1
|
Bruder F, Weigend F, Franzke YJ. Application of the Adiabatic Connection Random Phase Approximation to Electron-Nucleus Hyperfine Coupling Constants. J Phys Chem A 2024; 128:7298-7310. [PMID: 39163640 PMCID: PMC11372758 DOI: 10.1021/acs.jpca.4c03794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The electron-nucleus hyperfine coupling constant is a challenging property for density functional methods. For accurate results, hybrid functionals with a large amount of exact exchange are often needed and there is no clear "one-for-all" functional which describes the hyperfine coupling interaction for a large set of nuclei. To alleviate this unfavorable situation, we apply the adiabatic connection random phase approximation (RPA) in its post-Kohn-Sham fashion to this property as a first test. For simplicity, only the Fermi-contact and spin-dipole terms are calculated within the nonrelativistic and the scalar-relativistic exact two-component framework. This requires to solve a single coupled-perturbed Kohn-Sham equation to evaluate the relaxed density matrix, which comes with a modest increase in computational demands. RPA performs remarkably well and substantially improves upon its Kohn-Sham (KS) starting point while also reducing the dependence on the KS reference. For main-group systems, RPA outperforms global, range-separated, and local hybrid functionals─at similar computational costs. For transition-metal compounds and lanthanide complexes, a similar performance as for hybrid functionals is observed. In contrast, related post-Hartree-Fock methods such as Møller-Plesset perturbation theory or CC2 perform worse than semilocal density functionals.
Collapse
Affiliation(s)
- Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Yannick J Franzke
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| |
Collapse
|
2
|
Holzer C, Franzke YJ. Beyond Electrons: Correlation and Self-Energy in Multicomponent Density Functional Theory. Chemphyschem 2024; 25:e202400120. [PMID: 38456204 DOI: 10.1002/cphc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Post-Kohn-Sham methods are used to evaluate the ground-state correlation energy and the orbital self-energy of systems consisting of multiple flavors of different fermions. Starting from multicomponent density functional theory, suitable ways to arrive at the corresponding multicomponent random-phase approximation and the multicomponent Green's functionG W ${GW}$ approximation, including relativistic effects, are outlined. Given the importance of both of this methods in the development of modern Kohn-Sham density functional approximations, this work will provide a foundation to design advanced multicomponent density functional approximations. Additionally, theG W ${GW}$ quasiparticle energies are needed to study light-matter interactions with the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Christof Holzer
- Karlsruhe Institute of Technology (KIT), Institute of Theoretical Solid State Physics, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Löbdergraben 32, 07743, Jena, Germany
| |
Collapse
|
3
|
Rabe A, Wang Q, Sundholm D. Unraveling the enigma of Craig-type Möbius-aromatic osmium compounds. Dalton Trans 2024; 53:10938-10946. [PMID: 38888198 DOI: 10.1039/d4dt01110d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Nuclear magnetic resonance (NMR) chemical shifts and the magnetically induced current density (MICD) susceptibility of four osmium containing molecules have been calculated at the density functional theory (DFT) level using three relativistic levels of theory. The calculations were performed at the quasi-relativistic level using an effective core potential (ECP) for Os, at the all-electron scalar exact two-component (X2C) relativistic level, and at the relativistic X2C level including spin-orbit coupling (SO-X2C). In earlier studies, the osmapentalene (1) and the osmapentalynes (2 and 3) were considered Craig-type Möbius aromatic and it was suggested that the analogous osmium compound (4) is Craig-type Möbius antiaromatic. Here, the ring-current strengths were obtained with the gauge including magnetically induced currents (GIMIC) method by integrating the MICD susceptibility passing through planes that intersect chemical bonds and by line integration of the induced magnetic field using Ampère-Maxwell's law. The ring-current calculations suggest that 1, 2 and 3 are weakly aromatic and that 4 is nonaromatic. The accuracy of the MICD susceptibility was assessed by comparing calculated NMR chemical shifts to available experimental data. Visualization of the MICD susceptibility shows that the ring current does not pass from one side of the molecular plane to the other, which means that the MICD susceptibility of the studied molecules does not exhibit any Möbius topology as one would expect for Craig-type Möbius aromatic and for Craig-type Möbius antiaromatic molecules. Thus, molecules 1-3 are not Craig-type Möbius aromatic and molecule 4 is not Craig-type Möbius antiaromatic as previously suggested. Calculations of the 1H NMR and 13C NMR chemical shifts of atoms near the Os atom show the importance of including spin-orbit effects. Overall, our study revisits the understanding of the aromaticity of organometallic molecules containing transition metals.
Collapse
Affiliation(s)
- Antonia Rabe
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland.
| | - Qian Wang
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland.
| |
Collapse
|
4
|
Blasco D, Sundholm D. The aromatic nature of auracycles and diauracycles based on calculated ring-current strengths. Dalton Trans 2024; 53:10150-10158. [PMID: 38819195 DOI: 10.1039/d4dt00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We have calculated the magnetically induced current density susceptibility for gold-containing organometallic molecular rings using the gauge-including magnetically induced currents (GIMIC) method. The aromatic nature has been determined by calculating the strength of the magnetically induced ring current susceptibility, which is often called ring current. To our knowledge, we show here for the first time that gold-containing organometallic rings may be aromatic or antiaromatic sustaining ring currents in the presence of an external magnetic field. The calculated aromatic character of the rings agrees with the aromatic nature one expects when using Hückel's aromaticity rules. The studied auracycles and diauracycles with 4n electrons in the conjugated orbitals generally sustain a weak paratropic ring current, whereas those having 4n + 2 electrons in the conjugated orbitals sustain a diatropic ring current that is almost as strong as that of benzene. The number of electrons are obtained by assuming that each C, N and Au atom of the ring contribute one electron, and a H atom connected to a N atom in the ring increases the number of electrons by one. An electron-attracting ligand at Au removes one electron from the ring. Formation of a short Au-Au bonding diauracycles reduces the number of electrons in the ring by two.
