1
|
Liu L, Yang L, Chen H, Cheng W, Ding Y, Xiao F. Insight into the binding mechanism of rutin and lysozyme: Based on spectroscopy and molecular simulation technology. Food Chem 2025; 474:143176. [PMID: 39961180 DOI: 10.1016/j.foodchem.2025.143176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Lysozyme (LYZ) is an excellent natural food preservative and can also be used as a bioactive carrier loading small molecules to enhance its stability and antioxidant properties. This research explored the intricate mechanism of interaction between LYZ and rutin. Multiple spectroscopic techniques was used first to confirm that rutin caused a fluorescence burst in LYZ. LYZ amino acid microenvironment was altered. The main driving forces driving the formation of the complex between rutin and LYZ were hydrogen bonding and van der Waals forces. In addition, the incorporation of rutin improved the overall stability and oxidation resistance of the complexes. The results of molecular docking and molecular dynamics simulation further show that rutin and LYZ are stably bound by hydrogen bonds and other interactions. The investigation contributed precious information for the development of novel natural preservatives and the design of advanced small molecular carriers.
Collapse
Affiliation(s)
- Lili Liu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Le Yang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Hui Chen
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Weiwei Cheng
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Ding
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| | - Feng Xiao
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Galasong Y, Charles-Vegdahl A, Worobo RW. Evaluation of antimicrobial efficacy against spoilage microorganisms and impact on beverage color and turbidity of commercial preservatives derived from edible mushrooms. Int J Food Microbiol 2025; 433:111130. [PMID: 40010024 DOI: 10.1016/j.ijfoodmicro.2025.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The antimicrobial efficacy and the impact on sensory quality of preservatives from different natural sources can vary dramatically. This makes it challenging for manufacturers to incorporate natural preservatives in shelf-stable beverage formulation. This study compares new-to-market natural glycolipids (NG) derived from Dacryopinax spathularia and white button mushroom extract (WBME) containing chitosan from Agaricus bisporus. The antimicrobial efficacy was evaluated in a microbial spoilage challenge study wherein three-species suspensions of yeasts (Saccharomyces cerevisiae YG25, Zygosaccharomyces bailii DSM 70492 and Candida parapsilosis TD-0020), bacteria (Lactiplantibacillus plantarum DSM 12028, Lactococcus lactis DSM 20481 and Gluconobacter oxydans AC39) and fungal spores (Aspergillus brasiliensis DSM 1988, Byssochlamys nivea DSM 1824 and Penicillium roqueforti DSM 1079) were inoculated (100 CFU/mL per species) in acidified iced tea and juice drink. The preservatives were tested at concentrations within the range proposed by their respective manufacturers. They were also benchmarked against sodium benzoate (SB) and potassium sorbate (PS). Beverage samples were maintained at ambient temperature for 12 weeks and analyzed for microbial counts, pH, total soluble solids (TSS) at week 0, 1, 2, 4, 8 and 12. The impact on color and turbidity was assessed in a separate trial without spoilage microorganisms. Overall, NG was more effective and consistent than WBME and PS + SB in preventing spoilage by selected bacteria, yeasts, and molds in this study without significant impact on pH and TSS. WBME counterproductively supported the growth G. oxydans AC39 in acidified iced tea. WBME at high concentration appeared to reduce growth of S. cerevisiae YG25 and Z. bailii DSM 70492, but not C. parapsilosis TD-0020 whereas PS + SB could not inhibit any yeast species. WBME reduced mold spoilage for 4 weeks, after which the antifungal effects wore off. Finally, WBME and NG at high concentrations may cause separation, which increases beverage turbidity upon remixing and lightens the beverage color, especially if the beverage contains a significant amount of pectin.
Collapse
Affiliation(s)
- Yupawadee Galasong
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| | - Ann Charles-Vegdahl
- Department of Food Science, Cornell AgriTech, Geneva, NY 14456, United States
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States; Department of Food Science, Cornell AgriTech, Geneva, NY 14456, United States
| |
Collapse
|
3
|
Vaishnav A, Lal J, Mehta NK, Mohanty S, Yadav KK, Priyadarshini MB, Debbarma P, Singh NS, Pati BK, Singh SK. Unlocking the potential of fishery waste: exploring diverse applications of fish protein hydrolysates in food and nonfood sectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36244-3. [PMID: 40119992 DOI: 10.1007/s11356-025-36244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Fish and their byproducts play a pivotal role as protein sources. With the global population increasing, urbanization on the rise and increased affluence, efficient utilization of available protein resources is becoming increasingly critical. Additionally, the need for sustainable protein sources is gaining recognition. By 2050, the world's protein demand is expected to double, driven not only by population growth but also by heightened awareness of protein's role in maintaining health. The fishery industry has experienced continuous growth over the last decade. However, this growth comes with a significant challenge: inadequate waste management. The fisheries industry discards 35% to 70% of their production as waste, including fillet remains, skin, fins, bones, heads, viscera and scales. Despite the importance of these byproducts as protein sources, their effective utilization remains a hurdle. Various strategies have been proposed to address this issue. Among them, the production of protein hydrolysates stands out as an efficient method for value addition. Protein hydrolysis breaks down proteins into smaller peptides with diverse functional and bioactive properties. Therefore, fish protein hydrolysates have applications in both the food and nonfood sectors. Utilizing fishery byproducts and waste represents a sustainable approach toward waste valorization and resource optimization in the fishery industry. This approach offers promising opportunities for innovation and economic growth across multiple sectors. This comprehensive review explores fish protein hydrolysates derived from fishery byproducts and wastes, focusing on their applications in both the food and nonfood sectors.
Collapse
Affiliation(s)
- Anand Vaishnav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India.
| | - Saswat Mohanty
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Krishan Kumar Yadav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Mocherla Bhargavi Priyadarshini
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Payel Debbarma
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Nongthongbam Sureshchandra Singh
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Bikash Kumar Pati
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Soibam Khogen Singh
- Krishi Vigyan Kendra, ICAR - North Eastern Hill Region, Ukhrul, Manipur, India
| |
Collapse
|
4
|
Liu Z, Zhang Y, Li F, Xiong P, Chen H. Efficient Biosynthesis of Phycocyanin Holo-β Subunits in Escherichia coli and Their Stability and Antioxidant Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39999307 DOI: 10.1021/acs.jafc.4c10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Phycocyanin is a biliprotein that has been used as a natural food colorant due to its brilliant color. However, their application is limited by their poor stability. In this study, biosynthesis pathways of two phycocyanin holo-β subunits, CpcBA from mesophilic Arthrospira platensis and CpcBT from thermophilic Thermosynechococcus elongatus BP-1, were constructed in Escherichia coli. Coexpression of ferredoxin (Fd), Fd-NADP+ reductase (FNR), and NADP-specific glutamate dehydrogenase (gdhA) enabled full chromophorylation of these recombinant CpcBs in recombinant E. coli. These fully chromophorylated CpcBs were visually redder and had higher hydroxyl radical and peroxyl radical scavenging activities than the partially chromophorylated CpcBs. Comparative study on thermostability showed that at high temperature the CpcBT had lower denature rate constants and longer half-life values than the CpcBA. Both proteins were stable at acidic pH (3.0-6.6), except for the CpcBA at pH 3.0. Under a combinational treatment of acid pH and heat, CpcBA showed remarkable losses (93.6-98.4%) while CpcBT showed much less losses (20.0-49.6%). All the results indicated that CpcBT was a stable phycocyanin and could potentially be developed as an excellent colorant in the food industry.
Collapse
Affiliation(s)
- Zhe Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yunjia Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| |
Collapse
|
5
|
He J, Bao F, Li W, Deng J, Zhong F, Lin Q, Fang Y, Mwaikono KS. Polylactic acid amine-sensitive colorimetric indicator film loaded with eugenol/coumarin derivatives: Towards freshness indication and shelf-life extension of chilled pork. Int J Biol Macromol 2025; 305:141290. [PMID: 39984075 DOI: 10.1016/j.ijbiomac.2025.141290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The action of microorganisms can lead to a decrease in food freshness and cause food safety issues. Traditional packaging can only provide a certain antimicrobial effect and cannot indicate the freshness of food, which can no longer meet the needs of consumers. The preparation of intelligent packaging films with antimicrobial effects and freshness indication is an effective solution. In this study, A novel electrospun intelligent food packaging film based on polylactic acid/eugenol/coumarin derivatives (7-(diethylaMino)-2-oxo-2H-chroMene-3-carbaldehyde) has been constructed to achieve the dual functions of antimicrobial and freshness indication for chilled pork. The antimicrobial layer loads eugenol coaxially into the fiber, which could scavenge 82.92 % of DPPH free radicals and effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The freshness-indicating layer showed fluorescence responsiveness to biogenic amines. The freshness-indicating and antimicrobial fibrous bilayer film turned green in practical application to indicate that the refrigerated pork had spoiled and was effective in extending the shelf life by 4-6 days. This study demonstrated the effectiveness of the bilayer film for preservation and freshness non-destructive testing of chilled pork. It provided a theoretical basis for the general application of film.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - FeiFei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dares Salaam. Tanzania
| |
Collapse
|
6
|
Bazina N, Ahmed TG, Almdaaf M, He J, Sarker M, Islam M. BBCEAS-HLPC measurements for synthetic antioxidants (TBHQ, BHA, and BHT) in deep-UV region below 300 nm. Food Chem 2025; 465:142150. [PMID: 39581102 DOI: 10.1016/j.foodchem.2024.142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
This study investigates the integration of Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) with High-Performance Liquid Chromatography (HPLC) to detect synthetic antioxidants; BHA, BHT, and TBHQ in the deep-UV region below 300 nm. The research addresses the need for more sensitive and cost-effective detection methods in HPLC systems, particularly for low analyte concentrations, by exploring BBCEAS as a superior alternative to conventional detectors that often fall short in sensitivity. The sensitivity of the HPLC-BBCEAS system is assessed by calculating the minimum detectable change in the absorption coefficient (αmin) and comparing with those obtained using conventional HPLC and single-wavelength HPLC-CRDS methods. The findings demonstrate that the HPLC-BBCEAS system achieves αmin values of 1.8 × 10-5 cm-1 for BHA, 2.8 × 10-5 cm-1 for BHT, and 1.9 × 10-5 cm-1 for TBHQ at 280 nm, with Limits of Detection (LOD) and Quantification (LOQ) up to 30 times lower than conventional HPLC systems.
