1
|
Bhamdare H, Pahade P, Bose D, Durgbanshi A, Carda-Broch S, Peris-Vicente J. Evaluating the effectiveness of different household washing techniques for removal of insecticides from spinach and chickpea leaves by micellar liquid chromatography. J Chromatogr A 2024; 1730:465043. [PMID: 38908066 DOI: 10.1016/j.chroma.2024.465043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
In the past few decades, the employment of green analytical approaches in chromatographic method development has attracted the analytical separation community. The greenness of the developed method depends upon the toxicity of solvents and the amount of generated post-analysis waste generated. In this concern, micellar liquid chromatography (MLC) is a simple and rapid technique that generates very low toxic waste compared to traditional chromatographic pesticide detection methods. Here, MLC method has been validated and applied for the determination of monocrotofos (MCF), imidacloprid (ICP), dimethoate (DM) and profenofos (PFF) in spinach and chickpea leaves. The optimized mobile phase was 0.065 M SDS-2 % 1-propanol, 0.01 M NaH2PO4 buffered to pH 7. A C18 column was used for separation with a flow rate of 1 mL/min. The developed method has been validated following the guidelines of SANTE/11,312/2021 and ICH guidelines for; limit of quantification (0.05-0.20 mg/kg), linearity (r2> 0.997-0.999), precision (<6.3 %), accuracy (96.3 %-99.8 %) and robustness (<6) in real samples. ICP and MCF, apart from DM and PFF, were detected in the present work. After detecting insecticides in spinach and chickpea leaves both were washed with different household chemicals i.e. normal, lukewarm, common salt, lemon juice water and commercial ozonizer. Based on five washing techniques with insecticide concentration time intervals reduction rates were calculated for each washing treatment. The results show that lemon juice, common salt water, and ozonizer can be used as washing techniques for the reduction of superficial and systematic residues of ICP and MCF. Common salt and lemon juice water were better for washing over vinegar and potassium permanganate (KMnO4) as they enhance the colour of the green leafy vegetables and are available in every Indian kitchen. They can be easily used by lower socioeconomic classes who cannot afford KMnO4 and vinegar.
Collapse
Affiliation(s)
- Hemlata Bhamdare
- Department of Criminology and Forensic Science, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Priyanka Pahade
- Department of Criminology and Forensic Science, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Devasish Bose
- Department of Criminology and Forensic Science, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Abhilasha Durgbanshi
- Department of Chemistry, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| | - Samuel Carda-Broch
- Bioanalytical Chemistry, Department of Physical and Analytical Chemistry, ESTCE, Universitat Jaume I, Castello 12071, Spain
| | - Juan Peris-Vicente
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Burjassot-Valencia 46100, Spain
| |
Collapse
|
2
|
Zhao S, Huang X, Chen G, Qin H, Xu B, Luo Y, Liao Y, Wang S, Yan S, Zhao J. Causal inference and mechanism for unraveling the removal of four pesticides from lettuce (Lactuca sativa L.) via ultrasonic processing and various immersion solutions. ULTRASONICS SONOCHEMISTRY 2024; 108:106937. [PMID: 38896895 PMCID: PMC11239705 DOI: 10.1016/j.ultsonch.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
This study explores the reduction of carbamates (CAs) and pyrethroids (PYs) - commonly used pesticides - in lettuce using various immersion solutions and ultrasonic processing. It also examines the role of machine learning and molecular docking in understanding the mechanisms of pesticide reduction. The results revealed that the highest reduction of both CAs and PYs exceeded 80 % on lettuce leaves. In most samples, the reduction increased with the power of ultrasonic processing and processing time. The results of machine learning models (XGBoost and SHAP) showed that during the immersion cleaning of CAs and PYs, as well as during both immersion cleaning and ultrasonic processing of CAs + PYs, the reduction was most influenced by the initial pesticide levels and immersion time. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of lettuce's wax layer identified 24 compounds, including fatty alcohols, fatty acids, fatty acid esters, and triterpenoids. Despite the absence of active sites, the lipophilic nature of long-chain aliphatic compounds aids in pesticide binding, while triterpenoids form strong hydrogen bonds with pesticides, indicating a robust adsorption on the lettuce surface. This study aims to offer insights into the efficient removal of chemical pesticide residues from fruits and vegetables, addressing critical concerns for food safety and human health.
Collapse
Affiliation(s)
- Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Xinyi Huang
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Guanyu Chen
- College of Physics and Electronic Engineering, Sichuan Normal University, Sichuan 610101, China
| | - Haixiong Qin
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Bowen Xu
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Yu Luo
- College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Ying Liao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Shufang Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation 450000, Zhengzhou, Henan, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education 610101, Chengdu, Sichuan, P. R. China; College of Life Science, Sichuan Normal University 610101, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
3
|
Majed L, Hayar S, Dousset S, Maestroni BM, El Omari K. Effect of vine leaves processing on Azoxystrobin, Fenazaquin and Indoxacarb residues dissipation: processing factors and consumer safety assessment. Food Chem 2024; 447:139065. [PMID: 38513485 DOI: 10.1016/j.foodchem.2024.139065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The effect of vine leaves processing techniques on Azoxystrobin, Fenazaquin, and Indoxacarb residues was investigated. Residue extraction following field application of pesticides and leaf processing was carried out using the QuEChERS method, with analysis conducted by LC-MS/MS. In dry conservation, Azoxystrobin's half-life was estimated to exceed a year, Fenazaquin's was 18 days, and Indoxacarb's was 142 days. Azoxystrobin had a half-life of 261 days, Fenazaquin had a half-life of 9 days, and Indoxacarb's half-life exceeded a year in brine conservation. It is recommended to use dry conservation because it results in an average 60 % reduction in residue levels for the three pesticides. Boiling water significantly reduced pesticide residues (Azoxystrobin -40.3 %, Indoxacarb -22.4 %, and Fenazaquin -28.8 %). It is recommended to use boiling water for washing, as it shows an average removal rate of approximately 30 %. The health risk assessment indicated that consuming vine leaves posed no health risk for consumers, but overall exposure to residues must be considered.
Collapse
Affiliation(s)
- Liliane Majed
- Doctoral School of Science and Technology, Platform for Research and Analysis in Environmental Science (EDST-PRASE), Rafik Hariri Campus, Hadath-Baabda, 1003, Lebanon; Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 Université de Lorraine-CNRS, Bd des Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy, France.
| | - Salem Hayar
- Doctoral School of Science and Technology, Platform for Research and Analysis in Environmental Science (EDST-PRASE), Rafik Hariri Campus, Hadath-Baabda, 1003, Lebanon; Department of Plant Protection, Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh-Matn, 90775, Lebanon.
| | - Sylvie Dousset
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 Université de Lorraine-CNRS, Bd des Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy, France.
| | - Britt Marianna Maestroni
- Food Safety and Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna, Austria.
| | - Khaled El Omari
- Quality Control Center Laboratories, Chamber of Commerce, Industry and Agriculture at Tripoli & North Lebanon (CCIAT), Tripoli 1300, Lebanon.
| |
Collapse
|
4
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
5
|
Fang S, Fan L, Niu Y, Jiao G, Jia H, Wang F, Yang H, Kang Y. SERS imaging investigation of the removal efficiency of pesticide on vegetable leaves by using different surfactants. Food Chem 2024; 445:138722. [PMID: 38387315 DOI: 10.1016/j.foodchem.2024.138722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Pesticide residues on vegetables could be removed by commercial detergents to guarantee food safety, but the removal efficiencies of different formulations of detergents need to be further investigated. In this work, surface enhanced Raman scattering (SERS) imaging method due to its good space resolution as well as high sensitivity is used to track the thiram residue, and evaluate the pesticide removing efficiencies by mixtures of several surfactants at different ratios. Sodium linear alkylbenzene sulphonate-alkyl glycoside (LAS-APG) with the ratio at 5:5 and the concentration at 0.2 % show the best removing effect. In addition, HPLC method is employed to validate the results of SERS imaging. Furthermore, LAS-APG mixture could be efficiently washed out from the leaves through simple household cleaning, meaning no secondary contamination. It is perspective that SERS imaging is an effective technique to explore the effect of fruit and vegetable detergents in removing pesticide residues.