Collapse
Affiliation(s)
- Daniel Blasco
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland.
| |
Collapse
|
5
|
Mailhiot S, Peuravaara P, Egleston BD, Kearsey RJ, Mareš J, Komulainen S, Selent A, Kantola AM, Cooper AI, Vaara J, Greenaway RL, Lantto P, Telkki VV. Gas Uptake and Thermodynamics in Porous Liquids Elucidated by 129Xe NMR. J Phys Chem Lett 2024; 15:5323-5330. [PMID: 38724016 PMCID: PMC11129303 DOI: 10.1021/acs.jpclett.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
We exploited 129Xe NMR to investigate xenon gas uptake and dynamics in a porous liquid formed by dissolving porous organic cages in a cavity-excluded solvent. Quantitative 129Xe NMR shows that when the amount of xenon added to the sample is lower than the amount of cages present (subsaturation), the porous liquid absorbs almost all xenon atoms from the gas phase, with 30% of the cages occupied with a Xe atom. A simple two-site exchange model enables an estimate of the chemical shift of 129Xe in the cages, which is in good agreement with the value provided by first-principles modeling. T2 relaxation times allow the determination of the exchange rate of Xe between the solvent and cage sites as well as the activation energies of the exchange. The 129Xe NMR analysis also enables determination of the free energy of confinement, and it shows that Xe binding is predominantly enthalpy-driven.
Collapse
Affiliation(s)
- Sarah
E. Mailhiot
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Petri Peuravaara
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Benjamin D. Egleston
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Rachel J. Kearsey
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Jiří Mareš
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Sanna Komulainen
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Anne Selent
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Anu M. Kantola
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Juha Vaara
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Rebecca L. Greenaway
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Perttu Lantto
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
6
|
Pausch A. Consistent Analytical Second Derivatives of the Kohn-Sham DFT Energy in the Framework of the Conductor-Like Screening Model through Gaussian Charge Distributions. J Chem Theory Comput 2024; 20:3169-3183. [PMID: 38557008 DOI: 10.1021/acs.jctc.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The use of implicit solvation models such as the conductor-like screening model (COSMO) in quantum chemical calculations is very common, as both a rough estimate of solvation effects as well as a general tool for stabilizing ionic molecular structures. In order to generate a smooth potential energy surface as well as consistent gradients, it is necessary to apply the Gaussian charge model (GCM) for the COSMO charges. This work introduces an efficient implementation for consistent analytical second derivatives of the electronic energy with COSMO-GCM in the framework of the Kohn-Sham density functional theory. This is used to investigate the infrared spectroscopy of amino acids in aqueous solution, where the impact of pH on the molecular structure and vibrational spectra is examined. Furthermore, the structure and stability of selected all-metal aromatic cluster ions are assessed.
Collapse
Affiliation(s)
- Ansgar Pausch
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Shenderovich IG. The Scope of the Applicability of Non-relativistic DFT Calculations of NMR Chemical Shifts in Pyridine-Metal Complexes for Applied Applications. Chemphyschem 2024; 25:e202300986. [PMID: 38259119 DOI: 10.1002/cphc.202300986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Heavy metals are toxic, but it is impossible to stop using them. Considering the variety of molecular systems in which they can be present, the multicomponent nature and disorder of the structure of such systems, one of the most effective methods for studying them is NMR spectroscopy. This determines the need to calculate NMR chemical shifts for expected model systems. For elements beyond the third row of the periodic table, corrections for relativistic effects are necessary when calculating NMR parameters. Such corrections may be necessary even for light atoms due to the shielding effect of a neighboring heavy atom. This work examines the extent to which non-relativistic DFT calculations are able to reproduce experimental 15N and 113Cd NMR chemical shift tensors in pyridine-metal coordination complexes. It is shown that while for the calculation of 15N NMR chemical shift tensors there is no real need to consider relativistic corrections, for 113Cd, on the contrary, none of the tested calculation methods could reproduce the experimentally obtained tensor to any extent correctly.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- NMR Department, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
8
|
Franzke YJ, Bruder F, Gillhuber S, Holzer C, Weigend F. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods. J Phys Chem A 2024; 128:670-686. [PMID: 38195394 DOI: 10.1021/acs.jpca.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An efficient framework for the calculation of paramagnetic NMR (pNMR) shifts within exact two-component (X2C) theory and (current-dependent) density functional theory (DFT) up to the class of local hybrid functionals (LHFs) is presented. Generally, pNMR shifts for systems with more than one unpaired electron depend on the orbital shielding contribution and a temperature-dependent term. The latter includes zero-field splitting (ZFS), hyperfine coupling (HFC), and the g-tensor. For consistency, we calculate these three tensors at the same level of theory, i.e., using scalar-relativistic X2C augmented with spin-orbit perturbation theory. Results for pNMR chemical shifts of transition-metal complexes reveal that this X2C-DFT framework can yield good results for both the shifts and the individual tensor contributions of metallocenes and related systems, especially if the HFC constant is large. For small HFC constants, the relative error is often large, and sometimes the sign may be off. 4d and 5d complexes with more complicated structures demonstrate the limitations of a fully DFT-based approach. Additionally, a Co-based complex with a very large ZFS and pronounced multireference character is not well described. Here, a hybrid DFT-multireference framework is necessary for accurate results. Our results show that X2C is sufficient to describe relativistic effects and computationally cheaper than a fully relativistic approach. Thus, it allows use of large basis sets for converged HFCs. Overall, current-dependent meta-generalized gradient approximations and LHFs show some potential; however, the currently available functionals leave a lot to be desired, and the predictive power is limited.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
9
|
Rajabi A, Grotjahn R, Rappoport D, Furche F. A DFT perspective on organometallic lanthanide chemistry. Dalton Trans 2024; 53:410-417. [PMID: 38013481 DOI: 10.1039/d3dt03221c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Computational studies of the coordination chemistry and bonding of lanthanides have grown in recent decades as the need for understanding the distinct physical, optical, and magnetic properties of these compounds increased. Density functional theory (DFT) methods offer a favorable balance of computational cost and accuracy in lanthanide chemistry and have helped to advance the discovery of novel oxidation states and electronic configurations. This Frontier article examines the scope and limitations of DFT in interpreting structural and spectroscopic data of low-valent lanthanide complexes, elucidating periodic trends, and predicting their properties and reactivity, presented through selected examples.
