1
|
Jiang Y, Sun T, Jiang Y, Wang X, Xi Q, Dou Y, Lv H, Peng Y, Xiao S, Xu X, Liu C, Xu B, Han X, Ma H, Hu Z, Shi Z, Du J, Lin Y. Titanium exposure and gestational diabetes mellitus: associations and potential mediation by perturbation of amino acids in early pregnancy. Environ Health 2024; 23:84. [PMID: 39394610 PMCID: PMC11470715 DOI: 10.1186/s12940-024-01128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Several recent studies reported the potential adverse effects of titanium exposure on glucose homeostasis among the non-pregnant population, but the association of titanium exposure with gestational diabetes mellitus (GDM) is scarce. METHODS The present study of 1,449 pregnant women was conducted within the Jiangsu Birth Cohort (JBC) study in China. Urine samples were collected in the early pregnancy, and urinary titanium concentration and non-targeted metabolomics were measured. Poisson regression estimated the association of titanium exposure in the early pregnancy with subsequent risk of GDM. Multiple linear regression screened for titanium-related urine metabolites. Mediation analyses assessed the mediating effects of candidate metabolites and pathways. RESULTS As parameterized in tertiles, titanium showed positive dose-response relationship with GDM risk (P for trend = 0.008), with women at the highest tertile of titanium exposure having 30% increased risk of GDM [relative risk (RR) = 1.30 (95% CI: 1.06, 1.61)] when compared to those exposure at the first tertile level. Meanwhile, we identified the titanium-related metabolites involved in four amino acid metabolic pathways. Notably, the perturbation of the aminoacyl-tRNA biosynthesis and alanine, aspartate and glutamate metabolism mediated 27.1% and 31.0%, respectively, of the relative effect of titanium exposure on GDM. Specifically, three titanium-related metabolites, choline, creatine and L-alanine, demonstrated predominant mediation effects on the association between titanium exposure and GDM risk. CONCLUSIONS In this prospective study, we uniquely identified a correlation between early pregnancy titanium exposure and increased GDM risk. We unveiled novel insights into how perturbations in amino acid metabolism may mediate the link between titanium exposure and GDM. Notably, choline, creatine, and L-alanine emerged as key mediators influencing this association. Our findings imply that elevated titanium exposure in early pregnancy can lead to amino acid dysmetabolism, thereby elevating GDM risk.
Collapse
Affiliation(s)
- Yangqian Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tianyu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaoyan Wang
- Department of Obstetrics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Jiangsu, 215002, China
| | - Qi Xi
- Department of Obstetrics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Jiangsu, 215002, China
| | - Yuanyan Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, 215002, China
| | - Yuting Peng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shuxin Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, 215002, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, 215002, China
| | - Zhonghua Shi
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, 215002, China.
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, 215002, China.
| |
Collapse
|
2
|
Yan M, Yang J, Zhu H, Zou Q, Zhao H, Sun H. Volatile organic compound exposure in relation to lung cancer: Insights into mechanisms of action through metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135856. [PMID: 39298956 DOI: 10.1016/j.jhazmat.2024.135856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Volatile organic compounds (VOCs) have proven to be hazardous to the human respiratory system. However, the underlying biological mechanisms remain poorly understood. Therefore, targeted determination of eleven VOC metabolites (mVOCs) along with the nontargeted metabolomic analysis was performed on urine samples collected from lung cancer patients and healthy individuals. Nine mVOCs mainly derived from aldehydes, alkenes, amides, and aromatics were detected in > 90 % of the urine samples, suggesting that the participants were ubiquitously exposed to these typical VOCs. A molecular gatekeeper discovery workflow was employed to link the exposure biomarkers with correlated clusters of endogenous metabolites. As a result, multiple metabolic pathways, including amino acid metabolism, steroid hormone biosynthesis and metabolism, and fatty acid β-oxidation were connected with VOC exposure. Furthermore, 16 of 73 molecular gatekeepers were associated with lung cancer and pointed to a few disrupted metabolic pathways related to hydroxysteroids and acylcarnitine. The shift in molecular profiles was validated in rat model post VOC administration. Thereinto, the up-regulation of enzymes involved in acylcarnitine synthesis and transport in rat lung tissues highlighted that the mitochondrial dysfunction may be a potential carcinogenic mechanism. Our findings provide new insights into the mechanisms underlying lung cancer induced by VOC exposure.
Collapse
Affiliation(s)
- Mengqi Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jintao Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Ramos TDS, Gonçalves KB, Marciano LPDA, Rosa MA, Martins I. A sustainable and innovative method to determine parabens in body creams for exposure and risk assessment. Regul Toxicol Pharmacol 2024; 151:105667. [PMID: 38925470 DOI: 10.1016/j.yrtph.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) are among the most widely used preservatives in cosmetics, drugs, and foods. These compounds have been associated with toxic effects due to the overuse of products with parabens in their formulation. The toxicity of parabens may be correlated to endocrine disruption, owing to their ability to mimic the actions of estradiol. In this paper, a simple, sustainable, robust, and innovative dispersive liquid-liquid microextraction (DLLME) technique was developed and employed to extract these xenobiotics from body cream samples, aiming to calculate the margin of safety (MoS) to assess the risk of exposure. The validated method presented suitable linearity (r > 0.99), lower limits of detection (ranging from 0.01 to 0.04 % w/w), and satisfactory precision and accuracy (ranging from 4.33 to 10.47, and from -14.25 to 13.85, respectively). Seven of the ten analysed samples presented paraben contents within the acceptable concentration according to European legislation. The MoS value obtained for PrP (37.58) suggested its reduced safety, indicating that PrP may significantly contribute to systemic exposure resulting from the use of personal care products.
Collapse
Affiliation(s)
- Thalita da Silva Ramos
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Karina Borba Gonçalves
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Luiz Paulo de Aguiar Marciano
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Mariana Azevedo Rosa
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Isarita Martins
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
4
|
Liu S, Zhang Z, Zhao C, Zhang M, Han F, Hao J, Wang X, Shan X, Zhou W. Nonlinear responses of biofilm bacteria to alkyl-chain length of parabens by DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134460. [PMID: 38718505 DOI: 10.1016/j.jhazmat.2024.134460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.