Collapse
Affiliation(s)
- Sugui Fang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Li Fan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Yulian Niu
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Guoshuai Jiao
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | - Yan Kang
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China.
| |
Collapse
|
6
|
Li X, Liu C, Liu F, Zhang X, Chen X, Peng Q, Wu G, Zhao Z. Substantial removal of four pesticide residues in three fruits with ozone microbubbles. Food Chem 2024; 441:138293. [PMID: 38183718 DOI: 10.1016/j.foodchem.2023.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Developing a straightforward method to remove pesticide residues from fruits is essential for food safety. In this study, ozone microbubble treatment was performed on three fruits (strawberry, cherry, and apricot) to remove four pesticide residues (emamectin benzoate, azoxystrobin, boscalid, and difenoconazole) while comparing removal efficiency. The concentration of hydroxyl radicals in different washing orientations was homogeneous at a concentration ranging between 8.9 and 10.2 μmol·L-1. Under long washing time (18 min), strawberry, cherry, and apricot obtained higher removal rates of 51 %∼65 %, 51 %∼59 % and 24 %∼70 %, respectively. Moreover, scanning electron microscopy (SEM) and contact angle (CA) revealed that apricot has better hydrophobicity, leading to a higher pesticide removal of 45 ∼ 84 % with less water and more vigorous washing. Notably, vitamin C content in fruits remain largely unchanged following ozone microbubble treatment. This study demonstrated the effectiveness of ozone microbubble treatment as pollution-free method for enhancing food safety by removing pesticide residues on fruits.
Collapse
Affiliation(s)
- Xiaohan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Chengcheng Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Fengmao Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xianzhao Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xuehui Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Qingrong Peng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Ge Wu
- Infinitus China Co. Ltd, Guangzhou, 510663, China.
| | | |
Collapse
|
7
|
Anandhi G, Iyapparaja M. Systematic approaches to machine learning models for predicting pesticide toxicity. Heliyon 2024; 10:e28752. [PMID: 38576573 PMCID: PMC10990867 DOI: 10.1016/j.heliyon.2024.e28752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Pesticides play an important role in modern agriculture by protecting crops from pests and diseases. However, the negative consequences of pesticides, such as environmental contamination and adverse effects on human and ecological health, underscore the importance of accurate toxicity predictions. To address this issue, artificial intelligence models have emerged as valuable methods for predicting the toxicity of organic compounds. In this review article, we explore the application of machine learning (ML) for pesticide toxicity prediction. This review provides a detailed summary of recent developments, prediction models, and datasets used for pesticide toxicity prediction. In this analysis, we compared the results of several algorithms that predict the harmfulness of various classes of pesticides. Furthermore, this review article identified emerging trends and areas for future direction, showcasing the transformative potential of machine learning in promoting safer pesticide usage and sustainable agriculture.
Collapse
Affiliation(s)
- Ganesan Anandhi
- Department of Smart Computing, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - M. Iyapparaja
- Department of Smart Computing, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
8
|
Du X, Gao Z, He L. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2630-2640. [PMID: 37985216 DOI: 10.1002/jsfa.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Understanding the role of adjuvants in pesticide persistence is crucial to develop effective pesticide formulations and manage pesticide residues in fresh produce. This study investigated the impact of a commercial non-ionic surfactant product containing alkylphenol ethoxylates (APEOs) on the persistence of thiabendazole on apple and spinach surfaces against the 30 kg m-3 baking soda (sodium bicarbonate, NaHCO3 ) soaking, which was used to remove the active ingredient (AI) in the cuticular wax layer of fresh produce through alkaline hydrolysis. Surface-enhanced Raman scattering (SERS) mapping method was used to quantify the residue levels on fresh produce surfaces at different experimental scenarios. Four standard curves were established to quantify surface thiabendazole in the absence and presence of APEOs, on apple and spinach leaf surfaces, respectively. RESULTS Overall, the result showed that APEOs enhanced the persistence of thiabendazole over time. After 3 days of exposure, APEOs increased thiabendazole surface residue against NaHCO3 hydrolysis on apple and spinach surfaces by 5.39% and 10.47%, respectively. CONCLUSION The study suggests that APEOs led to more pesticide residues on fresh produce and greater difficulty in washing them off from the surfaces using baking soda, posing food safety concerns. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
9
|
Wang A, Wan Y, Qi W, Mahai G, Qian X, Zheng T, Li Y, Xu S, Xiao H, Xia W. Urinary biomarkers of exposure to organophosphate, pyrethroid, neonicotinoid insecticides and oxidative stress: A repeated measurement analysis among pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169565. [PMID: 38145670 DOI: 10.1016/j.scitotenv.2023.169565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Exposure to insecticides may be associated with increased oxidative stress (OS), but few studies have assessed the associations of OS biomarkers (OSBs) with exposure to multiple insecticides and their mixture, especially in pregnant women who are a vulnerable population. In the present study, 1,094 Chinese pregnant women were recruited and a total of 3,282 urine samples were collected at their three trimesters to measure eight metabolites of organophosphates, three metabolites of pyrethroids, nine typical neonicotinoids/their metabolites, and three OSBs of DNA damage (8-OHdG), RNA damage (8-OHG), and lipid peroxidation (HNE-MA). Among the twenty target insecticide metabolites, sixteen of them were frequently detected; thirteen of them were detected in over 86% of all the urine samples except for imidacloprid (IMI, detection frequency: 72.9%), desnitro-imidacloprid (DN-IMI, 70.0%), and clothianidin (CLO, 79.6%). The reproducibility of their concentrations across the three trimesters was poor to fair (intraclass correlation coefficients <0.50). Multiparity and warm season were related to higher urinary levels of some insecticide metabolites, while higher education level and inadequate weight gain during pregnancy were significantly associated with lower concentrations of certain insecticide metabolites. Linear mixed model analyses suggested that almost all the frequently detected insecticide metabolites [other than 3-phenoxybenzoic acid (3-PBA)] were significantly associated with elevated levels of the three OSBs (8-OHdG, 8-OHG, and HNE-MA), where the percent change (Δ%) ranged 8.10-36.0% for 8-OHdG, 8.49-34.7% for 8-OHG, and 5.92-182% for HNE-MA, respectively, with each interquartile ratio (IQR)-fold increase in the concentrations of the individual exposure biomarkers. Weighted quantile sum models demonstrated that the insecticide metabolite mixture was positively associated with the three OSBs. Overall, urinary desmethyl-clothianidin (DM-CLO) and 3,5,6-trichloro-2-pyridinol (TCPy) were the top insecticide exposure biomarkers contributing to the association with 8-OHdG and 8-OHG levels, while PNP contributed the most to the association with HNE-MA levels. These findings suggested that gestational exposure to organophosphates, pyrethroids, neonicotinoids, their transformation products, and their mixture may increase oxidative damage to lipids, RNA, and DNA during pregnancy.
Collapse
Affiliation(s)
- Aizhen Wang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Wei Qi
- Wuhan Jinyintan Hospital, Wuhan, Hubei 430040, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China.
| | - Wei Xia
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
10
|
Sojithamporn P, Leksakul K, Sawangrat C, Charoenchai N, Boonyawan D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023; 12:4386. [PMID: 38137190 PMCID: PMC10743213 DOI: 10.3390/foods12244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.
Collapse
Affiliation(s)
- Phanumas Sojithamporn
- Graduate Program in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Nivit Charoenchai
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Center (PBP), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
11
|
Peters M, Mormann S, Gies N, Rentería-Solís Z. Taenia martis in a white-headed lemur (Eulemur albifrons) from a zoological park in North Rhine-Westphalia, Germany. Vet Parasitol Reg Stud Reports 2023; 44:100913. [PMID: 37652632 DOI: 10.1016/j.vprsr.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
We present the case of Taenia martis metacestode infection in a white-headed lemur (Eulemur albifrons) from a zoological park. A post-mortem examination was conducted on the unexpectedly perished animal and focal granulomatous pneumonia with metacestodic tissue was discovered. Identification of T. martis was conducted through amplification and sequencing of a 12S rRNA gene fragment. We discuss the possible sources of infection and underline the importance of this infection in public health and conservation.
