmeng Jin
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yu Zhao
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| |
Collapse
|
21
|
Liu N, Cai X, Jia L, Wang X, Yuan W, Lin CJ, Wang D, Feng X. Quantifying Mercury Distribution and Source Contribution in Surface Soil of Qinghai-Tibetan Plateau Using Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5903-5912. [PMID: 36976750 DOI: 10.1021/acs.est.2c09610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Long-range transport and atmospheric deposition of gaseous mercury (Hg0) result in significant accumulation of Hg in the Qinghai-Tibetan Plateau (QTP). However, there are significant knowledge gaps in understanding the spatial distribution and source contribution of Hg in the surface soil of the QTP and factors influencing Hg accumulation. In this study, we comprehensively investigated Hg concentrations and isotopic signatures in the QTP to address these knowledge gaps. Results show that the average Hg concentration in the surface soil ranks as follows: forest (53.9 ± 36.9 ng g-1) > meadow (30.7 ± 14.3 ng g-1) > steppe (24.5 ± 16.1 ng g-1) > shrub (21.0 ± 11.6 ng g-1). Hg isotopic mass mixing and structural equation models demonstrate that vegetation-mediated atmospheric Hg0 deposition dominates the Hg source in the surface soil, with an average contribution of 62 ± 12% in forests, followed by 51 ± 10% in shrub, 50 ± 13% in steppe, and 45 ± 11% in meadow. Additionally, geogenic sources contribute 28-37% of surface soil Hg accumulation, and atmospheric Hg2+ inputs contribute 10-18% among the four types of biomes. The Hg pool in 0-10 cm surface soil over the QTP is estimated as 8200 ± 3292 Mg. Global warming, permafrost degradation, and anthropogenic influences have likely perturbed Hg accumulation in the soil of QTP.
Collapse
Affiliation(s)
- Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinyuan Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
22
|
Wang N, Zhou L, Feng M, Song T, Zhao Z, Song D, Tan Q, Yang F. Progressively narrow the gap of PM 2.5 pollution characteristics at urban and suburban sites in a megacity of Sichuan Basin, China. J Environ Sci (China) 2023; 126:708-721. [PMID: 36503796 DOI: 10.1016/j.jes.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.
Collapse
Affiliation(s)
- Ning Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Tianli Song
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoran Zhao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Wang B, Yang S, Li P, Qin C, Wang C, Ali MU, Yin R, Maurice L, Point D, Sonke JE, Zhang L, Feng X. Trace mercury migration and human exposure in typical mercury-emission areas by compound-specific stable isotope analysis. ENVIRONMENT INTERNATIONAL 2023; 174:107891. [PMID: 36963155 DOI: 10.1016/j.envint.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Health Management Center, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
24
|
Wu Q, Han L, Li S, Wang S, Cong Y, Liu K, Lei Y, Zheng H, Li G, Cai B, Hao J. Facility-Level Emissions and Synergistic Control of Energy-Related Air Pollutants and Carbon Dioxide in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4504-4512. [PMID: 36877596 DOI: 10.1021/acs.est.2c07704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Boilers involve ∼60% of primary energy consumption in China and emit more air pollutants and CO2 than any other infrastructures. Here, we established a nationwide, facility-level emission data set considering over 185,000 active boilers in China by fusing multiple data sources and jointly using various technical means. The emission uncertainties and spatial allocations were significantly improved. We found that coal-fired power plant boilers were not the most emission-intensive boilers with regard to SO2, NOx, PM, and mercury but emitted the highest CO2. However, biomass- and municipal waste-fired combustion, regarded as zero-carbon technologies, emitted a large fraction of SO2, NOx, and PM. Future biomass or municipal waste mixing in coal-fired power plant boilers can make full use of the advantages of zero-carbon fuel and the pollution control devices of coal-fired power plants. We identified small-size boilers, medium-size boilers using circulating fluidized bed boilers, and large-size boilers located in China's coal mine bases as the main high emitters. Future focuses on high-emitter control can substantially mitigate the emissions of SO2 by 66%, NOx by 49%, PM by 90%, mercury by 51%, and CO2 by 46% at the most. Our study sheds light on other countries wishing to reduce their energy-related emissions and thus the related impacts on humans, ecosystems, and climates.
Collapse
Affiliation(s)
- Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Licong Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yan Cong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Lei
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guoliang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bofeng Cai
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Jiming Hao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
25
|
Tsz-Ki Tsui M, Kwon SY, Li ML, Bishop K. Revisiting the relationship between mercury emission and bioaccumulation. ECO-ENVIRONMENT & HEALTH 2023; 2:1-2. [PMID: 38074456 PMCID: PMC10702915 DOI: 10.1016/j.eehl.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 10/16/2024]
Affiliation(s)
- Martin Tsz-Ki Tsui
- School of Life Sciences, Earth and Environmental Sciences Programme, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, 306 Robinson Hall, Newark, DE 19716, United States
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE, 75007, Sweden
| |
Collapse
|
26
|
Bai X, Tian H, Zhu C, Luo L, Hao Y, Liu S, Guo Z, Lv Y, Chen D, Chu B, Wang S, Hao J. Present Knowledge and Future Perspectives of Atmospheric Emission Inventories of Toxic Trace Elements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1551-1567. [PMID: 36661479 DOI: 10.1021/acs.est.2c07147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Toxic trace elements (TEs) can pose serious risks to ecosystems and human health. However, a comprehensive understanding of atmospheric emission inventories for several concerning TEs has not yet been developed. In this study, we systematically reviewed the status and progress of existing research in developing atmospheric emission inventories of TEs focusing on global, regional, and sectoral scales. Multiple studies have strengthened our understanding of the global emission of TEs, despite attention being mainly focused on Hg and source classification in different studies showing large discrepancies. In contrast to those of developed countries and regions, the officially published emission inventory is still lacking in developing countries, despite the fact that studies on evaluating the emissions of TEs on a national scale or one specific source category have been numerous in recent years. Additionally, emissions of TEs emitted from waste incineration and traffic-related sources have produced growing concern with worldwide rapid urbanization. Although several studies attempt to estimate the emissions of TEs based on PM emissions and its source-specific chemical profiles, the emission factor approach is still the universal method. We call for more extensive and in-depth studies to establish a precise localization national emission inventory of TEs based on adequate field measurements and comprehensive investigation to reduce uncertainty.