Collapse
Affiliation(s)
- Naser Bazina
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; Libyan Biotechnology Research Centre, Tripoli, Libya.
| | - Tariq G Ahmed
- School of Computing Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Mostafa Almdaaf
- Department of medicinal chemistry, Faculty of pharmacy, Elmergib University, Alkhoms, Libya
| | - Jibin He
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Mosh Sarker
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Meez Islam
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| |
Collapse
|
7
|
D'Ambra K, Trovato R, Minelli G, Cattivelli A, Zannini M, Tagliazucchi D, Tabasso S, Lo Fiego DP. Hazelnut skin polyphenolic green extract as a promising natural antioxidant in pork burgers: Assessment of quality parameters and consumer acceptance. Food Res Int 2025; 202:115764. [PMID: 39967115 DOI: 10.1016/j.foodres.2025.115764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Given the increasing consumer focus on healthier and environmentally friendly foods, the use of natural antioxidants in food production is becoming more common. The recovery of these antioxidants from agri-food waste is crucial for a circular economy, as it revalues matrices that would otherwise become waste. This study aimed to assess the antioxidant capacity of hazelnut skin and its green polyphenolic extract and to evaluate their effect on some qualitative parameters of pork burgers. Three types of burgers were formulated: a control group, and two experimental groups with the addition of 2.5 % of hazelnut skin or 1 % of hazelnut green extract. On days 0 and 7 of refrigerated storage (0-2 °C) parameters such as color, cooking losses, tenderness, lipid oxidation, and volatile profile were evaluated. Additionally, a group of panelists was asked to assess the acceptability of color and the potential for purchase. In both raw and cooked burgers, at all times examined, the two experimental groups showed a significant improvement in oxidative stability and lower production of volatile fat oxidation compounds compared to the control in which the main indicators of pork meat spoilage were detected. Although, even if on the 7th day of storage, the HS and HSE burgers exhibited better color stability, these groups showed a worsening in terms of color acceptability and tenderness. Overall, despite trade-offs, the hazelnut skin and their green extract showed high potential to emerge as food additives in meat products.
Collapse
Affiliation(s)
- Katia D'Ambra
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy.
| | - Roberta Trovato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy
| | - Giovanna Minelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1 42124 Reggio Emilia, Italy
| | - Alice Cattivelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy
| | - Melissa Zannini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1 42124 Reggio Emilia, Italy
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9 10125 Turin, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1 42124 Reggio Emilia, Italy
| |
Collapse
|
8
|
Masyita A, Hardinasinta G, Astuti AD, Firdayani F, Mayasari D, Hori A, Nisha INA, Nainu F, Kuraishi T. Natural pigments: innovative extraction technologies and their potential application in health and food industries. Front Pharmacol 2025; 15:1507108. [PMID: 39845791 PMCID: PMC11750858 DOI: 10.3389/fphar.2024.1507108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries. Special emphasis is placed on emerging technologies for natural pigment extraction (thermal technologies, non-thermal technologies, and supercritical fluid extraction), their pharmacological effects, and their potential application in intelligent food packaging and as food colorants. Natural pigments show several pharmaceutical prospects. For example, delphinidin (30 µM) significantly inhibited the growth of three cancer cell lines (B16-F10, EO771, and RM1) by at least 90% after 48 h. Furthermore, as an antioxidant agent, fucoxanthin at the highest concentration (50 μg/mL) significantly increased the ratio of glutathione to glutathione disulfide (p < 0.05). In the food industry, natural pigments have been used to improve the nutritional value of food without significantly altering the sensory experience. Moreover, the use of natural pH-sensitive pigments as food freshness indicators in intelligent food packaging is a cutting-edge technological advancement. This innovation could provide useful information to consumers, increase shelf life, and assist in evaluating the quality of packaged food by observing color variations over time. However, the use of natural pigments presents certain challenges, particularly regarding their stability and higher production costs compared to synthetic pigments. This situation underscores the need for further investigation into alternative pigment sources and improved stabilization methods. The instability of these natural pigments emphasizes their tendency to degrade and change color when exposed to various external conditions, including light, oxygen, temperature fluctuations, pH levels, and interactions with other substances in the food matrix.
Collapse
Affiliation(s)
- Ayu Masyita
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Gemala Hardinasinta
- Department of Agricultural Engineering, Faculty of Agricultural, Hasanuddin University, Makassar, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Dian Mayasari
- Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ira Nur Ainun Nisha
- Department of Biological Sciences, Faculty of Teacher Training and Education, Muslim Maros University, Maros, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Saha S, Tiwari R, Parameswaran P, Patidar R, Srivastava N, Ranjan N. Fluorescence based metabisulfite sensing: New aspects of ion sensing by a styryl benzothiazolium dye and understanding nitrite interference. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124821. [PMID: 39167898 DOI: 10.1016/j.saa.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
Detection of specific ions using fluorescent probes has relevance in several areas of therapeutics development and environmental science. Here, we provide new perspectives to the sensing of a styryl benzothiazolium-based fluorescent compound 1 and report that sensing properties are for sulfite ions in general with highest preference for metabisulfite ions (S2O52-) adding to its previously determined role as a bisulfite ion sensor. This probe exhibits its sensing action via an addition reaction in which the styryl double bond gets reduced. The interference studies highlighted that the sequence of addition of nitrite and metabisulfite has a bearing on the overall interference outcome. Spectroscopic studies revealed that the order of preferential sensing of sulfites and sulfide ion is S2O52- > HSO3- > SO32- > S2-. Although this probe displays robust sensing on its own through fluorescence quenching, its fluorescence emission can be enhanced at much lower concentrations in the presence of a G-quadruplex DNA without compromising the outcome of the sensing.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Rajesh Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
10
|
Sheikhi S, Esfandiari Z, Rostamabadi H, Noori SMA, Sabahi S, Nasab MS. Microbial safety and chemical characteristics of sausage coated by chitosan and postbiotics obtained from Lactobacillus bulgaricus during cold storage. Sci Rep 2025; 15:358. [PMID: 39747907 PMCID: PMC11696564 DOI: 10.1038/s41598-024-82810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
This study investigated the antioxidant and antimicrobial properties, as well as the volatile compounds, of Lactobacillus bulgaricus (L. bulgaricus) postbiotics (at concentration of 150 and 300 mg/L) and their combination with chitosan coatings (0.5% and 1%) on sausage quality (with 100 ppm nitrite) during 40 days of cold storage. The results were compared to a control group, as well as to sausages containing commercial formulation (120 ppm) and reduced (100 ppm) levels of nitrite. To further assess the antimicrobial effects, it also inoculated E. coli and Staphylococcus aureus into the sausages in order to examine how the postbiotics and chitosan coatings impacted the growth of these foodborne pathogens during the 40-day cold storage period. The reults indicated that those containing 300 mg/L postbiotic and 1% chitosan generally met the desired condition for pH, moisture, fat, and total volatile base-nitrogen. These samples also showed the strongest inhibition of mesophilic and psychrophilic bacteria, mold and yeast. Notably, no E. coli or S. aureus were detected in any of the samples, indicating that the postbiotic and chitosan combination effectively inhibited the growth of these pathogens in sausages. The findings suggest that using chitosan coatings and L. bulgaricus postbiotic can enhance the quality of sausages, ultimately lowering the risk of contamination by harmful bacteria and improving overall food safety.