Collapse
Affiliation(s)
- Martin Peters
- Chemisches und Veterinärunterschungsamt Westfalen, Zur Taubeneiche 10-12, 59821 Arnsberg, Germany.
| | - Sascha Mormann
- Chemisches und Veterinärunterschungsamt Westfalen, Zur Taubeneiche 10-12, 59821 Arnsberg, Germany.
| | - Nicole Gies
- Tierpark Hamm, Grünstr. 150, 59063 Hamm, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany.
| |
Collapse
|
12
|
Tankiewicz M. Assessment of Apple Peel Barrier Effect to Pesticide Permeation Using Franz Diffusion Cell and QuEChERS Method Coupled with GC-MS/MS. Foods 2023; 12:3220. [PMID: 37685153 PMCID: PMC10486934 DOI: 10.3390/foods12173220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, a new approach to pesticide permeation through the apple peel into the pulp is discussed. The tested compounds can be classified, based on mode of action, as systemic (boscalid, cyprodinil, pirimicarb, propiconazole and tebuconazole) or contact (captan, cypermethrin and fludioxonil) pesticides. The barrier effect was assessed using a Franz flow-type vertical diffusion cell system. A residue analysis was performed using a modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) extraction method coupled to gas chromatography with tandem mass spectrometry (GC-MS/MS). The limits of detection (LODs) ranged between 2.6 µg kg-1 (pirimicarb) and 17 µg kg-1 (captan), with the coefficient of variability (CV) lower than 6%, while recoveries ranged from 85% (boscalid) to 112% (captan) at 0.1 and 1 mg kg-1 spiked levels. The highest peel penetration was observed for pirimicarb, captan and cyprodinil, with cumulative permeations of 90, 19 and 17 µg cm-2, respectively. The total absorption was in the range from 0.32% (tebuconazole) to 32% (pirimicarb). Only cypermethrin was not quantitatively detected in the pulp, and its use can be recommended in crop protection techniques. The obtained results indicate that molecular weight, octanol-water partition coefficient and water solubility are important parameters determining the process of pesticide absorption.
Collapse
Affiliation(s)
- Maciej Tankiewicz
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa Str. 23A, 80-204 Gdańsk, Poland
| |
Collapse
|
13
|
Qi Y, Cao J, Li C, Ren P, Qin S, Li J. Dissipation, Processing Factors and Dietary Exposure Assessment of Myclobutanil in Tomato. Molecules 2023; 28:5978. [PMID: 37630230 PMCID: PMC10459743 DOI: 10.3390/molecules28165978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Myclobutanil residue poses a potential threat to consumers' health. This work aims to investigate the degradation behavior, residue levels, processing factors (PFs) and dietary risk of myclobutanil in tomato. Myclobutanil was analyzed using a modified quick, easy, cheap, effective, rugged, safe (QuEChERS) method combined with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS), and average recoveries ranged from 82% to 102% with relative standard deviations RSDs ≤ 9.1%. After spraying myclobutanil miscible oil under field conditions, the initial concentration of myclobutanil was 0.055 mg/kg, and its dissipation followed the first-order kinetics equation with a half-life of 2.88 days. Myclobutanil was mainly present in the tomato skin, and its concentration was about four times that in the whole tomato. The initial concentration of myclobutanil in raw tomato was 0.100 mg/kg. After washing, peeling, homogenization, simmering and canning, the residual level of myclobutanil decreased to 0.067 mg/kg, 0.023 mg/kg, 0.013 mg/kg, 0.044 mg/kg and 0.041 mg/kg, respectively. Although the procedure of simmering led to an increase in myclobutanil concentration, the PFs were all less than 1 in the whole process, showing that the processing procedure significantly decreased the residual level of myclobutanil canned tomato paste in comparison with the raw agricultural commodity. Washing, peeling, and homogenization played critical roles in reducing pesticide residues. The residues of myclobutanil during the processing of tomato pose low dietary exposure risks to consumers in China, which were acceptable. However, the acute and chronic risk quotient for children revealed that it was necessary to monitor the dietary exposure of pesticide residues for children closely.
Collapse
Affiliation(s)
| | | | | | | | | | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (Y.Q.); (J.C.); (C.L.); (P.R.); (S.Q.)
| |
Collapse
|
14
|
Zhao Q, Ge Q, Shang Y, Zheng M, Sun X, Bao S, Fang Y, Zhang Z, Ma T. Eating with peel or not: Investigation of the peel consumption situation and its nutrition, risk analysis, and dietary advice in China. Food Res Int 2023; 170:112972. [PMID: 37316012 DOI: 10.1016/j.foodres.2023.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Nutritious, balanced, tasty and easy to eat, fruit is an indispensable health food for consumers. With consumers' increasing respect for the concept of health, green and nutrition, the peel, which has higher nutritional value compared to the pulp, is gradually being emphasized in the consumption process. The suitability of fruit peels for consumption is influenced by various factors, such as the amount of pesticide residues, nutrient content, ease of peeling, and fruit texture, but there is a lack of relevant studies to guide consumers' scientific intake of fruit peels. This review first investigated chineses consumers consumption of common fruits with peels, especially eight fruits that are controversial in terms of whether to consume them with peels, and the results showed that whether people consume peels depends mainly on their nutritional value and pesticide residues. Based on this, the paper discusses the common methods of pesticide detection and removal from fruit peels, as well as the nutrients contained in different fruit peels and their physiological activities, if the peels usually have stronger antioxidant, anti-inflammatory and anti-tumor activities than the pulp. Finally, reasonable dietary recommendations are made on whether fruits should be consumed with their peels, with a view to guiding chineses consumers towards scientific consumption and provide theoretical basis for relevant research in other countries.
Collapse
Affiliation(s)
- Qinyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China; Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China
| | - Yi Shang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Mingyuan Zheng
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Zhenwen Zhang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China.
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Ssemugabo C, Bradman A, Ssempebwa JC, Guwatudde D. Consumer Awareness and Health Risk Perceptions of Pesticide Residues in Fruits and Vegetables in Kampala Metropolitan Area in Uganda. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231184751. [PMID: 37476078 PMCID: PMC10354737 DOI: 10.1177/11786302231184751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
Consumer awareness of the presence of pesticides in fruits and vegetables and associated health risks influences the actions they undertake to reduce their exposure. This study was carried out to explore consumers' awareness of pesticide residues in fruits and vegetables and perceptions towards associated health effects in Kampala Metropolitan Area (KMA) in Uganda. Eight focus group discussions (FGDs) were done with fruit and vegetables consumers in KMA. The FGDs consisted of females and males living in urban and rural areas. Discussions were recorded and transcribed. The transcripts were coded inductively and analysed using conventional content analysis. Consumers were aware of the presence of pesticide residues in fruits and vegetables. Non-compliance to good agricultural practices, desire to produce good quality fruits and vegetables, and conflict of interest were thought to be the underlying reasons for the contamination. Consumers thought that their health is at risk of chronic and acute health effects, and that this risk is unavoidable. They emphasized that long term exposure to the pesticide residues puts them at risk of conditions like reproductive defects and noncommunicable diseases like cancer, hypertension, obesity, kidney and heart diseases among others. To reduce the risk, consumers were aware of and relied on mitigation measures including washing, peeling, drying and cooking or applied them in combination. Consumers were aware of the presence of pesticide residues on fruits and vegetables, potential short and long term health risks due to exposure, and domestic processing methods to reduce health risks. There is need for authorities to ensure adherence to good agricultural practices and ensure that farmers and consumers understand that pesticide are used to control pests and disease but not to primarily increase shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Charles Ssemugabo
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Asa Bradman
- Department of Public Health, School of Social Sciences, Humanities and Arts, University of California Merced, Merced, CA, USA
- Center for Children’s Environmental Health Research, School of Public Health, University of California, Berkeley, CA, USA
| | - John C Ssempebwa
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - David Guwatudde
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
16
|
Du X, Gao Z, Yang T, Qu Y, He L. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122954. [PMID: 37270975 DOI: 10.1016/j.saa.2023.122954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Pesticide active ingredients (AIs) are often applied with adjuvants to facilitate the stability and functionality of AIs in agricultural practice. The objective of this study is to investigate the role of a common non-ionic surfactant, alkylphenol ethoxylate (APEO), on the surface-enhanced Raman spectroscopic (SERS) analysis of pesticides as well as its impact on pesticide persistence on apple surfaces, as a model fresh produce surface. The wetted areas of two AIs (thiabendazole and phosmet) mixed with APEO were determined respectively to correct the unit concentration applied on apple surfaces for a fair comparison. SERS with gold nanoparticle (AuNP) mirror substrates was applied to measure the signal intensity of AIs with and without APEO on apple surfaces after a short-term (45 min) and a long-term (5 days) exposure. The limit of detection (LOD) of thiabendazole and phosmet using this SERS-based method were 0.861 ppm and 2.883 ppm, respectively. The result showed that APEO decreased the SERS signal for non-systemic phosmet, while increased SERS intensity of systemic thiabendazole on apple surfaces after 45 min pesticide exposure. After 5 days, the SERS intensity of thiabendazole with APEO was higher than thiabendazole alone, and there was no significant difference between phosmet with and without APEO. Possible mechanisms were discussed. Furthermore, a 1% sodium bicarbonate (NaHCO3) washing method was applied to test the impact of APEO on the persistence of the residues on apple surfaces after short-term and long-term exposures. The results indicated that APEO significantly enhanced the persistence of thiabendazole on plant surfaces after a 5-day exposure, while there was no significant impact on phosmet. The information obtained facilitates a better understanding of the impact of the non-ionic surfactant on SERS analysis of pesticide behavior on and in plants and helps further develop the SERS method for studying complex pesticide formulations in plant systems.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Tianxi Yang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanqi Qu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Alqahtani D, Alnabati K, Al-Mutairi MA, Alajmi R, Alsaleem T, Almanna S, Alowaifeer AM. The effect of various washing methods on pesticide residues, toxic and essential elements removal in rice. J Food Sci 2023. [PMID: 37191667 DOI: 10.1111/1750-3841.16591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
This study examined the effects of various treatments on removing pesticide residues and toxic elements in rice. In parallel, nutritional elements, magnesium (Mg), potassium (K), and phosphorous (P), were measured to investigate the effect of these washing treatments on the nutritional value of rice. A naturally contaminated rice sample containing five widespread used pesticides (azoxystrobin, buprofezin, carbendazim, and propiconazole) and toxic elements, arsenic (As), cadmium (Cd), and essential elements, was washed using several washing agents, including boiling water, 5% sodium bicarbonate (baking soda), 5% acetic acid (vinegar), 5% citric acid, and 5% sodium chloride (salt). The washing method was chosen based on its availability and widespread usage; soaking for 10 min was assumed to be reasonable. Our results showed that using 5% acetic acid significantly reduced azoxystrobin by 63%, buprofezin by 70%, carbendazim by 75%, and propiconazole by 61%. However, As and Cd were significantly reduced in sodium chloride by 57% and 32%, respectively. Furthermore, a significant reduction in essential nutrient elements was found in Mg (42%), K (37%), and P (23%) when rice was treated with 5% citric acid. Overall, washing agents reduced analytes in the following manners pesticides, toxic elements, and essential elements when using acetic acid, sodium chloride, and citric acid separately.