Collapse
Affiliation(s)
- Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Chuanyong Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Zhihui Guo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yunqian Lv
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Dongxue Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100875, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100875, China
| |
Collapse
|
27
|
Lv D, Wu Q, Ouyang D, Wen M, Zhang G, Wang S, Duan L. Differentiated emission control strategy based on comprehensive evaluation of multi-media pollution: Case of mercury emission control. J Environ Sci (China) 2023; 123:222-234. [PMID: 36521986 DOI: 10.1016/j.jes.2022.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/17/2023]
Abstract
In order to comprehensively evaluate the environmental impact of multi-media mercury pollution under differentiated emission control strategies in China, a literature review and case studies were carried out. Increased human exposure to methylmercury was assessed through the dietary intake of residents in areas surrounding a typical coal-fired power plant and a zinc (Zn) smelter, located either on acid soil with paddy growth in southern China, or on alkaline soil with wheat growth in northern China. Combined with knowledge on speciated mercury in flue gas and the fate of mercury in the wastewater or solid waste of the typical emitters applying different air pollution control devices, a simplified model was developed by estimating the incremental daily intake of methylmercury from both local and global pollution. Results indicated that air pollution control for coal-fired power plants and Zn smelters can greatly reduce health risks from mercury pollution, mainly through a reduction in global methylmercury exposure, but could unfortunately induce local methylmercury exposure by transferring more mercury from flue gas to wastewater or solid waste, then contaminating surrounding soil, and thus increasing dietary intake via crops. Therefore, tightening air emission control is conducive to reducing the comprehensive health risk, while the environmental equity between local and global pollution control should be fully considered. Rice in the south tends to have higher bioconcentration factors than wheat in the north, implying the great importance of strengthening local pollution control in the south, especially for Zn smelters with higher contribution to local pollution.
Collapse
Affiliation(s)
- Dongwei Lv
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Daiwei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Minneng Wen
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gehui Zhang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| |
Collapse
|
28
|
Guo Z, Bai X, Liu S, Luo L, Hao Y, Lv Y, Xiao Y, Yang J, Tian H. Heterogeneous Variations on Historical and Future Trends of CO 2 and Multiple Air Pollutants from the Cement Production Process in China: Emission Inventory, Spatial-Temporal Characteristics, and Scenario Projections. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14306-14314. [PMID: 36172692 DOI: 10.1021/acs.est.2c04445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cement production is a major contributor to carbon dioxide (CO2) and multiple hazardous air pollutant (HAP) emissions, threatening climate mitigation and urban/regional air quality improvement. In this study, we established a comprehensive emission inventory by coupling the unit-based bottom-up and mass balance methods, revealing that emissions of most HAPs have been remarkably controlled. However, an increasing 6.0% of atmospheric mercury emissions, as well as 14.1 and 23.7% of fuel-related and process-related CO2 emission growth were witnessed unexpectedly. Industrial adjustment policies have imposed a great impact on the spatiotemporal changes in emission characteristics. Monthly emissions of CO2 and multiple HAPs decreased from December to February due to the "staggered peak production," especially in northern China after implementing the intensified action plan for air pollution control in winter. Upgrading environmental technologies and adjusting capacity structures are identified as dominant driving forces for reducing HAP emissions. Besides, energy intensity improvement can help offset some of the impact caused by the increase in clinker/cement production. Furthermore, scenario analysis results show that ultra-low emission and low-carbon technology transformation constitute the keys to achieve the synergic reduction of CO2 and multiple HAP emissions in the future.
