1
|
Borén J, Packard CJ, Binder CJ. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 2025:10.1038/s41569-024-01111-0. [PMID: 39743565 DOI: 10.1038/s41569-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Smith JA, Ramirez-Perez FI, Burr K, Gonzalez-Vallejo JD, Morales-Quinones M, McMillan NJ, Ferreira-Santos L, Sharma N, Foote CA, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. Impact of dietary supplementation of glycocalyx precursors on vascular function in type 2 diabetes. J Appl Physiol (1985) 2024; 137:1592-1603. [PMID: 39480270 PMCID: PMC11687847 DOI: 10.1152/japplphysiol.00651.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 12/10/2024] Open
Abstract
Degradation of the endothelial glycocalyx in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to endothelial dysfunction and the development of cardiovascular disease. Herein, we tested the hypothesis that restoration of the endothelial glycocalyx with dietary supplementation of glycocalyx precursors (DSGPs, containing glucosamine sulfate, fucoidan, superoxide dismutase, and high-molecular weight hyaluronan) improves endothelial function and other indices of vascular function in T2D. First, in db/db mice, we showed that treatment with DSGP (100 mg/kg/day) for 4 wk restored endothelial glycocalyx length, as assessed via atomic force microscopy in aortic explants. Restoration of the glycocalyx with DSGP was accompanied by improved flow-mediated dilation (FMD) and reduced arterial stiffness in isolated mesenteric arteries. Further corroborating these findings, the treatment of cultured endothelial cells with that same mixture of glycocalyx precursors promoted glycocalyx growth. Next, as an initial step to investigate the translatability of these findings, we conducted a pilot (n = 22) double-blinded randomized placebo-controlled clinical trial to assess the effects of DSGP (3,712.5 mg/day) for 8 wk on endothelial glycocalyx integrity and indices of vascular function, including FMD, in Veterans with T2D. Contrary to the hypothesis, DSGP neither enhanced endothelial glycocalyx integrity nor improved vascular function indices relative to placebo. Together, these findings conceptually support the notion that restoration of the endothelial glycocalyx can lead to improvements in vascular function in a mouse model of T2D; however, DSGP as a therapeutic strategy to enhance vascular function in individuals with T2D does not appear to be efficacious.NEW & NOTEWORTHY Endothelial glycocalyx degradation in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to vascular dysfunction. The findings of this study support the notion that restoration of the endothelial glycocalyx using a dietary supplementation of glycocalyx precursors can lead to improvements in vascular function in diabetic mice. However, the utilized dietary supplement as a therapeutic strategy to enhance vascular function in individuals with T2D is not efficacious.
Collapse
Affiliation(s)
- James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | | | - Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
3
|
Haron NA, Ishak MF, Yazid MD, Vijakumaran U, Ibrahim R, Raja Sabudin RZA, Alauddin H, Md Ali NA, Haron H, Ismail MI, Abdul Rahman MR, Sulaiman N. Exploring the Potential of Saphenous Vein Grafts Ex Vivo: A Model for Intimal Hyperplasia and Re-Endothelialization. J Clin Med 2024; 13:4774. [PMID: 39200916 PMCID: PMC11355503 DOI: 10.3390/jcm13164774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Coronary artery bypass grafting (CABG) utilizing saphenous vein grafts (SVGs) stands as a fundamental approach to surgically treating coronary artery disease. However, the long-term success of CABG is often compromised by the development of intimal hyperplasia (IH) and subsequent graft failure. Understanding the mechanisms underlying this pathophysiology is crucial for improving graft patency and patient outcomes. Objectives: This study aims to explore the potential of an ex vivo model utilizing SVG to investigate IH and re-endothelialization. Methods: A thorough histological examination of 15 surplus SVG procured from CABG procedures at Hospital Canselor Tuanku Muhriz, Malaysia, was conducted to establish their baseline characteristics. Results: SVGs exhibited a mean diameter of 2.65 ± 0.93 mm with pre-existing IH averaging 0.42 ± 0.13 mm in thickness, alongside an observable lack of luminal endothelial cell lining. Analysis of extracellular matrix components, including collagen, elastin, and glycosaminoglycans, at baseline and after 7 days of ex vivo culture revealed no significant changes in collagen but demonstrated increased percentages of elastin and glycosaminoglycans. Despite unsuccessful attempts at re-endothelialization with blood outgrowth endothelial cells, the established ex vivo SVG IH model underscores the multifaceted nature of graft functionality and patency, characterized by IH presence, endothelial impairment, and extracellular matrix alterations post-CABG. Conclusions: The optimized ex vivo IH model provides a valuable platform for delving into the underlying mechanisms of IH formation and re-endothelialization of SVG. Further refinements are warranted, yet this model holds promise for future research aimed at enhancing graft durability and outcomes for CAD patients undergoing CABG.