Collapse
Affiliation(s)
- Dalal Alqahtani
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Khulood Alnabati
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohammed A Al-Mutairi
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Rakan Alajmi
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Taghreed Alsaleem
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Sara Almanna
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah M Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Christensen K. Looking beyond Cancer: Glyphosate and Liver, Metabolic Diseases in Youth. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:54002. [PMID: 37205790 DOI: 10.1289/ehp12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
19
|
Levine L, Hall JE. Does the environment affect menopause? A review of the effects of endocrine disrupting chemicals on menopause. Climacteric 2023; 26:206-215. [PMID: 37011670 DOI: 10.1080/13697137.2023.2173570] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Endocrine disrupting chemicals are widely distributed in our environment. Humans are exposed to these compounds not only through their occupations, but also through dietary consumption and exposure to contaminated water, personal care products and textiles. Chemicals that are persistent in the body and in our environment include dioxins and polychlorinated biphenyls. Non-persistent chemicals including bisphenol A, phthalates and parabens are equally as important because they are ubiquitous in our environment. Heavy metals, including lead and cadmium, can also have endocrine disrupting properties. Although difficult to study due to their variety of sources of exposures and mechanisms of action, these chemicals have been associated with early menopause, increased frequency of vasomotor symptoms, altered steroid hormone levels and markers of diminished ovarian reserve. Understanding the impacts of these exposures is important given the potential for epigenetic modification, which can alter gene function and result in multi-generational effects. This review summarizes findings in humans and animals or cell-based models from the past decade of research. Continued research is needed to assess the effects of mixtures of chemicals, chronic exposures and new compounds that are continuously being developed as replacements for toxic chemicals that are being phased out.
Collapse
Affiliation(s)
- L Levine
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Wang W, Song JW, Jeong SH, Jung JH, Seo JS, Kim JH. Dissipation of Four Typical Insecticides on Strawberries and Effects of Different Household Washing Methods. Foods 2023; 12:foods12061248. [PMID: 36981173 PMCID: PMC10048472 DOI: 10.3390/foods12061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The dissipation patterns of chlorfenapyr, cyenopyrafen, indoxacarb, and spirotetramat on strawberries and the effects of different household washing methods were investigated. A risk assessment was also conducted by monitoring the insecticide residues detected. The concentrations ranged from 0.011 to 0.27 mg/kg for chlorfenapyr, 0.064 to 0.99 mg/kg for cyenopyrafen, 0.042 to 0.53 mg/kg for indoxacarb, and from 0.25 to 1.3 mg/kg for spirotetramat, which were all below the maximum residue limits (MRLs) reported. Soaking the fruit in solution and then rinsing with running water (B) led to better residue removal (40.9 ± 23.7%) than only soaking in solution (A) (24.7 ± 22.5%). However, neither method decreased chlorfenapyr concentrations, suggesting that the physical–chemical properties of chlorfenapyr could also affect its removal on strawberries. Regarding the different washing solutions in method B, 3% vinegar (removal efficiency: 48.7%) and 3% salt (45.7%) were the most efficient, followed by 3% green tea (38.9%), and tap water only (24.6%). Additionally, the estimated risk quotients (RQs) for strawberry consumption for women were about 1.5 times higher than those observed for men, but both were lower than 1, suggesting minimal risk to humans.
Collapse
|
21
|
Yalçın M, Turgut N, Gökbulut C, Mermer S, Sofuoğlu SC, Tari V, Turgut C. Removal of pesticide residues from apple and tomato cuticle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15821-15829. [PMID: 36171324 DOI: 10.1007/s11356-022-23269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues are always an unsolved problem in the world despite all kinds of prevention measures. The present research work is based on a scientific hypothesis, i.e., "The removal of average pesticide residue is inversely proportional to the thickness of cuticle." The effects of boron-containing products and plant-based surfactants were tested for the removal of five pesticides (lambda-cyhalothrin, chlorpyrifos, diflubenzuron, metaflumizone, acetamiprid) on tomatoes and apples. Boron-containing products were able to remove the pesticide residues on average between 58.0 and 72.6% in tomatoes and 33.2-58.8% in an apple. While plant-based surfactants removed residues on average between 58.5 and 66.6% in tomatoes and 41.0-53.2% in an apple. The highest removal rate was 72% with etidot at 1%. The solution of 1% C8-C10 provided 66.6% average removal for tomatoes. Less removal was achieved in apples. For an apple, Log Kow and molecular mass (independent variables) were significant with p < 0.01, and the coefficient of determination (R2) was > 0.87. However, the multiple linear regression analysis for ground colemanite was significant with R2 of 0.96. In tomatoes, neither Log Kow nor molecular mass as significant. The correlation was found between the physical and chemical properties of pesticides, but it is estimated that the thickness of the cuticle is effective in removing pesticides.
Collapse
Affiliation(s)
- Melis Yalçın
- Department of Plant Protection, Faculty of Agriculture, Aydın Adnan Menderes University, 09100, Aydın, Turkey.
| | - Nalan Turgut
- Department of Plant Protection, Faculty of Agriculture, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| | - Cengiz Gökbulut
- Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, 09331, USA
| | - Sait C Sofuoğlu
- Dept. of Environmental Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey
| | - Vinaya Tari
- University of Mumbai, Subcentre Ratnagiri, Maharashtra, India
| | - Cafer Turgut
- Department of Plant Protection, Faculty of Agriculture, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| |
Collapse
|
22
|
Liu C, Chen R, Liu F, Gao Z, Li X, Wang Y, Wang S, Li Y. Distribution pattern, removal effect, transfer behavior of ten pesticides and one metabolite during the processing of grapes. Food Res Int 2023; 164:112398. [PMID: 36737981 DOI: 10.1016/j.foodres.2022.112398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Grapes' growth and processing conditions have various effects on pesticides with different physicochemical properties. Therefore, it is important for the healthy human diet to investigate pesticide residue behavior. To explore the relationship between pesticide residue behavior and physicochemical properties, the distribution of ten pesticides and one metabolite on grape peel and pulp was examined and the results showed that pesticides with low octanol-water partition coefficient (Kow) were more likely to be transferred to the pulp as the harvest interval increases. The removal methods were ranked according to pesticide removal effectiveness as follows: peeling > ozone water washing > tap water washing. Furthermore, the logKow played a key role in pesticide transfer rates during the juicing and winemaking. Notably, drying was the process of increasing pesticide residues. Additionally, the prediction models for the PFs of the pesticides in the juicing and winemaking processes were constructed as PFj = 0.952-0.116logKow (r = 0.886) and PFw = 0.736-0.143logKow (r = 0.959) by stepwise regression analysis. The prediction models recommended that Kow could be used to predict pesticide residues in grape juice and wine, which can predict the effect of pesticide physicochemical properties on PFs.