Collapse
Affiliation(s)
- Zhihui Guo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yunqian Lv
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yifei Xiao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Junqi Yang
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Feinberg A, Dlamini T, Jiskra M, Shah V, Selin NE. Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1303-1318. [PMID: 35485923 PMCID: PMC9491292 DOI: 10.1039/d2em00032f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000-4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (∼0.03 cm s-1), yet it underestimates measurements from a flux tower study (0.04 cm s-1vs. 0.07 cm s-1) and Amazon litterfall (0.05 cm s-1vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 to +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere-atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Thandolwethu Dlamini
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Liu K, Wu Q, Wang S, Chang X, Tang Y, Wang L, Liu T, Zhang L, Zhao Y, Wang Q, Chen J. Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. J Environ Sci (China) 2022; 119:106-118. [PMID: 35934455 DOI: 10.1016/j.jes.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from -33%-29%, 95%-300%, 64%-261%, 117%-122% to -13%-0%, -20%-80%, -31%-50%, -17%-23%. The improved model explains 69%-98% of the observed atmospheric Hg decrease during 2013-2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Xing Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yi Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Long Wang
- Institute of Atmospheric Environment, Guangdong provincial academy of environmental science, Guangzhou 510045, China
| | - Tonghao Liu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmos. Environ., Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
31
|
Zhang H, Zhou Y, Liu T, Tian X, Zhang Y, Wang J, Zhang M, Phoutthavong T, Liang P. Mercury release behaviors of Guizhou bituminous coal during co-pyrolysis: Influence of chlorella. J Environ Sci (China) 2022; 119:23-32. [PMID: 35934462 DOI: 10.1016/j.jes.2021.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 06/15/2023]
Abstract
Co-pyrolysis of coal and seaweed can not only effectively decrease the carbon footprint but also improve the quality and output of coal pyrolysis products, however, the influence of seaweed on thermal releasing behaviors of mercury during co-pyrolysis process are still unclear. In this work, the chlorella and Guizhou bituminous coal were mixed and used to reveal the mercury release behavior during co-pyrolysis by the temperature programmed pyrolysis experiments, thermogravimetric and differential thermogravimetric analysis (TG-DTG) and thermogravimetry-mass spectrometry (TG-MS) methods, offering a sufficient explanation on the control technology of mercury pollutants in co-pyrolysis. The results exhibited that a large amount of reducing gases such as CO, H2 and H2O were generated in chlorella at the temperature range of 100-500°C, which was favorable for the transformation from oxidized mercury to elemental mercury, thus remarkably increased the release of elemental mercury in the raw coal sample. The mixed chlorella also significantly lowered the decomposition temperature range (from 400-600 to 300-400°C) of pyrite-bound mercury and decreased the decomposition temperatures of the pyrite-bound mercury species. Additionally, in the co-pyrolysis about 91.82% of mercury was released into the gas phase below 400°C and was 13.77% higher than that of in individual pyrolysis of coal.
Collapse
Affiliation(s)
- Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yifan Zhou
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ting Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Xiaopeng Tian
- Shanxi Institute of Industrial Standardization, Taiyuan 030032, China
| | - Yuhan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Juan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mingzhu Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Thipphasone Phoutthavong
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Peng Liang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
32
|
Chen C, Huang JH, Meusburger K, Li K, Fu X, Rinklebe J, Alewell C, Feng X. The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119483. [PMID: 35595001 DOI: 10.1016/j.envpol.2022.119483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m-2 yr-1 from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg-1) and soil storage (100 mg m-3) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182-269 μg kg-1). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg-1), but with much higher Hg soil storage (54-120 mg m-3) than in the Seehornwald forest floor (18-27 mg m-3). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4-101 ng L-1) and in runoff of Changbai Mountain (1.26-5.62 ng L-1) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Collapse
Affiliation(s)
- Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jen-How Huang
- Environmental Geosciences, University of Basel, 4056, Basel, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Kai Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Christine Alewell
- Environmental Geosciences, University of Basel, 4056, Basel, Switzerland
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China.
| |
Collapse
|
33
|
Cui Y, Wu Q, Liu K, Wang S, Wang X, Jiang T, Meng B, Wu Y, Guo J. Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS ENVIRONMENTAL AU 2022; 2:324-335. [PMID: 37101969 PMCID: PMC10125373 DOI: 10.1021/acsenvironau.1c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice grain consumption is a primary pathway of human mercury exposure. To trace the source of rice grain mercury in China, we developed a rice paddy mercury transport and transformation model with a grid resolution of 1 km × 1 km by using the unit cell mass conservation method. The simulated total mercury (THg) and methylmercury (MeHg) concentrations in Chinese rice grain ranged from 0.08 to 243.6 and 0.03 to 238.6 μg/kg, respectively, in 2017. Approximately, 81.3% of the national average rice grain THg concentration was due to atmospheric mercury deposition. However, soil heterogeneity, especially the variation in soil mercury, led to the wide rice grain THg distribution across grids. Approximately, 64.8% of the national average rice grain MeHg concentration was due to soil mercury. In situ methylation was the main pathway via which the rice grain MeHg concentration was increased. The coupled impact of high mercury input and methylation potential led to extremely high rice grain MeHg in partial grids among Guizhou province and junctions with surrounding provinces. The spatial variation in soil organic matter significantly impacted the methylation potential among grids, especially in Northeast China. Based on the high-resolution rice grain THg concentration, we identified 0.72% of grids as heavily polluted THg grids (rice grain THg > 20 μg/kg). These grids mainly corresponded to areas in which the human activities of nonferrous metal smelting, cement clinker production, and mercury and other metal mining were conducted. Thus, we recommended measures that are targeted at the control of heavy pollution of rice grain by THg according to the pollution sources. In addition, we observed a wide spatial variation range of MeHg to THg ratios not only in China but also in other regions of the world, which highlights the potential risk of rice intake.
Collapse
Affiliation(s)
- Yuying Cui
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Kaiyun Liu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
- . Phone: +86
1062771466. Fax: +86 1062773597
| | - Xun Wang
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tao Jiang
- Department
of Environmental Science and Engineering, Collage of Resources and
Environment, Southwest University, Chongqing 400716, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yurong Wu
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Guo
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
34
|
Tang Y, Wang S, Li G, Han D, Liu K, Li Z, Wu Q. Elevated Gaseous Oxidized Mercury Revealed by a Newly Developed Speciated Atmospheric Mercury Monitoring System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7707-7715. [PMID: 35607915 DOI: 10.1021/acs.est.2c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gaseous oxidized mercury (Hg2+) monitoring is one of the largest challenges in the mercury research field, where existing methods cannot simultaneously satisfy the measurement requirements of both accuracy and time precision, especially in high-particulate environments. Here, we verified that dual-stage cation exchange membrane (CEM) sampler is incapable of gaseous elemental mercury (Hg0) uptake even if particulate matter is trapped on CEM, whereas the Hg2+ capture efficiency of the sampler is more than 90%. We then developed a Cation Exchange Membrane-Coupled Speciated Atmospheric Mercury Monitoring System (CSAMS) by coupling the dual-stage CEM sampler with the commercial Tekran 2537/1130/1135 system and configuring a new sampling and analysis procedure, so as to improve the monitoring accuracy of Hg2+ and ensure the simultaneous measurement of Hg0, Hg2+, and Hgp in 2 h time resolution. We deployed the CSAMS in urban Beijing in September 2021 and observed an unprecedented elevated Hg2+ during the daytime with an average amplitude of 510 pg m-3. Using a zero-dimensional box model, the elevated Hg2+ production rate was attributed to high atmospheric oxidant concentrations, Hg0 heterogeneous and interfacial oxidation processes on the surface of atmospheric particles, or potential unknown oxidants.