Collapse
Affiliation(s)
- Ahmadreza Rajabi
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | - Robin Grotjahn
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | - Dmitrij Rappoport
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | - Filipp Furche
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| |
Collapse
|
10
|
Bruder F, Franzke YJ, Holzer C, Weigend F. Zero-field splitting parameters within exact two-component theory and modern density functional theory using seminumerical integration. J Chem Phys 2023; 159:194117. [PMID: 37987521 DOI: 10.1063/5.0175758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
An efficient implementation of zero-field splitting parameters based on the work of Schmitt et al. [J. Chem. Phys. 134, 194113 (2011)] is presented. Seminumerical integration techniques are used for the two-electron spin-dipole contribution and the response equations of the spin-orbit perturbation. The original formulation is further generalized. First, it is extended to meta-generalized gradient approximations and local hybrid functionals. For these functional classes, the response of the paramagnetic current density is considered in the coupled-perturbed Kohn-Sham equations for the spin-orbit perturbation term. Second, the spin-orbit perturbation is formulated within relativistic exact two-component theory and the screened nuclear spin-orbit (SNSO) approximation. The accuracy of the implementation is demonstrated for transition-metal and diatomic main-group compounds. The efficiency is assessed for Mn and Mo complexes. Here, it is found that coarse integration grids for the seminumerical schemes lead to drastic speedups while introducing clearly negligible errors. In addition, the SNSO approximation substantially reduces the computational demands and leads to very similar results as the spin-orbit mean field Ansatz.
Collapse
Affiliation(s)
- Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
11
|
Franzke YJ, Holzer C. Exact two-component theory becoming an efficient tool for NMR shieldings and shifts with spin-orbit coupling. J Chem Phys 2023; 159:184102. [PMID: 37937936 DOI: 10.1063/5.0171509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 11/09/2023] Open
Abstract
We present a gauge-origin invariant exact two-component (X2C) approach within a modern density functional framework, supporting meta-generalized gradient approximations such as TPSS and range-separated hybrid functionals such as CAM-B3LYP. The complete exchange-correlation kernel is applied, including the direct contribution of the field-dependent basis functions and the reorthonormalization contribution from the perturbed overlap matrix. Additionally, the finite nucleus model is available for the electron-nucleus potential and the vector potential throughout. Efficiency is ensured by the diagonal local approximation to the unitary decoupling transformation in X2C as well as the (multipole-accelerated) resolution of the identity approximation for the Coulomb term (MARI-J, RI-J) and the seminumerical exchange approximation. Errors introduced by these approximations are assessed and found to be clearly negligible. The applicability of our implementation to large-scale calculations is demonstrated for a tin pincer-type system as well as low-valent tin and lead complexes. Here, the calculation of the Sn nuclear magnetic resonance shifts for the pincer-type ligand with about 2400 basis functions requires less than 1 h for hybrid density functionals. Further, the impact of spin-orbit coupling on the nucleus-independent chemical shifts and the corresponding ring currents of all-metal aromatic systems is studied.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
13
|
Hilla P, Vaara J. NMR chemical shift of confined 129Xe: coordination number, paramagnetic channels and molecular dynamics in a cryptophane-A biosensor. Phys Chem Chem Phys 2023; 25:22719-22733. [PMID: 37606522 DOI: 10.1039/d3cp02695g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Advances in hyperpolarisation and indirect detection have enabled the development of xenon nuclear magnetic resonance (NMR) biosensors (XBSs) for molecule-selective sensing in down to picomolar concentration. Cryptophanes (Crs) are popular cages for hosting the Xe "spy". Understanding the microscopic host-guest chemistry has remained a challenge in the XBS field. While early NMR computations of XBSs did not consider the important effects of host dynamics and explicit solvent, here we model the motionally averaged, relativistic NMR chemical shift (CS) of free Xe, Xe in a prototypic CrA cage and Xe in a water-soluble CrA derivative, each in an explicit H2O solvent, over system configurations generated at three different levels of molecular dynamics (MD) simulations. We confirm the "contact-type" character of the Xe CS, arising from the increased availability of paramagnetic channels, magnetic couplings between occupied and virtual orbitals through the short-ranged orbital hyperfine operator, when neighbouring atoms are in contact with Xe. Remarkably, the Xe CS in the present, highly dynamic and conformationally flexible situations is found to depend linearly on the coordination number of the Xe atom. We interpret the high- and low-CS situations in terms of the magnetic absorption spectrum and choose our preference among the used MD methods based on comparison with the experimental CS. We check the role of spin-orbit coupling by comparing with fully relativistic CS calculations. The study outlines the computational workflow required to realistically model the CS of Xe confined in dynamic cavity structures under experimental conditions, and contributes to microscopic understanding of XBSs.