Collapse
Affiliation(s)
- Nur A’tiqah Haron
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Mohamad Fikeri Ishak
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Roszita Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Raja Zahratul Azma Raja Sabudin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hafiza Alauddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Ayub Md Ali
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hairulfaizi Haron
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Ishamuddin Ismail
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| |
Collapse
|
4
|
Dancy C, Heintzelman KE, Katt ME. The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier. Int J Mol Sci 2024; 25:8404. [PMID: 39125975 PMCID: PMC11312458 DOI: 10.3390/ijms25158404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The endothelial glycocalyx (GCX), located on the luminal surface of vascular endothelial cells, is composed of glycoproteins, proteoglycans, and glycosaminoglycans. It plays a pivotal role in maintaining blood-brain barrier (BBB) integrity and vascular health within the central nervous system (CNS), influencing critical processes such as blood flow regulation, inflammation modulation, and vascular permeability. While the GCX is ubiquitously expressed on the surface of every cell in the body, the GCX at the BBB is highly specialized, with a distinct composition of glycans, physical structure, and surface charge when compared to GCX elsewhere in the body. There is evidence that the GCX at the BBB is disrupted and partially shed in many diseases that impact the CNS. Despite this, the GCX has yet to be a major focus of therapeutic targeting for CNS diseases. This review examines diverse model systems used in cerebrovascular GCX-related research, emphasizing the importance of selecting appropriate models to ensure clinical relevance and translational potential. This review aims to highlight the importance of the GCX in disease and how targeting the GCX at the BBB specifically may be an effective approach for brain specific targeting for therapeutics.
Collapse
Affiliation(s)
- Candis Dancy
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
| | - Kaitlyn E. Heintzelman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
- School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
6
|
O’Hare N, Millican K, Ebong EE. Unraveling neurovascular mysteries: the role of endothelial glycocalyx dysfunction in Alzheimer's disease pathogenesis. Front Physiol 2024; 15:1394725. [PMID: 39027900 PMCID: PMC11254711 DOI: 10.3389/fphys.2024.1394725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.
Collapse
Affiliation(s)
- Nicholas O’Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Mansoor T, Khalid SN, Bilal MI, Ijaz SH, Fudim M, Greene SJ, Warraich HJ, Nambi V, Virani SS, Fonarow GC, Abramov D, Minhas AMK. Ongoing and Future Clinical Trials of Pharmacotherapy for Heart Failure. Am J Cardiovasc Drugs 2024; 24:481-504. [PMID: 38907865 DOI: 10.1007/s40256-024-00658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
Increasing knowledge of the processes leading to heart failure (HF) has allowed significant developments in therapies for HF over the past few decades. Despite the evolution of HF treatment, it still places a large burden on patients and health care systems across the world.We used clinicaltrials.gov to gather information about clinical trials as of August 2023 studying pharmacotherapy for HF. We included interventional trials that were "active, not recruiting", "recruiting", or looking for participants but "not yet recruiting". In total, 119 studies met our criteria of ongoing clinical trials studying novel as well as currently approved HF pharmacotherapies. The major interventions were novel medications/already approved medications for other diseases 29 % (34 trials), sodium-glucose co-transporter inhibitors 21 % (25 trials), angiotensin receptor blocker-neprilysin inhibitors 10 % (12 trials), diuretics 14 % (17 trials) and mineralocorticoid receptor antagonists 5 % (6 trials). Ongoing research will aid in reducing the impact of HF and we summarize clinical trials leading the way to better HF treatment in this review.