Collapse
Affiliation(s)
- Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zixuan Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jie Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaorong Shan
- Sid and Reva Dewberry Dept. of Civil, Environmental, & Infrastructure Engineering, George Mason University, Fairfax, Virginia, USA
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
5
|
Zheng Y, Liu Y, Zhang Z, Hua L, Fang J, Wang L, Zhao H. A fast method for the determination of personal care product chemicals in human urine using dispersive liquid-liquid extraction and ultra high-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9684. [PMID: 38355878 DOI: 10.1002/rcm.9684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Personal care product chemicals (PCPCs) are the chemicals used in personal care products. Many of them are endocrine disruptors and have potential adverse effects on humans. The concentrations of PCPCs in urine are the main biomarker for assessing human exposure. METHODS A method was developed for the simultaneous determination of 14 PCPCs in human urine using dispersive liquid-liquid extraction combined with ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Compared with liquid-liquid extraction, this method had the advantages of time efficiency, sensitivity, and limited organic solvent consumption. It produced good linearity (0.9965-0.9996), limits of detection (2.82-36.36 pg mL-1 ), limits of quantitation (9.39-121.08 pg mL-1 ), matrix effect (-0.90%-2.55%), intra-day precision (relative standard deviations [RSDs] <15%), and inter-day precision (RSDs <19.9%). The method had satisfactory relative recovery at three concentration levels. CONCLUSIONS A rapid method was developed for the simultaneous quantification of 14 PCPCs in human urine. The practicability of the method was verified with 21 urine from university students. It is expected that this method will provide a powerful reference for the assessment of exposure to PCPCs in large populations.
Collapse
Affiliation(s)
- Yawen Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Zining Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Jing Fang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Ren Y, Shi X, Mu J, Liu S, Qian X, Pei W, Ni S, Zhang Z, Li L, Zhang Z. Chronic exposure to parabens promotes non-alcoholic fatty liver disease in association with the changes of the gut microbiota and lipid metabolism. Food Funct 2024; 15:1562-1574. [PMID: 38236135 DOI: 10.1039/d3fo04347a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a serious public health issue due to changing dietary patterns and composition. However, the relationship between NAFLD occurrence and food additives, such as preservatives, remains unknown. This study aimed to evaluate the toxicity of parabens, namely methylparaben (MeP) and ethylparaben (EtP), in relation to NAFLD occurrence in mice under different dietary conditions. Exposure to MeP and EtP exacerbated high-fat diet (HFD)-induced obesity, glucose intolerance, higher serum lipid concentrations, and fat accumulation by upregulating genes involved in lipid metabolism. Untargeted metabolomics revealed that arachidonic acid (AA) metabolism was the top enriched pathway upon MeP and EtP exposure in the presence of HFD. 11,12-Epoxyeicosatrienoic acid (11,12-EET) was the most abundant AA metabolite and was significantly reduced upon exposure to MeP or EtP. Moreover, an integrative analysis of differential fecal taxa at the genus level and serum AA metabolites revealed significant associations. In addition, MeP and EtP enhanced lipid accumulation in AML12 cells and HepG2 cells cultured with oleic acid. 11,12-EET supplementation could significantly alleviate lipid accumulation by suppressing the expression of lipid metabolism-related genes and proteins. The present study suggests that chronic exposure to MeP and EtP promoted NAFLD via gut microbiota-dependent AA metabolism. These results highlight the need for reducing oral exposure to synthetic preservatives to improve metabolic disturbance under HFD conditions.
Collapse
Affiliation(s)
- Yilin Ren
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Xinyi Shi
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Jing Mu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Shenyin Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Xin Qian
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Shanhong Ni
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Zhengduo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| |
Collapse
|
7
|
Moscoso-Ruiz I, Cantarero-Malagón S, Rivas A, Zafra-Gómez A. New analytical method for the determination of endocrine disruptors in human faeces using gas chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2024; 416:1085-1099. [PMID: 38108843 DOI: 10.1007/s00216-023-05087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Endocrine-disrupting chemicals are environmental pollutants that can enter our bodies and cause diverse pathologies. Some bisphenols and parabens have been shown to be capable of modifying proper functioning of the endocrine system. Among other dysfunctions, endocrine-disrupting chemicals can cause changes in intestinal microbiota. Faeces are a convenient matrix that can be useful for identifying the quantity of endocrine disruptors that reach the intestine and the extent to which the organism is exposed to these pollutants. The present work developed a new analytical method to determine 17 compounds belonging to the paraben and bisphenol families found in human faeces. The extraction method was optimized using an ultrasound-assisted extraction technique followed by a clean-up step based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) technique. Optimization was performed using the design of experiments technique. In validation analysis, the method was proven to be linear over a wide range. R-squared outcomes were between 95 and 99%. Selectiveness and sensitivity outcomes were acceptable, with detection limits being between 1 and 10 ng g-1 in all cases, whilst quantification limits were between 3 and 25 ng g-1 in all instances, with the exception of bisphenol AF. The method was deemed accurate, with recovery values being close to 100% and relative standard deviations being lower than 15% in all cases. Applicability was examined by analysing 13 samples collected from volunteers (male and female). All samples were contaminated with at least one of the analytes studied. The most commonly found compounds were methylparaben and bisphenol A, which were detected in almost all samples and quantitatively determined in 11 and 12 samples, respectively. Of the 17 compounds analysed, 11 were found in at least one sample. Outcomes demonstrate that faeces can be a good matrix for the determination of exposure to contaminants of interest here.
Collapse
Affiliation(s)
- Inmaculada Moscoso-Ruiz
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain
| | | | - Ana Rivas
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain
- Department of Nutrition and Food Science, University of Granada, 18071, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA)"José Mataix Verdú", Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA)"José Mataix Verdú", Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain.