Collapse
Affiliation(s)
- Chengcheng Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Rui Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Fengmao Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhiqiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xiaohan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yue Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Shiyu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yuyan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Lecerf JM, Périquet A, Carlin F, Lanckriet S, Paris N, Robaglia C, Gleizer B, Belzunces L, Cravedi JP, Calvarin J. Comparison of pesticide residue and specific nutrient levels in peeled and unpeeled apples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:496-505. [PMID: 36468616 DOI: 10.1002/jsfa.12159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/29/2022] [Accepted: 07/31/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Studies have shown that the consumption of apples has a beneficial effect on cardiovascular diseases and some cancers, largely as a result of their micronutrient and phytoconstituent contents. Apple peel not only contains more polyphenols than the flesh, but also is likely to contain pesticide residues. The present study aimed to compare the contents of certain micronutrients and residual pesticide levels in peeled and unpeeled apples. RESULTS Peeled apples contained fewer pesticide residues at lower concentrations than unpeeled apples. However, whether samples were peeled or not, the exposure values for pesticide residues in apples never exceeded the acceptable daily intake (ADI), but ranged between 0.04% and 2.10% of the ADI in adults for food intake estimated at the 95th percentile (277 g per person per day). Determination of polyphenol, fibre, magnesium and vitamin C levels showed that the nutritional differences observed between peeled and unpeeled apples were marginal. CONCLUSION The consumption of apples, such as the apples tested in the present study, results in an exposure to pesticides that is low for unpeeled apples, and lower for peeled apples. Moreover, there was no significant loss of nutritional value from eating peeled apples based on the nutrients investigated. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jean-Michel Lecerf
- Nutrition & Physical Activity Department, Institut Pasteur de Lille, Lille, France
| | | | | | - Suzanne Lanckriet
- Nutrition & Physical Activity Department, Institut Pasteur de Lille, Lille, France
| | - Nicolas Paris
- Optima Europe Statistical Consulting Firm, Floirac, France
| | - Christophe Robaglia
- Aix-Marseille University, CEA, CNRS, Biosciences & Biotechnologies Institute of Aix-Marseille (BIAM), Plant Genetics & Biophysics Team, Marseille, France
| | | | - Luc Belzunces
- INRAE, Environmental Toxicology Laboratory, UR 0406 A&E, Avignon, France
| | | | | |
Collapse
|
24
|
Pan TT, Guo M, Lu P, Hu D. Real-time and in situ monitoring of organosilicon-induced thiram penetration into cabbage leaves by surface-enhanced Raman scattering mapping. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7405-7413. [PMID: 35789490 DOI: 10.1002/jsfa.12109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding pesticide penetration behavior is important for effective application of pesticides. However, there is a lack of an effective method to monitor pesticide penetration behavior and its changing process. In the present study, a novel surface-enhanced Raman scattering (SERS) mapping method was used for real-time and in situ tracking of the penetration behaviors of thiram and thiram-organosilicon mixture on cabbage leaves. RESULTS The results suggest that thiram has very weak ability to penetrate into cabbage leaves. However, when the thiram-organosilicon mixture was placed on leaf surfaces, a clear thiram signal was detected inside the leaf after 2 h of exposure, a strong signal was observed after 12 h, and the penetration depth of thiram was approximately 200 μm after 48 h. CONCLUSION SERS mapping was demonstrated to be a reliable method for in situ monitoring of organosilicon-induced thiram penetration into cabbage leaf over time. The present study provides a new reference for rationally selecting adjuvants, effectively applying pesticides, and reducing pesticides residue in food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Meiting Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
25
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. The fate of thiamethoxam and its main metabolite clothianidin in peaches and the wine-making process. Food Chem 2022; 382:132291. [DOI: 10.1016/j.foodchem.2022.132291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
|
26
|
A New LC-MS Method for Evaluating the Efficacy of Pesticide Residue Removal from Fruit Surfaces by Washing Agents. Processes (Basel) 2022. [DOI: 10.3390/pr10040793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modern agriculture uses pesticides to improve the quality and quantity of crops. However, pesticide residues can remain on agricultural products, posing very serious risks to human health and life. It is recommended to wash fruits and vegetables before consumption. To assess the removal efficacy of pesticide residue, a sensitive and reliable method based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed and optimized for the simultaneous determination of four pesticide residues (acetamiprid, boscalid, pyraclostrobin, and pendimethalin). Isotope-labeled standards were used to validate the method in terms of recovery, linearity, matrix effects, precision, and sensitivity. The mean recovery values for both low-quality control (LQC) and high-quality control (HQC) transitions were in the range of 89–105%, and the intra-day precision was less than 13.7%. The limits of detection (LOD) and quantification (LOQ) were 0.003 mg/kg and 0.01 mg/kg, respectively. The proposed method is suitable for evaluating the quality of detergents for removing pesticide residues from fruit surfaces.
Collapse
|
27
|
Li Z, Xiong J. Simulation modeling the effects of peels on pesticide removal from potatoes during household food processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29841-29853. [PMID: 34997507 DOI: 10.1007/s11356-021-18298-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The impact of crop peels on reducing pesticide residue levels in crops during household food processing was evaluated in this study. We proposed a series of pesticide fate models to simulate the removal efficiency of residues in crop peels and medullas (i.e., pulps) via soaking and washing. The simulated results indicated that the variation in the peel thickness had a significant impact on residue removal from the peel compartment. However, the peel compartment had a low impact on the removal efficiency of pesticide residues from the medulla compartment, as demonstrated by the simulated results from the non-peel model (i.e., already peeled crops). In addition, we observed that even though systemic pesticides have a higher potential to penetrate from the peel into the medulla, the increasing residue level caused by the mass transfer from the peel into the medulla is too low to cause human health damage, because the absolute mass of residues in the peel is considerably small. Based on the simulation results, we concluded that washing or soaking crops with or without peels using water is not effective in reducing residue levels in crop medullas. Modifying crops into slices, instead of directly washing or soaking crops, could significantly improve the removal efficiency of pesticide residues inside the medulla. The models proposed in this study can improve our understanding on the fate of pesticides in crops during household food processing.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Jie Xiong
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
28
|
Li Z. Improving pesticide fate models for a simple household food processing: considering multiple crop units. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30507-30520. [PMID: 35000168 DOI: 10.1007/s11356-021-17983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
To understand the fate of pesticides in crops during household cooking processes and human health risks associated with the ingestion of pesticide-contaminated crops, we propose unit-variability-enhanced models, which are capable of evaluating the removal efficiency of pesticides in multiple crop units by soaking in water. The approach integrates the lognormal production model to reveal the modeling mechanics of internal contamination among two crop units in one soaking bowl. The simulated results for 197 pesticides indicate that pesticides with larger unit-to-unit variability factors (VF) at the residue levels and diffusivity rates in water (DW) are more likely to cause internal contamination. Although internal contamination of pesticide residues between two crop units may occur, we find that the overall removal factor ([Formula: see text]) for two crop units is independent of the ratio of initial residue levels between the two crop units. Based on this discovery, we propose the unit-variability-based (UVB) rule to generalize the [Formula: see text] for an n-crop-unit system, where n crop units soak simultaneously in one container. In addition, we demonstrate that under the same consumable and recycling resources, the soaking of two crop units together in one container can yield a maximum mass removal of pesticides if the two units are randomly sampled. Although other factors, such as temperature and the nature of solutions in the cooking process, should be considered in future studies, our models suggest that this soaking method can be conveniently realized in households to reduce negative health effects.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
29
|
Mir SA, Dar B, Mir MM, Sofi SA, Shah MA, Sidiq T, Sunooj KV, Hamdani AM, Mousavi Khaneghah A. Current strategies for the reduction of pesticide residues in food products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. CHEMICAL ENGINEERING JOURNAL 2022. [DOI: 10.1016/j.cej.2021.132243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Assessment of Pesticide Content in Apples and Selected Citrus Fruits Subjected to Simple Culinary Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Over the span of the last decade, certain pesticides have been banned in apple tree and citrus tree cultivations. Hence, it is important to conduct research focused on estimating the occurrence of residues of pesticides from the perspective of compliance with the relevant legislative regulations. Equally important is to estimate the reduction in pesticide residues through simple procedures such as washing and peeling. This research was conducted in the years 2012 and 2020. An assessment was made of the effect of in-house processing, such as conventional washing with tap water and peeling, on the level of pesticide residues in apples and citrus fruits (oranges, grapefruits and lemons). The level of pesticide residue was determined with the use of the QuEChERS method of extraction in conjunction with LC-MS/MS analysis. One can clearly observe a smaller number of pesticides identified in the edible parts of fruits in 2020 (seven pesticides in apples and three in citrus fruits) compared to 2012 (26 pesticides in apples and 4 in citrus fruits). In apples from 2012, only in the case of disulfoton was the maximum residue limit (MRL) exceeded, while in samples of apples from 2020 no instance of exceeded MRL was noted. This study did not reveal exceeded MRL values in the edible parts of citrus fruits in the analysed years. The absence of detected instances of pesticides not approved for use in the analysed years indicates that the producers complied with the relevant legislative regulations. The results obtained indicate that conventional washing with water (about 1.5 L/one fruit) did not have any effect on the level of pesticide residues in the analysed fruits. Apple peeling allowed for a reduction in pesticide levels in the range of 24% (carbendazim) to 100% (triflumuron, thiodicarb, tebuconazole).