Collapse
Affiliation(s)
- Yi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Guoliang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Deming Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhijian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
35
|
Developing a dataset for the expected anthropogenic mercury release in China in response to the Minamata convention on mercury. Data Brief 2022; 42:108280. [PMID: 35620241 PMCID: PMC9126849 DOI: 10.1016/j.dib.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
This paper contains supplementary data in support of a research paper published [1] regarding the expected anthropogenic mercury release in China in response to the Minamata Convention on Mercury (MCM). The dataset provided within this article contains a set of excel spreadsheets. Each spreadsheet contains filtered (collected) and analysed data, i.e., parameters, collected data, calculated and summarized results for mercury distribution by the category of mineral production, intentional uses, secondary metal production, extraction and combustion, and waste treatment in a specific year. The collected (filtered) data in this article consist of the input factor (IF), activity rate data (ARD), output scenario (OS), initial distribution factor (iDF), and redistribution factor (rDF). IF was from the default IF in the United Nations Environment Programme (UNEP) Toolkit Level 2 and published scientific papers. ARD was obtained from the U.S. Geological Survey database, China Statistical Yearbooks, and published scientific papers. The OS content was from the default OS in the UNEP Toolkit Level 2 and published scientific papers. iDF was from the default distribution factor (DF) in the UNEP Toolkit Level 2 and published scientific papers. rDF was from published scientific paper. The mercury input was calculated using IF and ARD. The mercury release to different media in the initial distribution step was calculated using the mercury input and iDF. The release of mercury to the final sinks in the redistribution step was calculated using the amount of sector-specific treatment/disposal, product or by-product, and rDF. The dataset with combination of the collected (filtered) and analyzed data can contribute to an understanding of differences in anthropogenic mercury release before and after implementation of the MCM, especially considering technology transformation in China. Government policymakers involved in hazardous waste management, especially those working on MCM, and engineers and scientists interested in hazardous waste management may benefit from these data. The data can be used for identifying the environmental impact of anthropogenic mercury release before and after the MCM in China. The data can facilitate the creation of strategic management policies for mercury as the MCM is implemented in China.
Collapse
|
36
|
Feng X, Li P, Fu X, Wang X, Zhang H, Lin CJ. Mercury pollution in China: implications on the implementation of the Minamata Convention. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:634-648. [PMID: 35485580 DOI: 10.1039/d2em00039c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a toxic metal released into the environment through human activities and natural processes. Human activities have profoundly increased the amount of Hg in the atmosphere and altered its global cycling since the Industrial Revolution. Gaseous elemental Hg is the predominant form of Hg in the atmosphere, which can undergo long-range transport and atmospheric deposition into the aquatic systems. Hg deposition elevates the methylmercury (MeHg) level in fish through bioaccumulation and biomagnification, which poses a serious human health risk. Acute poisoning of MeHg can result in Minamata disease, while low-level long-term exposure in pregnant women can reduce the intelligence quotient of infants. After five sessions of intergovernmental negotiation, the Minamata Convention on mercury entered into force in August 2017 to protect human health and the environment from Hg pollution. Currently China contributes the largest quantity of Hg production, consumption, and emission globally. However, the status of Hg pollution in the environment in China and its associated health risk remains relatively unknown, which hinders the development of implementation plans of the Minamata Convention. In this paper, we provide a comprehensive review on the atmospheric release of Hg, distribution of air Hg concentration, human exposure to MeHg and health impacts caused by Hg pollution in China. Ongoing improvement of air pollution control measures is expected to further decrease anthropogenic Hg emissions in China. Air Hg concentrations in China are higher than the background values in the Northern Hemisphere, with spatial distribution largely influenced by anthropogenic emissions. Long-term observations of GEM in China show a decline in recent years. The net Hg transport outflow from China in 2013 is estimated to be 511 t year-1, and ∼60% of such outflow is caused by natural surface Hg emissions. Hg concentrations in fish and rice in China are relatively low and therefore the associated risks of human Hg exposure are low. Future research needs and recommendations for the implementation of the Minamata Convention are also discussed in this paper.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, USA
| |
Collapse
|
37
|
Li G, Wang S, Wu Q, Li J, Chen Z, Li J, Wang F, Han D, Li Z, Tang Y, Ouyang D, Liu K. Mercury emission characteristics and mechanism in the raw mill system of cement clinker production. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128403. [PMID: 35739653 DOI: 10.1016/j.jhazmat.2022.128403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/15/2023]
Abstract
Mercury pollution has attracted worldwide attention due to its toxicity, bioaccumulation and persistence. Cement clinker production is the top emitter of atmospheric mercury in China and the emissions from raw mill systems account for about 85% of all emissions. However, the mercury emission characteristics and mechanisms as a function of time during an operation cycle are still unclear. This study aims to reveal the mercury emission characteristics and mechanisms in cement plants by comprehensively using offline and online field measurements, control experiments and heat transfer analysis. Research results indicated that an intermediate temperature (300-500 °C) desorption and the heterogeneous oxidation of mercury in the precalciner, the selective adsorption of oxidized gaseous mercury (Hg2+) to raw meal, and Hg2+ re-vaporization in the conditioning tower jointly caused an increase in the Hg2+ ratio (15.3%-83.6%) during the mill-off mode. In addition, mercury concentrations remained at approximately 6.5 μg/Nm3 during the mill-on mode while the values reached a peak of 1835.4 μg/Nm3 during the mill-off mode. Thus, atmospheric mercury emissions during the mill-off mode accounted for 35.0%- 71.7% of the emissions during the entire cycle, although the mill-off period only lasted for 5%- 17% of the whole cycle. Our results therefore suggest that supervisory monitoring of mercury in cement clinker production should specify the operating status of raw mills. Mercury control technologies targeting a relatively short period for the mill-off mode can substantially reduce mercury emissions from cement clinker production, and thus, the related impacts on ecosystems and human health.