| |
Collapse
|
8
|
Huo Y, Li M, An Z, Jiang J, Zhou Y, Ma Y, Xie J, Wei F, He M. Effect of pH on UV/H 2O 2-mediated removal of single, mixed and halogenated parabens from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132818. [PMID: 37879281 DOI: 10.1016/j.jhazmat.2023.132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Adjusting pH values in aqueous environments can significantly improve the efficiency by which parabens and halo-parabens are removed. In this study, 20 neutral and deprotonated species were selected as models to investigate their pH-dependent removal mechanisms and kinetics by a UV/H2O2 process using density functional theory (DFT). Compared to neutral species, deprotonated species exhibit higher reactivity to HO• due to their high electron cloud density. H atom abstraction (HAA) reactions on the substitution groups are the most favorable pathways for neutral species, while radical adduct formation (RAF) reactions are the most favorable for deprotonated species. Single electron transfer (SET) reactions can be neglected for neutral species, while these reactions become a viable route for deprotonated molecules. The total reaction rate constants range from 1.63 × 109 to 3.74 × 1010 M- 1 s- 1 at pH 7.0, confirming the experimental results. Neutral and weakly alkaline conditions are favorable for the degradation of MeP and halo-parabens in the UV/H2O2 process. The order of removal efficiency at optimum pH is dihalo-parabens > mono-halo-parabens ≈ F, F-MeP > MeP. Furthermore, the transformation products must undergo oxidative degradation due to their high toxicity. Our findings provide new insights into the removal of parabens and their halogenated derivatives from wastewater.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao 266237, PR China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
9
|
Song Y, Wang M, Nie L, Liao W, Wei D, Wang L, Wang J, Xu Q, Huan C, Jia Z, Mao Z, Wang C, Huo W. Exposure to parabens and dysglycemia: Insights from a Chinese population. CHEMOSPHERE 2023; 340:139868. [PMID: 37597620 DOI: 10.1016/j.chemosphere.2023.139868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Parabens, a widely exposed environmental endocrine disruptor, were reported to disturb glucose metabolism through various pathways in animal models, but epidemiologic studies are limited. Therefore, this study aimed to investigate the plasma parabens level in rural populations and their effects of single and mixed paraben exposure on T2DM based on the Henan Rural Cohort. METHODS A total of 1713 participants (880 T2DM and 833 controls) from the Henan Rural Cohort Study were included in this case-control study. Generalized linear regression models were performed to assess the single and joint effects of parabens on T2DM and glucose metabolism indicators. In addition, the dose-response relationship of plasma parabens with T2DM and glucose metabolism indicators were explored by the restricted cubic splines. Bayesian kernel machine regression (BKMR) and quantile g-computation models were utilized to assess overall associations of paraben mixtures with T2DM and glucose metabolism indicators. RESULTS Σparabens and methylparaben (MeP) exposure significantly increased the risk of T2DM (P < 0.01). However, ethylparaben (EtP) and butylparaben (BuP) were negatively related to T2DM (P < 0.01). Notably, non-linear relationships of EtP and BuP with T2DM were observed. When the level of EtP or BuP was above the inflection point observed in dose-response curve, the ORs and 95% CIs were 1.453 (1.252, 1.686) and 1.982 (1.444, 2.721), respectively. Moreover, the result of quantile g-computation also showed that exposure to high concentration of parabens mixture was positively related to the risk of T2DM. BKMR model indicated that parabens mixture was associated with glycometabolism following a U-shape and parabens mixture increased the risk of dysglycemia when all parabens concentrations were at or above their 55th percentile compared with the median. CONCLUSION MeP or paraben mixture exposure levels showed a linear positive association with risk of T2DM. EtP and BuP were nonlinearly associated with glucose metabolism and moderate-high exposure contributed to T2DM.
Collapse
Affiliation(s)
- Yu Song
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Changsheng Huan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zexin Jia
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
10
|
Shen H, Nzabanita D, Foord C, Grist S, Nugegoda D. Environmental organic contaminant body burdens and GC-MS based untargeted metabolomics in mediterranean mussels from Port Phillip Bay, Australia ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122245. [PMID: 37487873 DOI: 10.1016/j.envpol.2023.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Mussels were collected from four coastal sites around Port Phillip Bay, Australia in Mar and Apr 2021). Body burdens of Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were measured and the possible sources of toxicants discussed. In addition, a gas chromatography-mass spectrometry (GC-MS) based untargeted metabolomics analysis was performed using the mantle tissues of mussels. Correlations between the results of contaminant body burdens and metabolic variations were investigated. The results demonstrated that high accumulations of low-molecular-weight PAHs were found in mussels. High body burdens of PCBs and OCPs were only found at mussels from the site close to the river mouth. Some of the metabolic pathways were correlated with the accumulation of PAHs. No correlations were found between PCB and OCP accumulations and metabolic abundances. According to the food and environmental standards of the European Union (EU), the PAH, PCB, and OCP accumulation in mussels in this study are a serious food safety concern.
Collapse
Affiliation(s)
- Hao Shen
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia.
| | - Damien Nzabanita
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| | - Chantel Foord
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| | - Stephen Grist
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| | - Dayanthi Nugegoda
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
11
|
Shen X, Zhan M, Wang Y, Tang W, Zhang Q, Zhang J. Exposure to parabens and semen quality in reproductive-aged men. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115453. [PMID: 37688867 DOI: 10.1016/j.ecoenv.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Parabens are common preservatives in personal care products, cosmetics, and medical goods. In the past few years, animal studies showed the male reproductive toxicity associated with some parabens. Yet, epidemiological studies have generated inconsistent findings and research rarely has focused on the mixture effects of the parabens. We aimed to explore the associations between individual paraben exposure as well as the mixture and semen quality parameters. METHODS A total of 795 male partners from preconception couples were included in the study. Their urine samples were analyzed for the concentrations of six parabens, namely methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), benzyl paraben (BzP) and heptyl paraben (HeP). Multiple linear regression models and weighted quantile sum regression (WQS) models were utilized to assess the relationships between individual paraben exposure and paraben mixture with semen quality parameters, respectively. RESULTS After adjusting for covariates, exposure to a paraben mixture was significantly associated with declining sperm concentration, total sperm count, and progressive motility, among which BuP was identified as the main contributor to sperm concentration and total sperm count while MeP to progressive motility. Results from multiple linear regression models were generally in line with the WQS analysis. CONCLUSIONS Our results suggest negative associations between paraben mixture and sperm concentration, total sperm count, and sperm motility among reproductive-aged men.
Collapse
Affiliation(s)
- Xiaoli Shen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Hu C, Wang J, Qi F, Liu Y, Zhao F, Wang J, Sun B. Untargeted metabolite profiling of serum in rats exposed to pyrraline. Food Sci Biotechnol 2023; 32:1541-1549. [PMID: 37637845 PMCID: PMC10449741 DOI: 10.1007/s10068-023-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Pyrraline, one of advanced glycation end-products, is formed in advanced Maillard reactions. It was reported that the presence of pyrraline was tested to be associated with nephropathy and diabetes. Pyrraline might result in potential health risks because many modern diets are heat processed. In the study, an integrated metabolomics by ultra-high-performance liquid chromatography with mass spectrometry was used to evaluate the effects of pyrraline on metabolism in rats. Thirty-two metabolites were identified as differential metabolites. Linolenic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, tyrosine metabolism and glycerophospholipid metabolism were the main perturbed networks in this pathological process. Differential metabolites and metabolic pathways we found give new insights into studying the toxic molecular mechanisms of pyrraline. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01256-7.
