1
|
Han JH, Keum DH, Kothuri V, Kim YJ, Kwon HC, Kim DH, Jung HS, Han SG. Enhancing emulsion, texture, rheological and sensory properties of plant-based meat analogs with green tea extracts. Food Chem X 2024; 24:101807. [PMID: 39290746 PMCID: PMC11406329 DOI: 10.1016/j.fochx.2024.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Plant-based meat analogs require improvements in taste and texture to better replicate traditional meat. L-theanine and tannin, abundant in green tea, influence food taste and physicochemical properties. This study evaluated the quality characteristics of green tea extract (GE)-supplemented plant-based patties (PP) and the mechanisms affecting taste and texture. Green tea was extracted with water (GWE) or 70 % ethanol (GEE). GEE contained higher tannin and lower L-theanine levels than GWE. Both GWE and GEE reduced protein deterioration and lipid oxidation in PP throughout the 28-day storage period. PP with 1.0 % GEE (PP-GEE1.0) showed improved emulsion stability and texture due to non-covalent interactions including hydrophobic interaction and hydrogen bonds, and increased β-sheet structures between tannin and pea protein. PP-GEE1.0 also had superior sensory characteristics due to an optimal balance of L-theanine and tannin. Overall, the incorporation of GE, particularly GEE significantly improved physicochemical properties, sensory quality, and storage stability of PP.
Collapse
Affiliation(s)
- Jong Hyeon Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyun Keum
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Vahinika Kothuri
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea-Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Inô CFA, Pereira Filho JM, de Oliveira RMT, de Oliveira JFP, da Silva Filho EC, Nascimento AMDSS, Oliveira RL, do Nascimento RR, de Lucena KHDOS, Bezerra LR. New Technology of Rumen-Protected Bypass Lysine Encapsulated in Lipid Matrix of Beeswax and Carnauba Wax and Natural Tannin Blended for Ruminant Diets. Animals (Basel) 2024; 14:2895. [PMID: 39409844 PMCID: PMC11482557 DOI: 10.3390/ani14192895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Tannins are compounds present in forage plants that, in small quantities in the diet of ruminants, produce protein complexes that promote passage through the rumen and use in the intestine. This study tested the hypothesis that beeswax (BW) and carnauba wax (CW) lipid matrices are effective encapsulants for creating bypass lysine (Lys) for ruminants, with tannin extracted from the Mimosa tenuiflora hay source enhancing material protection. Microencapsulated systems were made using the fusion-emulsification technique with a 2:1 shell-to-core ratio and four tannin levels (0%, 1%, 2%; 3%). The following eight treatments were tested: BWLys0%, BWLys1%, BWLys2%, BWLys3%, CWLys0%, CWLys1%, CWLys2%, and CWLys3%. Tannin inclusion improved microencapsulation yield and efficiency. CWLys3% had the highest microencapsulation efficiency and retained Lys. Lysine in BW and CW matrices showed higher thermal stability than in its free form. Material retention was greater in BW than CW. Rumen pH and temperature remained unaffected, indicating that BW and CW as the shell and tannin as the adjuvant are efficient encapsulants for Lys bypass production. The formulation CWLys3% is recommended as it is more efficient in protecting the lysin amino acid from rumen degradation.
Collapse
Affiliation(s)
- Claudiney Felipe Almeida Inô
- Graduate Program in Animal Science and Health Animal Science Department, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil; (C.F.A.I.); (J.M.P.F.); (R.M.T.d.O.); (R.R.d.N.); (K.H.d.O.S.d.L.)
| | - José Morais Pereira Filho
- Graduate Program in Animal Science and Health Animal Science Department, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil; (C.F.A.I.); (J.M.P.F.); (R.M.T.d.O.); (R.R.d.N.); (K.H.d.O.S.d.L.)
| | - Roberto Matheus Tavares de Oliveira
- Graduate Program in Animal Science and Health Animal Science Department, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil; (C.F.A.I.); (J.M.P.F.); (R.M.T.d.O.); (R.R.d.N.); (K.H.d.O.S.d.L.)
| | | | - Edson Cavalcanti da Silva Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Campus Ministro Petrônio Portella, Piaui Federal University, Teresina 64049-550, Piaui, Brazil; (E.C.d.S.F.); (A.M.d.S.S.N.)
| | - Ariane Maria da Silva Santos Nascimento
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Campus Ministro Petrônio Portella, Piaui Federal University, Teresina 64049-550, Piaui, Brazil; (E.C.d.S.F.); (A.M.d.S.S.N.)
| | - Ronaldo Lopes Oliveira
- Animal Science Department, Federal University of Bahia, Salvador 40170-155, Bahia, Brazil;
| | - Romilda Rodrigues do Nascimento
- Graduate Program in Animal Science and Health Animal Science Department, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil; (C.F.A.I.); (J.M.P.F.); (R.M.T.d.O.); (R.R.d.N.); (K.H.d.O.S.d.L.)
| | - Kevily Henrique de Oliveira Soares de Lucena
- Graduate Program in Animal Science and Health Animal Science Department, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil; (C.F.A.I.); (J.M.P.F.); (R.M.T.d.O.); (R.R.d.N.); (K.H.d.O.S.d.L.)
| | - Leilson Rocha Bezerra
- Graduate Program in Animal Science and Health Animal Science Department, Federal University of Campina Grande, Patos 58708-110, Paraíba, Brazil; (C.F.A.I.); (J.M.P.F.); (R.M.T.d.O.); (R.R.d.N.); (K.H.d.O.S.d.L.)
| |
Collapse
|
3
|
Cabrera-Barjas G, Butto-Miranda N, Nesic A, Moncada-Basualto M, Segura R, Bravo-Arrepol G, Escobar-Avello D, Moeini A, Riquelme S, Neira-Carrillo A. Condensed tannins from Pinus radiata bark: Extraction and their nanoparticles preparation in water by green method. Int J Biol Macromol 2024; 278:134598. [PMID: 39127279 DOI: 10.1016/j.ijbiomac.2024.134598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This work reports for the first time the production of condensed tannin nanoparticles stable in water via modification with glycine betaine. Pine bark, as a byproduct from the paper industry, was used as a source of condensed tannins of high molecular weight. Different glycine betaine concentrations were tested to produce condensed tannin nanoparticles, and the obtained nanoparticles were subjected to several characterization techniques (Dynamic Light Scattering, Field emission scanning electron microscopy, Zeta potential, Fourier transform infrared spectroscopy-Attenuated total reflectance, thermogravimetric analysis). The results showed that the highest stability possessed nanoparticles with 40 wt% glycine betaine. The average particle size distribution evaluated by scanning microscopy was 124 nm. Besides, the glycine betaine-modified condensed tannin nanoparticles demonstrated higher thermal stability with the starting degradation temperature at 238 °C. Finally, obtained nanoparticles showed an antioxidant capacity of 34,209 ± 2194 μmol ET/100 g and low cytotoxicity towards healthy human cells, representing the high potential to be used as a carrier of active compounds in agriculture, food, drug and medical sector.