Collapse
Affiliation(s)
- Shahab Sheikhi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Shiri Nasab
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Abdella AA, Elshenawy EA. A spatial hue smartphone-based colorimetric detection and discrimination of carmine and carminic acid in food products based on differential adsorptivity. Talanta 2025; 282:127053. [PMID: 39418979 DOI: 10.1016/j.talanta.2024.127053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
A novel, portable, disposable, affordable, and environmentally friendly paper-based analytical device (PAD) was designed for on-site determination of carmine and carminic acid. This platform utilized paper test strips with a chitosan coating as an adsorption layer, which was characterized using scanning electron microscope, energy-dispersive X-ray analysis, and water contact angle measurement. Carmine and carminic acid could be efficiently adsorbed on chitosan-coated paper test strips, producing distinct colors that could be captured using a smartphone camera without the need for an elution step. Notably, by utilizing the Hue component of the HSL model, it was possible to differentiate between carmine and carminic acid, confirming their presence in a sample. Furthermore, the color saturation intensity changed in a concentration-dependent manner, allowing for the determination of carmine and carminic acid concentrations in the ranges of 200-800 μg/mL and 20-100 μg/mL, respectively. Additionally, the created test strip could be used to measure the percentage of carminic acid in the presence of carmine. The developed PAD enabled the quantification of carmine in various food samples without the need for reagents or complex equipment. The environmental impact of this method was found to be positive based on assessments using GAPI and AGREE tools.
Collapse
Affiliation(s)
- Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, 31111, Egypt.
| | - Eman A Elshenawy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, 31111, Egypt.
| |
Collapse
|
12
|
Rezagholizade-shirvan A, Soltani M, Shokri S, Radfar R, Arab M, Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem X 2024; 24:101953. [PMID: 39582652 PMCID: PMC11584689 DOI: 10.1016/j.fochx.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Nanotechnology plays a pivotal role in food science, particularly in the nanoencapsulation of bioactive compounds, to enhance their stability, bioavailability, and therapeutic potential. This review aims to provide a comprehensive analysis of the encapsulation of bioactive compounds, emphasizing the characteristics, food applications, and implications for human health. This work offers a detailed comparison of polymers such as sodium alginate, gum Arabic, chitosan, cellulose, pectin, shellac, and xanthan gum, while also examining both conventional and emerging encapsulation techniques, including freeze-drying, spray-drying, extrusion, coacervation, and supercritical anti-solvent drying. The contribution of this review lies in highlighting the role of encapsulation in improving system stability, controlling release rates, maintaining bioactivity under extreme conditions, and reducing lipid oxidation. Furthermore, it explores recent technological advances aimed at optimizing encapsulation processes for targeted therapies and functional foods. The findings underline the significant potential of encapsulation not only in food supplements and functional foods but also in supportive medical treatments, showcasing its relevance to improving human health in various contexts.
Collapse
Affiliation(s)
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shokri
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ramin Radfar
- Department of Agriculture and Food Policies, Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, Iran
| | - Masoumeh Arab
- Department of Food Science and Technology, School of Public Health, Shahid sadoughi University of Medical Sciences, Yazd, Iran Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Chen J, Xia P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res Int 2024; 197:115177. [PMID: 39593388 DOI: 10.1016/j.foodres.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The growth of the world population and the rapid industrialization of food have led to food producers' increased reliance on food additives. While food additives offer numerous conveniences and advantages in food applications, the potential risks associated with synthetic additives remain a significant concern. This report examines the current status of safety assessment and toxicity studies of common synthetic additives, including flavorings (sweeteners and flavor enhancers), colorants, preservatives (antimicrobials and antioxidants), and emulsifiers. The report also examines recent advances in promising plant-based alternative additives in terms of active ingredients, sensory properties, potential health benefits, food application challenges, and their related technologies (edible coatings/films and nanoencapsulation technologies), providing valuable references and insights for the sustainable development of food additives.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
14
|
Fernandes B, Oliveira MC, Marques AC, Dos Santos RG, Serrano C. Microencapsulation of Essential Oils and Oleoresins: Applications in Food Products. Foods 2024; 13:3873. [PMID: 39682947 DOI: 10.3390/foods13233873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting artificial flavors, colorants, and preservatives. Microcapsules can be added to a vast range of foods and beverages, including bakery products, candies, meat products, and sauces, as well as active food packages. However, incorporating EOs and ORs into foods and beverages can be difficult due to their hydrophobic nature and poor stability when exposed to light, oxygen, moisture, and temperature. Microencapsulation techniques address these challenges by enhancing their stability during storage, protecting sensitive molecules from reacting in the food matrix, providing controlled release of the core ingredient, and improving dispersion in the medium. There is a lack of articles that research, develop, and optimize formulations of microencapsulated EOs and ORs to be incorporated into food products. Microencapsulated ORs are overlooked by the food industry, whilst presenting great potential as natural and more stable alternatives to synthetic flavors, colorants, and preservatives than the pure extract. This review explores the more common microencapsulation methods of EOs and ORs employed in the food industry, with spray drying being the most widely used at an industrial scale. New emerging techniques are explored, with a special focus on spray drying-based technologies. Categories of wall materials and encapsulated ingredients are presented, and their applications in the food and beverage industry are listed.
Collapse
Affiliation(s)
- Beatriz Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food-Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
15
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Ishimoto CK, Paulino BN, Neri-Numa IA, Bicas JL. The blue palette of life: A comprehensive review of natural bluish colorants with potential commercial applications. Food Res Int 2024; 196:115082. [PMID: 39614567 DOI: 10.1016/j.foodres.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Considering the growing interest for safer, environmentally friendly and healthier products, the search for natural colorants to replace their synthetic has been raised. This is particularly challenging for the rare and usually unstable bluish coloring substances. This comprehensive review describes several bluish pigments which can be obtained from natural sources (plants and mostly microorganisms), covering less known molecules to well established compounds (although no focus is given for anthocyanins). Key information about each compound, including sources, extraction procedures, properties, and potential applications, are presented. Despite many studies on these molecules, toxicological and stability studies are still lacking for many of them. Therefore, this text also discusses the regulatory requirements for approving new coloring substances. Given the increasing robustness of scientific data supporting the biological activities attributed to many of these pigments, it is possible to envisage that some of them may be commercially available for industrial applications in different fields, not only in traditional food or cosmetic uses but in pharmaceutical formulations as well.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Bruno Nicolau Paulino
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Iramaia Angelica Neri-Numa
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
17
|
Li P, Qu R, Li M, Sheng P, Jin L, Huang X, Xu ZZ. Impacts of food additives on gut microbiota and host health. Food Res Int 2024; 196:114998. [PMID: 39614468 DOI: 10.1016/j.foodres.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 12/01/2024]
Abstract
The rapidly expanding food industry necessitates the use of food additives to achieve specific purposes. However, this raises new concerns in food safety due to the reported negative impacts of food additives on gut microbiota and host health, particularly in the context of continuous worldwide urbanization. This review summarizes the existing studies on the effects of different types of commonly used food additives on gut microbiota alteration, intestinal barrier disruption, metabolism disorder, and neurobehavior changes. These food additives, including emulsifiers, low-calorie sweeteners, inorganic nanoparticles, and preservatives, have been found to exert multifaceted impacts, primarily adverse effects, highlighting the potential risks associated with food additive exposure in various chronic diseases. Further research is warranted to elucidate the specific mechanisms, determine the relevance of these findings to humans, and clarify the suitability of certain food additives for vulnerable populations. It is crucial to note that natural food additives are not inherently superior to synthetic ones in terms of safety. Rigorous evaluation is still warranted before their widespread application in the food industry. Additionally, the potential synergistic effects of commonly used food additives combination in specific food categories on gut microbiota and host metabolism should be investigated to understand their relevance in real-world scenarios.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Ru Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ping Sheng
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Liang Jin
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
18
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Pan W, Velasco Abadia A, Guo Y, Gabbanini S, Baschieri A, Amorati R, Valgimigli L. Peroxyl Radical Trapping Antioxidant Activity of Essential Oils and Their Phenolic Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23832-23843. [PMID: 39433300 DOI: 10.1021/acs.jafc.4c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Essential oils (EOs) are gaining importance as sustainable food antioxidants, but kinetic data on peroxyl radical trapping are missing. Thirteen EOs from 11 botanical species were studied in the inhibited autoxidation of cumene by oxygen-uptake kinetics. EOs of Juniperus oxycedrus, Syzygium aromaticum, Thymus vulgaris, Thymbra capitata, Betula alba, Pimenta racemosa, and Satureja montana, containing 23-86% phenolic components by gas chromatography/mass spectrometry (GC-MS) analysis, afforded inhibition rate constants kinh in the order of 104 M-1 s-1 at 30 °C similar to reference butylhydroxytoluene (2,6-di-tert-butyl-4-methylphenol) (BHT). They matched or outperformed BHT in the protection of olive oil. The EOs Daucus carota and Cedrus atlantica with <1% phenols and those of Apium graveolens and Tagetes minuta with no phenolics had no chain-breaking activity. Key components carvacrol, thymol, eugenol, dihydroeugenol, umbelliferone, conyferyl alcohol, o-cresol, m-cresol, p-cresol, 4-allylphenol, 2,3-xylenol, 2,4-xylenol, and phenol had kinh in the range of 103-104 M-1 s-1 and, along with EOs containing them, could potentially replace BHT in the protection of food products.
Collapse
Affiliation(s)
- Wenkai Pan
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Albert Velasco Abadia
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Yafang Guo
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Simone Gabbanini
- R&D Division, BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Tecnopolo di Rimini, Via D. Campana 71, 47922 Rimini, Italy
| |
Collapse
|
20
|
Yang B, Wang X, Li W, Liu G, Li D, Xie C, Yang R, Jiang D, Zhou Q, Wang P. Synergistic enhancement of anthocyanin stability and techno-functionality of colored wheat during the steamed bread processing by selectively hydrolyzed soy protein. Food Chem 2024; 456:139984. [PMID: 38876063 DOI: 10.1016/j.foodchem.2024.139984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and β-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.