Collapse
Affiliation(s)
- Chuanqin Hu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Jiahui Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Fangyuan Qi
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Fen Zhao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Laboratory for Food Quality and Safety, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048 China
| |
Collapse
|
13
|
Li H, Zhang S, Yao C, He R, Lu P, Li G, Liu R, Ma S, Zhang X, Cao Z, An T. Nontarget Screening of Novel Urinary Biomarkers for Occupational Exposure to Toxic Chemicals from Coking Industry Using HPLC-QTOF-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13004-13014. [PMID: 37526013 DOI: 10.1021/acs.est.3c01663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
High-resolution mass spectrometry is an advanced technique for comprehensive screening of toxic chemicals. In this study, urine samples were collected from both an occupationally exposed population at a coking site and normal inhabitants to identify novel urinary biomarkers for occupational exposure to coking contaminants. A coking-site-appropriate analytical method was developed for unknown chemical screening. Through nontarget screening, 515 differential features were identified, and finally, 32 differential compounds were confirmed as candidates for the current study, including 13 polycyclic aromatic hydrocarbon (PAH) metabolites. Besides monohydroxy-PAHs (such as 1-&2-naphthol, 2-&9-hydroxyfluorene, 2-&4-phenanthrol, and 1-&2-hydroxypyrene), many other PAH metabolites including dihydroxy metabolites, PAH oxide, and sulfate conjugate were detected, suggesting that the quantification based solely on monohydroxy-PAHs significantly underestimated the human exposure to PAHs. Furthermore, several novel compounds were recognized that could be considered as biomarkers for the exposure to coking contaminants, including quinolin-2-ol (1.10 ± 0.44 ng/mL), naphthylmethanols (11.4 ± 5.47 ng/mL), N-hydroxy-1-aminonaphthalene (0.78 ± 0.43 ng/mL), hydroxydibenzofurans (17.4 ± 7.85 ng/mL), hydroxyanthraquinone (0.13 ± 0.053 ng/mL), and hydroxybiphenyl (2.70 ± 1.03 ng/mL). Despite their lower levels compared with hydroxy-PAHs (95.1 ± 30.8 ng/mL), their severe toxicities should not be overlooked. The study provides a nontarget screening approach to identify chemicals in human urine, which is crucial for accurately assessing the health risks of toxic chemicals in the coking industry.
Collapse
Affiliation(s)
- Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Yao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rujian He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Rosen Vollmar AK, Rattray NJW, Cai Y, Jain A, Yan H, Deziel NC, Calafat AM, Wilcox AJ, Jukic AMZ, Johnson CH. Urinary Paraben Concentrations and Associations with the Periconceptional Urinary Metabolome: Untargeted and Targeted Metabolomics Analyses of Participants from the Early Pregnancy Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97006. [PMID: 37702489 PMCID: PMC10498870 DOI: 10.1289/ehp12125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Parabens, found in everyday items from personal care products to foods, are chemicals with endocrine-disrupting activity, which has been shown to influence reproductive function. OBJECTIVES This study investigated whether urinary concentrations of methylparaben, propylparaben, or butylparaben were associated with the urinary metabolome during the periconceptional period, a critical window for female reproductive function. Changes to the periconceptional urinary metabolome could provide insights into the mechanisms by which parabens could impact fertility. METHODS Urinary paraben concentrations were measured in paired pre- and postconception urine samples from 42 participants in the Early Pregnancy Study, a prospective cohort of 221 women attempting to conceive. We performed untargeted and targeted metabolomics analyses using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. We used principal component analysis, orthogonal partial least-squares discriminant analysis, and permutation testing, coupled with univariate statistical analyses, to find metabolites associated with paraben concentration at the two time points. Potential confounders were identified with a directed acyclic graph and used to adjust results with multivariable linear regression. Metabolites were identified using fragmentation data. RESULTS Seven metabolites were associated with paraben concentration (variable importance to projection score > 1 , false discovery rate-corrected q -value < 0.1 ). We identified four diet-related metabolites to the Metabolomics Standards Initiative (MSI) certainty of identification level 2, including metabolites from smoke flavoring, grapes, and olive oil. One metabolite was identified to the class level only (MSI level 3). Two metabolites were unidentified (MSI level 4). After adjustment, three metabolites remained associated with methylparaben and propylparaben, two of which were diet-related. No metabolomic markers of endocrine disruption were associated with paraben concentrations. DISCUSSION This study identified novel relationships between urinary paraben concentrations and diet-related metabolites but not with metabolites on endocrine-disrupting pathways, as hypothesized. It demonstrates the feasibility of integrating untargeted metabolomics data with environmental exposure information and epidemiological adjustment for confounders. The findings underscore a potentially important connection between diet and paraben exposure, with applications to nutritional epidemiology and dietary exposure assessment. https://doi.org/10.1289/EHP12125.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yuping Cai
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Abhishek Jain
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hong Yan
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicole C Deziel
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Anne Marie Z Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Caroline H Johnson
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Mosaoa RM, Kumosani TA, Yaghmoor SS, Rihan S, Moselhy SS. Rhus tripartite methanolic extract alleviates propylparaben-induced reproductive toxicity via anti-inflammatory, antioxidant, 5-α reductase in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27802-8. [PMID: 37249771 DOI: 10.1007/s11356-023-27802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Evidence showed that herbal medicine could be beneficial for protection against diseases that may be exist in consequence of exposure to environmental toxicants. Propylparaben (PrP) is used as preservative in food, pharmaceuticals, and cosmetics. It is classified as one of endocrine disruptive chemicals (EDCs). This study evaluated the protective effect of Rhus tripartita methanolic extract (RTME) against reproductive toxicity induced by PrP in male rats. A total of 60 Wister albino rats were divided into four groups (15 rats for each group). Group I (control): rats received the vehicle (DMSO), group II: normal rats received RTME (10 mg/kg/day), group III: rats received PrP (10 mg/kg/day), and group IV: rats received PrP (10 mg/kg/day) and RTME (10 mg/kg/day) for 4 weeks. At the end of experiment, levels of testosterone, dihydrotestosterone (DHT), and 5α-reductase were analyzed in sera. Data obtained showed a significant reduction in the levels of testosterone, dihydrotestosterone (DHT), and 5α- reductase in rats given PrP versus control (p < 0.001) and RTME treatment improved these parameters but not returned to normal. Data obtained showed a significant elevation in levels of IL-6 and TNF-α in the testis of rats given PrP versus control (p < 0.001), these inflammatory mediators were significant reduced in rats treated with RTME compared with untreated rats (p < 0.001). There was a positive correlation between level of DHT and antioxidant enzymes activities (r = 0.56). A significant elevation in the levels of MDA with reduction in the activities of GST, GSPx, SOD, and catalase (p < 0.001) in rat testicular tissues of PrP group versus control (p < 0.001) was found. Treatment with RTME significantly reduced the levels of MDA and enhanced activities of GST, GSPx, SOD, and catalase (p < 0.001) compared to untreated group (p < 0.001). In conclusion, the active ingredient components of RTME abrogate the toxicity of PrP by exhibiting antioxidative and anti-inflammatory effects, enhancing 5-α reductase with improved hormonal status against PrP- induced testicular damage. Toxicity of propylparaben, and effect of Rhus tripartita methanolic extract.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soonham S Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