Collapse
Affiliation(s)
- Perttu Hilla
- NMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| | - Juha Vaara
- NMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| |
Collapse
|
14
|
Franzke YJ. Reducing Exact Two-Component Theory for NMR Couplings to a One-Component Approach: Efficiency and Accuracy. J Chem Theory Comput 2023; 19:2010-2028. [PMID: 36939092 DOI: 10.1021/acs.jctc.2c01248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The self-consistent and complex spin-orbit exact two-component (X2C) formalism for NMR spin-spin coupling constants [ J. Chem. Theory Comput. 17, 2021, 3874-3994] is reduced to a scalar one-component ansatz. This way, the first-order response term can be partitioned into the Fermi-contact (FC) and spin-dipole (SD) interactions as well as the paramagnetic spin-orbit (PSO) contribution. The FC+SD terms are real and symmetric, while the PSO term is purely imaginary and antisymmetric. The relativistic one-component approach is combined with a modern density functional treatment up to local hybrid functionals including the response of the current density. Computational demands are reduced by factors of 8-24 as shown for a large tin compound consisting of 137 atoms. Limitations of the current ansatz are critically assessed for Sn, Pb, Pd, and Pt compounds, i.e. the one-component treatment is not sufficient for tin compounds featuring a few heavy halogen atoms.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
15
|
Abstract
The occurrence of aromaticity in organic molecules is widely accepted, but its occurrence in purely metallic systems is less widespread. Molecules comprising only metal atoms (M) are known to be able to exhibit aromatic behaviour, sustaining ring currents inside an external magnetic field along M-M connection axes (σ-aromaticity) or above and below the plane (π-aromaticity) for cyclic or cage-type compounds. However, all-metal compounds provide an extension of the electrons' mobility also in other directions. Here, we show that regular {Bi6} prisms exhibit a non-localizable molecular orbital of f-type symmetry and generate a strong ring current that leads to a behaviour referred to as φ-aromaticity. The experimentally observed heterometallic cluster [{CpRu}3Bi6]-, based on a regular prismatic {Bi6} unit, displays aromatic behaviour; according to quantum chemical calculations, the corresponding hypothetical Bi62- prism shows a similar behaviour. By contrast, [{(cod)Ir}3Bi6] features a distorted Bi6 moiety that inhibits φ-aromaticity.
Collapse
|
16
|
Krätschmer F, Sun X, Gillhuber S, Kucher H, Franzke YJ, Weigend F, Roesky PW. Fully Tin-Coated Coinage Metal Ions: A Pincer-Type Bis-stannylene Ligand for Exclusive Tetrahedral Complexation. Chemistry 2022; 29:e202203583. [PMID: 36533713 DOI: 10.1002/chem.202203583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
The synthesis of a novel bis-stannylene pincer ligand and its complexation with coinage metals (CuI , AgI and AuI ) are described. All coinage metal centres are in tetrahedral coordination environments in the solid state and are exclusively coordinated by four neutral SnII donors. 119 Sn NMR provided information about the behaviour in solution. All of the isolated compounds have photoluminescent properties, and these were investigated at low and elevated temperatures. Compared to the free bis-stannylene ligand, coordination to coinage metals led to an increase in the luminescence intensity. The new compounds were investigated in detail through all-electron relativistic density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Hannes Kucher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
17
|
Rzepiela K, Kaminský J, Buczek A, Broda MA, Kupka T. Electron Correlation or Basis Set Quality: How to Obtain Converged and Accurate NMR Shieldings for the Third-Row Elements? Molecules 2022; 27:8230. [PMID: 36500321 PMCID: PMC9737175 DOI: 10.3390/molecules27238230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical shieldings of the NMR-active nuclei of the third row. Here, we report on the importance of proper basis set selection to obtain accurate and reliable NMR shielding parameters for nuclei from the third row of the periodic table. All calculations were performed on a set of eleven compounds containing the elements Na, Mg, Al, Si, P, S, or Cl. NMR shielding tensors were calculated using the SCF-HF, DFT-B3LYP, and CCSD(T) methods, combined with the Dunning valence aug-cc-pVXZ, core-valence aug-cc-pCVXZ, Jensen polarized-convergent aug-pcSseg-n and Karlsruhe x2c-Def2 basis set families. We also estimated the complete basis set limit (CBS) values of the NMR parameters. Widely scattered nuclear shieldings were observed for the Dunning polarized-valence basis set, which provides irregular convergence. We show that the use of Dunning core-valence or Jensen basis sets effectively reduces the scatter of theoretical NMR results and leads to their exponential-like convergence to CBS. We also assessed the effect of vibrational, temperature, and relativistic corrections on the predicted shieldings. For systems with single bonds, all corrections are relatively small, amounting to less than 4% of the CCSD(T)/CBS value. Vibrational and temperature corrections were less reliable for H3PO and HSiCH due to the high anharmonicity of the molecules. An abnormally high relativistic correction was observed for phosphorus in PN, reaching ~20% of the CCSD(T)/CBS value, while the correction was less than 7% for other tested molecules.
Collapse
Affiliation(s)
- Kacper Rzepiela
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Aneta Buczek
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Małgorzata A. Broda
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| |
Collapse
|
18
|
Bruder F, Franzke YJ, Weigend F. Paramagnetic NMR Shielding Tensors Based on Scalar Exact Two-Component and Spin-Orbit Perturbation Theory. J Phys Chem A 2022; 126:5050-5069. [PMID: 35857421 DOI: 10.1021/acs.jpca.2c03579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The temperature-dependent Fermi-contact and pseudocontact terms are important contributions to the paramagnetic NMR shielding tensor. Herein, we augment the scalar-relativistic (local) exact two-component (X2C) framework with spin-orbit perturbation theory including the screened nuclear spin-orbit correction for the EPR hyperfine coupling and g tensor to compute these temperature-dependent terms. The accuracy of this perturbative ansatz is assessed with the self-consistent spin-orbit two-component and four-component treatments serving as reference. This shows that the Fermi-contact and pseudocontact interaction is sufficiently described for paramagnetic NMR shifts; however, larger deviations are found for the EPR spectra and the principle components of the EPR properties of heavy elements. The impact of the perturbative treatment is further compared to that of the density functional approximation and the basis set. Large-scale calculations are routinely possible with the multipole-accelerated resolution of the identity approximation and the seminumerical exchange approximation, as shown for [CeTi6O3(OiPr)9(salicylate)6].