Collapse
Affiliation(s)
- Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, CP 4080871 Concepción, Chile.
| | - Nicole Butto-Miranda
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago CP: 8820808, Chile; Department of Biological and Animal Science, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
| | - Aleksandra Nesic
- University of Belgrade, Vinca Institute for Nuclear Sciences, National Institute of Republic of Serbia, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia.
| | - Mauricio Moncada-Basualto
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago, Chile.
| | - Rodrigo Segura
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2362735, Chile.
| | - Gastón Bravo-Arrepol
- Facultad de Medicina y Ciencias, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, CP 4080871 Concepción, Chile.
| | - Danilo Escobar-Avello
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, P.O. Box 4051 mail 3, Concepción, Chile; Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7810000, Santiago, Chile.
| | - Arash Moeini
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| | - Sebastian Riquelme
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, P.O. Box 4051 mail 3, Concepción, Chile.
| | - Andrónico Neira-Carrillo
- Department of Biological and Animal Science, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
| |
Collapse
|
4
|
Li Y, Wu H, Deng S, Essawy H, Brosse N, Fan M, Du G, Chen X, Zhou X, Liao J. Novel hydroxyl-terminated hyperbranched polymer as a synergistic modifier with tannin for preparation of casein-based films with superior performance. Int J Biol Macromol 2024; 278:134672. [PMID: 39134199 DOI: 10.1016/j.ijbiomac.2024.134672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
A hyperbranched poly (titanium oxide) (HBPTi) with hydroxyl terminal groups was synthesized via polycondensation reaction as a synergistic modifier with tannin to promote performance of casein-based composite film. The synergistic effects of HBPTis, acquiring different hyperbranched structures, with tannin on the microstructure, mechanical characteristics, barrier against water vapor, and thermal stability of casein-based film were investigated in this work. The tensile strength of the composite films increased from 7.6 MPa to 22.1 MPa, which accounts for 190.79 % increase after the addition of HBPTi compared to casein-tannin films modified with glycerol. The casein-tannin films with the help of HBPTi presented excellent water vapor permeation, thermal stability, and showed nearly 100 % UV absorption in the range 200-400 nm. Additionally, the microstructure of HBPTi modified casein-tannin films tend to be more compact due to the promoted interaction of casein-tannin composite aided by covalent bonding and/or other types of bonding between casein, tannin and HBPTi. Therefore, associative modification using such hyperbranched polymers and tannins provides extendable application value for casein-based films especially as food packaging materials and for other fields as well.
Collapse
Affiliation(s)
- Yitong Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Haizhu Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Shuangqi Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Hisham Essawy
- National Research Centre, Department of Polymers and Pigments, Dokki, Cairo 12622, Egypt
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherches sur le Matériau Bois (LERMaB), Faculté des Sciences et Technologies, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mizi Fan
- College of Engineering, Design and Physical Science, Brunel University London, UB8 3PH Uxbridge, United Kingdom
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xinyi Chen
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Jingjing Liao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
5
|
Molino S, Lerma-Aguilera A, Piskorz MM, López Mingorance F, Montero JM, Uehara T, Hashimoto H, González Ballerga E, Olmos JA. Tannin-based supplementation influences gut microbiota composition and activity in IBS-D patients with a potential impact on symptoms: a pilot study. Food Funct 2024; 15:8893-8903. [PMID: 39129514 DOI: 10.1039/d4fo02236j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
As the involvement of the intestinal microbiota in the etiopathology of irritable bowel syndrome, subtype diarrhoea (IBS-D) is now increasingly recognised, a preliminary, quasi-experimental, before-after and prospective study was conducted on 28 patients to test the effect of a tannin-based supplement on the composition and activity of the microbiota, after 8 weeks of treatment. No statistically significant differences were found in α- or β-diversity. However, sparse Partial Least Squares Discriminant Analysis (sPLS-DA) and Boruta algorithm did reveal significant changes in the relative abundance of specific groups of bacteria, highlighting the involvement of recognized of IBS-D biomarkes, namely Blautia (adj p = 3.5 × 10-11), Eubacterium hallii group (adj p = 5.1 × 10-12) and Dorea (adj p = 1.8 × 10-18), which resulted significantly depleted by the treatment. The modulation of the composition of the gut microbiota had an impact also in the production of short chain fatty acids (SCFAs), which were modulated: acetate and butyrate (n.s. and p = 0.000143) increased while propionate and formate resulted to be significantly reduced (p = 0.00476 and p = 0.00011, respectively), following the supplementation. Finally, the sPLS analysis showed that the strongest association between faecal microbiome composition and clinical symptoms of IBS-D was given by Catenibacterium, which showed a positive correlation with evacuation-related symptoms. Such preliminary findings suggest that tannin supplementation could play an outstanding role in microbiota modulation in IBS-D patients, potentially improving their symptomatology, by selectively acting on the growth and the activity of specific groups of taxa.
Collapse
Affiliation(s)
- Silvia Molino
- Silvateam Spa, R&D Unit, San Michele Mondovì, Italy.
| | - Alberto Lerma-Aguilera
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitária i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - María Marta Piskorz
- Universidad de Buenos Aires, Hospital de Clínicas José de San Martin, Sector Neurogastroenterología del Servicio de Gastroenterología, Buenos Aires, Argentina
| | - Fabiana López Mingorance
- Universidad de Buenos Aires/IBIMOL, Hospital de Clínicas José de San Martin, Programa de Estudios Pancreáticos, Buenos Aires, Argentina
| | - Juan M Montero
- Universidad de Buenos Aires, Hospital de Clínicas José de San Martin, Sector Neurogastroenterología del Servicio de Gastroenterología, Buenos Aires, Argentina
| | - Tatiana Uehara
- Universidad de Buenos Aires, Hospital de Clínicas José de San Martin, Sector Neurogastroenterología del Servicio de Gastroenterología, Buenos Aires, Argentina
| | - Harumi Hashimoto
- Universidad de Buenos Aires, Hospital de Clínicas José de San Martin, Sector Neurogastroenterología del Servicio de Gastroenterología, Buenos Aires, Argentina
| | - Esteban González Ballerga
- Universidad de Buenos Aires, Hospital de Clínicas José de San Martin, Servicio de Gastroenterología, Buenos Aires, Argentina
| | - Jorge A Olmos
- Universidad de Buenos Aires, Hospital de Clínicas José de San Martin, Sector Neurogastroenterología del Servicio de Gastroenterología, Buenos Aires, Argentina
| |
Collapse
|
6
|
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024; 13:2408. [PMID: 39123599 PMCID: PMC11311503 DOI: 10.3390/foods13152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
8
|
Carrasco S, González L, Tapia M, Urbano BF, Aguayo C, Fernández K. Enhancing Alginate Hydrogels as Possible Wound-Healing Patches: The Synergistic Impact of Reduced Graphene Oxide and Tannins on Mechanical and Adhesive Properties. Polymers (Basel) 2024; 16:1081. [PMID: 38675000 PMCID: PMC11055169 DOI: 10.3390/polym16081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked materials known for their ability to absorb water, exhibit high flexibility, their biodegradability and biocompatibility, and their ability to mimic properties of different tissues in the body. However, their application is limited by inherent deficiencies in their mechanical properties. To address this issue, reduced graphene oxide (rGO) and tannins (TA) were incorporated into alginate hydrogels (Alg) to evaluate the impact of the concentration of these nanomaterials on mechanical and adhesive, as well as cytotoxicity and wound-healing properties. Tensile mechanical tests demonstrated improvements in tensile strength, elastic modulus, and toughness upon the incorporation of rGO and TA. Additionally, the inclusion of these materials allowed for a greater energy dissipation during continuous charge-discharge cycles. However, the samples did not exhibit self-recovery under environmental conditions. Adhesion was evaluated on pig skin, revealing that higher concentrations of rGO led to enhanced adhesion, while the concentration of TA did not significantly affect this property. Moreover, adhesion remained consistent after 10 adhesion cycles, and the contact time before the separation between the material and the surface did not affect this property. The materials were not cytotoxic and promoted healing in human fibroblast-model cells. Thus, an Alg/rGO/TA hydrogel with enhanced mechanical, adhesive, and wound-healing properties was successfully developed.