16
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
17
|
Fabbri L, Garlantézec R, Audouze K, Bustamante M, Carracedo Á, Chatzi L, Ramón González J, Gražulevičienė R, Keun H, Lau CHE, Sabidó E, Siskos AP, Slama R, Thomsen C, Wright J, Lun Yuan W, Casas M, Vrijheid M, Maitre L. Childhood exposure to non-persistent endocrine disrupting chemicals and multi-omic profiles: A panel study. ENVIRONMENT INTERNATIONAL 2023; 173:107856. [PMID: 36867994 DOI: 10.1016/j.envint.2023.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Individuals are exposed to environmental pollutants with endocrine disrupting activity (endocrine disruptors, EDCs) and the early stages of life are particularly susceptible to these exposures. Previous studies have focused on identifying molecular signatures associated with EDCs, but none have used repeated sampling strategy and integrated multiple omics. We aimed to identify multi-omic signatures associated with childhood exposure to non-persistent EDCs. METHODS We used data from the HELIX Child Panel Study, which included 156 children aged 6 to 11. Children were followed for one week, in two time periods. Twenty-two non-persistent EDCs (10 phthalate, 7 phenol, and 5 organophosphate pesticide metabolites) were measured in two weekly pools of 15 urine samples each. Multi-omic profiles (methylome, serum and urinary metabolome, proteome) were measured in blood and in a pool urine samples. We developed visit-specific Gaussian Graphical Models based on pairwise partial correlations. The visit-specific networks were then merged to identify reproducible associations. Independent biological evidence was systematically sought to confirm some of these associations and assess their potential health implications. RESULTS 950 reproducible associations were found among which 23 were direct associations between EDCs and omics. For 9 of them, we were able to find corroborating evidence from previous literature: DEP - serotonin, OXBE - cg27466129, OXBE - dimethylamine, triclosan - leptin, triclosan - serotonin, MBzP - Neu5AC, MEHP - cg20080548, oh-MiNP - kynurenine, oxo-MiNP - 5-oxoproline. We used these associations to explore possible mechanisms between EDCs and health outcomes, and found links to health outcomes for 3 analytes: serotonin and kynurenine in relation to neuro-behavioural development, and leptin in relation to obesity and insulin resistance. CONCLUSIONS This multi-omics network analysis at two time points identified biologically relevant molecular signatures related to non-persistent EDC exposure in childhood, suggesting pathways related to neurological and metabolic outcomes.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ronan Garlantézec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail), UMR_S 1085, Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain; Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Juan Ramón González
- ISGlobal, Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College, South Kensington, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
18
|
Jala A, Dutta R, Josyula JVN, Mutheneni SR, Borkar RM. Environmental phenol exposure associates with urine metabolome alteration in young Northeast Indian females. CHEMOSPHERE 2023; 317:137830. [PMID: 36640981 DOI: 10.1016/j.chemosphere.2023.137830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Urinary biomonitoring delivers the most accurate environmental phenols exposure assessment. However, environmental phenol exposure-related biomarkers are required to improve risk assessment to understand the internal processes perturbed, which may link exposure to specific health outcomes. This study aimed to investigate the association between environmental phenols exposure and the metabolome of young adult females from India. Urinary metabolomics was performed using liquid chromatography-mass spectrometry. Environmental phenols-related metabolic biomarkers were investigated by comparing the low and high exposure of environmental phenols. Seven potential biomarkers, namely histidine, cysteine-s-sulfate, 12-KETE, malonic acid, p-hydroxybenzoic acid, PE (36:2), and PS (36:0), were identified, revealing that environmental phenol exposure altered the metabolic pathways such as histidine metabolism, beta-Alanine metabolism, glycerophospholipid metabolism, and other pathways. This study also conceived an innovative strategy for the early prediction of diseases by combining urinary metabolomics with machine learning (ML) algorithms. The differential metabolites predictive accuracy by ML models was >80%. This is the first mass spectrometry-based metabolomics study on young adult females from India with environmental phenols exposure. The study is valuable in demonstrating multiple urine metabolic changes linked to environmental phenol exposure and a better understanding of the mechanisms behind environmental phenol-induced effects in young female adults.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | | | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
19
|
Tong JH, Elmore S, Huang SS, Tachachartvanich P, Manz K, Pennell K, Wilson MD, Borowsky A, La Merrill MA. Chronic Exposure to Low Levels of Parabens Increases Mammary Cancer Growth and Metastasis in Mice. Endocrinology 2023; 164:bqad007. [PMID: 36683225 PMCID: PMC10205179 DOI: 10.1210/endocr/bqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Methylparaben (MP) and propylparaben (PP) are commonly used as food, cosmetic, and drug preservatives. These parabens are detected in the majority of US women and children, bind and activate estrogen receptors (ER), and stimulate mammary tumor cell growth and invasion in vitro. Hemizygous B6.FVB-Tg (MMTV-PyVT)634Mul/LellJ female mice (n = 20/treatment) were exposed to MP or PP at levels within the US Food and Drug Administration's "human acceptable daily intake." These paraben-exposed mice had increased mammary tumor volume compared with control mice (P < 0.001) and a 28% and 91% increase in the number of pulmonary metastases per week compared with the control mice, respectively (P < 0.0001). MP and PP caused differential expression of 288 and 412 mammary tumor genes, respectively (false discovery rate < 0.05), a subset of which has been associated with human breast cancer metastasis. Molecular docking and luciferase reporter studies affirmed that MP and PP bound and activated human ER, and RNA-sequencing revealed increased ER expression in mammary tumors among paraben-exposed mice. However, ER signaling was not enriched in mammary tumors. Instead, both parabens strongly impaired tumor RNA metabolism (eg, ribosome, spliceosome), as evident from enriched KEGG pathway analysis of differential mammary tumor gene expression common to both paraben treatments (MP, P < 0.001; PP, P < 0.01). Indeed, mammary tumors from PP-exposed mice had an increased retention of introns (P < 0.05). Our data suggest that parabens cause substantial mammary cancer metastasis in mice as a function of their increasing alkyl chain length and highlight the emerging role of aberrant spliceosome activity in breast cancer metastasis.