Collapse
Affiliation(s)
- Guoliang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jiayin Li
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Fengyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Deming Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Zhijian Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yi Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Daiwei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China; School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
38
|
Chen Q, Chen L, Li J, Guo Y, Wang Y, Wei W, Liu C, Wu J, Tou F, Wang X, Yang Y. Increasing mercury risk of fly ash generated from coal-fired power plants in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128296. [PMID: 35065307 DOI: 10.1016/j.jhazmat.2022.128296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The trend in mercury (Hg) content of fly ash, the primary solid Hg waste from coal-fired power plants (CFPPs), has not been well evaluated in China. This study integrated a national sampling campaign, a literature survey, and model predictions to investigate the trend in Hg content of fly ash and associated output nationwide. The results demonstrated that Hg content of fly ash from both our campaign conducted in 2020 and the literature survey met the Weibull distribution. The best estimate for the distribution of Hg content in our campaign (401.4 µg/kg) was about two-fold higher than that from the literature survey (236.6 µg/kg). The increasing trend was mainly attributed to the increasing installation of advanced air pollution control devices (APCDs) in CFPPs. The total national Hg output by fly ash was estimated to be 217.7 tons (64.1-501.8 tons) currently. Regarding the disposal of fly ash, a total of 16.1 tons and 105.8 tons of Hg were re-emitted into the air and immobilized in materials, respectively. The increasing trend in the Hg content of fly ash suggested the need for more stringent requirements for the disposal of solid Hg waste from CFPPs in China.
Collapse
Affiliation(s)
- Qing Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Jiashuo Li
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Yaqin Guo
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongjie Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Wendong Wei
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200030, China; SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chang Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jiayuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
39
|
Cao S, Zhang L, Zhang Y, Wang S, Wu Q. Impacts of Removal Compensation Effect on the Mercury Emission Inventories for Nonferrous Metal (Zinc, Lead, and Copper) Smelting in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2163-2171. [PMID: 35076214 DOI: 10.1021/acs.est.1c05523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonferrous metal smelting (NFMS) is one of the key sources of mercury (Hg) emissions to the air and cross-media Hg transfer in China. In this study, a "Hg removal compensation effect" between upstream and downstream air pollution control devices (APCDs) in NFMS was uncovered based on the investigation of field test data. The relationships between the Hg concentration in flue gas and the Hg removal efficiencies of typical APCDs were established, and an advanced probabilistic mass flow model regarding this effect was developed. Model comparison shows that the probabilistic essence of the advanced model prevents the underestimation of the deterministic model caused by using the geometric means of the Hg contents of metal concentrates, and the consideration of the removal compensation effect leads to more accurate estimation of the overall Hg removal efficiency of cascaded APCDs. The Hg emission abatement in the NFMS sector from 2010 to 2017 was evaluated to be 55.6 t, which was 13.5% higher than the estimate without considering the Hg removal compensation effect. The overall uncertainty of the improved model was reduced. This study provides a new methodology for more accurate evaluation of the effectiveness of the national implementation plan for the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Shuzhen Cao
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Lei Zhang
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Yang Zhang
- School of the Environment, and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shuxiao Wang
- School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Fu M, Le C, Fan T, Prakapovich R, Manko D, Dmytrenko O, Lande D, Shahid S, Yaseen ZM. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64818-64829. [PMID: 34318419 DOI: 10.1007/s11356-021-15574-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data series is a major challenge of its accurate prediction. A novel hybrid PM2.5 concentration prediction model is proposed in this study by combining complete ensemble empirical mode decomposition (CEEMD) method, Pearson's correlation analysis, and a deep long short-term memory (LSTM) method. CEEMD was employed to decompose historical PM2.5 concentration data to different frequencies in order to enhance the timing characteristics of data. Pearson's correlation was used to screen the different frequency intrinsic-mode functions of decomposed data. Finally, the filtered enhancement data were inputted to a deep LSTM network with multiple hidden layers for training and prediction. The results evidenced the potential of the CEEMD-LSTM hybrid model with a prediction accuracy of approximately 80% and model convergence after 700 training epochs. The secondary screening of Pearson's correlation test improved the model (CEEMD-Pearson) accuracy up to 87% but model convergence after 800 epochs. The hybrid model combining CEEMD-Pearson with the deep LSTM neural network showed a prediction accuracy of nearly 90% and model convergence after 650 interactions. The results provide a clear indication of higher prediction accuracy of PM2.5 with less computation time through hybridization of CEEMD-Pearson with deep LSTM models and its potential to be employed for air pollution monitoring.