Collapse
Affiliation(s)
- Sebastián Carrasco
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4070386, Chile; (S.C.); (L.G.); (M.T.)
| | - Luisbel González
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4070386, Chile; (S.C.); (L.G.); (M.T.)
| | - Mauricio Tapia
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4070386, Chile; (S.C.); (L.G.); (M.T.)
| | - Bruno F. Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile;
| | - Claudio Aguayo
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070112, Chile;
| | - Katherina Fernández
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4070386, Chile; (S.C.); (L.G.); (M.T.)
| |
Collapse
|
9
|
Molino S, Pilar Francino M, Ángel Rufián Henares J. Why is it important to understand the nature and chemistry of tannins to exploit their potential as nutraceuticals? Food Res Int 2023; 173:113329. [PMID: 37803691 DOI: 10.1016/j.foodres.2023.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
Tannins comprise a large group of polyphenols that can differ widely in chemical composition and molecular weight. The use of tannins dates back to antiquity, but it is only in recent years that their potential use as nutraceuticals associated with the human diet is beginning to be exploited. Although the biological effects of these phytocomplexes have been studied for many years, there are still several open questions regarding their chemistry and biotransformation. The vastness of the molecules that make up the class of tannins has made their characterisation, as well as their nomenclature and classification, a daunting task. This review has been written with the aim of bringing order to the chemistry of tannins by including aspects that are sometimes still overlooked or should be updated with new research in order to understand the potential of these phytocomplexes as active ingredients or technological components for nutraceutical products. Future trends in tannin research should address many questions that are still open, such as determining the exact biosynthetic pathways of all classes of tannins, the actual biological effects determined by the interaction of tannins with other molecules, their metabolization, and the best extraction methods, but with a view to market requirements.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Silvateam Spa, R&D Unit, San Michele Mondovì, Italy
| | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain; CIBER en Epidemiología y Salud Pública, Madrid 28029, Spain.
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| |
Collapse
|
10
|
Molino S, Lerma-Aguilera A, Gómez-Mascaraque LG, Rufián-Henares JÁ, Francino MP. Evaluation of Tannin-Delivery Approaches for Gut Microbiota Modulation: Comparison of Pectin-Based Microcapsules and Unencapsulated Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13988-13999. [PMID: 37432969 PMCID: PMC10540208 DOI: 10.1021/acs.jafc.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
The aim of this study was to investigate the impact of tannins on gut microbiota composition and activity, and to evaluate the use of pectin-microencapsulation of tannins as a potential mode of tannin delivery. Thus, pectin-tannin microcapsules and unencapsulated tannin extracts were in vitro digested and fermented, and polyphenol content, antioxidant capacity, microbiota modulation, and short-chain fatty acid (SCFA) production were analyzed. Pectin microcapsules were not able to release their tannin content, keeping it trapped after the digestive process, and are therefore not recommended for tannin delivery. Unencapsulated tannin extracts were found to exert a positive effect on the human gut microbiota. The digestion step resulted to be a fundamental requirement in order to maximize tannin bioactive effects, especially with regard to condensed tannins, as the antioxidant capacity exerted and the SCFAs produced were greater when tannins were submitted to digestion prior to fermentation. Moreover, tannins interacted differently with the intestinal microbiota depending on whether they underwent prior digestion or not. Polyphenol content and antioxidant capacity correlated with SCFA production and with the abundance of several bacterial taxa.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento
de Nutrición y Bromatología, Centro de Investigación
Biomédica, Instituto de Nutrición
y Tecnología de los Alimentos, Universidad de Granada, Granada 18016, Spain
- Silvateam
Spa, R&D Unit, San Michele Monddoví 12080, Italy
| | - Alberto Lerma-Aguilera
- Area
de Genòmica i Salut, Fundació per al Foment de la Investigació
Sanitária i Biomèdica de la Comunitat Valenciana, (FISABIO-Salut Pública), València 46020, Spain
| | - Laura G. Gómez-Mascaraque
- Food
Chemistry and Technology Department, Teagasc
Moorepark Food Research Centre, Fermoy, Co. Cork P61 C996, Ireland
| | - José Ángel Rufián-Henares
- Departamento
de Nutrición y Bromatología, Centro de Investigación
Biomédica, Instituto de Nutrición
y Tecnología de los Alimentos, Universidad de Granada, Granada 18016, Spain
- Instituto
de Investigación Biosanitaria ibs.Granada, Granada 18012, Spain
| | - M. Pilar Francino
- Area
de Genòmica i Salut, Fundació per al Foment de la Investigació
Sanitária i Biomèdica de la Comunitat Valenciana, (FISABIO-Salut Pública), València 46020, Spain
- CIBER
en Epidemiología y Salud Pública, Madrid 28029, Spain
| |
Collapse
|
11
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
12
|
Nogueira DP, Jiménez-Moreno N, Esparza I, Moler JA, Ferreira-Santos P, Sagües A, Teixeira JA, Ancín-Azpilicueta C. Evaluation of grape stems and grape stem extracts for sulfur dioxide replacement during grape wine production. Curr Res Food Sci 2023; 6:100453. [PMID: 36815999 PMCID: PMC9932722 DOI: 10.1016/j.crfs.2023.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Sulfur dioxide (SO2), the main preservative in wine, may affect the sensory properties of the wines, as well as cause allergic reactions and headaches in sensitive people. The aim of this work was to evaluate the replacement of SO2 in Tempranillo wines with Mazuelo grape stem products. Five Tempranillo red wines were elaborated: positive control (60 mg/L SO2); negative control with no preservatives; Mazuelo extract (200 mg/L); Mazuelo extract combined with SO2 (100 mg/L + 20 mg/L); and Mazuelo stem (400 mg/L). The oenological parameters, antioxidant capacity, total phenolic (TP), total flavonoids (TF) and total anthocyanins (TA) contents were determined. Additionally, individual phenols were analyzed by HPLC-DAD-FLD. The spectrophotometric analyses showed that the wines had similar antioxidant capacities and concentrations of TP and TF. However, TA was more affected by the lack of SO2 as anthocyanins presented higher concentrations in positive control samples. The concentrations of individual phenols followed a similar path in all samples. Wines containing sulfites were more similar than the other treatments. However, these similarities were not reflected on the sensory analysis performed, as triangle test did not show differences between the wine with extract addition and the positive control wine. Therefore, Mazuelo stem extract could be a possible strategy for SO2 replacement. Nevertheless, further studies are necessary to confirm the potential of grape stem extracts as wine preservative.
Collapse
Affiliation(s)
- Danielle P. Nogueira
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006, Pamplona, Spain
- Corresponding author. Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain.