Collapse
Affiliation(s)
- Jason H Tong
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Sarah Elmore
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Shenq-Shyang Huang
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Phum Tachachartvanich
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Katherine Manz
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Machelle D Wilson
- Department of Public Health Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Alexander Borowsky
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
20
|
Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau CHE, Siskos AP, Vives-Usano M, Ruiz-Arenas C, Pelegrí-Sisó D, Robinson O, Mason D, Wright J, Cadiou S, Slama R, Heude B, Casas M, Sunyer J, Papadopoulou EZ, Gutzkow KB, Andrusaityte S, Grazuleviciene R, Vafeiadi M, Chatzi L, Sakhi AK, Thomsen C, Tamayo I, Nieuwenhuijsen M, Urquiza J, Borràs E, Sabidó E, Quintela I, Carracedo Á, Estivill X, Coen M, González JR, Keun HC, Vrijheid M. Multi-omics signatures of the human early life exposome. Nat Commun 2022; 13:7024. [PMID: 36411288 PMCID: PMC9678903 DOI: 10.1038/s41467-022-34422-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.
Collapse
Affiliation(s)
- Léa Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carles Hernández-Ferrer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Thiel
- Department of Mathematics, Imperial College London, South Kensington, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marta Vives-Usano
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dolors Pelegrí-Sisó
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Solène Cadiou
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Centre for Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eleni Z Papadopoulou
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ibon Tamayo
- Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Quintela
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Juan R González
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
21
|
The follicular fluid metabolome in infertile individuals between polycystic ovary syndrome and diminished ovarian reserve. Arch Biochem Biophys 2022; 732:109453. [DOI: 10.1016/j.abb.2022.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
22
|
Liu Z, Zhou Q, Wang D, Duan Y, Zhang X, Yang Y, Xu Z. β-Cyclodextrin-Based Supramolecular Imprinted Fiber Array for Highly Selective Detection of Parabens. Int J Mol Sci 2022; 23:ijms231810753. [PMID: 36142665 PMCID: PMC9500753 DOI: 10.3390/ijms231810753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022] Open
Abstract
A novel high-throughput array analytical platform based on derived β-cyclodextrin supramolecular imprinted polymer (SMIP) fibers was constructed to achieve selective enrichment and removal of parabens. SMIP fiber arrays have abundant imprinting sites and introduce the host−guest inclusion effect of the derived β-cyclodextrin, which is beneficial to significantly improve the adsorption ability of fiber for parabens. Upon combination with HPLC, a specific and sensitive recognition method was developed with a low limit of detection (0.003−0.02 µg/L, S/N = 3) for parabens analysis in environmental water. This method has a good linearity (R > 0.9994) in the linear range of 0.01−200 µg/L. The proposed SMIP fiber array with high-throughput adsorption capacity has great potential in monitoring water pollution, which also provides a reliable reference for the analysis of more categories of pharmaceutical and personal care product pollutants.
Collapse
|
23
|
Eco-friendly magnetic Solid-Phase extraction and deep eutectic solvent for the separation and detection of parabens from the environmental water and urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Zhao H, Zheng Y, Zhu L, Xiang L, Xu S, Cai Z. Trimester-specific urinary metabolome alterations associated with gestational diabetes mellitus: A study in different pregnancy stages. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Yan W, Li M, Guo Q, Li X, Zhou S, Dai J, Zhang J, Wu M, Tang W, Wen J, Xue L, Jin Y, Luo A, Wang S. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113432. [PMID: 35325608 DOI: 10.1016/j.ecoenv.2022.113432] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Parabens, a type of endocrine-disrupting chemicals, are widely used as antibacterial preservatives in food and cosmetics in daily life. Paraben exposure has gained particular attention in the past decades, owing to its harmful effects on reproductive function. Whether low-dose paraben exposure may cause ovarian damage has been ignored recently. Here, we investigated the effects of chronic low-dose propylparaben (PrPB) exposure on ovarian function. Female C57BL/6J mice were exposed to PrPB at a humanly relevant dose for 8 months. Our results showed that chronic exposure to PrPB at a humanly relevant dose significantly altered the estrus cycle, hormone levels, and ovarian reserve, accelerating ovarian aging in adult mice. These effects are accompanied by oxidative stress enrichment, leading to steroidogenesis dysfunction and acceleration of primordial follicle recruitment. Notably, melatonin supplementation has been shown to protect against PrPB-induced steroidogenesis dysfunction in granulosa cells. Here, we report that daily chronic PrPB exposure may contribute to ovarian aging by altering oxidative stress-mediated JNK and PI3K-AKT signaling regulation, and that melatonin may serve as a pharmaceutical candidate for PrPB-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Qingchun Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xiangyi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| |
Collapse
|
26
|
Chen M, Guan Y, Huang R, Duan J, Zhou J, Chen T, Wang X, Xia Y, London SJ. Associations between the Maternal Exposome and Metabolome during Pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37003. [PMID: 35254863 PMCID: PMC8901044 DOI: 10.1289/ehp9745] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Maternal exposure to environmental chemicals during pregnancy can influence various maternal and offspring health parameters. Modification of maternal metabolism by environmental exposure may be an important pathway for these impacts. However, there is limited evidence regarding exposure to a wide array of chemicals and the metabolome during pregnancy. OBJECTIVES We investigated the relationship between the urinary exposome and metabolome during pregnancy. METHODS Urine samples were collected in the first and third trimesters from 1,024 pregnant women recruited in prenatal clinics in Jiangsu Province, China. The exposome was analyzed using the first trimester sample with ultra-high performance liquid chromatography-high resolution accurate mass spectrometry (UHPLC-HRMS) and inductively coupled plasma mass spectrometry. The metabolome was analyzed using the third trimester sample with UHPLC-HRMS. We evaluated associations between each of 106 exposures in the first trimester with 139 metabolites in the third trimester. RESULTS We identified 1,245 significant associations (p<3.39×10-6, Bonferroni correction) between chemical exposures and maternal metabolism during pregnancy. Among elements, the largest number of the significant metabolic associations were observed for magnesium, and among organic compounds, for 4-tert-octylphenol. We used exposome-metabolome associations to explore mechanisms underlying published associations between prenatal chemical exposures and offspring health outcomes. This integration of the literature with our results suggests that reported associations between 10 analytes and birth weight, gestational age, fat deposition, neurobehavioral development, immunological disorders, and hypertension may be partially mediated by metabolites associated with these exposures. DISCUSSION This high-dimensional analysis of the urinary exposome and metabolome identified many associations between chemical exposures and maternal metabolism during pregnancy. Integration of these associations with the literature on health outcomes of exposure suggests that environmental modulation of the maternal metabolome may play a role in the association between prenatal exposure on pregnancy and child health outcomes. https://doi.org/10.1289/EHP9745.