Collapse
Affiliation(s)
- Bailu Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinnuo Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China.
| |
Collapse
|
21
|
Passos TF, Nitschke M. The pH and Sucrose Influence Rhamnolipid Action Toward Planktonic and Biofilms of Listeria monocytogenes. Microorganisms 2024; 12:2078. [PMID: 39458387 PMCID: PMC11509803 DOI: 10.3390/microorganisms12102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial resistance and persistence in food environments are major concerns for the industry, which constantly seeks new strategies to reduce microbial contamination. Rhamnolipids (RL) biosurfactants are considered sustainable and green alternatives to synthetics; furthermore, they have demonstrated potential for controlling various foodborne pathogens. Food environments are typically exposed to diverse pH, solutes, temperatures, and water activity (aw) levels that may favor the survival of pathogens. Therefore, it is crucial to consider these factors in evaluating the performance of novel antimicrobials. Our study examined the influence of pH and sucrose on the antimicrobial activity of RL against both planktonic and biofilm of Listeria monocytogenes. We found that the presence of sucrose can enhance the antimicrobial effectiveness of RL against both planktonic and sessile bacteria. The addition of sugar particularly improved RL action at pH 6 and 7. Moreover, we observed that the type and size of RL self-assembly structures depend on the pH and sucrose concentration. These findings suggest potential for developing RL-based innovative methods to control L. monocytogenes in sugar-rich or -low aw foods and environments.
Collapse
Affiliation(s)
| | - Marcia Nitschke
- São Carlos Institute of Chemistry (IQSC), University of São Paulo, Trabalhador São-Carlense Av., 400, P.O. Box 780, São Carlos 13566-590, SP, Brazil;
| |
Collapse
|
22
|
Bolchini S, Larcher R, Morozova K, Scampicchio M, Nardin T. Screening of Antioxidant Maillard Reaction Products Using HPLC-HRMS and Study of Reaction Conditions for Their Production as Food Preservatives. Molecules 2024; 29:4820. [PMID: 39459189 PMCID: PMC11510528 DOI: 10.3390/molecules29204820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The Maillard reaction (MR) involves interactions between reducing sugars and amino acids or proteins during heating, producing Maillard reaction products (MRPs) that influence food flavour, aroma, and colour. Some MRPs exhibit antioxidant properties, prompting interest in their potential as natural food preservatives. This study aimed to develop a method for detecting and identifying antioxidant MRPs using high-pressure liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (HRMS). By improving chromatographic conditions, the separation of antioxidant MRPs was optimised using known antioxidant MRPs as reference signals. This work also examined the effects of pH, reaction time, and different sugar-amino acid combinations on the production and composition of antioxidant MRPs. Results indicated that neutral to basic pH facilitated faster reactions, with pH 7 selected as optimal. A library of 50 m/z signals for potential antioxidant MRPs was created, and the best combinations of amino acids and sugars for their production were identified. These findings pave the way for more precise analyses of antioxidant MRPs, with future research focusing on isolating and characterising specific MRPs to understand their structures and mechanisms, ultimately contributing to the development of functional foods with natural antioxidant properties.
Collapse
Affiliation(s)
- Sara Bolchini
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Roberto Larcher
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Tiziana Nardin
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| |
Collapse
|
23
|
Hofseth LJ, Hebert JR, Murphy EA, Trauner E, Vikas A, Harris Q, Chumanevich AA. Allura Red AC is a xenobiotic. Is it also a carcinogen? Carcinogenesis 2024; 45:711-720. [PMID: 39129647 PMCID: PMC11464682 DOI: 10.1093/carcin/bgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/13/2024] Open
Abstract
Merriam-Webster and Oxford define a xenobiotic as any substance foreign to living systems. Allura Red AC (a.k.a., E129; FD&C Red No. 40), a synthetic food dye extensively used in manufacturing ultra-processed foods and therefore highly prevalent in our food supply, falls under this category. The surge in synthetic food dye consumption during the 70s and 80s was followed by an epidemic of metabolic diseases and the emergence of early-onset colorectal cancer in the 1990s. This temporal association raises significant concerns, particularly given the widespread inclusion of synthetic food dyes in ultra-processed products, notably those marketed toward children. Given its interactions with key contributors to colorectal carcinogenesis such as inflammatory mediators, the microbiome, and DNA damage, there is growing interest in understanding Allura Red AC's potential impact on colon health as a putative carcinogen. This review discusses the history of Allura Red AC, current research on its effects on the colon and rectum, potential mechanisms underlying its impact on colon health, and provides future considerations. Indeed, although no governing agencies classify Allura Red AC as a carcinogen, its interaction with key guardians of carcinogenesis makes it suspect and worthy of further molecular investigation. The goal of this review is to inspire research into the impact of synthetic food dyes on colon health.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, United States
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, 29208, United States
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, United States
| | - Erica Trauner
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Athul Vikas
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Quinn Harris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
24
|
da Silva Duarte V, Treu L, Campanaro S, Fioravante Guerra A, Giacomini A, Mas A, Corich V, Lemos Junior WJF. Investigating biological mechanisms of colour changes in sustainable food systems: The role of Starmerella bacillaris in white wine colouration using a combination of genomic and biostatistics strategies. Food Res Int 2024; 193:114862. [PMID: 39160049 DOI: 10.1016/j.foodres.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
This study explores the biological mechanisms behind colour changes in white wine fermentation using different strains of Starmerella bacillaris. We combined food engineering, genomics, machine learning, and physicochemical analyses to examine interactions between S. bacillaris and Saccharomyces cerevisiae. Significant differences in total polyphenol content were observed, with S. bacillaris fermentation yielding 6 % higher polyphenol content compared to S. cerevisiae EC1118. Genomic analysis identified 12 genes in S. bacillaris with high variant counts that could impact phenotypic properties related to wine color. Notably, SNP analysis revealed numerous missense and synonymous variants, as well as stop-gained and start-lost variants between PAS13 and FRI751, suggesting changes in metabolic pathways affecting pigment production. Besides that, high upstream gene variants in SSK1 and HIP1R indicated potential regulatory changes influencing gene expression. Fermentation trials revealed FRI751 consistently showed high antioxidant activity and polyphenol content (Total Polyphenol: 299.33 ± 3.51 mg GAE/L, DPPH: 1.09 ± 0.01 mmol TE/L, FRAP: 0.95 ± 0.02 mmol TE/L). PAS13 exhibited a balanced profile, while EC1118 had lower values, indicating moderate antioxidant activity. The Weibull model effectively captured nitrogen consumption dynamics, with EC1118 serving as a reliable benchmark. The scale parameter delta for EC1118 was 23.04 ± 2.63, indicating moderate variability in event times. These findings highlight S. bacillaris as a valuable component in sustainable winemaking, offering an alternative to chemical additives for maintaining wine quality and enhancing colours profiles. This study provides insights into the biotechnological and fermented food systems applications of yeast strains in improving food sustainability and supply chain, opening new avenues in food engineering and microbiology.
Collapse
Affiliation(s)
- Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Laura Treu
- Department Department of Biology, University of Padova, Padova, Italy
| | - Stefano Campanaro
- Department Department of Biology, University of Padova, Padova, Italy.
| | - André Fioravante Guerra
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, Brazil
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
| | - Albert Mas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, Tarragona, Catalonia, Spain
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy; Department of Land, Environment, Agriculture and Forestry - TeSAF Legnaro, Padova, Italy.
| | | |
Collapse
|
25
|
Yu X, Wang H, Xiang X, Fu J, Wang X, Zhou Y, Xing W. Biosynthesis and Extraction of Chlorophyll, Carotenoids, Anthocyanins, and Betalaine In Vivo and In Vitro. Curr Issues Mol Biol 2024; 46:10662-10676. [PMID: 39329984 PMCID: PMC11431765 DOI: 10.3390/cimb46090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
As natural bioactive compounds, plant pigments play crucial roles not only in plant phenotype, growth, development, and adaptation to stress but also hold unique value in biotechnology, healthcare, and industrial applications. There is growing interest in the biosynthesis and acquisition of plant pigments. Thus, this paper explores emerging extraction methods of natural pigments and elucidates the biosynthesis pathways of four key plant pigments, chlorophylls, carotenoids, anthocyanins, and betalaine in vivo and in vitro. We comprehensively discuss the application of solvent, supercritical fluid [extraction], ultrasonic, and microwave-assisted extraction techniques, as well as introducing key enzymes, precursors, and synthetic pathways involved in pigment synthesis. δ-Aminolevulinic acid represents a pivotal initiating enzyme for chlorophyll synthesis, whereas isopentenylpyrophosphate, (IPP) and dimethylallyl pyrophosphate, (DMAPP) are closely associated with carotenoid biosynthesis. Phenylalanine and tyrosine are critical substances for anthocyanin and betalaine synthesis, respectively. Hence, crucial genes such as chlI, crtB, PGT8, CYP76AD1, and BvDODA can be employed for heterologous biosynthesis in vitro to meet the demand for increased plant pigment amount. As a pivotal determinant of plant coloration, an in-depth exploration into the high-quality acquisition of plant pigments can provide a basis for developing superior pigments and offer new insights into increasing pigment yield.