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006, Pamplona, Spain
- Corresponding author. Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| | - Jose Antonio Moler
- Department of Statistics and Operational Research, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057, Braga, Portugal
| | - Ana Sagües
- Navarra Viticulture and Oenological Research Station (EVENA), C/Valle de Orba, 34, 31390, Olite, Navarra, Spain
| | - José António Teixeira
- Centre of Biological Engineering, Universidade do Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057, Braga, Portugal
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
- Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, 31006, Pamplona, Spain
- Corresponding author. Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain.
| |
Collapse
|
13
|
Cheng C, Liu P, Zhao P, Du G, Wang S, Liu H, Cao X, Zhao Q, Wang X. Developing novel oenological tannins from 44 plants sources by assessing astringency and color in model wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1499-1513. [PMID: 36189836 DOI: 10.1002/jsfa.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oenological tannins are commercial natural products extracted from different botanical sources, which were widely reported as prominent contributors to wine quality. Research on wine quality affected by tannins extracts promoted the development of new oenological products with low cost and high accessibility. In the present study, the structure and concentration of tannin in polyphenol extracts, as well as their correlation with astringency and the color of model wine, was investigated by UV spectrophotometer, HPLC, fluorescence quenching, sodium dodecylsulfate-polyacrylamide gel electrophoresis, colorimeter and sensory evaluation. RESULTS Resource extracts from 16 of 44 plants were screened as wine oenological tannins, according to the total polyphenol and total flavanol, as well as the intensity of astringency and bitterness. Polyphenols extracted from grape seeds and green tea were more effective in increasing the wine astringency compared to other plant tannins. CONCLUSION Total flavanol content and tannin activity showed a strong correlation with wine astringency. Condensed tannins with mean degree of polymerization also exhibited strong color stability, and the concentrations of (-)-epigallocatechin were associated with the a* value, a negative qualitative factor for wine color. The present study provides new clues regarding the development of low-cost and highly accessible sources of polyphenol extracts and lays a theoretical foundation for the development of the oenological product. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyaqiong Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Pei Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Guorong Du
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Hui Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaomeng Cao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Qinghao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
14
|
Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. Antibiotics (Basel) 2023; 12:264. [PMID: 36830175 PMCID: PMC9951921 DOI: 10.3390/antibiotics12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Bacterial and fungal resistance to antibiotics is of growing global concern. Plants such as the African Combretum and Pteleopsis species, which are used in traditional medicine for the treatment of infections, could be good sources for antimicrobial extracts, drug scaffolds, and/or antibiotic adjuvants. In African countries, plant species are often used in combinations as traditional remedies. It is suggested that the plant species enhance the effects of each other in these combination treatments. Thus, the multi-species-containing herbal medications could have a good antimicrobial potency. In addition, plant extracts and compounds are known to potentiate the effects of antibiotics. The objective of this review is to compile the information on the botany, ethnopharmacology, ethnobotany, and appearance in herbal markets of African species of the genera Combretum and Pteleopsis. With this ethnobotanical information as a background, this review summarizes the information on the phytochemistry and antimicrobial potency of the extracts and their active compounds, as well as their combination effects with conventional antibiotics. The databases used for the literature search were Scopus, Elsevier, EBSCOhost, PubMed, Google Scholar, and SciFinder. In summary, a number of Combretum and Pteleopsis species were reported to display significant in vitro antibacterial and antifungal efficacy. Tannins, terpenes, flavonoids, stilbenes, and alkaloids-some of them with good antimicrobial potential-are known from species of the genera Combretum and Pteleopsis. Among the most potent antimicrobial compounds are arjunglucoside I (MIC 1.9 µg/mL) and imberbic acid (MIC 1.56 µg/mL), found in both genera and in some Combretum species, respectively. The in vitro antimicrobial properties of the extracts and compounds of many Combretum and Pteleopsis species support their traditional medicinal uses.
Collapse
Affiliation(s)
| | | | | | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Yani Br. Tambunan I, Siringo-Ringo E, Julianti Butar-Butar M, Gurning K. GC-MS analysis of bioactive compounds and antibacterial activity of nangka leaves (Artocarpus heterophyllus Lam). PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e97990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nangka is a plant that has various kinds of potential both because of the nutritional content provided through the fruit and also part of the content of bioactive compounds contained in the leaves. This study aims to identify the content of bioactive compounds and determine their content using GC-MS and determine the potential antibacterial activity against E. coli, S. aureus, S. epidermis, S. typhi, P. acnes from the ethanol extract of nangka leaves (Artocarpus heterophyllus Lam). Screening results showed positive containing phenolic groups, flavonoids, tannins, saponins, and alkaloids. The results of determining the content of bioactive compounds for phenolics, tannins and flavonoids were 27.654±0.054 mg GAE/g d.w ethanolic extract, 0.46±0.017 mg TAE/g d.w ethanolic extract and 2.978±0.192 mg QE/g d.w ethanolic extract. GC-MS analysis showed the content of octadecanoic acid with a retention time of 36.489 minutes with a concentration of 29.91% and the ethanolic extract of nangka leaves had good potential activity as an antibacterial.
Collapse
|
16
|
Torgbo S, Rugthaworn P, Sukatta U, Sukyai P. Biological Characterization and Quantification of Rambutan ( Nephelium lappaceum L.) Peel Extract as a Potential Source of Valuable Minerals and Ellagitannins for Industrial Applications. ACS OMEGA 2022; 7:34647-34656. [PMID: 36188307 PMCID: PMC9521024 DOI: 10.1021/acsomega.2c04646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This study extracted ellagitannins from rambutan peel using the Soxhlet technique. The extract was further partitioned and fractionated to get extract rich in ellagitannin and geraniin, respectively. The partitioning of the extract significantly increased total phenolic content (TPC) by 36.3% and its biological properties. Mineral elements such as Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn were identified in both peel and extract. Ellagitannins such as geraniin and corilagin with metabolites (gallic acid and ellagic acid) were identified as the major compounds. Analysis of antioxidant activities shows that the ellagitannin rich extract is as powerful as vitamin C. Geraniin was the main contributor to the free radical scavenging activity. The study also revealed that extract with a fraction rich in geraniin has antioxidant activity equivalent to commercial geraniin (1.56 ± 0.11 Trolox equivalent g/g). It also showed low cytotoxicity on fibroblast L929 cells, moderate tyrosinase activity, and good efficacy against Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes strains. Successive fractionation of the extract is a promising technique to produce geraniin rich fractions with enhanced antioxidant property. Rambutan peel, as a natural product, is a good source of mineral elements and biologically active compounds for pharmaceutical, nutraceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Selorm Torgbo
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapassorn Rugthaworn
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand
| | - Udomlak Sukatta
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, 50 Ngamwongwan
Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
17
|
Heckmann M, Sadova N, Drotarova I, Atzmüller S, Schwarzinger B, Guedes RMC, Correia PA, Hirtenlehner S, Potthast C, Klanert G, Weghuber J. Extracts Prepared from Feed Supplements Containing Wood Lignans Improve Intestinal Health by Strengthening Barrier Integrity and Reducing Inflammation. Molecules 2022; 27:molecules27196327. [PMID: 36234864 PMCID: PMC9572150 DOI: 10.3390/molecules27196327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Lignans are known to exhibit a broad spectrum of biological activities, indicating their potential as constituents of feed supplements. This study investigated two extracts derived from the feed supplements ‘ROI’ and ‘Protect’—which contain the wood lignans magnolol and honokiol (‘ROI’), or soluble tannins additional to the aforementioned lignans (‘Protect’)—and their impact on selected parameters of intestinal functionality. The antioxidant and anti-inflammatory properties of the extracts were determined by measuring their effects on reactive oxygen species (ROS) and pro-inflammatory cytokine production in vitro. The impact on intestinal barrier integrity was evaluated in Caco-2 cells and Drosophila melanogaster by examining leaky gut formation. Furthermore, a feeding trial using infected piglets was conducted to study the impact on the levels of superoxide dismutase, glutathione and lipid peroxidation. The Protect extract lowered ROS production in Caco-2 cells and reversed the stress-induced weakening of barrier integrity. The ROI extract inhibited the expression or secretion of interleukin-8 (IL-8), interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Moreover, the ROI extract decreased leaky gut formation and mortality rates in Drosophila melanogaster. Dietary supplementation with Protect improved the antioxidant status and barrier integrity of the intestines of infected piglets. In conclusion, wood lignan-enriched feed supplements are valuable tools that support intestinal health by exerting antioxidant, anti-inflammatory and barrier-strengthening effects.