Collapse
Affiliation(s)
- Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
19
|
Holzer C, Franzke YJ. A Local Hybrid Exchange Functional Approximation from First Principles. J Chem Phys 2022; 157:034108. [DOI: 10.1063/5.0100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local hybrid functionals are a more flexible class of density functional approximations allowing for a position-dependent admixture of exact exchange. This additional flexibility, however, comes with a more involved mathematical form and a more complicated design. A common denominator for previously constructed local hybrid funtionals is usage of thermochemical benchmark data to construct these functionals. Herein, we design a local hybrid functional without relying on benchmark data. Instead, we construct it in a more ab initio manner, following the principles of modern meta-generalized gradient approximations and considering theoretical constrains. To achieve this, we make use of the density matrix expansion and a local mixing function based on an approximate correlation length. The accuracy of the developed density functional approximation is assessed for thermochemistry, excitation energies, polarizabilities, magnetizabilities, NMR spin-spincoupling constants, NMR shieldings and shifts, as well as EPR g-tensors and hyperfine coupling constants. Here, the new exchange functional shows a robust performance and is especially well suited for atomization energies, barrier heights, excitation energies, NMR coupling constants, and EPR properties, whereas it looses some ground for the NMR shifts.Therefore, the designed functional is a major step forwards for functionals that have been designed from first principles.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| | - Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| |
Collapse
|
20
|
Franzke YJ, Holzer C. Communication: Impact of the current density on paramagnetic NMR properties. J Chem Phys 2022; 157:031102. [DOI: 10.1063/5.0103898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Meta-generalized gradient approximations (meta-GGAs) and local hybrid functionals generally depend on the kinetic energy density τ. For magnetic properties, this necessitates generalizations to ensure gauge invariance. In most implementations, τ is generalized by incorporating the external magnetic field. However, this introduces artifacts in the response of the density matrix and does not satisfy the iso-orbital constraint. Here, we extend previous approaches based on the current density to paramagnetic NMR shieldings and EPR g-tensors. The impact is assessed for main-group compounds and transition-metal complexes considering 25 density functional approximations. It is shown that the current density leads to substantial improvements-especially for the popular Minnesota and SCAN functional families. Thus, we strongly recommend to use the current density generalized τ in paramagnetic NMR and EPR calculations with meta-GGAs.
Collapse
Affiliation(s)
- Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| |
Collapse
|
21
|
Jayapaul J, Komulainen S, Zhivonitko VV, Mareš J, Giri C, Rissanen K, Lantto P, Telkki VV, Schröder L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat Commun 2022; 13:1708. [PMID: 35361759 PMCID: PMC8971460 DOI: 10.1038/s41467-022-29249-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Guest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetics from multiple environments. Dilute pools with ~ 104-fold lower spin numbers than reported for directly detected hyperpolarized nuclei are readily detected due to efficient guest turnover. The system is further probed by instantaneous and medium timescale perturbations. Computational modeling indicates that these signals originate likely from Xe bound to three Fe-MOP diastereomers (T, C3, S4). The symmetry thus induces steric effects with aperture size changes that tunes selective spin manipulation as it is employed in CEST MRI agents and, potentially, impacts other processes occurring on the millisecond time scale.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | | | | | - Jiří Mareš
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology (MIPT), University of Oulu, 90014, Oulu, Finland
| | - Chandan Giri
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Perttu Lantto
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland.
| | | | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Franzke YJ, Yu JM. Quasi-Relativistic Calculation of EPR g Tensors with Derivatives of the Decoupling Transformation, Gauge-Including Atomic Orbitals, and Magnetic Balance. J Chem Theory Comput 2022; 18:2246-2266. [PMID: 35354319 DOI: 10.1021/acs.jctc.1c01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present an exact two-component (X2C) ansatz for the EPR g tensor using gauge-including atomic orbitals (GIAOs) and a magnetically balanced basis set expansion. In contrast to previous X2C and four-component relativistic ansätze for the g tensor, this implementation results in a gauge-origin-invariant formalism. Furthermore, the derivatives of the relativistic decoupling matrix are incorporated to form the complete analytical derivative of the X2C Hamiltonian. To reduce the associated computational costs, we apply the diagonal local approximation to the unitary decoupling transformation (DLU). The quasi-relativistic X2C and DLU-X2C Hamiltonians accurately reproduce the results of the parent four-component relativistic theory when accounting for two-electron picture-change effects with the modified screened nuclear spin-orbit approximation in the respective one-electron integrals and integral derivatives. According to our benchmark studies, the uncontracted Dyall and segmented-contracted Karlsruhe x2c-type basis sets perform well when compared to large even-tempered basis sets. Moreover, (range-separated) hybrid density functional approximations such as LC-ωPBE and ωB97X-D are needed to match the experimental findings. The impact of the GIAOs depends on the distribution of the spin density, and their use may change the Δg shifts by 10-50% as shown for [(C5Me5)2Y(μ-S)2Mo(μ-S)2Y(C5Me5)2]-. Routine calculations of large molecules are possible with widely available and comparably low-cost hardware as demonstrated for [Pt(C6Cl5)4]- with 3003 basis functions and three spin-(1/2) La(II) and Lu(II) compounds, for which we observe good agreement with the experimental findings.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Jason M Yu
- Department of Chemistry, University of California─Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
23
|
Stückrath JB, Gasevic T, Bursch M, Grimme S. Benchmark Study on the Calculation of 119Sn NMR Chemical Shifts. Inorg Chem 2022; 61:3903-3917. [PMID: 35180346 DOI: 10.1021/acs.inorgchem.1c03453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new benchmark set termed SnS51 for assessing quantum chemical methods for the computation of 119Sn NMR chemical shifts is presented. It covers 51 unique 119Sn NMR chemical shifts for a selection of 50 tin compounds with diverse bonding motifs and ligands. The experimental reference data are in the spectral range of ±2500 ppm measured in seven different solvents. Fifteen common density functional approximations, two scalar- and one spin-orbit relativistic approach are assessed based on conformer ensembles generated using the CREST/CENSO scheme and state-of-the-art semiempirical (GFN2-xTB), force field (GFN-FF), and composite DFT methods (r2SCAN-3c). Based on the results of this study, the spin-orbit relativistic method combinations of SO-ZORA with PBE0 or revPBE functionals are generally recommended. Both yield mean absolute deviations from experimental data below 100 ppm and excellent linear regression determination coefficients of ≤0.99. If spin-orbit calculations are not affordable, the use of SR-ZORA with B3LYP or X2C with ωB97X or M06 may be considered to obtain qualitative predictions if no severe spin-orbit effects, for example, due to heavy nuclei containing ligands, are expected. An empirical linear scaling correction is demonstrated to be applicable for further improvement, and respective empirical parameters are given. Conformational effects on chemical shifts are studied in detail but are mostly found to be small. However, in specific cases when the ligand sphere differs substantially between conformers, chemical shifts can change by up to several hundred ppm.