Collapse
Affiliation(s)
- Minglei Fu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Caowei Le
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Tingchao Fan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Ryhor Prakapovich
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012, Minsk, Belarus
| | - Dmytro Manko
- Institute for Information Recording, National Academy of Sciences of Ukraine, Kiev, 03113, Ukraine
| | - Oleh Dmytrenko
- Institute for Information Recording, National Academy of Sciences of Ukraine, Kiev, 03113, Ukraine
| | - Dmytro Lande
- Institute for Information Recording, National Academy of Sciences of Ukraine, Kiev, 03113, Ukraine
| | - Shamsuddin Shahid
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor, 81310, Skudai, Malaysia
| | - Zaher Mundher Yaseen
- New era and development in civil engineering research group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq.
| |
Collapse
|
41
|
Shah V, Jacob DJ, Thackray CP, Wang X, Sunderland EM, Dibble TS, Saiz-Lopez A, Černušák I, Kellö V, Castro PJ, Wu R, Wang C. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14445-14456. [PMID: 34724789 DOI: 10.1021/acs.est.1c03160] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.
Collapse
Affiliation(s)
- Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel J Jacob
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Vladimir Kellö
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pedro J Castro
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Rongrong Wu
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| |
Collapse
|
42
|
Lei S, Meng X, Wang L, Zhou J, Qin D, Duan H. A Naphthalimide-Based Fluorescent Probe for the Detection and Imaging of Mercury Ions in Living Cells. ChemistryOpen 2021; 10:1116-1122. [PMID: 34726842 PMCID: PMC8562314 DOI: 10.1002/open.202100204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
The selective and efficient monitoring of mercury (Hg2+ ) contamination found in the environment and ecosystem has been carried out. Thus, a new 1,8-naphthalimide-based fluorescent probe NADP for the detection of Hg2+ based on a fluorescence enhancement strategy has been designed and synthesized. The NADP probe can detect Hg2+ with high selectivity and sensitivity and a low detection limit of 13 nm. The detection mechanism was based on a Hg2+ -triggered deprotection reaction, resulting in a dramatic change in fluorescence from colorless to green at physiological pH. Most importantly, biological investigation has shown that the NADP probe can be successfully applied to the monitoring of Hg2+ in living cells and zebrafish with low cytotoxicity.
Collapse
Affiliation(s)
- Shaoyu Lei
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Xia Meng
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Lizhen Wang
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences)Jinan250103Shandong ProvinceChina
| | - Jianhua Zhou
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Dawei Qin
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Hongdong Duan
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| |
Collapse
|
43
|
Ouyang D, Liu K, Wu Q, Wang S, Tang Y, Li Z, Liu T, Han L, Cui Y, Li G, Han D. Effect of the Coal Preparation Process on Mercury Flows and Emissions in Coal Combustion Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13687-13696. [PMID: 34618434 DOI: 10.1021/acs.est.1c03689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coal preparation is effective in controlling primary mercury emissions in coal combustion systems; however, the combustion of coal preparation byproducts may cause secondary emissions. The inconsistent coal preparation statistics, unclear mercury distribution characteristics during coal preparation, and limited information regarding the byproduct utilization pathways lead to great uncertainty in the evaluation of the effect of coal preparation in China. This study elucidated the mercury distribution in coal preparation based on the activity levels of 2886 coal preparation plants, coal mercury content database, tested mercury distribution factors of typical plants, and then traced the mercury flows and emissions in the downstream sectors using a cross-industry mercury flow model. We found that coal preparation altered the mercury flows by reducing 68 tonnes of mercury to sectors such as coking and increasing the flows to byproduct utilization sectors. Combusting cleaned coal rather than raw coal reduced the mercury emissions by 47 tonnes; however, this was offset by secondary mercury emissions. Coal gangue spontaneous combustion and the cement kiln coprocessing process were dominant secondary emitters. Our results highlight the necessity of whole-process emission control of atmospheric mercury based on flow maps. Future comprehensive utilization of wastes in China should fully evaluate the potential secondary mercury emissions.
Collapse
Affiliation(s)
- Daiwei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yi Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhijian Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tonghao Liu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Licong Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuying Cui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guoliang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Deming Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Liu K, Wu Q, Wang S, Ouyang D, Li Z, Ding D, Li G, Tang Y, Xiang L, Han D, Wen M, Liu T, Duan L, Tian H, Hao J. Highly Resolved Inventory of Mercury Release to Water from Anthropogenic Sources in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13860-13868. [PMID: 34590832 DOI: 10.1021/acs.est.1c03759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study developed an up-to-date and point-source-based inventory of mercury (Hg) releases to water in China by applying probabilistic release factors that combined industry removal efficiencies, reuse of reclaimed water, and receiving water types. In 2017, the national mercury release to water was estimated to be 50 (35-66) tons, in which 47%, 8%, 7%, and 25% were from nonferrous metal smelting, vinyl chloride monomer (VCM) production, coal-fired boilers, and domestic sewage, respectively. Approximately 95% of mercury was released to inland rivers, and the rest was discharged to lakes or coastal water. The significant sources were identified based on their mercury releases to water. The control of mercury release to water in China shall focus on zinc smelting plants, municipal sewage treatment plants, and the VCM production process. For zinc smelting plants, China can tighten the limit of mercury concentration in discharged wastewater and combine Hg-catcher device in traditional integrated treatment. For municipal sewage treatment plants and the VCM production process, promoting processes of Hg-free production can reduce mercury inputs at the source. Our study provides insights for other parties to identify the relevant sources of mercury release to water and to conduct control measures, so as to promote the global convention implementation.