Collapse
Affiliation(s)
- Mara Heckmann
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
- FFoQSI GmbH–Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria
| | - Nadiia Sadova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
| | - Ivana Drotarova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
- FFoQSI GmbH–Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria
| | - Stefanie Atzmüller
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
- FFoQSI GmbH–Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria
| | - Bettina Schwarzinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
- FFoQSI GmbH–Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria
| | - Roberto Mauricio Carvalho Guedes
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil
| | - Paula Angelica Correia
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil
| | | | | | - Gerald Klanert
- FFoQSI GmbH–Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
- FFoQSI GmbH–Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria
- Correspondence:
| |
Collapse
|
18
|
Egea MB, Pierce G, Luo T, Becraft A, Shay N. Intake of an enological oak tannin powder alters hepatic gene express patterns indicative of a reduction of inflammation in male mice fed an obesogenic diet. Food Funct 2022; 13:9754-9760. [PMID: 36148774 DOI: 10.1039/d2fo01286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrolysable tannins, mainly gallotannins and ellagitannins, either extracted directly from oak or as a part of lyophilized extracts from finished wine, have been associated with antioxidant and anti-inflammatory properties that may benefit human health. In this work we hypothesized that a commercially available oak tannin powder provided to C57BL/6J male mice fed a western-style obesogenic diet for 10 weeks would significantly alter hepatic gene expression patterns as determined by RNA sequencing. Over two-thousand genes were uniquely expressed between three different diet groups. Among the 25 canonical pathways that were significantly regulated, intake of oak powder reduced the TNF-alpha/NF-κB, complement activation, IL-5, and Type II interferon signaling; these significant reductions are consistent with a reduction in chronic systemic inflammation associated with consumption of a commercially prepared enological oak tannin.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Food Science and Technology, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Brazil
| | - Gavin Pierce
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97330, USA.
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Alexandra Becraft
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97330, USA.
| | - Neil Shay
- Department of Food Science and Technology, Oregon State University, 202 Wiegand Hall, Corvallis, OR, 97330, USA.
| |
Collapse
|
19
|
Liao J, Deng S, Essawy H, Bao X, Wang H, Du G, Zhou X. Investigation of Potential Use of Soybean Protein Isolate–Chinese Bayberry Tannin Extract Cross-Linked Films in Packaging Applications. MATERIALS 2022; 15:ma15155260. [PMID: 35955195 PMCID: PMC9369632 DOI: 10.3390/ma15155260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023]
Abstract
The possibility of using commercial bayberry tannin (BT) from a Chinese source as a cross-linker and functional additive to develop soybean protein isolate (SPI)-based films was explored in this study by using the solvent casting method. In particular, the impacts of BT loading on the tensile strength, microstructure, thermal stability, water resistance and antioxidant capacity were fully investigated. The results reveal that SPI incorporated with BT yielded a phenolic–protein hybrid whose relevant films exhibited an improvement in tensile strength of around two times greater compared with native SPI as a result of the formed interactions and covalent cross-links, which could be proven using FTIR spectroscopy. The introduction of BT also led to the compact microstructure of SPI–BT films and enhanced the thermal stability, while the water vapor permeability was reduced compared with the control SPI film, especially at high loading content of tannin. Additionally, the use of BT significantly promoted the antioxidant capacity of the SPI-based films according to DPPH radical scavenging assay results. On this basis, Chinese bayberry tannin is considered a promising natural cross-linker and multifunctional additive that can be dedicated to developing protein-derived films with antioxidant activity for food packaging applications.
Collapse
Affiliation(s)
- Jingjing Liao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
- Correspondence: (J.L.); (X.Z.)
| | - Shuangqi Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
| | - Hisham Essawy
- National Research Centre, Department of Polymers and Pigments, Dokki, Cairo 12622, Egypt;
| | - Xiaoyan Bao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
| | - Hongyan Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China;
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
- Correspondence: (J.L.); (X.Z.)
| |
Collapse
|
20
|
Molino S, Lerma-Aguilera A, Jiménez-Hernández N, Rufián Henares JÁ, Francino MP. Evaluation of the Effects of a Short Supplementation With Tannins on the Gut Microbiota of Healthy Subjects. Front Microbiol 2022; 13:848611. [PMID: 35572677 PMCID: PMC9093706 DOI: 10.3389/fmicb.2022.848611] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Western diet, high in fats and sugars and low in greens, contributes to dysbiosis of the gut microbiota, which can lead to a variety of chronic diseases related with inflammation. Supplementation with bioactive compounds can help to maintain a healthy eubiotic state. Thus, we performed a 4-weeks nutritional intervention on healthy volunteers to investigate whether a blend of natural tannin extracts could induce healthy changes in the microbial intestinal ecosystem. Changes in the composition and functionality of the microbiota could be observed from the first two weeks onward. 16S rRNA amplicon next-generation sequencing (NGS) revealed a significant increase in microbial diversity at the end of the intervention, as well as trends toward increases in the relative abundances of several beneficial taxa, such as Ruminococcus bicirculans, Faecalibacterium prausnitzii, Lachnospiraceae UCG 010, Lachnospiraceae NK4A136, Bacteroides thetaiotaomicron and B. uniformis. Remarkably, some of the identified taxa were also identified as responsible for an increase in the production of short-chain fatty acids (SCFAs), microbial metabolites that contribute to the modulation of the immune system and have various other anti-inflammatory functions in the gut. Taken together, these results suggest that the tannin supplementation could exert a prebiotic effect by selectively stimulating the growth and the activity of bacteria that are advantageous for the host.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alberto Lerma-Aguilera
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Nuria Jiménez-Hernández
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - M. Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
21
|
Comparison of different maceration and non-maceration treatments for enhancement of phenolic composition, colour intensity, and taste attributes of Malvazija istarska (Vitis vinifera L.) white wines. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Panzella L, Napolitano A. Condensed Tannins, a Viable Solution To Meet the Need for Sustainable and Effective Multifunctionality in Food Packaging: Structure, Sources, and Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:751-758. [PMID: 35029982 PMCID: PMC8796238 DOI: 10.1021/acs.jafc.1c07229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 05/21/2023]
Abstract
Condensed tannins (CT) have been the focus of increasing interest in the last years as a result of their potent biological properties, which have prompted their use in the food and feed sector as functional ingredients. The possible exploitation of these compounds as multifunctional additives for the implementation of active food packaging has also been recently appreciated. In this perspective, an overview of the structural features, accessible sources, methods of analysis, and functional properties of CT is provided, with the aim of critically emphasizing the opportunities offered by this widespread class of natural phenolic compounds for the rational design of multifunctional and sustainable food packaging materials.