Collapse
|
32
|
Rossi C, Maggio F, Casaccia M, Chaves‐López C, Valbonetti L, Serio A, Paparella A. Comparing the effectiveness of
Cinnamomum zeylanicum
essential oil and two common household sanitizers to reduce lettuce microbiota and prevent
Salmonella enterica
recontamination. J Food Saf 2022. [DOI: 10.1111/jfs.12963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - Manila Casaccia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - Clemencia Chaves‐López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| |
Collapse
|
33
|
Pesticide Residue Trends in Fruits and Vegetables from Farm to Fork in Kampala Metropolitan Area, Uganda-A Mixed Methods Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031350. [PMID: 35162373 PMCID: PMC8835516 DOI: 10.3390/ijerph19031350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/04/2022]
Abstract
This mixed methods study used laboratory measurements of pesticide residues in produce, semi-structured questionnaires, and in-depth interview data to describe trends in pesticide residue in produce and handling and processing practices for fruits (watermelon and passion fruit) and vegetables (tomato, cabbage, and eggplant) along the farm to fork chain. Of the 50 farmers visited, 34 (68.0%) sold their fruits and vegetables to transporters, 11 (22.0%) to market vendors, and 4 (8.0%) directly to homes and restaurants. The majority 42 (93.3%) of the consumers (home/restaurant) purchased their fruits and vegetables from market vendors and transporters. Washing with water or vinegar, wiping with a cloth, peeling the outer layer, and blending and cooking were the most common post-harvesting processing methods used by stakeholders along the supply chain. Some farmers and market vendors reported spraying fruits and vegetables with pesticides either prior- or post-harvest to increase shelf life. Statistically significant decreasing pesticide residue trends along the farm to fork chain were observed for dioxacarb, likely due to degradation or washing, peeling, cooking, blending, or wiping by consumers. Increasing trends were observed for methidathion and quinalphos possibly due to pesticide applications. There is a need in Uganda to promote practices that minimize pesticide use and exposure through diet, while maintaining food integrity.
Collapse
|
34
|
Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK. Micro-nano-bubble technology and its applications in food industry: A critical review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shaomeng Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lina Cheng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
35
|
Wu G, Li W, Du W, Yue A, Zhao J, Liu D. In-situ monitoring of nitrile-bearing pesticide residues by background-free surface-enhanced Raman spectroscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
López-Fernández O, Bohrer BM, Munekata PES, Domínguez R, Pateiro M, Lorenzo JM. Improving oxidative stability of foods with apple-derived polyphenols. Compr Rev Food Sci Food Saf 2021; 21:296-320. [PMID: 34897991 DOI: 10.1111/1541-4337.12869] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023]
Abstract
Consumers demand healthy and natural food products. Thus, naturally derived antioxidants are emerging as a promising alternative to the use of present ingredients. Apples and apple derivative products (e.g., apple juice, apple cider, apple sauce, and others) are widely consumed throughout the world for a variety of different reasons and supply a large quantity of polyphenolic compounds. The extraction of polyphenolic compounds from apples and their incorporation into processed foods as naturally sourced ingredients could be a preferred alternative to commonly used commercial antioxidants that are used in many foods. In addition, they could have a positive impact on the environment and on the economy due to the utilization of byproducts generated during processing of apples, like apple pomace. In terms of the extraction procedures for the antioxidant compounds found in apples, the most efficient processes are methods that use ultrasound as the extraction tool. With this technique, greater yields are achieved, and less extraction time is required when compared with other, more conventional, extraction methods. However, parameters such as the extraction solvent, temperature during extraction, and extraction time must be suitably optimized in order to obtain the best performance and the highest antioxidant capacity. From an application standpoint, the use of apple-derived polyphenol extracts as a naturally derived food additive has documented applications for bread, meat, fish, cookies, and juices and there is evidence of increased antioxidant capacity, reduced rate of lipid oxidation, and increased storage time without compromising on sensory properties.
Collapse
Affiliation(s)
| | - Benjamin M Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
37
|
Srivastava A, Singh GP, Srivastava PC. Method validation for determination of nine pesticides in okra and their mitigation using different solutions. PLoS One 2021; 16:e0260851. [PMID: 34855881 PMCID: PMC8638875 DOI: 10.1371/journal.pone.0260851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
In this paper we optimized QuEChERS method for extraction of nine pesticides viz. acephate, acetamiprid, chlorpyrifos, cypermethrin, imidacloprid, thiamethoxam, profenofos (insecticides), carbendazim and tebuconazole (fungicides) and performed their quantitative estimation in okra crop by HPLC-UV and GC-ECD. Decontamination treatments namely washing with running tap water, soaking in lukewarm water (50–60°C), soaking in solutions of 1% NaCl, 5% NaHCO3, 2% CH3COOH, 0.01% KMnO4 and three commercial formulations were also done for ten minutes every time, to calculate the extent of pesticide removal from okra. Results revealed that the proposed extraction method was efficient, inexpensive, accurate, rapid and precise and can suitably be used for the simultaneous quantitative determination of the above pesticides. The standard curve was linear over the concentration range of 0.05–5μg g-1 with R2 close to one (0.999). Soaking of okra in 2% acetic acid and then washing proved as the best decontamination treatments for all the pesticides. It showed the highest relative decontaminating capacity in comparison to the other solutions tested. Since the pesticide residues are usually present in higher amount in vegetables being consumed, it is of utmost importance to keep an eye over the use of pesticides to protect the crops.
Collapse
Affiliation(s)
- Anjana Srivastava
- Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, US Nagar, Uttarakhand, India
- * E-mail:
| | - Gajan Pal Singh
- Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, US Nagar, Uttarakhand, India
| | - Prakash Chandra Srivastava
- Department of Soil Science, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, US Nagar, Uttarakhand, India
| |
Collapse
|
38
|
Li H, Chang Q, Bai R, Lv X, Cao T, Shen S, Liang S, Pang G. Simultaneous determination and risk assessment of highly toxic pesticides in the market-sold vegetables and fruits in China: A 4-year investigational study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112428. [PMID: 34146981 DOI: 10.1016/j.ecoenv.2021.112428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the levels of highly toxic pesticides (HTPs) in 6554 vegetable and fruit samples from 31 regions of China, along with the associated risk of dietary exposure for the population between 2014 and 2017. 18 HTPs were detected in 325 (4.96%) samples, and the levels of HTPs in 103 (1.57%) samples were found to be higher than the maximum residue limits (MRLs) of China. The rate of detection of HTPs in six types of vegetables and fruits, in a decreasing order, was found to be as follows: eggplant (8.84%) >grape (5.58%) >tomato (5.43%) >cucumber (5.43%) >pear (3.12%) >apple (2.30%). The level of contamination of HTPs was found to be higher in vegetables compared with fruits. The vegetable and fruit samples with the highest percentages of HTPs exceeding MRLs were found in eggplants from Guangxi (20%) and grapes from Inner Mongolia (12.5%), respectively. Both, the average target hazard quotient (THQ) of a single highly toxic pesticide (HTP) and the average hazard index (HI) of the mixture of HTPs for adults and children from vegetables and fruits from the 31 regions were found to be less than one. Omethoate, carbofuran, ethoprophos, triazophos, and phorate were identified as the major contributors to the average HI for vegetables, and carbofuran, ethoprophos, omethoate, phorate, and phosphamidon were identified as the primary contributors to the average HI for fruits. The results of this study revealed that HTPs in vegetables and fruits did not cause any significant chronic risk of dietary exposure. The detection of HTPs exceeding MRLs in some of the samples implied that appropriate management guidelines for HTPs should be implemented to protect the health of the consumers.