Collapse
Affiliation(s)
- Taha Mansoor
- Department of Internal Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI, 49008, USA.
| | - Subaina N Khalid
- Department of Internal Medicine, SUNY Upstate Medical University, Syracruse, NY, USA
| | | | | | - Marat Fudim
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Stephen J Greene
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Haider J Warraich
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vijay Nambi
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey, Veterans Affair Medical Center, Houston, TX, USA
| | - Salim S Virani
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Gregg C Fonarow
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dmitry Abramov
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | | |
Collapse
|
8
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Tomaszewska A, Gonciarz W, Rechcinski T, Chmiela M, Kurdowska AK, Krupa A. Helicobacter pylori components increase the severity of metabolic syndrome and its hepatic manifestations induced by a high fat diet. Sci Rep 2024; 14:5764. [PMID: 38459219 PMCID: PMC10923818 DOI: 10.1038/s41598-024-56308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
The metabolic syndrome, often accompanied by hepatic manifestations, is a high-risk factor for developing cardiovascular disease. Patients with metabolic dysfunction associated with steatohepatic disease (MASDL) are at significant risk of developing coronary artery disease. Atherosclerosis is a systemic inflammatory disorder in which several factors, including dietary or infectious factors, can cause an inflammatory response. Helicobacter pylori (HP) bacteria have been implicated in the progression of proatherogenic vascular endothelial lesions, moreover, our previous study in an experimental in vivo model of Cavia porcellus showed that HP components and high-fat substances acted synergistically in promoting vascular endothelial inflammation, leading to an early onset of a proatherogenic environment. In the present study, our goal was to determine the contribution of HP components to the development of hepatic manifestations of metabolic syndrome in an experimental model. Our results showed that HP infection in animals exposed to a high-fat diet increased oxidative stress and lipid peroxidation, followed by endothelial lipid deposition, impaired endothelial apoptosis, cell lysis, and increased vascular stiffness. Finally, histopathological analysis of liver tissue showed signs of MASLD development in HP-infected animals fed a high-fat diet.
Collapse
Affiliation(s)
- Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Lodz, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Rechcinski
- 1st Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
10
|
Gimblet CJ, Ernst JW, Bos KD, Stroud AK, Donato AJ, Jalal DI, Pierce GL. Effect of acute heparin administration on glycocalyx thickness and endothelial function in healthy younger adults. J Appl Physiol (1985) 2024; 136:330-336. [PMID: 38126088 PMCID: PMC11212829 DOI: 10.1152/japplphysiol.00767.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
The endothelial glycocalyx is a dynamic, gel-like layer that is critical to normal vascular endothelial function. Heparin impairs the endothelial glycocalyx and reduces vascular endothelial function in a murine model; however, this has yet to be tested in healthy humans. We hypothesized that a single bolus dose of heparin would increase circulating glycocalyx components and decrease endothelial glycocalyx thickness resulting in blunted brachial artery vasodilation in healthy younger adults. Healthy adults (n = 19, aged 18-39 yr, 53% female) underwent measurements of the endothelial glycocalyx and vascular endothelial function at baseline and after a single bolus 5,000 U dose of heparin. The glycocalyx components syndecan-1 and heparan sulfate were measured from plasma samples using enzyme-linked immunosorbent assays. Glycocalyx thickness was determined as perfused boundary region (PBR) in sublingual microvessels using the GlycoCheck. Endothelial function was measured via ultrasonography and quantified as brachial artery flow-mediated dilation (FMD). Following acute heparin administration, there was no increase in syndecan-1 or heparan sulfate (P = 0.90 and P = 0.49, respectively). In addition, there was no change in PBR 4-7 µm (P = 0.55), PBR 10-25 µm (P = 0.63), or 4-25 µm (P = 0.49) after heparin treatment. Furthermore, we did not observe a change in FMDmm (P = 0.23), FMD% (P = 0.35), or plasma nitrite concentrations (P = 0.10) in response to heparin. Finally, time to peak dilation and peak FMD normalized to shear stress were unchanged following heparin (P = 0.59 and P = 0.21, respectively). Our pilot study suggests that a single bolus intravenous dose of heparin does not result in endothelial glycocalyx degradation or vascular endothelial dysfunction in healthy younger adults.NEW & NOTEWORTHY The endothelial glycocalyx's role in modulating vascular endothelial dysfunction with aging and disease is becoming increasingly recognized. This study presents novel findings that acute heparin administration is not a feasible method to experimentally degrade the endothelial glycocalyx and measure concurrent changes in vascular endothelial function in healthy humans. Alternative approaches will be needed to translate findings from preclinical studies and test the effects of acute endothelial glycocalyx degradation on vascular endothelial function in humans.