Collapse
Affiliation(s)
- Xinxin Yu
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Hao Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Xingchun Xiang
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Jingjing Fu
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Xin Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Wang Xing
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; (X.Y.); (H.W.); (X.X.); (J.F.); (X.W.)
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
26
|
Xu Q, Chow PS, Xi E, Marsh R, Gupta S, Gupta KM. Evaluation of polymer-preservative interactions for preservation efficacy: molecular dynamics simulation and QSAR approaches. NANOSCALE 2024; 16:17049-17063. [PMID: 39189358 DOI: 10.1039/d4nr02162b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Preservatives are critical ingredients in various pharmaceutical and consumer products. In particular, a high efficacy preservative system is essential in enhancing the shelf-life and safety of these products. However, the development of such a preservative system heavily relies on experimental approaches. In this study, molecular dynamics (MD) simulation was complemented with quantitative structure-activity relationship (QSAR) modelling to comprehensively evaluate polymer-preservative interactions between three different polymers (polyethylene terephthalate, PET; polypropylene, PP; and cellulose) and a series of preservatives from the classes of aliphatic, aromatic, and organic acids. First, adsorption of preservatives onto polymer surfaces was simulated in an aqueous environment. The preservatives did not adhere to hydrophilic cellulose, but most preservatives were adsorbed by PET and PP in distinct configurations. Interaction energies (IEs) between the preservatives and the polymers generally increase from cellulose to PP and PET. The diffusion coefficients of preservatives are dependent on polymer nature, preservative structure, and their resulting molecular interactions. Linear and low molecular weight preservatives exhibit higher diffusion coefficients in polymers. For a particular preservative, diffusion coefficients increased in the order of cellulose < PET < PP. Finally, using MD properties and molecular descriptors of preservatives, QSAR models were developed to identify key descriptors of preservatives and predict their IEs and diffusion coefficients in polymers. This study demonstrates a computational approach for identifying critical materials properties, and predicting polymer-preservative molecular interactions in water. Such an approach streamlines the rational selection and design of high efficacy preservative systems for various pharmaceutical, food and cosmetic products. Furthermore, the integrated computational strategy also reduces trial-and-error experimental efforts, thereby accelerating the development of high efficacy preservative systems.
Collapse
Affiliation(s)
- Qisong Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Erte Xi
- Proctor & Gamble, Winton Hill Business Center, 6280 Center Hill Ave., Cincinnati, OH 45224, USA
| | - Randy Marsh
- Proctor & Gamble, Winton Hill Business Center, 6280 Center Hill Ave., Cincinnati, OH 45224, USA
| | - Shikar Gupta
- Procter & Gamble International Operations SA SG Branch, Singapore 138547, Singapore
| | - Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
27
|
Wang H, Bai J, Miao P, Wei Y, Chen X, Lan H, Qing Y, Zhao M, Li Y, Tang R, Yang X. The key to intestinal health: a review and perspective on food additives. Front Nutr 2024; 11:1420358. [PMID: 39360286 PMCID: PMC11444971 DOI: 10.3389/fnut.2024.1420358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
In this review, we explore the effects of food additives on intestinal health. Food additives, such as preservatives, antioxidants and colorants, are widely used to improve food quality and extend shelf life. However, their effects on intestinal microecology May pose health risks. Starting from the basic functions of food additives and the importance of intestinal microecology, we analyze in detail how additives affect the diversity of intestinal flora, oxidative stress and immune responses. Additionally, we examine the association between food additives and intestinal disorders, including inflammatory bowel disease and irritable bowel syndrome, and how the timing, dosage, and individual differences affect the body's response to additives. We also assess the safety and regulatory policies of food additives and explore the potential of natural additives. Finally, we propose future research directions, emphasizing the refinement of risk assessment methods and the creation of safer, innovative additives.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Junyi Bai
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Wei
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | | - Haibo Lan
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yong Qing
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Meizhu Zhao
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yanyu Li
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | |
Collapse
|
28
|
Mohamed RS, Fouda K, Maghraby AS, Assem FM, Menshawy MM, Zaghloul AH, Abdel-Salam AM. Hepato-renal protective impact of nanocapsulated Petroselinum crispum and Anethum graveolens essential oils added in fermented milk against some food additives via antioxidant and anti-inflammatory effects: In silico and in vivo studies. Heliyon 2024; 10:e36866. [PMID: 39286161 PMCID: PMC11403541 DOI: 10.1016/j.heliyon.2024.e36866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The study assessed the efficacy of parsley and dill essential oils (EOs) nanocapsules incorporated into fermented milk in hepato-renal protection against specific food additives. A molecular docking assay was conducted between parsley and dill EOs bioactive molecules and inflammatory cytokines. Freeze-dried parsley and dill EOs nanocapsules were developed, characterized for their morphological structure, particle size, zeta potential, polydispersity index and encapsulation efficiency and assessed in fast green dye and sodium benzoate (SB) combination-treated rats. The docking results revealed that the primary constituents of parsley and dill EOs (apiol, myristicin, α-pinene, (-)-carvone, and d-limonene) interacted with the active sites of TNF-α, IL-1β and TGF-1β cytokines with hydrophobic and hydrogen bond interactions. D-limonene had the highest binding affinity (6.4 kcal/mol) for the TNF-α. Apiol and myristicin had the highest binding affinity (5.1, 5.0, 5.0 and 5.0 kcal/mol, respectively) for the IL-1β and TGF-β1 receptors. Biochemically and histopathologically, the excessive co-administration of fast green and SB revealed adverse effects on the liver and the kidney. Whereas the treatment with parsley and dill EOs nanocapsules afford hepato-renal protective effects as manifested by suppression the elevated liver and kidney functions. Parsley and dill EOs nanocapsules showed a significant reduction of the liver (64.08 and 80.5 pg/g, respectively) and kidney (59.3 and 83.6 pg/g, respectively) ROS. Moreover, parsley and dill EOs nanocapsules down-regulated the liver and the kidney inflammatory cytokines (IL-6, TNF-α, IL-1β and TGF-1β) and lipid peroxidation and up-regulated the antioxidant enzymes. In conclusion, the data suggest a potential hepato-renal protective effects of parsley and dill EOs nanocapsules.
Collapse
Affiliation(s)
- Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amany S Maghraby
- Department of Therapeutic Chemistry, research group immune-and bio-markers for infection, the Center of Excellent for Advanced Science (CEAS), National Research Centre, Dokki, Cairo, Egypt
| | - Fayza M Assem
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Medhat M Menshawy
- College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed H Zaghloul
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
29
|
Gómez S, Lafiosca P, Giovannini T. Modeling UV/Vis Absorption Spectra of Food Colorants in Solution: Anthocyanins and Curcumin as Case Studies. Molecules 2024; 29:4378. [PMID: 39339373 PMCID: PMC11434053 DOI: 10.3390/molecules29184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
We present a comprehensive computational study of UV/Vis absorption spectra of significant food colorants, specifically anthocyanins and curcumin tautomers, dissolved in polar protic solvents, namely water and ethanol. The absorption spectra are simulated using two fully polarizable quantum mechanical (QM)/molecular mechanics (MM) models based on the fluctuating charge (FQ) and fluctuating charge and dipoles (FQFμ) force fields. To accurately capture the dynamical aspects of the solvation phenomenon, atomistic approaches are combined with configurational sampling obtained through classical molecular dynamics (MD) simulations. The calculated QM/FQ and QM/FQFμ spectra are then compared with experiments. Our findings demonstrate that a precise reproduction of the UV/Vis spectra of the studied pigments can be achieved by adequately accounting for configurational sampling, polarization effects, and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Sara Gómez
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Piero Lafiosca
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
30
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
31
|
Jiao L, Li Y, Tian M, Zhao S, Zhang X, Benjakul S, Zhang B. Novel Halogenated Curcumin-Mediated Photodynamic Inactivation for the Preservation of Small Yellow Croaker ( Larimichthys polyactis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18720-18730. [PMID: 39068643 DOI: 10.1021/acs.jafc.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A novel class of halogenated curcumin, X-Cur (X = F, Cl, or Br), was synthesized, and its photosensitivity was evaluated. The results showed that Br-Cur with the highest singlet oxygen (1O2) generation capacity exhibited a better photodynamic inactivation (PDI) effect on the small yellow croaker (Larimichthys polyactis) than curcumin. This was attributed to the heavy atom effect of Br, which resulted in Br-Cur having the smallest singlet-triplet energy difference ΔEst(S1-T3) (0.140 eV) and the largest spin-orbit coupling value (0.642262 cm-1). When L. polyactis was treated with 0.025 wt % Br-Cur and exposed to blue LED irradiation (450 nm, 20 mW/cm2) for 20 min, the increase in the total volatile basic nitrogen content (28.23 ± 2.38 mg/100 g on day 6), pH, and total viable count (6.13 ± 0.06 log CFU/g on day 6) could be effectively controlled. Accordingly, Br-Cur is a promising photosensitizer for PDI preservation.