Collapse
Affiliation(s)
- Hui Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, China.
| | - Qiaoying Chang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruobin Bai
- Beijing Uni-Star Inspection Technology Co., Ltd., Beijing 100176, China
| | - Xuechong Lv
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, China
| | - Tengliang Cao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, China
| | - Shigang Shen
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, China
| | - Shuxuan Liang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, China.
| | - Guofang Pang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
39
|
Li Y, Shaheen SM, Rinklebe J, Ma NL, Yang Y, Ashraf MA, Chen X, Peng WX. Pyrolysis of Aesculus chinensis Bunge Seed with Fe 2O 3/NiO as nanocatalysts for the production of bio-oil material. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126012. [PMID: 34492887 DOI: 10.1016/j.jhazmat.2021.126012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The rapid thermal cracking technology of biomass can convert biomass into bio-oil and is beneficial for industrial applications. Agricultural and forestry wastes are important parts of China's energy, and their high-grade utilization is useful to solve the problem of energy shortages and environmental pollution. To the best of our knowledge, the impact of nanocatalysts on converting biowastes for bio-oil has not been studied. Consequently, we examined the production of bio-oil by pyrolysis of Aesculus chinensis Bunge Seed (ACBS) using nanocatalysts (Fe2O3 and NiO catalysts) for the first time. The pyrolysis products of ACBS include 1-hydroxy-2-propanone (3.97%), acetic acid (5.42%), and furfural (0.66%). These chemical components can be recovered for use as chemical feedstock in the form of bio-oil, thus indicating the potential of ACBS as a feedstock to be converted by pyrolysis to produce value-added bio-oil. The Fe2O3 and NiO catalysts enhanced the pyrolysis process, which accelerated the precipitation of gaseous products. The pyrolysis rates of the samples gradually increased at DTGmax, effectively promoting the catalytic cracking of ACBS, which is beneficial to the development and utilization of ACBS to produce high valorization products. Combining ACBS and nanocatalysts can change the development direction of high valorization agricultural and forestry wastes in the future.
Collapse
Affiliation(s)
- Yiyang Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Nyuk Ling Ma
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Geology Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Xiangmeng Chen
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Wan-Xi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
40
|
Marçal S, Pintado M. Mango peels as food ingredient / additive: nutritional value, processing, safety and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Mielech A, Puścion-Jakubik A, Socha K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients 2021; 13:2358. [PMID: 34371868 PMCID: PMC8308760 DOI: 10.3390/nu13072358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Infants and toddlers are highly sensitive to contaminants in food. Chronic exposure can lead to developmental delays, disorders of the nervous, urinary and immune systems, and to cardiovascular disease. A literature review was conducted mainly in PubMed, Google Scholar and Scopus databases, and took into consideration papers published from October 2020 to March 2021. We focused on contaminant content, intake estimates, and exposure to contaminants most commonly found in foods consumed by infants and children aged 0.5-3 years. In the review, we included 83 publications with full access. Contaminants that pose a high health risk are toxic elements, acrylamide, bisphenol, and pesticide residues. Minor pollutants include: dioxins, mycotoxins, nitrates and nitrites, and polycyclic aromatic hydrocarbons. In order to reduce the negative health effects of food contamination, it seems reasonable to educate parents to limit foods that are potentially dangerous for infants and young children. An appropriate varied diet, selected cooking techniques, and proper food preparation can increase the likelihood that the foods children consume are safe for their health. It is necessary to monitor food contamination, adhere to high standards at every stage of production, and improve the quality of food for children.
Collapse
Affiliation(s)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (A.M.); (K.S.)
| | | |
Collapse
|
42
|
Noore S, Ramesh G, Vendan SE, Nagaraju VD. Persistence and diffusion behaviour of chlorpyrifos in five different species of vegetables: A comparative analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112208. [PMID: 33930769 DOI: 10.1016/j.ecoenv.2021.112208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Understanding of pesticide persistence and diffusion on the fresh vegetables are extremely important in food safety and decontamination process. In this study, we examine the persistence and diffusion behaviour of chlorpyrifos pesticide in five different species of vegetables. The chlorpyrifos pesticide was spiked on the vegetable surfaces and the extracted samples from peel and tissues were subjected to Gas Chromatography equipped with a Flame Photometric Detector (GC-FPD). Further, the chlorpyrifos diffusion behaviour was compared with the osmotic potential, shear strength, cuticular chemical profile and microstructure of peel surface of vegetables. The persistence analysis results revealed that chlorpyrifos level was decreased in peel surface and diffusion rate was increased in inner tissue with respect to durations. Within 72 h exposure, chlorpyrifos reached 0.7 cm depth into the inner tissue of vegetables. Significant level of chlorpyrifos diffusion with P ≤ 0.05 was observed in beetroot (2.47%), khon khol (1.46%) and brinjal (0.92%) compared to cucumber and potato. Remarkably, there was no direct linkage between the chlorpyrifos diffusion rate, osmotic potential and toughness of vegetables. In addition, the Gas Chromatography Mass Spectroscopy (GC-MS) and Scanning Electron Microscopy (SEM) analyses revealed that epicuticular surface microstructure and chemical profiles were not correlated with the chlorpyrifos diffusion in all the tested vegetables. The study results concludes that chlorpyrifos diffusion is vegetable species specific and it is highly variable between the species.
Collapse
Affiliation(s)
- Shaba Noore
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - G Ramesh
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - S Ezhil Vendan
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V D Nagaraju
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
43
|
The efficacy of washing strategies in the elimination of fungicide residues and the alterations on the quality of bell peppers. Food Res Int 2021; 147:110579. [PMID: 34399550 DOI: 10.1016/j.foodres.2021.110579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022]
Abstract
Food safety problems caused by pesticide residues in vegetables have become a top issue to raise public concern. In this study, bell peppers were grown in an experimental field and sprayed with two systemic (azoxystrobin and difenoconazole) and one contact (chlorothalonil) fungicides. Ozone (ozonated water and water continuously bubble with ozone) or conventional domestic (washing with distilled water, detergent, acetic acid, sodium bicarbonate, and sodium hypochlorite solutions) procedures were investigated to identify the most effective way to remove fungicide residues in bell peppers. The residues in the fruits and the washing solutions were determined by solid-liquid extraction with a low-temperature partition (SLE/LTP) and liquid-liquid extraction with a low-temperature partition (LLE/LTP), respectively, and analyzed by gas chromatography. Water continuously bubbled with ozone a concentration of 3 mg L-1 was the most efficient treatment with removal of fungicides residues ranging from 67% to 87%. However, similar treatment at a lower concentration (1 mg L-1) did not only efficiently removed fungicide residues (between 53% and 75%) but also preserving the quality of the fruit along a storage time of 13 days. Among the conventional solutions, sodium bicarbonate at 5% showed good efficiency removing between 60% and 81% of the fungicide residues from bell peppers, affecting the color quality of the fruit. Overall, the most affected physicochemical parameters in bell peppers after the treatments were weight loss, color, and vitamin C content.
Collapse
|
44
|
Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. NANOMATERIALS 2021; 11:nano11051327. [PMID: 34069856 PMCID: PMC8157356 DOI: 10.3390/nano11051327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022]
Abstract
Food safety issues caused by pesticide residue have exerted far-reaching impacts on human daily life, yet the available detection methods normally focus on surface residue rather than pesticide penetration to the internal area of foods. Herein, we demonstrated gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for monitoring pesticide migration behaviors in various fruits and vegetables (i.e., apple, cucumber, pepper, plum, carrot, and strawberry). By manually stamping food tissues onto AuNP-immersed paper, this method affords the spatiotemporal visualization of insecticides and fungicides within fruits and vegetables, avoiding tedious and time-consuming sample preparation. Using the established MSI platform, we can track the migration of insecticides and fungicides into the inner region of foods. The results revealed that both the octanol-water partition coefficient of pesticides and water content of garden stuffs could influence the discrepancy in the migration speed of pesticides into food kernels. Taken together, this nanopaper imprinting MSI is poised to be a powerful tool because of its simplicity, rapidity, and easy operation, offering the potential to facilitate further applications in food analysis. Moreover, new perspectives are given to provide guidelines for the rational design of novel pesticide candidates, reducing the risk of food safety issues caused by pesticide residue.