Collapse
Affiliation(s)
- Colin J Gimblet
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Jackson W Ernst
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Kyle D Bos
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Amy K Stroud
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Diana I Jalal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Center for Access and Delivery Research and Evaluation, Iowa City VA Medical Center, Iowa City, Iowa, United States
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
11
|
Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care 2023; 26:543-550. [PMID: 37555800 PMCID: PMC10592259 DOI: 10.1097/mco.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, VA SLC
- Department of Nutrition and Integrative Physiology
- Department of Biochemistry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Zheng X, Machin DR. Patching up a degraded endothelial glycocalyx in sepsis. Am J Physiol Heart Circ Physiol 2023; 325:H673-H674. [PMID: 37594482 PMCID: PMC10659260 DOI: 10.1152/ajpheart.00499.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
13
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
14
|
Valera G, Figuer A, Caro J, Yuste C, Morales E, Ceprián N, Bodega G, Ramírez R, Alique M, Carracedo J. Plasma glycocalyx pattern: a mirror of endothelial damage in chronic kidney disease. Clin Kidney J 2023; 16:1278-1287. [PMID: 37529650 PMCID: PMC10387401 DOI: 10.1093/ckj/sfad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 08/03/2023] Open
Abstract
Background Endothelial damage and cardiovascular disease complicate chronic kidney disease (CKD). The increased atherogenicity observed in patients with CKD can be linked to microinflammation and endothelial damage. Circulating endothelial glycocalyx degradation products, such as perlecan and decorin, tend to be elevated in CKD. We aimed to explore the association between the plasma perlecan and decorin levels and this pro-inflammatory and atherogenic state by studying monocyte subpopulations and intracellular adhesion molecule (ICAM)-1 expression in patients with CKD. Methods We studied 17 healthy controls, 23 patients with advanced CKD, 25 patients on haemodialysis, 23 patients on peritoneal dialysis and 20 patients who underwent kidney transplantation. Perlecan and decorin levels were evaluated using enzyme-linked immunosorbent assays, and the monocyte phenotype was analysed using direct immunofluorescence and flow cytometry. Results The plasma perlecan levels were higher in patients with CKD than in the healthy controls. These levels were associated with a higher prevalence of ICAM-1+ monocytes. Conversely, patients with advanced CKD (pre-dialysis) had higher plasma decorin levels, which were associated with a reduced ICAM-1 expression per monocyte. Conclusions Elevated perlecan levels in CKD may be associated with a higher prevalence of ICAM-1+ monocytes and a pro-inflammatory phenotype. Elevated decorin levels may act as a negative regulator of ICAM-1 expression in monocytes. Therefore, perlecan and decorin may be related to inflammation and monocyte activation in CKD and may act as potential markers of endothelial damage.
Collapse
Affiliation(s)
| | | | - Jara Caro
- Departamento de Nefrología del Hospital Universitario 12 de Octubre, Instituto de investigación i+12, Madrid, Spain
| | - Claudia Yuste
- Departamento de Nefrología del Hospital Universitario 12 de Octubre, Instituto de investigación i+12, Madrid, Spain
| | - Enrique Morales
- Departamento de Nefrología del Hospital Universitario 12 de Octubre, Instituto de investigación i+12, Madrid, Spain
- Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Noemí Ceprián
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | |
Collapse
|
15
|
Fragkou PC, Ikonomidis I, Benas D, Kavatha D, Moschopoulos CD, Protopapas K, Kostelli G, Thymis J, Mpirmpa D, Galani I, Tsakona M, Oikonomopoulou C, Theocharous G, Gorgoulis VG, Gallos P, Tsiodras S, Antoniadou A, Papadopoulos A, Triantafyllidi H. Endothelial Glycocalyx Integrity in Treatment-Naïve People Living with HIV before and One Year after Antiretroviral Treatment Initiation. Viruses 2023; 15:1505. [PMID: 37515191 PMCID: PMC10383742 DOI: 10.3390/v15071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial glycocalyx (EG) derangement has been associated with cardiovascular disease (CVD). Studies on EG integrity among people living with HIV (PLWH), are lacking. We conducted a prospective cohort study among treatment-naïve PLWH who received emtricitabine/tenofovir alafenamide, combined with either an integrase strand transfer inhibitor (INSTI, dolutegravir, raltegravir or elvitegravir/cobicistat), or a protease inhibitor (PI, darunavir/cobicistat). We assessed EG at baseline, 24 (±4) and 48 (±4) weeks, by measuring the perfused boundary region (PBR, inversely proportional to EG thickness), in sublingual microvessels. In total, 66 consecutive PLWH (60 (90.9%) males) with a median age (interquartile range, IQR) of 37 (12) years, were enrolled. In total, 40(60.6%) received INSTI-based regimens. The mean (standard deviation) PBR decreased significantly from 2.17 (0.29) μm at baseline to 2.04 (0.26) μm (p = 0.019), and then to 1.93 (0.3) μm (p < 0.0001) at 24 (±4) and 48 (±4) weeks, respectively. PBR did not differ among treatment groups. PLWH on INSTIs had a significant PBR reduction at 48 (±4) weeks. Smokers and PLWH with low levels of viremia experienced the greatest PBR reduction. This study is the first to report the benefit of antiretroviral treatment on EG improvement in treatment-naïve PLWH and depicts a potential bedside biomarker and therapeutic target for CVD in PLWH.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, Athens Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Ignatios Ikonomidis