Collapse
Affiliation(s)
- Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Daiwei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhijian Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dian Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guoliang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Longyi Xiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Deming Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Minneng Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tonghao Liu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lei Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
45
|
Liu S, Tian H, Bai X, Zhu C, Wu B, Luo L, Hao Y, Liu W, Lin S, Zhao S, Wang K, Liu K, Gao J, Zhang Q, Zhang K, Kan H, Liu Y, Hao J. Significant but Spatiotemporal-Heterogeneous Health Risks Caused by Airborne Exposure to Multiple Toxic Trace Elements in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12818-12830. [PMID: 34538053 DOI: 10.1021/acs.est.1c01775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Airborne trace elements (TEs) pose a notable threat to human health due to their toxicity and carcinogenicity, whereas their exposures and associated health risks in China remain unclear. Here, we present the first nationwide assessment of spatiotemporal exposure to 11 TEs in China by coupling a bottom-up emission inventory with a modified CMAQ model capable of TE simulation. Associated health risks of 11 TEs are then evaluated using a set of risk assessment models. Our results show that the CMAQ model could reasonably reproduce the spatiotemporal variations of 11 TEs in China compared to observations. We find significant but spatiotemporal-heterogeneous cancer risks associated with high-level exposure of TEs in China. Gridded cell concentrations of hexavalent chromium, arsenic, and nickel in eastern and central China usually exceed China's air quality standard limits, resulting in significant cancer risks that affected over 85% of the entire population in China in 2015. National annual mean population-weighted concentrations of 11 TEs decrease by 9.8-35.6% from 2012 to 2015, largely attributed to emission reduction from coal combustion. Our study provides critical insights for policymakers to implement stricter measures to alleviate health burdens and benefit relevant epidemiological research on airborne TEs.
Collapse
Affiliation(s)
- Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Chuanyong Zhu
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bobo Wu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shumin Lin
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuang Zhao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Kun Wang
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Department of Air Pollution Control, Beijing Municipal Institute of Labour Protection, Beijing 100054, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiajia Gao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Department of Air Pollution Control, Beijing Municipal Institute of Labour Protection, Beijing 100054, China
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, 100084 Beijing, China
| | - Kai Zhang
- Department of Environmental Health Sciences School of Public Health University at Albany, State University of New York One University Place Rensselaer, Rensselaer, New York 12144, United States
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Jiming Hao
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Bai X, Luo L, Tian H, Liu S, Hao Y, Zhao S, Lin S, Zhu C, Guo Z, Lv Y. Atmospheric Vanadium Emission Inventory from Both Anthropogenic and Natural Sources in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11568-11578. [PMID: 34415166 DOI: 10.1021/acs.est.1c04766] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vanadium is a strategically important metal in the world, although sustained exposure under high vanadium levels may lead to notable adverse impact on health. Here, we leverage a bottom-up approach to quantitatively evaluate vanadium emissions from both anthropogenic and natural sources during 1949-2017 in China for the first time. The results show that vanadium emissions increased by 86% from 1949 to 2005 to a historical peak value and then gradually decreased to 12.9 kt in 2017. With the effective implementation of air pollution control measures, vanadium emissions from anthropogenic sources decreased sharply after 2011. During 2011-2017, about half of vanadium emissions came from coal and oil combustion. In addition, industrial processes and natural sources also cannot be ignored, with the total contributions of more than 24%. The high levels of vanadium emissions were mainly distributed throughout the North China Plain and the eastern and coastal regions, especially in several urban agglomerations. Furthermore, the comprehensive evaluation by incorporating contrastive analysis, Monte Carlo approach, and GEOS-Chem simulation shows that vanadium emissions estimated in this study were reasonable and acceptable. The findings of our study provide not only a scientific foundation for investigating the health effects of vanadium but also useful information for formulating mitigation strategies.
Collapse
Affiliation(s)
- Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuang Zhao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shumin Lin
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Chuanyong Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhihui Guo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yunqian Lv
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
47
|
Wang B, Chen M, Ding L, Zhao Y, Man Y, Feng L, Li P, Zhang L, Feng X. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. ENVIRONMENT INTERNATIONAL 2021; 154:106561. [PMID: 33895437 DOI: 10.1016/j.envint.2021.106561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 05/24/2023]
Abstract
Human exposure to methylmercury (MeHg) from consuming contaminated fish has been a major concern for decades. Besides, human MeHg exposure through rice consumption has been recently found to be important in some Asian countries. China is the largest country on mercury (Hg) production, consumption, and anthropogenic emission. However, the health risks of human Hg exposure are not fully understood. A total of 624 fish, 299 rice, and 994 human hair samples were collected from typical Hg-contaminated areas and major fish-rich areas to assess the health risks from human Hg exposure in China. Fish and rice samples showed relatively low Hg levels, except the rice in the Wanshan Hg mining area (WMMA). Human hair total Hg (THg) and MeHg concentrations were significantly elevated in WMMA, Zhoushan (ZS), Xiamen (XM), Qingdao (QD), and zinc smelting area (ZSA), and 85% of hair samples in WMMA, 62% in ZS, 40% in XM, 26% in QD, and 17% in ZSA had THg concentrations exceeding the limit set by the USEPA (1 μg/g). Rice consumption was the main pathway (>85%) for human MeHg exposure in the studied Hg-contaminated areas. Meanwhile, fish was the primary human MeHg exposure source (>85%) in coastal cities. Therefore, soil remediation in typical Hg-contaminated areas and scientific guidance for fish consumption in coastal provinces are urgently needed to reduce the health risks from human Hg exposure in China.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Li Ding
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yuhang Zhao
- School of Resource and Environment, Guizhou University, Guiyang 550025, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Feng
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
48
|
Yuan X, Gan Y, Zhang Y, Dong B. Level, source, and risk assessment of toxic elements in traditional agricultural soils and coping strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:568. [PMID: 34386879 DOI: 10.1007/s10661-021-09362-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The level, source, and risk of toxic elements in traditional agricultural soils are particularly crucial for the sustainable development of agriculture. An important agricultural production base was selected, a total of 251 topsoil samples were collected, eight toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in soil were analyzed, and environmental and health risk assessments were conducted. Results showed that all concentrations of eight elements in soil samples were lower than the risk screening values with negligible pollution risk. Approximately 83.8% of Hg in soil was originated from atmospheric deposition related to industrial emissions, 53.2% of Cd was derived from direct industrial activities, and the other elements came from soil parent materials or agricultural activities. Accumulation risk of As in agricultural products, potential ecological risk from Cd, and As's ingestion risk and Cr's dermal contact risk should be paid more attention. More stricter monitoring and coping countermeasures and strategies should be established to ensure the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xuexia Yuan
- Institute of Agricultural Standards and Testing Technology for Agri-Products, Shandong Academy of Agricultural Sciences & Shandong Provincial Key Laboratory of Test Technology On Food Quality and Safety, Gongyebei Road 202, Shandong, 250100, Jinan, China.