Collapse
|
23
|
Molino S, Rufián Henares JÁ, Gómez-Mascaraque LG. Tannin-rich extracts improve the performance of amidated pectin as an alternative microencapsulation matrix to alginate. Curr Res Food Sci 2022; 5:243-250. [PMID: 35146441 PMCID: PMC8801355 DOI: 10.1016/j.crfs.2022.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Microencapsulation of tannin extracts through extrusion-gelation method was performed comparing two alternative encapsulation matrices: alginate and amidated pectin. The microstructure of the generated microbeads was studied, as well as their microencapsulation efficiency and release properties. Overall, pectin-based beads performed better than their alginate-based counterparts. This, combined with a greater incorporation of tannins in the feed formulations led to a higher tannin load in the final beads. The best microencapsulation efficiency was given by pectin microbeads loaded with 10% tannin extract (w/w), but the final tannin content could be further increased by adding a 20% (w/w) concentration of the extracts. During a 14-days storage, only a marginal loss of tannins was recorded for pectin-based microbeads. The results reveal that great potential exists in producing pectin-based microbeads in presence of tannins, which allow better loading capacities and improving structural properties, thanks to the interactions between the tannins and the amidated polysaccharide.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Universidad de Granada, Granada, Spain
| | - Laura G. Gómez-Mascaraque
- Food Chemistry and Technology Department, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
24
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
25
|
Bilawal A, Ishfaq M, Gantumur MA, Qayum A, Shi R, Fazilani SA, Anwar A, Jiang Z, Hou J. A review of the bioactive ingredients of berries and their applications in curing diseases. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:145-159. [PMID: 34807441 DOI: 10.1007/978-3-030-85686-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota. Manipulating the microbiota is a therapeutic option, and the concept of adding beneficial bacteria to the intestine has led to probiotic and prebiotic development. The gut microbiome is readily changeable by diet, antibiotics, pathogenic infections, and host- and environmental-dependent events. The intestine performs key roles of nutrient absorption, tolerance of beneficial microbiota, yet responding to undesirable microbes or microbial products and preventing translocation to sterile body compartments. During homeostasis, the immune system is actively preventing or modulating the response to known or innocuous antigens. Manipulating the microbiota through nutrition, modulating host immunity, preventing pathogen colonization, or improving intestinal barrier function has led to novel methods to prevent disease, but also resulted in improved body weight, feed conversion, and carcass yield in poultry. This review highlights the importance of adding different feed additives to the diets of poultry in order to manipulate and enhance health and productivity of flocks.
Collapse
|
27
|
Yuan H, Zhou P, Peng Z, Wang C. Antioxidant and Antibacterial Activities of Dodecyl Tannin Derivative Linked with 1,2,3-Triazole. Chem Biodivers 2021; 19:e202100558. [PMID: 34761863 DOI: 10.1002/cbdv.202100558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Dodecyl tannin derivative linked with 1,2,3-triazole was prepared by the click reaction of dodecyl azide and alkynylated tannin. The structure of tannin derivative was identified by FT-IR spectrometer and elemental analyzer, and the surface activity, antioxidant activity and antimicrobial activity of tannin derivative were studied. The surface tension of tannin derivative was significantly reduced because of the introduction of long chain alkyl groups, and the lowest surface tension was 38.87 mN/m at 1.0 mg/mL. The tannin derivative had strong ability to scavenge 1,1-diphenyl-2-picrylhydrazyl radical, the scavenging rate could reach 89.08 % at 0.25 mg/mL. The tannin derivative exhibited strong antibacterial activity against E. coli and S. aureus due to the increased fat-solubility of tannin derivative and the introduction of antibacterial triazole groups in molecular structure of tannin derivative, and the bacteriostatic ratios of tannin derivative against E. coli and S. aureus were 92.16 % and 89.21 % at 2.0 mg/mL, respectively. The tannin derivative can be used as good candidates for antibacterial packaging or antioxidant supplements.
Collapse
Affiliation(s)
- Hua Yuan
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu, 210042, P. R. China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan, 416000, P. R. China
| | - Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410000, P. R. China
| | - Zhiyuan Peng
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan, 416000, P. R. China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu, 210042, P. R. China
| |
Collapse
|
28
|
Maldonado-Mateus LY, Perez-Burillo S, Lerma-Aguilera A, Hinojosa-Nogueira D, Ruíz-Pérez S, Gosalbes MJ, Francino MP, Rufián-Henares JÁ, Pastoriza de la Cueva S. Effect of roasting conditions on cocoa bioactivity and gut microbiota modulation. Food Funct 2021; 12:9680-9692. [PMID: 34664589 DOI: 10.1039/d1fo01155c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cocoa is a highly consumed food with beneficial effects on human health. Cocoa roasting has an important influence on its sensory and nutritional characteristics; therefore, roasting could also play a role in cocoa bioactivity. Thus, the aim of this paper is to unravel the effect of cocoa roasting conditions on its antioxidant capacity and modifications of gut microbiota after in vitro digestion-fermentation. HMF and furfural, chemical markers of non-enzymatic browning, were analyzed in unroasted and roasted cocoa powder at different temperatures, as well as different chocolates. The antioxidant capacity decreased with roasting, most probably due to the loss of phenolic compounds during heating. In the case of the evaluated chocolates, the antioxidant capacity was 2-3 times higher in the fermented fraction. On the other hand, HMF and furfural content increased during roasting due to increasing temperatures. Moreover, unroasted and roasted cocoa powder have different effects on gut microbial communities. Roasted cocoa favored butyrate production, whereas unroasted cocoa favored acetate and propionate production in a significant manner. In addition, unroasted and roasted cocoa produced significantly different gut microbial communities in terms of composition. Although many bacteria were affected, Veillonella and Faecalibacterium were some of the most discriminant ones; whereas the former is a propionate producer, the latter is a butyrate producer that has also been linked to positive effects on the inflammatory health of the gut and the immune system. Therefore, unroasted and roasted cocoa (regardless of the roasting temperature) promote different bacteria and a different SCFA production.
Collapse
Affiliation(s)
- Lida Yaneth Maldonado-Mateus
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain. .,Grupo GIBA, Universidad de Pamplona, Colombia
| | - Sergio Perez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain. .,Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.,Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| | - Alberto Lerma-Aguilera
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-Salud Pública, Valencia, Spain
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.
| | - Sonia Ruíz-Pérez
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-Salud Pública, Valencia, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-Salud Pública, Valencia, Spain.,CIBEResp, Madrid, Spain
| | - M Pilar Francino
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-Salud Pública, Valencia, Spain.,CIBEResp, Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.
| |
Collapse
|
29
|
|
30
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
31
|
An Untargeted Metabolomics Approach for Correlating Pulse Crop Seed Coat Polyphenol Profiles with Antioxidant Capacity and Iron Chelation Ability. Molecules 2021; 26:molecules26133833. [PMID: 34201792 PMCID: PMC8270320 DOI: 10.3390/molecules26133833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.