Collapse
Affiliation(s)
- Long Jiao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuwei Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mingyu Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Shuyi Zhao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoye Zhang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
32
|
Venkatesan U, Muniyan R. Review on the extension of shelf life for fruits and vegetables using natural preservatives. Food Sci Biotechnol 2024; 33:2477-2496. [PMID: 39144196 PMCID: PMC11319680 DOI: 10.1007/s10068-024-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fruits and vegetables are important for the nutrition and health of individuals. They are highly perishable in nature because of their susceptibility to microbial growth. Foodborne pathogens create a significant problem for consumers, food businesses, and food safety. Postharvest factors, including transportation, environment, and preservation techniques, cause a reduction in product quality. The present world is using synthetic preservatives, which have negative impacts on consumer health. Food safety and demand for healthy foods among consumers, the scientific community, and the food industry resulted in the exploitation of natural preservatives, which play an important role in their effectiveness, prolonged shelf life, and safety. Natural preservatives include plants, animals, and microbiological sources with polymers to extend shelf life, improve quality, and enhance food safety. This review specifically focuses on mechanism of action of natural preservatives, spoilage of fruit and vegetables, the importance of edible film and coating on fruits and vegetables.
Collapse
Affiliation(s)
- Uma Venkatesan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Rajiniraja Muniyan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
33
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
34
|
Karabagias VK, Giannakas AE, Andritsos ND, Leontiou AA, Moschovas D, Karydis-Messinis A, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Salmas CE. Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films. Antioxidants (Basel) 2024; 13:776. [PMID: 39061844 PMCID: PMC11274301 DOI: 10.3390/antiox13070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper.
Collapse
Affiliation(s)
- Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Areti A. Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece;
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| |
Collapse
|
35
|
Li J, Huang H, Xie S, Zhang H, Huang X, Yue R, Xu J, Duan X. Portable electrochemical sensing platform based on amidated GO-MOF and PEDOT:PSS for high-efficient detection of ponceau 4R. Mikrochim Acta 2024; 191:382. [PMID: 38858269 DOI: 10.1007/s00604-024-06409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
A promising electrochemical sensing platform for the detection of ponceau 4R in food has been fabricated based on the carboxylated graphene oxide (GO-COOH), metal-organic framework (MOF) UIO-66-NH2, and poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). To this end GO-COOH was covalently coupled with UIO-66-NH2 through amide reaction, endowing the material (GO-CONH-UIO-66) unique hierarchical pores and high chemical stability and as a result improving the conductivity of MOF and the dispersion of GO. After the addition of PEDOT:PSS into GO-CONH-UIO-66, the continuity and conductivity of the composite (PEDOT:PSS/GO-CONH-UIO-66) have been further enhanced, due to the high conductivity, favorable film-forming, and hydrophilic properties of PEDOT:PSS. Systematic electrochemical experiments confirm that the PEDOT:PSS/GO-CONH-UIO-66/GCE shows satisfactory electrochemical sensing properties towards the detection of ponceau 4R, with a wide linear detection range of 0.01-30 μM, a low limit of detection of 3.33 nM, and a high sensitivity of 0.606 μA μM-1 cm-2. The PEDOT:PSS/GO-CONH-UIO-66 sensing platform was successfully used to detect ponceau 4R in beverage, and the detection results were compared with high-performance liquid chromatography. As a result, the PEDOT:PSS/GO-CONH-UIO-66 composite shows a promising application prospect for rapid detection of ponceau 4R in food and will play significant role in food safety detection and supervision.
Collapse
Affiliation(s)
- Junhong Li
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Hui Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shuqian Xie
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Huan Zhang
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xinyu Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Ruirui Yue
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jingkun Xu
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Xuemin Duan
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| |
Collapse
|
36
|
Beganovic S, Wittmann C. Medical properties, market potential, and microbial production of golden polyketide curcumin for food, biomedical, and cosmetic applications. Curr Opin Biotechnol 2024; 87:103112. [PMID: 38518404 DOI: 10.1016/j.copbio.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Curcumin, a potent plant polyketide in turmeric, has gained recognition for its outstanding health benefits, including anti-inflammatory, antioxidant, and anticancer effects. Classical turmeric farming, which is widely used to produce curcumin, is linked to deforestation, soil degradation, excessive water use, and reduced biodiversity. In recent years, the microbial synthesis of curcumin has been achieved and optimized through novel strategies, offering increased safety, improved sustainability, and the potential to revolutionize production. Here, we discuss recent breakthroughs in microbial engineering and fermentation techniques, as well as their capacity to increase the yield, purity, and cost-effectiveness of curcumin production. The utilization of microbial systems not only addresses supply chain limitations but also helps meet the growing demand for curcumin in various industries, including pharmaceuticals, foods, and cosmetics.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Germany
| | | |
Collapse
|
37
|
Yan R, Liu M, Zeng X, Du Q, Wu Z, Guo Y, Tu M, Pan D. Preparation of modified chitosan-based nano-TiO 2-nisin composite packaging film and preservation mechanism applied to chilled pork. Int J Biol Macromol 2024; 269:131873. [PMID: 38677699 DOI: 10.1016/j.ijbiomac.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Liu D, Ren Y, Zhong S, Xu B. New Insight into Utilization of Fish By-Product Proteins and Their Skin Health Promoting Effects. Mar Drugs 2024; 22:215. [PMID: 38786606 PMCID: PMC11122902 DOI: 10.3390/md22050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
In regions reliant on fisheries for livelihoods, a significant number of fish by-products are generated annually due to processing. These discarded parts contain valuable biological resources, such as proteins, fish oils, and trace elements, thus holding enormous potential for reutilization. In recent years, fish by-product proteins have been widely utilized in skincare products due to their rich collagen content, biosafety, and biocompatibility. This review summarizes the research into and applications of fish by-product proteins in skin health, including alleviating oxidative stress and skin inflammation, reducing DNA damage, mitigating melanin production, improving skin hydration, slowing skin matrix degradation, and promoting synthesis. Additionally, the possibility of improving skin health by improving the abundance of gut microbiota is also discussed. This review underscores the importance of fish by-product proteins in the fisheries, food processing, cosmetics, and biomedical industries.
Collapse
Affiliation(s)
- Dongcheng Liu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxin Ren
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
| |
Collapse
|
39
|
Li Q, Liu JZ, Yang J, Wang YD, Yang SX, Niu SB, Ding G. Biological activities and mass fragmentation pathways of meroterpenoid cochlioquinones from plant pathogenic fungus Bipolaris sorokiniana. Food Chem 2024; 437:137853. [PMID: 37918162 DOI: 10.1016/j.foodchem.2023.137853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Cochlioquinones are a member of meroterpenoids that partially possessed phenolic hydroxyls with potential antioxidant activities. This study investigated the mass fragmentation pathways, antioxidant, cytotoxic, and phytotoxic activities of cochlioquinone analogs. The mass fragmentation pathways of cochlioquinones (1-7) were firstly analyzed using UPLC-Q-TOF-MS/MS, in which Retro Diels-Alder reaction, neutral loss, and McLafferty rearrangement were the main cleavage patterns. Compound 8 and 9 (a unique new analog) were then isolated in target. Cochlioquinones (4-6, 9) displayed strong antioxidant activities for DPPH radical scavenging assay as the first antioxidant effects report. In addition, 1-9 exhibited cytotoxic activities against B16 cells (IC50 from 1.91 to 12.33 μM) and Hep G2 cells (IC50 from 3.21 to 77.15 μM), and 5, 7, and 8 showed phytotoxic activities against foxtail leaves. These biological activities imply that cochlioquinones can be as antioxidant agents for food additives or bioactive molecules for cancer drugs and pesticides.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jian-Zi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, China
| | - Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Sheng-Xiang Yang
- College of Chemical and Materials Engineering, Zhejiang A&F University, Zhejiang, China.
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing 100083, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
40
|
Bolan S, Sharma S, Mukherjee S, Zhou P, Mandal J, Srivastava P, Hou D, Edussuriya R, Vithanage M, Truong VK, Chapman J, Xu Q, Zhang T, Bandara P, Wijesekara H, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170013. [PMID: 38242452 DOI: 10.1016/j.scitotenv.2024.170013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jajati Mandal
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
| | - Prashant Srivastava
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, Urrbrae, South Australia, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Randima Edussuriya
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - James Chapman
- University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qing Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pramod Bandara
- Department of Food Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia.
| |
Collapse
|
41
|
Mariano E, Lee DY, Yun SH, Lee J, Choi Y, Park J, Han D, Kim JS, Hur SJ. The Color-Developing Methods for Cultivated Meat and Meat Analogues: A Mini-Review. Food Sci Anim Resour 2024; 44:356-371. [PMID: 38764512 PMCID: PMC11097031 DOI: 10.5851/kosfa.2024.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 05/21/2024] Open
Abstract
Novel meat-inspired products, such as cell-cultivated meat and meat analogues, embrace environmental sustainability, food safety and security, animal welfare, and human health, but consumers are still hesitant to accept these products. The appearance of food is often the most persuasive determinant of purchasing decisions for food. Producing cultivated meat and meat analogues with similar characteristics to conventional meat could lead to increased acceptability, marketability, and profitability. Color is one of the sensorial characteristics that can be improved using color-inducing methods and colorants. Synthetic colorants are cheap and stable, but natural pigments are regarded as safer components for novel food production. The complexity of identifying specific colorants to imitate both raw and cooked meat color lies in the differences in ingredients and methods used to produce meat alternatives. Research devoted to improving the sensorial characteristics of meat analogues has noted various color-inducing methods (e.g., ohmic cooking and pasteurization) and additives (e.g., lactoferrin, laccase, xylose, and pectin). Additionally, considerations toward other meat components, such as fat, can aid in mimicking conventional meat appearance. For instance, the use of plant-based fat replacers and scaffolds can produce a marked sensory enhancement without compromising the sustainability of alternative meats. Moving forward, consumer-relevant sensorial characteristics, such as taste and texture, should be prioritized alongside improving the coloration of meat alternatives.