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitrios Benas
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitra Kavatha
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Protopapas
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gavriella Kostelli
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John Thymis
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dionysia Mpirmpa
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Irene Galani
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Tsakona
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Chrysanthi Oikonomopoulou
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Parisis Gallos
- Computational Biomedicine Laboratory, Department of Digital Systems, University of Piraeus, 18536 Piraeus, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Antonios Papadopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Helen Triantafyllidi
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
16
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
17
|
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023; 379:eabp8964. [PMID: 36795835 DOI: 10.1126/science.abp8964] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/22/2022] [Indexed: 02/18/2023]
Abstract
For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.
Collapse
Affiliation(s)
- Tara E Sutherland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- School of Medicine, Medical Sciences and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
18
|
Kerch G. Severe COVID-19-A Review of Suggested Mechanisms Based on the Role of Extracellular Matrix Stiffness. Int J Mol Sci 2023; 24:1187. [PMID: 36674700 PMCID: PMC9861790 DOI: 10.3390/ijms24021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The severity of COVID-19 commonly depends on age-related tissue stiffness. The aim was to review publications that explain the effect of microenvironmental extracellular matrix stiffness on cellular processes. Platelets and endothelial cells are mechanosensitive. Increased tissue stiffness can trigger cytokine storm with the upregulated expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and interleukin IL-6, and tissue integrity disruption, leading to enhanced virus entry and disease severity. Increased tissue stiffness in critically ill COVID-19 patients triggers platelet activation and initiates plague formation and thrombosis development. Cholesterol content in cell membrane increases with aging and further enhances tissue stiffness. Membrane cholesterol depletion decreases virus entry to host cells. Membrane cholesterol lowering drugs, such as statins or novel chitosan derivatives, have to be further developed for application in COVID-19 treatment. Statins are also known to decrease arterial stiffness mitigating cardiovascular diseases. Sulfated chitosan derivatives can be further developed for potential use in future as anticoagulants in prevention of severe COVID-19. Anti-TNF-α therapies as well as destiffening therapies have been suggested to combat severe COVID-19. The inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway must be considered as a therapeutic target in the treatment of severe COVID-19 patients. The activation of mechanosensitive platelets by higher matrix stiffness increases their adhesion and the risk of thrombus formation, thus enhancing the severity of COVID-19.
Collapse
Affiliation(s)
- Garry Kerch
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, 1048 Riga, Latvia
| |
Collapse
|
19
|
Setting the stage for universal pharmacological targeting of the glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:61-88. [PMID: 37080681 DOI: 10.1016/bs.ctm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
All cells in the human body are covered by a complex meshwork of sugars as well as proteins and lipids to which these sugars are attached, collectively termed the glycocalyx. Over the past few decades, the glycocalyx has been implicated in a range of vital cellular processes in health and disease. Therefore, it has attracted considerable interest as a therapeutic target. Considering its omnipresence and its relevance for various areas of cell biology, the glycocalyx should be a versatile platform for therapeutic intervention, however, the full potential of the glycocalyx as therapeutic target is yet to unfold. This might be attributable to the fact that glycocalyx alterations are currently discussed mainly in the context of specific diseases. In this perspective review, we shift the attention away from a disease-centered view of the glycocalyx, focusing on changes in glycocalyx state. Furthermore, we survey important glycocalyx-targeted drugs currently available and finally discuss future steps. We hope that this approach will inspire a unified, holistic view of the glycocalyx in disease, helping to stimulate novel glycocalyx-targeted therapy strategies.