Collapse
|
32
|
Molino S, Lerma-Aguilera A, Jiménez-Hernández N, Gosalbes MJ, Rufián-Henares JÁ, Francino MP. Enrichment of Food With Tannin Extracts Promotes Healthy Changes in the Human Gut Microbiota. Front Microbiol 2021; 12:625782. [PMID: 33796085 PMCID: PMC8008114 DOI: 10.3389/fmicb.2021.625782] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Food and food bioactive components are major drivers of modulation of the human gut microbiota. Tannin extracts consist of a mix of bioactive compounds, which are already exploited in the food industry for their chemical and sensorial properties. The aim of our study was to explore the viability of associations between tannin wood extracts of different origin and food as gut microbiota modulators. 16S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of tannin extracts from quebracho, chestnut, and tara associated with commercial food products with different composition in macronutrients. The different tannin-enriched and non-enriched foods were submitted to in vitro digestion and fermentation by the gut microbiota of healthy subjects. The profile of the short chain fatty acids (SCFAs) produced by the microbiota was also investigated. The presence of tannin extracts in food promoted an increase of the relative abundance of the genus Akkermansia, recognized as a marker of a healthy gut, and of various members of the Lachnospiraceae and Ruminococcaceae families, involved in SCFA production. The enrichment of foods with tannin extracts had a booster effect on the production of SCFAs, without altering the profile given by the foods alone. These preliminary results suggest a positive modulation of the gut microbiota with potential benefits for human health through the enrichment of foods with tannin extracts.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alberto Lerma-Aguilera
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Nuria Jiménez-Hernández
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - María José Gosalbes
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), València, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
33
|
Role of JAK-STAT Pathway in Broiler Chicks Fed with Chestnut Tannins. Animals (Basel) 2021; 11:ani11020337. [PMID: 33572892 PMCID: PMC7911350 DOI: 10.3390/ani11020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Current bans on the use of antibiotics in livestock feed have led to increasing demand for alternatives to antibiotics (ATA). One popular alternative is chestnut tannins (ChT). While there is growing evidence of the immune benefits of using phytobiotics, such as ChT, there is currently minimal information on the effect of tannins on the immune pathway of the host. A previous study discovered a large upregulation of IL-6 in broiler chicks at day 6 when provided with 1% ChT from hatch. In regard to potential immune modulation, ChT appear to influence host immunity via an IL-6 mediated response, which could be beneficial in host defenses against pathogens at the early stages of broiler growth and development. A critical pathway identified in the regulation of the immune system is the JAK-STAT signaling pathway. The role of JAK-STAT pathway is altered by the addition of ChT in the diet. By demonstrating the changes in the kinome of the broiler model, the information in this study will provide further insights into potential ATA to improve poultry health. Abstract The objective of this study was to identify the phosphorylation events associated with host immunity with the inclusion of chestnut tannins (ChT) in the diet. A total of 200 male day-of-hatch Cobb 500 chicks were randomly assigned to two treatment groups, totaling 50 chicks per pen per experiment (this study was repeated two times). The treatments were as follows: (1) control feed—normal starter feed (n = 50), and (2) 1% ChT inclusion feed (n = 50). The ceca were collected on each necropsy day for analysis via (1) a peptide array to provide tissue immunometabolism information from the host, and (2) quantitative PCR for mRNA expression. Of the top three immune pathways, the data identified the T-cell receptor signaling pathway, the chemokine signaling pathway, and the JAK-STAT signaling pathway. The results showed significantly altered phosphorylation of JAK and STAT peptides within the JAK-STAT pathway. These results support the mRNA expression data with the upregulated IL-6 response, due to the significant phosphorylation of IL6ST, JAK, and STAT peptides. In regard to immune modulation, ChT appear to influence host immunity via an IL-6 mediated response which could be beneficial in host defenses against pathogens at the early stages of broiler growth and development. Therefore, it is suggested that the role of the JAK-STAT pathway is altered by including ChT in the diet.
Collapse
|
34
|
Fraga-Corral M, Otero P, Cassani L, Echave J, Garcia-Oliveira P, Carpena M, Chamorro F, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021; 10:251. [PMID: 33530516 PMCID: PMC7912241 DOI: 10.3390/foods10020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tannins are polyphenolic compounds historically utilized in textile and adhesive industries, but also in traditional human and animal medicines or foodstuffs. Since 20th-century, advances in analytical chemistry have allowed disclosure of the chemical nature of these molecules. The chemical profile of extracts obtained from previously selected species was investigated to try to establish a bridge between traditional background and scientific data. The study of the chemical composition of these extracts has permitted us to correlate the presence of tannins and other related molecules with the effectiveness of their apparent uses. The revision of traditional knowledge paired with scientific evidence may provide a supporting background on their use and the basis for developing innovative pharmacology and food applications based on formulations using natural sources of tannins. This traditional-scientific approach can result useful due to the raising consumers' demand for natural products in markets, to which tannin-rich extracts may pose an attractive alternative. Therefore, it is of interest to back traditional applications with accurate data while meeting consumer's acceptance. In this review, several species known to contain high amounts of tannins have been selected as a starting point to establish a correlation between their alleged traditional use, tannins content and composition and potential bioaccessibility.
Collapse
Affiliation(s)
- Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, Mar del Plata RA7600, Argentina
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (L.C.); (J.E.); (P.G.-O.); (M.C.); (F.C.); (C.L.-L.)
| |
Collapse
|
35
|
Fraga-Corral M, Otero P, Echave J, Garcia-Oliveira P, Carpena M, Jarboui A, Nuñez-Estevez B, Simal-Gandara J, Prieto MA. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins' Biological Activities and Their Potential for Valorization. Foods 2021; 10:137. [PMID: 33440730 PMCID: PMC7827785 DOI: 10.3390/foods10010137] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
During recent decades, consumers have been continuously moving towards the substitution of synthetic ingredients of the food industry by natural products, obtained from vegetal, animal or microbial sources. Additionally, a circular economy has been proposed as the most efficient production system since it allows for reducing and reutilizing different wastes. Current agriculture is responsible for producing high quantities of organic agricultural waste (e.g., discarded fruits and vegetables, peels, leaves, seeds or forestall residues), that usually ends up underutilized and accumulated, causing environmental problems. Interestingly, these agri-food by-products are potential sources of valuable bioactive molecules such as tannins. Tannins are phenolic compounds, secondary metabolites of plants widespread in terrestrial and aquatic natural environments. As they can be found in plenty of plants and herbs, they have been traditionally used for medicinal and other purposes, such as the leather industry. This fact is explained by the fact that they exert plenty of different biological activities and, thus, they entail a great potential to be used in the food, nutraceutical and pharmaceutical industry. Consequently, this review article is directed towards the description of the biological activities exerted by tannins as they could be further extracted from by-products of the agri-food industry to produce high-added-value products.