Collapse
Affiliation(s)
- Ermie Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
42
|
Islam MS, Rahman MS, Khatun M, Hajibeigy M, Uddin MN, Khatun MM. Extraction of organic pigments from tomato ( Solanum lycopersicum L.), turmeric ( Curcuma longa L.) and red amaranth ( Amaranthus tricolor L.) for safe use in agro-products. Heliyon 2024; 10:e25278. [PMID: 38317892 PMCID: PMC10839955 DOI: 10.1016/j.heliyon.2024.e25278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The utilization of synthetic dyes in food industries is a great concern for food safety and health issues. So, natural pigments can be an excellent substitute for synthetic dyes and also health-friendly for consumers. In the experiment, natural pigments were extracted from tomato (Solanum lycopersicum L.), turmeric (Curcuma longa L.) and red amaranth (Amaranthus tricolor L.). Then the stability and consumer acceptance of the extracted pigments were examined. The highest amount of pigment was extracted from turmeric (2.14 ± 0.30 %) with ethanol solvent, followed by tomato (0.67 ± 0.06 %) with hexane: acetone (1:1) solvent, and red amaranth (0.78 ± 0.05 %) with acetone solvent. Turmeric pigment showed the highest stability in high temperatures and light exposure. All of the pigments were highly stable in a neutral environment; however, tomato pigment showed the highest stability index (84.33 ± 2.52) at pH 3.0, but turmeric pigment showed the highest stability (91.67 ± 1.53) at pH 5.0. The simple preference test revealed that the use of turmeric pigment in boiled rice had the highest acceptance rate, and in terms of taste and flavor, red amaranth pigments in ice cream. So turmeric pigment can be utilized in high-temperature processing and/or acidic foods, but tomato and red amaranth pigments might be in low-temperature processing foods such as the ice-cream and soft drinks processing industry.
Collapse
Affiliation(s)
- Md Shariful Islam
- Department of Agricultural Chemistry, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Md Sharifur Rahman
- Department of Food Technology and Engineering, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Muslima Khatun
- Department of Agricultural Chemistry, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | | | - Md Nizam Uddin
- Department of Agricultural Chemistry, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Mst Moriom Khatun
- Lecturer, S.B. Railway Colony School and College, Sirajganj, Bangladesh
| |
Collapse
|
43
|
Xiao N, Ruan S, Mo Q, Zhao M, Liu T, Feng F. Effects of potassium sorbate on systemic inflammation and gut microbiota in normal mice: A comparison of continuous intake and washout period. Food Chem Toxicol 2024; 184:114443. [PMID: 38211766 DOI: 10.1016/j.fct.2024.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Potassium sorbate (PS) is a widely used food preservative in the field of food industry. However, the effects of continuous intake and washout period of PS on host health are still unclear. In this study, to investigate long-term effect and after-effect of different concentrations and time points of PS, healthy mice were orally exposed to 150 mg/kg, 500 mg/kg and 1000 mg/kg of PS for 10 weeks, and washout treatment for another 5 weeks, respectively. The results indicated that PS intake for 10 weeks had no obvious effects on organs and adipose tissue, nor did it noteworthily interfere with glucolipid metabolism in the serum. However, it caused inflammatory cell infiltration in the liver, increased serum interleukin (IL)-1β level, changed abundances of gut microbiota but failed to promote the production of short chain fatty acids in the gut. After washout period for 5 weeks, liver inflammation and IL-1β level were decreased, and gut environment developed towards a healthier condition. Specifically, PS washout significantly increased abundance of Lachnospiraceae_NK4A136_group and the production of isobutyric acid. This study confirmed washout period eliminated negative effects from continuous intake of PS, which provided positive evidence for its safety.
Collapse
Affiliation(s)
- Nanhai Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Shengyue Ruan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiufen Mo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tao Liu
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China; ZhongYuan Institute, Zhejiang University, Zhengzhou, 450001, China.
| |
Collapse
|
44
|
Oliveira KC, Franciscato LMSS, Mendes SS, Barizon FMA, Gonçalves DD, Barbosa LN, Faria MGI, Valle JS, Casalvara RFA, Gonçalves JE, Gazim ZC, Ruiz SP. Essential Oil from the Leaves, Fruits and Twigs of Schinus terebinthifolius: Chemical Composition, Antioxidant and Antibacterial Potential. Molecules 2024; 29:469. [PMID: 38257382 PMCID: PMC10819699 DOI: 10.3390/molecules29020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Schinus terebinthifolius Raddi, popularly known as "Pink pepper", is a plant native to Brazil. The objective of this work was to analyze the chemical composition and the antioxidant and antibacterial potential of essential oils (EOs) from the leaves, fruits and twigs of S. terebinthifolius, aiming for their application in food safety. EOs were obtained by hydrodistillation and the chemical composition was determined by gas chromatography coupled to mass spectrometry. Phenolic compounds were quantified and antioxidant activity was evaluated using three different methods. The antibacterial activity was determined by the broth microdilution method against foodborne bacteria. In the chemical analysis, 22 compounds were identified in the leaves, 13 compounds in the fruits and 37 compounds in the twigs, revealing the presence of the main compounds germacrene D (12.04%, 15.78%, 20,41%), caryophyllene (15.97%, 3.12%, 11.73%), α-pinene (11.6%, 17.16%, 2.99%), β-pinene (5.68%, 43.34%, 5.60%) and γ-gurjunene (16,85%, 3,15%) respectively. EOs showed better antioxidant potential using the β-carotene/linoleic acid method with 40.74, 61.52 and 63.65% oxidation inhibition for leaves, fruits and twigs, respectively. The EO from the leaves showed greater antibacterial potential against Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 0.62 mg mL-1, a value lower than the MIC of sodium nitrite (5.00 mg mL-1), the antimicrobial standard synthetic. The activities of pink pepper EOs suggest their potential as a biopreservative in foods.
Collapse
Affiliation(s)
- Kátia C. Oliveira
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Lidaiane M. S. S. Franciscato
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Suelen S. Mendes
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Francielly M. A. Barizon
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Daniela D. Gonçalves
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
- Graduate Program in Medicinal Plants and Herbal Medicines in Basic Health Care, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil
| | - Lidiane N. Barbosa
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
- Graduate Program in Medicinal Plants and Herbal Medicines in Basic Health Care, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil
| | - Maria G. I. Faria
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Juliana S. Valle
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Rhaira F. A. Casalvara
- Graduate Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University (UniCesumar), Maringá 87050-390, PR, Brazil; (R.F.A.C.); (J.E.G.)
| | - José E. Gonçalves
- Graduate Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University (UniCesumar), Maringá 87050-390, PR, Brazil; (R.F.A.C.); (J.E.G.)
| | - Zilda C. Gazim
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Suelen P. Ruiz
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| |
Collapse
|
45
|
Zhu B, Zhong Y, Wang D, Deng Y. Active and Intelligent Biodegradable Packaging Based on Anthocyanins for Preserving and Monitoring Protein-Rich Foods. Foods 2023; 12:4491. [PMID: 38137296 PMCID: PMC10742553 DOI: 10.3390/foods12244491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, active and intelligent packaging has been developed to solve the spoilage problem for protein-rich foods during storage, especially by adding anthocyanin extracts. In such a film system, the antioxidant and antibacterial properties were dramatically increased by adding anthocyanins. The physicochemical properties were enhanced through interactions between the active groups in the anthocyanins and reactive groups in the polymer chains. Additionally, the active and intelligent film could monitor the spoilage of protein-rich foods in response to pH changes. Therefore, this film could monitor the sensory acceptance and extend the shelf life of protein-rich foods simultaneously. In this paper, the structural and functional properties of anthocyanins, composite actions of anthocyanin extracts and biomass materials, and reinforced properties of the active and intelligent film were discussed. Additionally, the applications of this film in quality maintenance, shelf-life extension, and quality monitoring for fresh meat, aquatic products, and milk were summarized. This film, which achieves high stability and the continuous release of anthocyanins on demand, may become an underlying trend in packaging applications for protein-rich foods.