Collapse
Affiliation(s)
- Julius B Stückrath
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
24
|
Helle N, Raeker T, Grotemeyer J. Studies of the First Electronically Excited State of 3-Fluoropyridine and Its Ionic Structure by Means of REMPI, Two-Photon MATI, One-Photon VUV-MATI Spectroscopy and Franck-Condon Analysis. Phys Chem Chem Phys 2022; 24:2412-2423. [PMID: 35019908 DOI: 10.1039/d1cp04636e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Fluoropyridine (3-FP) has been investigated by means of two-photon resonance-enhanced multi photon ionization (REMPI), mass-analyzed threshold ionization (MATI) and one-photon vacuum-ultraviolet (VUV) MATI spectroscopy. The aim was the determination of the effect of m-fluorine substitution on the vibronic structure of the first electronically excited and ionic ground state. The S1 excitation energy has been determined to be 35 064 ± 2 cm-1 (4.3474 ± 0.0002 eV). Strong evidence of a distinct vibronic coupling via ν16b and ν[Wag.out.,16a] to one or both of the lowest 1ππ* states has been found, which results in a warped S1 minimum structure with C1 symmetry. The adiabatic ionization energy of the ionic ground state (14a', nN-LP orbital) has been determined to be 76 579 ± 6 cm-1 (9.4946 ± 0.0007 eV), which is the first value reported for this state. The origin of the D1 state (4a'', π-orbital) is located close by at 77 129 cm-1 (9.5628 eV). As a result of the D0-D1 vicinity, the ionic ground state is coupled to the D1 state via ν[Wag.out.,16a] and ν10a, which induces a twisted D0 geometry with C1 symmetry. Furthermore, for the first time two-photon and one-photon MATI spectra are presented together, which yield a much better understanding of the ionic vibronic structure in comparison to either of these experiments alone.
Collapse
Affiliation(s)
- Niklas Helle
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Tim Raeker
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Juergen Grotemeyer
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| |
Collapse
|
25
|
Franzke YJ, Holzer C, Mack F. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation. J Chem Theory Comput 2022; 18:1030-1045. [PMID: 34981925 DOI: 10.1021/acs.jctc.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first steps to extend the Green's function GW method and the Bethe-Salpeter equation (BSE) to molecular response properties such as nuclear magnetic resonance (NMR) indirect spin-spin coupling constants. We discuss both a nonrelativistic one-component and a quasi-relativistic two-component formalism. The latter describes scalar-relativistic and spin-orbit effects and allows us to study heavy-element systems with reasonable accuracy. Efficiency is maintained by the application of the resolution of the identity approximation throughout. The performance is demonstrated using conventional central processing units (CPUs) and modern graphics processing units (GPUs) for molecules involving several thousand basis functions. Our results show that a large amount of Hartree-Fock exchange is vital to provide a sufficient Kohn-Sham starting point to compute the GW quasi-particle energies. As the GW-BSE approach is generally less accurate for triplet excitations or related properties such as the Fermi-contact interaction, the admixture of the Kohn-Sham correlation kernel through the contracted BSE (cBSE) method improves the results for NMR coupling constants. This leads to remarkable results when combined with the eigenvalue-only self-consistent variant (evGW) and Becke's half and half functional (BH&HLYP) or the CAM-QTP family. The developed methodology is used to calculate the Karplus curve of tin molecules, illustrating its applicability to extended chemically relevant molecules. Here, the GW-cBSE method improves upon the chosen BH&HLYP Kohn-Sham starting points.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
26
|
Schattenberg CJ, Lehmann M, Bühl M, Kaupp M. Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei. J Chem Theory Comput 2021; 18:273-292. [PMID: 34968062 DOI: 10.1021/acs.jctc.1c00964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide range of density functionals from all rungs of Jacob's ladder have been evaluated systematically for a set of experimental 3d transition-metal NMR shifts of 70 complexes encompassing 12 × 49Ti, 10 × 51V, 10 × 53Cr, 11 × 55Mn, 9 × 57Fe, 9 × 59Co, and 9 × 61Ni shift values, as well as a diverse range of electronic structure characteristics. The overall 39 functionals evaluated include one LDA, eight GGAs, seven meta-GGAs (including their current-density-functional─CDFT─versions), nine global hybrids, four range-separated hybrids, eight local hybrids, and two double hybrids, and we also include Hartree-Fock and MP2 calculations. While recent evaluations of the same functionals for a very large coupled-cluster-based benchmark of main-group shieldings and shifts achieved in some cases aggregate percentage mean absolute errors clearly below 2%, the best results for the present 3d-nuclei set are in the range between 4 and 5%. Strikingly, the overall best-performing functionals are the recently implemented CDFT versions of two meta-GGAs, namely cM06-L (4.0%) and cVSXC (4.3%), followed by cLH14t-calPBE (4.9%), B3LYP (5.0%), and cLH07t-SVWN (5.1%), i.e., the previously best-performing global hybrid and two local hybrids. A number of further functionals achieve aggregate deviations in the range 5-6%. Range-separated hybrids offer no particular advantage over global hybrids. Due to the overall poor performance of Hartree-Fock theory for all systems except the titanium complexes, MP2 and double-hybrid functionals are unsuitable for these 3d-nucleus shifts and provide large errors. Global hybrid functionals with larger EXX admixtures, such as BHLYP or M06-2X, also perform poorly, and some other highly parametrized global hybrids also are unsuitable. For many functionals depending on local kinetic energy τ, their CDFT variants perform much better than their "non-CDFT" versions. This holds notably also for the above-mentioned M06-L and VSXC, while the effect is small for τ-dependent local hybrids and can even be somewhat detrimental to the agreement with experiment for a few other cases. The separation between well-performing and more poorly performing functionals is mainly determined by their results for the most critical nuclei 55Mn, 57Fe, and 59Co. Here either moderate exact-exchange admixtures or CDFT versions of meta-GGAs are beneficial for the accuracy. The overall deviations of the better-performing global or local hybrids are then typically dominated by the 53Cr shifts, where triplet instabilities appear to disfavor exact-exchange admixture. Further detailed analyses help to pinpoint specific nuclei and specific types of complexes that are challenges for a given functional.