Collapse
Affiliation(s)
- María Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Amira Jarboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Bernabé Nuñez-Estevez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; (M.F.-C.); (P.O.); (J.E.); (P.G.-O.); (M.C.); (A.J.); (B.N.-E.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
36
|
Lee A, Dal Pont GC, Farnell MB, Jarvis S, Battaglia M, Arsenault RJ, Kogut MH. Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca. Poult Sci 2021; 100:47-54. [PMID: 33357706 PMCID: PMC7772675 DOI: 10.1016/j.psj.2020.09.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
As the demand for alternatives to antibiotic growth promoters (AGP) increases in food animal production, phytobiotic compounds gain popularity because of their ability to mimic the desirable bioactive properties of AGP. Chestnut tannins (ChT) are one of many phytobiotic compounds used as feed additives, particularly in South America, for broilers because of its favorable antimicrobial and growth promotion capabilities. Although studies have observed the microbiological and immunologic effects of ChT, there is a lack of studies evaluating the metabolic function of ChT. Therefore, the objective of this study was to characterize the cecal metabolic changes induced by ChT inclusion and how they relate to growth promotion. A total of 200 day-of-hatch broiler chicks were separated into 2 feed treatment groups: control and 1% ChT. The ceca from all the chicks in the treatment groups were collected on day 2, 4, 6, 8, and 10 after hatch. The cytokine mRNA quantitative RT-PCR was determined using TaqMan gene expression assays for IL-1B, IL-6, IL-8, IL-10, and interferon gamma quantification. The cytokine expression showed highly significant increased expressions of IL-6 and IL-10 on day 2 and 6, whereas the other proinflammatory cytokines did not have significantly increased expression. The results from the kinome array demonstrated that the ceca from birds fed with 1% ChT had significant (P < 0.05) metabolic alterations based on the number of peptides when compared with the control group across all day tested. The increased expression of IL-6 appeared to be strongly indicative of altered metabolism, whereas the increased expression of IL-10 indicated the regulatory effect against other proinflammatory cytokines other than IL-6. The ChT initiate a metabolic mechanism during the first 10 d in the broiler. For the first time, we show that a phytobiotic product initially modulates metabolism while also potentially supporting growth and feed efficiency downstream. In conclusion, a metabolic phenotype alteration in the ceca of chickens fed ChT may indicate the importance of enhanced broiler gut health.
Collapse
Affiliation(s)
- Annah Lee
- Department of Poultry Science, Texas A&M University, College Station, USA.
| | | | - Morgan B Farnell
- Department of Poultry Science, Texas A&M University, College Station, USA
| | | | | | - Ryan J Arsenault
- Department of Animal & Food Sciences, University of Delaware, Newark, USA
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| |
Collapse
|
37
|
Casanova NA, Redondo LM, Redondo EA, Joaquim PE, Dominguez JE, Fernández-Miyakawa ME, Chacana PA. Efficacy of chestnut and quebracho wood extracts to control Salmonella in poultry. J Appl Microbiol 2020; 131:135-145. [PMID: 33251637 DOI: 10.1111/jam.14948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
AIMS The study was aimed to evaluate the antibacterial activity and efficacy of chestnut and quebracho wood extracts against Salmonella by in vitro assays and in vivo trials. METHODS AND RESULTS The extracts showed inhibitory activity against Salmonella determined by the minimum inhibitory concentration method as well as on the adhesion and invasion of S. Gallinarum (SG) and S. Enteritidis (SE) in Caco-2 cells. Also, transmission electron microscopy revealed that extract-treated Salmonella showed disruption of cell walls and membranes, damage of the cytoplasm and tannin-protein aggregations. In addition, efficacy of the extracts to control SG and SE was evaluated in experimental infection trials in laying hens and broilers respectively. SE excretion was significantly reduced on days 5 (P < 0·01) and 12 (P < 0·025) only in the quebracho group. In the fowl typhoid infection model, hens that received the chestnut extract showed a significantly reduced mortality (P < 0·05). CONCLUSIONS Our results evidence that these alternative natural products may be a useful tool to control Salmonella in poultry. SIGNIFICANCE AND IMPACT OF THE STUDY Salmonella is a zoonotic pathogen usually associated with poultry production. This study provides information about the mechanism of antibacterial effects of chestnut and quebracho wood extracts to control Salmonella in poultry.
Collapse
Affiliation(s)
- N A Casanova
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina
| | - L M Redondo
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - E A Redondo
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - P E Joaquim
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina
| | - J E Dominguez
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - M E Fernández-Miyakawa
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - P A Chacana
- Instituto de Patobiología - UEDD IPVet, INTA-CONICET, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De Los Reseros S/N, Buenos Aires, Argentina
| |
Collapse
|
38
|
Yan W, Shi M, Dong C, Liu L, Gao C. Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci 2020; 284:102267. [PMID: 32966965 DOI: 10.1016/j.cis.2020.102267] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 01/26/2023]
Abstract
Today, membrane technologies play a big role in chemical industry, especially in separation engineering. Tannic acid, one of the most famous polyphenols, has attracted widespread interest in membrane society. In the past several years, researches on the applications of tannic acid in membrane technologies have grown rapidly. However, there has been lack of a comprehensive review for now. Here, we summarize the recent developments in this field for the first time. We comb the history of tannic acid and introduce the properties of tannic acid firstly, and then we turn our focus onto the applications of membrane surface modification, interlayers and selective layers construction and mixed matrix membrane development. In those previous works, tannic acid has been demonstrated to be capable of making a great contribution to the membrane science and technology. Especially in membrane surface/interface engineering (such as the construction of superhydrophilic and antifouling surfaces and polymer/nanoparticle interfaces with high compatibility) and development of thin film composite membranes with high permselectivity (such as developing thin film composite membranes with ultrahigh flux and high rejection), tannic acid can play a positive and great role. Despite this, there are still many critical challenges lying ahead. We believe that more exciting progress will be made in addressing these challenges in the future.
Collapse
Affiliation(s)
- Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengqi Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Chenxi Dong
- Research Institute of Shannxi Yanchang Petroleum (Group) Co. Ltd., Xi'an 710075, PR China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
39
|
Hydrolyzable vs. Condensed Wood Tannins for Bio-based Antioxidant Coatings: Superior Properties of Quebracho Tannins. Antioxidants (Basel) 2020; 9:antiox9090804. [PMID: 32878314 PMCID: PMC7556001 DOI: 10.3390/antiox9090804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Tannins have always been the subject of great interest for their countless properties, first of all their ability to produce functional coatings on a variety of materials. We report herein a comparative evaluation of the antioxidant properties of wood tannin-based coated substrates. In particular, nylon membrane filters were functionalized with chestnut (hydrolyzable) or quebracho (condensed) tannins by dip coating under different conditions. The efficiency of functionalization was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays, which invariably highlighted the superior ability of condensed tannins to induce the formation of a functional and robust coating. The results of the antioxidant assays revealed also the deleterious effects of aerial or enzymatic oxidation conditions on substrate functionalization, being more significant in the case of hydrolyzable tannins. On the other hand, the use of oxidizing conditions allowed to obtain more stable coatings, still exhibiting good antioxidant properties, in the case of condensed tannins. The presence of iron ions did not lead to a significant improvement of the coating efficiency for either tannins. The systematic approach used in this work provides novel and useful information for the optimal exploitation of tannins in antioxidant functional coatings.
Collapse
|
40
|
Moccia F, Agustin-Salazar S, Verotta L, Caneva E, Giovando S, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Antioxidant Properties of Agri-food Byproducts |and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants (Basel) 2020; 9:E438. [PMID: 32443466 PMCID: PMC7278820 DOI: 10.3390/antiox9050438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Sarai Agustin-Salazar
- Departamento de Ingeniería Química y Metalurgía, Universidad de Sonora, Del Conocimiento, Centro, 83000 Hermosillo, Mexico;
| | - Luisella Verotta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via G. Celoria 2, I-20133 Milan, Italy;
| | - Enrico Caneva
- Unitech COSPECT, Direzione servizi per la Ricerca, Università degli Studi di Milano, Via C. Golgi 33, I-20133 Milan, Italy;
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, I-12080 San Michele Mondovì, CN, Italy;
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
- CSGI—Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| |
Collapse
|
41
|
Kõrge K, Bajić M, Likozar B, Novak U. Active chitosan–chestnut extract films used for packaging and storage of fresh pasta. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14569] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kristi Kõrge
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Chemistry and Biotechnology Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Marijan Bajić
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| |
Collapse
|