Collapse
|
20
|
Mitra R, Nersesyan A, Pentland K, Melin MM, Levy RM, Ebong EE. Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. FASEB J 2022; 36:e22630. [PMID: 36315163 DOI: 10.1096/fj.202200053rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.
Collapse
Affiliation(s)
- Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Alina Nersesyan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Kaleigh Pentland
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - M Mark Melin
- M Health Fairview Wound Healing Institute, Edina, Minnesota, USA
| | - Robert M Levy
- Director of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, Arizona, USA
| | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States
| |
Collapse
|
21
|
Dobson GP, Morris JL, Letson HL. Why are bleeding trauma patients still dying? Towards a systems hypothesis of trauma. Front Physiol 2022; 13:990903. [PMID: 36148305 PMCID: PMC9485567 DOI: 10.3389/fphys.2022.990903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Over the years, many explanations have been put forward to explain early and late deaths following hemorrhagic trauma. Most include single-event, sequential contributions from sympathetic hyperactivity, endotheliopathy, trauma-induced coagulopathy (TIC), hyperinflammation, immune dysfunction, ATP deficit and multiple organ failure (MOF). We view early and late deaths as a systems failure, not as a series of manifestations that occur over time. The traditional approach appears to be a by-product of last century's highly reductionist, single-nodal thinking, which also extends to patient management, drug treatment and drug design. Current practices appear to focus more on alleviating symptoms rather than addressing the underlying problem. In this review, we discuss the importance of the system, and focus on the brain's "privilege" status to control secondary injury processes. Loss of status from blood brain barrier damage may be responsible for poor outcomes. We present a unified Systems Hypothesis Of Trauma (SHOT) which involves: 1) CNS-cardiovascular coupling, 2) Endothelial-glycocalyx health, and 3) Mitochondrial integrity. If central control of cardiovascular coupling is maintained, we hypothesize that the endothelium will be protected, mitochondrial energetics will be maintained, and immune dysregulation, inflammation, TIC and MOF will be minimized. Another overlooked contributor to early and late deaths following hemorrhagic trauma is from the trauma of emergent surgery itself. This adds further stress to central control of secondary injury processes. New point-of-care drug therapies are required to switch the body's genomic and proteomic programs from an injury phenotype to a survival phenotype. Currently, no drug therapy exists that targets the whole system following major trauma.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
22
|
Hong HJ, Oh YI, Park SM, An JH, Kim TH, Chae HK, Seo KW, Youn HY. Evaluation of endothelial cell-specific molecule-1 as a biomarker of glycocalyx damage in canine myxomatous mitral valve disease. BMC Vet Res 2022; 18:261. [PMID: 35790968 PMCID: PMC9254417 DOI: 10.1186/s12917-022-03344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial cell-specific molecule-1 (ESM-1) has emerged as a potential biomarker for cardiovascular disease in humans. Myxomatous mitral valve disease (MMVD) is the most common heart disease in dogs, and we hypothesized that MMVD causes chronic inflammation that increases susceptibility to endothelial glycocalyx (eGCX) damage. In this study, we measured the concentration of ESM-1 in a group of dogs with MMVD and evaluated factors affecting eGCX damage. Results Sixty-four dogs (control, n = 6; MMVD, n = 58) were enrolled in this study. There was no significant difference in serum ESM-1 concentrations among the MMVD stages. The serum ESM-1 concentration was significantly higher in the death group than in the alive group in MMVD dogs. (p = 0.006). In five dogs with MMVD, serum ESM-1 concentrations tended to decrease when the cardiac drug (pimobendan, furosemide, and digoxin) dose was increased. Conclusions In cases where MMVD progressed to decompensated heart failure with clinical symptoms and resulted in death, the concentration of serum ESM-1 increased significantly. Therefore, ESM-1 could be utilized as a new potential negative prognostic factor in patients with MMVD.
Collapse
|