| | - Yandong Gan
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Yong Zhang
- Shandong Institute of Territorial and Spatial Planning, Erhuandong Road 5948, Jinan 250014, China.
| | - Bo Dong
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
49
|
Fang B, Zeng H, Zhang L, Wang H, Liu J, Hao K, Zheng G, Wang M, Wang Q, Yang W. Toxic metals in outdoor/indoor airborne PM 2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116937. [PMID: 33756243 DOI: 10.1016/j.envpol.2021.116937] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Outdoor and indoor PM2.5 samples were simultaneously collected over four seasons (2017-2018) in Caofeidian, China, and analyzed for 15 elements to investigate the characteristics, sources, and health risks of PM2.5-bound metals. Source-specific PM2.5-bound metals were analyzed using positive matrix factorization, combined with the conditional probability function and potential source contribution function model. The health risks were evaluated using the health risk assessment model, which included the exposure parameters of indoor and outdoor activities of Chinese residents. The annual median of PM2.5 concentrations (89.68 μg/m3) and total metals (2.67 μg/m3) from the outdoor samples significantly surpassed that of the indoor samples (51.56 μg/m3) and total metals (1.51 μg/m3) (P < 0.05). In addition, the indoor/outdoor concentration ratios indicated that most indoor metals mainly originated from outdoor emission sources. In the annual analysis of PM2.5-bound metal sources, this study identified five metal sources: coal combustion, resuspended dust, traffic emissions, fuel combustion sources, and industrial sources, among which industry sources (36.6%) contributed the most. The non-carcinogenic risks of metals for adults (2.81) and children (2.80) all exceed the acceptable non-carcinogenic risk level (1). The non-carcinogenic risk of Mn (1.46 for children, 1.48 for adults) was a key factor in the total non-carcinogenic risk. The total carcinogenic risk of metals for children (3.75 × 10-5) was above the acceptable level (1.0 × 10-6) but within the tolerant limit (1.0 × 10-4), and that for adults (1.48 × 10-4) was above the tolerant limit. The lifetime carcinogenic risk of Cr6+ had the highest proportion of the total carcinogenic risk for children (87.5%) and adults (87.8%). Our results revealed that both adults and children suffered carcinogenic and non-carcinogenic risks from the PM2.5-bound metals in Caofeidian. The corresponding emission control measures of metals in atmosphere should be considered.
Collapse
Affiliation(s)
- Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hongwei Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Jiajia Liu
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Kelu Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Guoying Zheng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| |
Collapse
|
50
|
Wang C, Wang Z, Gao Y, Zhang X. Planular-vertical distribution and pollution characteristics of cropland soil Hg and the estimated soil-air exchange fluxes of gaseous Hg over croplands in northern China. ENVIRONMENTAL RESEARCH 2021; 195:110810. [PMID: 33524331 DOI: 10.1016/j.envres.2021.110810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
As an important reservoir of mercury (Hg), cropland play an important role in the Hg cycle, but it was poorly understood in northern China. The major objectives of this study are to ascertain the distribution characteristics of soil Hg and then assess its pollution level and potential risk, and further evaluate the role of cropland in northern China in the global soil-air exchange of Hg based on the simulation experiments and regional survey. The average Hg concentration in surface soils of the 30 sites in northern China was 116.1 ± 135.8 ng g-1, which was significantly higher than background values. The surface soils show a significant spatial heterogeneity in Hg concentration, and the Hg levels near provincial capitals were higher than those at corresponding prefecture-level cities, revealing that the soil Hg levels were closely associated with the local industrial and economic development. Profile data shows that topsoil Hg concentration was significantly higher than those in deeper layers at most of sites, indicating the more serious pollution situation in recent years. Generally, the higher the surface soil Hg concentration, the more obvious this top-bottom decreasing trend. The planular-vertical distribution patterns of TOM share similar trends as those of soil Hg concentration, indicating Hg concentration was closely associated with TOM content. Statistical results show that the mean CF, Eri, and Igeo values were 4.0 ± 5.0, 161 ± 198, 0.76 ± 1.34, respectively, and more than two thirds of sampling sites were moderately and considerably polluted. The mean annual accumulative flux of Hg in the northern China was 20.9 ± 43.8 μg m-2 yr-1, and the total net emission fluxes of Hg from the croplands in six provinces were 8.37 ton yr-1. This indicates that although the cropland occasionally acts as a sink, it represents an important natural source of atmospheric Hg as a whole.
Collapse
Affiliation(s)
- Chunjie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing, 100085, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|