Collapse
Affiliation(s)
- Minjian Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Huang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjing Zhou
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| |
Collapse
|
27
|
Ning T, Yang H, Shi C, Yu J, Yu H, Chen P, Di S, Wang J, Zhu S. An in vitro assessment for human skin exposure to parabens using magnetic solid phase extraction coupled with HPLC. CHEMOSPHERE 2022; 286:131593. [PMID: 34293573 DOI: 10.1016/j.chemosphere.2021.131593] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Skin contact was a significant source of human exposure to parabens during the use of personal care products. In this study, a novel and simple in vitro evaluation method for human skin exposure to parabens was established for the first time. Firstly, magnetic porous carbon (MPC) derived from discarded cigarette butts was prepared as an adsorbent of magnetic solid-phase extraction (MSPE), which provided a fast and efficient sample preparation method with satisfactory extraction performance for parabens in cosmetics and was easy to couple with high performance liquid chromatography. Secondly, the extraction conditions were optimized including the etching ratio of KOH, amount of MPC, extraction time, pH, salt concentration, desorption solvent volume and desorption time. Under the optimized conditions, the limits of detection were between 0.25 and 0.34 ng mL-1 and the spiked recoveries were in the range of 85.8-112.6%. Thirdly, the developed method was successfully employed to determine five typical parabens in real unspiked cosmetic samples, and two parabens were detected at a relatively high level. Then, the developed method was applied to in vitro assays. The absorbable dose of parabens in cream was investigated and in vitro experiments were further designed with agarose-simulated skin to demonstrate the penetration ability of parabens. In conclusion, these results indicated that parabens did have the risk of entering the body through the skin and the exposure was preferably no more than 3 h with skin contact.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Chunxiang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Gemmological Institute, China University of Geosciences, Wuhan, 430074, China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
28
|
Zeng T, Liang Y, Chen J, Cao G, Yang Z, Zhao X, Tian J, Xin X, Lei B, Cai Z. Urinary metabolic characterization with nephrotoxicity for residents under cadmium exposure. ENVIRONMENT INTERNATIONAL 2021; 154:106646. [PMID: 34049269 DOI: 10.1016/j.envint.2021.106646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is a well-known hazardous pollutant that mainly comes from dietary, tobacco and occupational exposure, posing threat to kidney. However, there is still a lack of systematic study on metabolic pathways and urinary biomarkers related to its nephrotoxicity under cadmium exposure for both females and males. In this study, a mass spectrometry-based metabolomics investigation of a cohort of 144 volunteers was conducted to explore sex-specific metabolic alteration and to screen biomarkers related to cadmium-induced nephrotoxicity. When the concentration of urinary cadmium increased, creatine pathway, amino acid metabolism especially the tryptophan metabolism, aminoacyl-tRNA biosynthesis, and purine metabolism were primarily influenced regardless of the gender. Also, the most specific biomarkers linked with nephrotoxicity based on the statistical analysis were detected including creatine, creatinine, l-tryptophan, adenine and uric acid. The study outcome might provide information to reflect the body burden and help improve health policy for risk assessment.
Collapse
Affiliation(s)
- Ting Zeng
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Yanshan Liang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Sichuan, Chengdu 610041, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Xingchen Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jinglin Tian
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Xiong Xin
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China
| | - Bo Lei
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Guangdong, Zhuhai 519087, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
29
|
Yu L, Peng F, Yuan D, Zhang L, Guo Y, Chang B, Shi X, Ding C, Liang X. Correlation study of parabens in urine, serum, and seminal plasma of adult men in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41120-41126. [PMID: 33774781 DOI: 10.1007/s11356-021-13625-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The adverse effects of parabens raise concerns about their extensive use as preservatives in consumer products, especially in cosmetics. Until now, their distribution and excretion in humans have attracted little attention. Here, we quantified various agents including, for the first time, methyl-; ethyl-; n-propyl-; n-butyl-, and i-butylparaben (MeP, EtP, PrP, n-BuP, i-BuP); methyl- and ethyl-protocatechuate (OH-MeP and OH-EtP); hydroxybenzoic acid (4-HB); and 3,4-dihydroxybenzoic acid (3,4-DHB) in urine, serum, and seminal plasma samples from 50 healthy Chinese men in Beijing, China. Urine paraben concentrations were 1-2 orders of magnitudes higher than those in serum and seminal plasma. MeP and PrP were predominant and correlated with each other in the urine, serum, and seminal plasma. In urine, we observed a significant correlation between MeP and OH-MeP; EtP and OH-EtP; and 4-HB and 3,4-DHB concentrations. All these results provide new information on parabens as biomarkers for the assessment of exposure.