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Morten Lehmann
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St Andrews KY16 9ST, Fife, U.K
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| |
Collapse
|
27
|
McGrady JE, Weigend F, Dehnen S. Electronic structure and bonding in endohedral Zintl clusters. Chem Soc Rev 2021; 51:628-649. [PMID: 34931207 DOI: 10.1039/d1cs00775k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endohedral Zintl clusters-multi-metallic anionic molecules in which a d-block or f-block metal atom is enclosed by p-block (semi)metal atoms-are very topical in contemporary inorganic chemistry. Not only do they provide insight into the embryonic states of intermetallic compounds and show promise in catalytic applications, they also shed light on the nature of chemical bonding between metal atoms. Over the past two decades, a plethora of endohedral Zintl clusters have been synthesized, revealing a fascinating diversity of molecular architectures. Many different perspectives on the bonding in them have emerged in the literature, sometimes complementary and sometimes conflicting, and there has been no concerted effort to classify the entire family based on a small number of unifying principles. A closer look, however, reveals distinct patterns in structure and bonding that reflect the extent to which valence electrons are shared between the endohedral atom and the cluster shell. We show that there is a much more uniform relationship between the total valence electron count and the structure and bonding patterns of these clusters than previously anticipated. All of the p-block (semi)metal shells can be placed on a ladder of total valence electron count that ranges between 4n+2 (closo deltahedra), 5n (closed, three-bonded polyhedra) and 6n (crown-like structures). Although some structural isomerism can occur for a given electron count, the presence of a central metal cation imposes a preference for rather regular and approximately spherical structures which maximise electrostatic interactions between the metal and the shell. In cases where the endohedral metal has relatively accessible valence electrons (from the d or f shells), it can also contribute its valence electrons to the total electron count of the cluster shell, raising the effective electron count and often altering the structural preferences. The electronic situation in any given cluster is considered from different perspectives, some more physical and some more chemical, in a way that highlights the important point that, in the end, they explain the same situation. This article provides a unifying perspective of bonding that captures the structural diversity across this diverse family of multimetallic clusters.
Collapse
Affiliation(s)
- John E McGrady
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ, UK.
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| |
Collapse
|
28
|
Franzke YJ, Yu JM. Hyperfine Coupling Constants in Local Exact Two-Component Theory. J Chem Theory Comput 2021; 18:323-343. [PMID: 34928142 DOI: 10.1021/acs.jctc.1c01027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a highly efficient implementation of the electron-nucleus hyperfine coupling matrix within the one-electron exact two-component (X2C) theory. The complete derivative of the X2C Hamiltonian is formed, that is, the derivatives of the unitary decoupling transformation are considered. This requires the solution of the response and Sylvester equations, consequently increasing the computational costs. Therefore, we apply the diagonal local approximation to the unitary decoupling transformation (DLU). The finite nucleus model is employed for both the scalar potential and the vector potential. Two-electron picture-change effects are modeled with the (modified) screened nuclear spin-orbit approach. Our implementation is fully integral direct and OpenMP-parallelized. An extensive benchmark study regarding the Hamiltonian, the basis set, and the density functional approximation is carried out for a set of 12-17 transition-metal compounds. The error introduced by DLU is negligible, and the DLU-X2C Hamiltonian accurately reproduces its four-component "fully" relativistic parent results. Functionals with a large amount of Hartree-Fock exchange such as CAM-QTP-02 and ωB97X-D are generally favorable. The pure density functional r2SCAN performs remarkably and even outperforms the common hybrid functionals TPSSh and CAM-B3LYP. Fully uncontracted basis sets or contracted quadruple-ζ bases are required for accurate results. The capability of our implementation is demonstrated for [Pt(C6Cl5)4]- with more than 4700 primitive basis functions and four rare-earth single-molecule magnets: [La(OAr*)3]-, [Lu(NR2)3]-, [Lu(OAr*)3]-, and [TbPc2]-. Here, the results with the spin-orbit DLU-X2C Hamiltonian are in an excellent agreement with the experimental findings of all Pt, La, Lu, and Tb molecules.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
29
|
Gillhuber S, Franzke YJ, Weigend F. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds. J Phys Chem A 2021; 125:9707-9723. [PMID: 34723533 DOI: 10.1021/acs.jpca.1c07793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an efficient implementation of paramagnetic NMR shielding tensors and shifts in a nonrelativistic and scalar-relativistic density functional theory framework. For the latter, we make use of the scalar exact two-component Hamiltonian in its local approximation, and generally we apply the well established (multipole-accelerated) resolution of the identity approximation and the seminumerical exchange approximation. The perturbed density matrix of a paramagnetic NMR shielding calculation is further used to study the magnetically induced current density and ring currents of open-shell systems as illustrated for [U@Bi12]3-. [U@Bi12]3- features delocalized highest occupied molecular orbitals and sustains a net diatropic ring current of ca. 18 nA/T through the Bi12 torus similar to the all-metal aromatic heavy-element cluster [Th@Bi12]4-.