Collapse
Affiliation(s)
| | | | | | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (B.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
46
|
Ma XY, Shao ZL, Yu XP, Wang ZL. A Droplet Digital PCR-Based Approach for Quantitative Analysis of the Adulteration of Atlantic Salmon with Rainbow Trout. Foods 2023; 12:4309. [PMID: 38231780 DOI: 10.3390/foods12234309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Low-cost fish species are often used to adulterate or substitute for Atlantic salmon products, posing a serious threat to market order and public health. Hence, reliable techniques are urgently needed to detect Atlantic salmon adulteration. In this study, a precise method for identifying and quantifying adulterated Atlantic salmon with rainbow trout based on droplet digital PCR (ddPCR) testing was developed. Species-specific primers and probes were designed targeting the single-copy nuclear gene myoglobin of two salmonids. A quantitative formula for calculating the mass fraction of adulterated Atlantic salmon with rainbow trout was established based on a one-step conversion strategy, in which the DNA copy number ratios were directly transformed to meat mass fractions by introducing a fixed constant (the transfer coefficient). The dynamic range of the established ddPCR method was from 1% to 90%, with a limit of detection (LOD) of 0.2% and a limit of quantification (LOQ) of 0.8% for rainbow trout in Atlantic salmon, respectively. The quantification method demonstrated an acceptable level of repeatability and reproducibility, as the values of the relative standard deviation (RSD) for the tested meat mixtures with the known fractions were all less than 5%. Thermal and freezing treatments, as well as adding food additives within the recommended dosage limits, had no significant effect on the quantification accuracy. The method was successfully applied to detect rainbow trout adulteration in commercial raw and processed Atlantic salmon products. In comparison to real-time quantitative PCR (qPCR) testing, the established ddPCR method exhibited a higher level of stability and accuracy. Overall, the ddPCR-based quantitative method exhibited high levels of accuracy, stability, sensitivity, and practicability, suitable for applications in the routine surveillance and quality assurance of salmon products.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhu-Long Shao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
47
|
Hussain S, Sharma M, Jarg T, Aav R, Bhat R. Natural pigments (anthocyanins and chlorophyll) and antioxidants profiling of European red and green gooseberry ( Ribes uva-crispa L.) extracted using green techniques (UAE-citric acid-mediated extraction). Curr Res Food Sci 2023; 7:100629. [PMID: 38034946 PMCID: PMC10681953 DOI: 10.1016/j.crfs.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 12/02/2023] Open
Abstract
Green techniques to extract natural pigments are gaining prominence among consumers and food industries. This trend is predominantly due to the harmful effects imparted by commonly used synthetic dyes and the unwarranted stress created on our ecosystem. The objectives of this study were to obtain natural pigments (anthocyanins and chlorophyll) from Estonian-gown European green and red gooseberries by ultrasonic-assisted citric acid-mediated extraction method and perform antioxidant profiling (quantification via HPLC analysis). Green gooseberry extracts showed lower content of targeted compounds, with low concentrations of rutin (0.7-1.2 mg/L) and quercetin 3-glucoside (0.9-1.3 mg/L), while in the red gooseberry extracts, the amount was slightly higher (1.4-6.9 and 1.0-1.3 mg/L, respectively) with 0.6-6.8 mg/L cyanidin 3-glucoside and 0.32-0.35 mg/L peonidin 3 glucoside recorded. Further, the yield of anthocyanins ranged between 1.14-1.79 and 1.86-3.63 mg/100 g in green and red gooseberries, respectively. Total phenols ranged between 162-392 and 263-987 mg GAE/100 g in green and red gooseberry extracts, respectively. The DPPH free radicals scavenging activity showed 73-86% and 87-91% inhibition in both green and red gooseberry, respectively. Results showed significant improvements in pigment extraction with higher values obtained for targeted antioxidant compounds using conventional and UAE extraction (aqueous extract), thus confirming that green extractions are a reliable technique to obtain pigments of interest from natural sources. The results support consumers' demand and open up the avenue to explore pigments as natural colourants in food and cosmetics applications.
Collapse
Affiliation(s)
- Shehzad Hussain
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Minaxi Sharma
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu, 51006, Estonia
| |
Collapse
|
48
|
Shi C, Knøchel S. Bioprotection Potential of Lacticaseibacillus rhamnosus LRH01 and Lactiplantibacillus plantarum LP01 against Spoilage-Associated Penicillium Strains in Yoghurt. Molecules 2023; 28:7397. [PMID: 37959814 PMCID: PMC10647279 DOI: 10.3390/molecules28217397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Penicillium spp. are considered a major spoilage fungus in dairy products. Due to the growing concerns over food safety issues and the demand for "clean label" food products from consumers, the use of lactic acid bacteria (LAB) as a bioprotective tool to control fungal spoilage of dairy products appears to be a promising alternative. Here, the antifungal activities of ten LAB cultures against five dairy-spoilage-associated Penicillium strains were studied in a model system, and the most potent bioprotective cultures were further tested in yoghurt. Lacticaseibacillus rhamnosus (L. rhamnosus) LRH01 and Lactiplantibacillus plantarum (L. plantarum) LP01 exhibited potent antifungal efficacy at low concentrations. The inhibitory effects of cell-containing fermentates (C-fermentates), cell-free fermentates (CF-fermentates), and volatiles produced by the two cultures were tested in a yoghurt serum medium. The C-fermentates showed antifungal effects, while the removal of cells from C-fermentates led to decreased antifungal activities. Volatiles alone displayed some antifungal efficiency, but less than the fermentates. In a yoghurt matrix, the specific effect of manganese depletion by the bioprotective cultures on mold growth was investigated. Here, the LAB cultures could completely suppress the growth of molds, while addition of manganese partially or fully restored the mold growth, demonstrating that manganese depletion played a key role in the antifungal activity of the tested LAB cultures in the yoghurt matrix. Both L. plantarum LP01 and L. rhamnosus LRH01 showed efficient antifungal activities in the yoghurt serum, while L. rhamnosus LRH01 exhibited the most potent inhibitory effects on Penicillium strains when added during the processing of the yoghurt with subsequent storage at 7 °C for 22 days. Our findings suggested that L. rhamnosus LRH01 could be a promising bioprotective culture for yoghurt biopreservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
- Section of Food Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - Susanne Knøchel
- Section of Food Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| |
Collapse
|
49
|
Tian HH, Huang XH, Qin L. Insights into application progress of seafood processing technologies and their implications on flavor: a review. Crit Rev Food Sci Nutr 2023; 64:13259-13274. [PMID: 37788446 DOI: 10.1080/10408398.2023.2263893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seafood tends to be highly vulnerable to spoilage and deterioration due to biochemical reactions and microbial contaminations, which requires appropriate processing technologies to improve or maintain its quality. Flavor, as an indispensable aspect reflecting the quality profile of seafood and influencing the final choice of consumers, is closely related to the processing technologies adopted. This review gives updated information on traditional and emerging processing technologies used in seafood processing and their implications on flavor. Traditional processing technologies, especially thermal treatment, effectively deactivate microorganisms to enhance seafood safety and prolong its shelf life. Nonetheless, these methods come with limitations, including reduced processing efficiency, increased energy consumption, and alterations in flavor, color, and texture due to overheating. Emerging processing technologies like microwave heating, infrared heating, high pressure processing, cold plasma, pulsed electric field, and ultrasound show alternative effects to traditional technologies. In addition to deactivating microorganisms and extending shelf life, these technologies can also safeguard the sensory quality of seafood. This review discusses emerging processing technologies in seafood and covers their principles, applications, developments, advantages, and limitations. In addition, this review examines the potential synergies that can arise from combining certain processing technologies in seafood processing.
Collapse
Affiliation(s)
- He-He Tian
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lei Qin
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
50
|
Hashemian H, Ghaedi M, Dashtian K, Mosleh S, Hajati S, Razmjoue D, Khan S. Cellulose acetate/MOF film-based colorimetric ammonia sensor for non-destructive remote monitoring of meat product spoilage. Int J Biol Macromol 2023; 249:126065. [PMID: 37524273 DOI: 10.1016/j.ijbiomac.2023.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Herein, we designed an on-site and portable colorimetric assay using cellulose acetate polymeric films incorporated with HKUST-1 metal-organic framework while immersed in a solution of methyl red and brilliant cresyl blue organic dyes as an indicator for monitoring ammonia levels. Ammonia serves as a significant biomarker of food spoilage which falls under the category of volatile organic compounds (VOCs). The designed colorimetric solid-state sensor was comprehensively characterized using FE-SEM, EDS-mapping, XRD, FTIR, and contact angle analyses. The results confirmed the superior stability, water permeability, good crystallinity and desirable morphology of the prepared sensor platform. Additionally, customized smartphone was developed and applied for online signaling and colorimetric analysis. The findings demonstrated two linear ranges: 1-100 ppb and 0.1-1340 ppm with a detection limit of 0.02 ppm. The solid-state sensor exhibited high selectivity in the presence of other VOCs such as methanol, ethanol, acetone, 2-propanol, toluene, humidity, and hexane. It displayed acceptable repeatability in both inter-day (RSD = 3.38 %) and intraday (RSD = 3.86 %), long-term stability over 4 days as well as reusability over 3 cycles. We successfully applied this sensing platform for ammonia monitoring in spoiled meat foods including veal, fish and chicken. The results indicated favorable percentage recovery and repeatability, confirming the feasibility and potential applicability of this intelligent packaging system for monitoring freshness. The platform allows for real-time monitoring and data analysis via smartphone-based online signaling, providing a convenient and effective method for ensuring food quality.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Soleiman Mosleh
- Polymer Engineering Department, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|