Collapse
Affiliation(s)
- Lijia Yu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Dong Yuan
- Department of Male Clinical Research, the Key Laboratory of Male Reproductive Health of National Health Commission of PRC, Human Sperm Bank, Research Institute of National Health Commission, Beijing, 100081, China
| | - Linyuan Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ying Guo
- Department of Male Clinical Research, the Key Laboratory of Male Reproductive Health of National Health Commission of PRC, Human Sperm Bank, Research Institute of National Health Commission, Beijing, 100081, China
| | - Bing Chang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xiaodong Shi
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
| | - Xiaowei Liang
- Department of Male Clinical Research, the Key Laboratory of Male Reproductive Health of National Health Commission of PRC, Human Sperm Bank, Research Institute of National Health Commission, Beijing, 100081, China.
| |
Collapse
|
30
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
31
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
32
|
Lee Y, Lee E, Yon DK, Jee HM, Baek HS, Lee SW, Cho JY, Han MY. The potential pathways underlying the association of propyl-paraben exposure with aeroallergen sensitization and EASI score using metabolomics analysis. Sci Rep 2021; 11:3772. [PMID: 33580129 PMCID: PMC7881090 DOI: 10.1038/s41598-021-83288-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Propyl-paraben exposure is associated with aeroallergen sensitization, but its association with atopic dermatitis (AD) is inconclusive. No studies have been conducted on the metabolomic pathways underlying these associations. We investigated the associations between propyl-paraben exposure and aeroallergen sensitization, AD, and Eczema Area and Severity Index (EASI) score and identified the underlying pathways using untargeted metabolomics analysis. We enrolled 455 children in a general population study. Skin prick tests were performed with the assessment of EASI score. Urinary propyl-, butyl-, ethyl-, and methyl-paraben levels were measured. Untargeted metabolomics analysis was performed on the first and fifth urine propyl-paraben quintile groups. The highest urine propyl-paraben quintile group was associated with aeroallergen sensitization, but not with AD. Glycine, threonine, serine, ornithine, isoleucine, arabinofuranose, d-lyxofuranose, citrate, and picolinic acid levels were higher, whereas palmitic acid and 2-palmitoylglycerol levels were lower in the highest quintile propyl-paraben group, than in the lowest quintile group. The propyl-paraben-induced metabolic perturbations were associated with serine and glycine metabolisms, branched-chain amino acid metabolism, and ammonia recycling. Propyl-paraben exposure was associated with aeroallergen sensitization and EASI score, partially via metabolomic changes related with oxidative stress, mTOR, peroxisome proliferator-activated receptors pathway, aryl hydrocarbon receptor signaling pathways, and tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyonggi-do, 13496, Republic of Korea
| | - Hey Sung Baek
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, Gyonggi-do, 13496, Republic of Korea.
| |
Collapse
|
33
|
Molecularly imprinted polymer-based fiber array extraction of eight estrogens from environmental water samples prior to high-performance liquid chromatography analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Tang C, Chen J, Zhou Y, Ding P, He G, Zhang L, Zhao Z, Yang D. Exploring antimicrobial mechanism of essential oil of Amomum villosum Lour through metabolomics based on gas chromatography-mass spectrometry in methicillin-resistant Staphylococcus aureus. Microbiol Res 2020; 242:126608. [PMID: 33068829 DOI: 10.1016/j.micres.2020.126608] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Amomum villosum Lour (A. villosum Lour) has medicinal properties and has been widely used in China for many years. Herein we aimed to investigate the antibacterial mechanism and the metabolome variation caused by A. villosum Lour essential oil (EO) in methicillin-resistant Staphylococcus aureus (MRSA). The metabolite profile of MRSA was acquired, and metabolic pathways were assessed for significant alterations caused upon treating bacterial cells with EO, the antibacterial mechanism of EO was further investigated in combination with multiple experiments. Metabolomics analysis revealed that 72 metabolites and 10 pathways were significantly affected. EO specifically disrupted amino acid metabolism and the tricarboxylic acid (TCA) cycle, and also inhibited adenosine triphosphate (ATP) and reactive oxygen species (ROS) synthesis. Furthermore, the activities of pivotal enzymes involved in the TCA cycle were suppressed. Increased ROS levels could decrease the sensitivity of MRSA to EO, improving the survival of EO-treated MRSA cells. Our data indicate that A. villosum Lour EO causes metabolic dysfunction in MRSA, leading to reduced ROS levels, disruption of the TCA cycle, inhibition of ATP synthesis, and suppression of the activities of key enzymes.
Collapse
Affiliation(s)
- Cailin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, Guizhou Provincial People(')s Hospital, Guiyang, Guizhou, China
| | - Jiali Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yang Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guozhen He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Zhang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Xishuangbanna, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
35
|
Elmore SE, Cano-Sancho G, La Merrill MA. Disruption of normal adipocyte development and function by methyl- and propyl- paraben exposure. Toxicol Lett 2020; 334:27-35. [PMID: 32956827 DOI: 10.1016/j.toxlet.2020.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
Methyl- and propyl- parabens are generally regarded as safe by the U.S Food and Drug Administration and as such are commonly used in personal care products. These parabens have been associated with increased white adipogenesis in vitro and methyl paraben also increased the white adipose mass of mice. Given brown adipose also plays a role in energy balance, we sought to evaluate whether the effects of methyl- and propyl- parabens on white adipocytes extended to brown adipocytes. We challenged white and brown pre-adipocytes at low doses of both parabens (up to 1 μM) during the differentiation process and examined adipogenesis with the ORO assay. The impact of each paraben on glucose uptake and lipolytic activity of adipocytes were measured with a fluorescent glucose analog and enzymatically, respectively. Methyl- and propyl- parabens increased adipogenesis of 3T3-L1 white adipocytes but not brown adipocytes. In white adipocytes, methyl paraben increased glucose uptake and both parabens reduced basal lipolysis. However, in brown adipocytes, parabens had no effect on basal lipolysis and instead attenuated isoproterenol induced lipolysis. These data indicate that methyl- and propyl- parabens target the differentiation and metabolic processes of multiple types of adipocytes in a cell autonomous manner.
Collapse
Affiliation(s)
- S E Elmore
- Department of Environmental Toxicology, University of California, Davis, CA, United States; Office of Environmental Health Hazard Assessment, California EPA, Oakland, CA, United States
| | - G Cano-Sancho
- Department of Environmental Toxicology, University of California, Davis, CA, United States; LABERCA, Oniris, INRAE, 44307, Nantes, France
| | - M A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|