Collapse
|
45
|
Li C, Zhu H, Li C, Qian H, Yao W, Guo Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem 2021; 354:129552. [PMID: 33756332 DOI: 10.1016/j.foodchem.2021.129552] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Pesticide residues are one of the most important issues affecting food safety. In this review, the general situation of pesticide residues in fruits and vegetables based on the background of the Chinese fruit and vegetable industry is first described. On the basis of primary processing of agricultural products, the effects of processing methods on the removal and metabolism of pesticide residues are reviewed in this paper. In addition, the transformation mechanism of pesticides in crops and in the environment is discussed. Finally, this study summarizes the development trend of pesticide-residue monitoring methods. With the prohibition of a large number of pesticides in China, the risk of pesticide residues is gradually reduced. However, some highly toxic pesticides can still be detected. Furthermore, the development of high-resolution mass spectrometry screening methods and rapid and intelligent detection instruments is the development trend for pesticide monitoring in the future.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Huimin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Changyan Li
- YanTai Institute, China Agricultural University, Yantai 264670, Shandong Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
46
|
Chen Z, Dong F, Ren X, Wu X, Yuan L, Li L, Li W, Zheng Y. Enantioselective fate of dinotefuran from tomato cultivation to home canning for refining dietary exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124254. [PMID: 33535352 DOI: 10.1016/j.jhazmat.2020.124254] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Understanding the enantioselective fate of chiral neonicotinoid dinotefuran is of vital importance for accurate dietary exposure assessment and food safety regulation. The study investigated the enantioselectivity in respect to dissipation, metabolism, and removal, of dinotefuran from tomato cultivation to tomato paste processing. The chiral analytical method of dinotefuran, UF and DN was developed in tomato using ultrahigh performance supercritical fluid chromatography/tandem mass spectrometry. Under greenhouse cultivation R-dinotefuran preferentially degraded (T1/2, 9.1-12.6 days), resulting in relative enrichment of S-dinotefuran (T1/2, 10.3-13.3 days) by foliage and root uptake pathways. (-)-UF generated at a faster rate and was more persistent than its antipode in tomato by foliage treatment. Furthermore, changes in the enantiomeric removal and enantioselectivity orientation of dinotefuran and metabolites were evaluated during home canning of tomato paste, including washing, peeling, homogenization, simmering, and sterilization. Peeling played the key role in reducing S-dinotefuran by 67.3% and R-dinotefuran by 69.9% with processing factor of 0.313 and 0.287, respectively. Simmering was the most effective way to remove UF enantiomers (Pf, 0.336-0.421) by elevated temperature. This study sheds light on the chiral profiles of the fate of dinotefuran from cultivation to processing, providing scientific importance to protect human health from hazardous effects.
Collapse
Affiliation(s)
- Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xujin Wu
- Institute of Quality Standard and Testing Technology for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
47
|
Yang W, Wang Z, Yang B, Jiang Y, Sun M, Liu X, Amin B, Ge G, Rodriguez RD, Jia X. Pesticide degradation on solid surfaces: a moisture dependent process governed by the interaction between TiO 2 and H 2O. NEW J CHEM 2021. [DOI: 10.1039/d1nj02368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solid-phase photocatalytic degradation is a humidity control process through the interaction between H2O and TiO2.
Collapse
Affiliation(s)
- Wenda Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Zhongwen Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Bin Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Yu Jiang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Meizhou Sun
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Xinghuan Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Babar Amin
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| | - Guixian Ge
- Shihezi University Shihezi Univ, Coll Sci, Dept Phys
- Shihezi 832003
- People's Republic of China
| | | | - Xin Jia
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region
- Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
| |
Collapse
|
48
|
Gutiérrez-Jara JP, Córdova-Lepe F, Muñoz-Quezada MT, Chowell G. Pesticide application, educational treatment and infectious respiratory diseases: A mechanistic model with two impulsive controls. PLoS One 2020; 15:e0243048. [PMID: 33270758 PMCID: PMC7714192 DOI: 10.1371/journal.pone.0243048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
In this paper, we develop and analyze an SIS-type epidemiological-mathematical model of the interaction between pesticide use and infectious respiratory disease transmission for investigating the impact of pesticide intoxication on the spread of these types of diseases. We further investigate the role of educational treatment for appropriate pesticide use on the transmission dynamics. Two impulsive control events are proposed: pesticide use and educational treatment. From the proposed model, it was obtained that the rate of forgetfulness towards educational treatment is a determining factor for the reduction of intoxicated people, as well as for the reduction of costs associated with educational interventions. To get reduced intoxications, the population's fraction to which is necessary to apply the educational treatment depends on its individual effectiveness level and the educational treatments' forgetfulness rate. In addition, the turnover of agricultural workers plays a fundamental role in the dynamics of agrotoxic use, particularly in the application of educational treatment. For illustration, a flu-like disease with a basic reproductive number below the epidemic threshold of 1.0 is shown can acquire epidemic potential in a population at risk of pesticide exposure. Hence, our findings suggest that educational treatment targeting pesticide exposure is an effective tool to reduce the transmission rate of an infectious respiratory disease in a population exposed to the toxic substance.
Collapse
Affiliation(s)
- Juan Pablo Gutiérrez-Jara
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Región del Maule, Chile
| | - Fernando Córdova-Lepe
- Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Región del Maule, Chile
| | | | - Gerardo Chowell
- School of Public Health, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
49
|
Corrias F, Atzei A, Lai C, Dedola F, Ibba E, Zedda G, Canu F, Angioni A. Effects of Industrial Processing on Pesticide Multiresidues Transfer from Raw Tomatoes to Processed Products. Foods 2020; 9:foods9101497. [PMID: 33086739 PMCID: PMC7588992 DOI: 10.3390/foods9101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022] Open
Abstract
Pesticides are broadly used to improve food safety, although they can lead to adverse health effects on consumers. Various food processing approaches, at the industrial or domestic level, have been found to highly reduce the amount of pesticide residues in most food materials. In this work, samples of raw tomatoes were collected directly from the field and processed at the industrial level to produce purée, triple concentrated paste, fine pulp, and diced tomatoes. A multiresidue method based on a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged e Safe) sample preparation, followed by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) for the assessment of 116 pesticides residues, was used. The analytical method has been validated according to SANTE indications. The recovery yields ranged from 75.5% to 115.3%, repeatability (RSDr) ranged from 3.4% to 18.3%, while reproducibility (RSDwR) ranged from 5.4% to 19.8%. The limit of quantifications (LOQs) ranged from 2.35 µg kg−1 for benthiavalicarb to 6.49 µg kg−1 for allethrin. A total of 159 raw tomato samples were collected from the field. The analysis showed the presence of 46 pesticides with azoxystrobin and chlorantraniliprole the most represented. On the other hand, all industrially processed samples showed values ≤ LOD, confirming that post-harvest processes can lead to a decrease in pesticide residues from agricultural commodities.
Collapse
Affiliation(s)
- Francesco Corrias
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy; (F.C.); (A.A.); (C.L.); (F.C.)
| | - Alessandro Atzei
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy; (F.C.); (A.A.); (C.L.); (F.C.)
| | - Carla Lai
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy; (F.C.); (A.A.); (C.L.); (F.C.)
| | - Fabrizio Dedola
- Agricultural Research Agency of Sardinia (AGRIS), Service of Environmental Studies, Crop Protection and Production Quality, Bonassai SS 291 km 18,6, 07100 Sassari, Italy; (F.D.); (E.I.); (G.Z.)
| | - Enrico Ibba
- Agricultural Research Agency of Sardinia (AGRIS), Service of Environmental Studies, Crop Protection and Production Quality, Bonassai SS 291 km 18,6, 07100 Sassari, Italy; (F.D.); (E.I.); (G.Z.)
| | - Gianluca Zedda
- Agricultural Research Agency of Sardinia (AGRIS), Service of Environmental Studies, Crop Protection and Production Quality, Bonassai SS 291 km 18,6, 07100 Sassari, Italy; (F.D.); (E.I.); (G.Z.)
| | - Francesca Canu
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy; (F.C.); (A.A.); (C.L.); (F.C.)
| | - Alberto Angioni
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy; (F.C.); (A.A.); (C.L.); (F.C.)
- Correspondence: ; Tel.: +39-0-706-758-615; Fax: +39-0-706-758-612
| |
Collapse
|
50
|
Yu C, Huang X, Fan Y, Deng Z. A new household ultrasonic cleaning method for pyrethroids in cabbage. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|