Collapse
Affiliation(s)
- Sebastian Gillhuber
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
30
|
Helle N, Raeker T, Grotemeyer J. Investigation of the complex vibronic structure in the first excited and ionic ground states of 3-chloropyridine by means of REMPI and MATI spectroscopy and Franck-Condon analysis. Phys Chem Chem Phys 2021; 23:17917-17928. [PMID: 34378586 DOI: 10.1039/d1cp02406j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Chloropyridine (3-CP) has been investigated by means of resonance-enhanced multi-photon ionization (REMPI) and mass-analyzed threshold ionization (MATI) spectroscopy to elucidate the effect of m-chlorine substitution on the vibronic structure of the first electronically excited and ionic ground states. The S1 excitation energy has been determined to be 34 840 ± 2 cm-1 (4.3196 ± 0.0002 eV) with a difference of less than 0.2 cm-1 between both isotopomers, which is the first reported value for this transition in the gas phase so far. The S1 state has been assigned to the 1π* ← n transition. It is subject to strong vibronic coupling via ν16b to one or both of the lowest 1ππ* states. In addition, strong coupling via at least one more non-totally symmetric vibration is very likely to exist but the vibration could not be identified yet. Overall, the coupling results in a minimum S1 structure with C1 symmetry. The adiabatic ionization energy of the nN-LP orbital (14a') has been determined to be 75 879 ± 6 cm-1 (9.4078 ± 0.0007 eV) with a difference of less than 2 cm-1 between the two isotopomers, which is the first value reported for this state so far. The ionic ground state exhibits a distinct vibronic coupling via ν16a and ν10a to either the D1 state (4a'') and/or D2 state (3a''), which results in a twisted D0 geometry with C1 symmetry. As a consequence of the warped geometry in both S1 and D0 states, very complicated MATI spectra were obtained when exciting S1 states at higher wavenumbers.
Collapse
Affiliation(s)
- Niklas Helle
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | | | | |
Collapse
|
31
|
Peters B, Stuhrmann G, Mack F, Weigend F, Dehnen S. Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bertram Peters
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Gina Stuhrmann
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Fabian Mack
- Institut für Physikalische Chemie Karlsruher Institut für Technologie (KIT) Kaiserstr. 12 76131 Karlsruhe Germany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
32
|
Peters B, Stuhrmann G, Mack F, Weigend F, Dehnen S. Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids. Angew Chem Int Ed Engl 2021; 60:17622-17628. [PMID: 33974339 PMCID: PMC8362043 DOI: 10.1002/anie.202104867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Supertetrahedral clusters have been reported in two generally different types so far: one type possessing an organic ligand shell, no or low charges, and high solubility, while the other cluster type is ligand-free with usually high charges and low or no solubility in common solvents. The latter is a tremendous disadvantage regarding further use of the clusters in solution. However, as organic substituents usually broaden the HOMO-LUMO gaps, which cannot be overcompensated by the (limited) cluster sizes, a full organic shielding comes along with drawbacks regarding opto-electronic properties. We therefore sought to find a way of generating soluble clusters with a minimum number of organic substituents. Here, we present the synthesis and full characterization of two salts of [Sn10 O4 S16 (SBu)4 ]4- that are high soluble in CH2 Cl2 or CH3 CN, which includes first NMR and mass spectra obtained from solutions of such salts with mostly inorganic supertetrahedral clusters. The optical absorption properties of this new class of compounds indicates nearly unaffected band gaps. The synthetic approach and the spectroscopic findings were rationalized and explained by means of high-level quantum chemical studies.
Collapse
Affiliation(s)
- Bertram Peters
- Fachbereich Chemie and Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Gina Stuhrmann
- Fachbereich Chemie and Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Fabian Mack
- Institut für Physikalische ChemieKarlsruher Institut für Technologie (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
33
|
Takashima C, Seino J, Nakai H. Database-assisted local unitary transformation method for two-electron integrals in two-component relativistic calculations. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Franzke YJ, Mack F, Weigend F. NMR Indirect Spin-Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. J Chem Theory Comput 2021; 17:3974-3994. [PMID: 34151571 DOI: 10.1021/acs.jctc.1c00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A quasi-relativistic implementation of NMR indirect spin-spin coupling constants is presented. The exact two-component (X2C) Hamiltonian and its diagonal local approximation to the unitary decoupling transformation (DLU) are utilized together with the (modified) screened nuclear spin-orbit approach. In a restricted kinetic balance, the finite nucleus model is available for both the scalar and vector potentials. The implementation supports density functionals up to the fourth rung of Jacob's ladder, i.e., (range-separated) hybrid and local hybrid functionals based on a seminumerical ansatz. We assess the quality of our quasi-relativistic X2C approach by comparison with "fully" relativistic four-component results for small main-group molecules and alkynyl compounds. The mean absolute error introduced by the DLU scheme is less than 0.05 × 1019 T J-2 of the reduced coupling constant for the small main-group molecules and 0.5 Hz for the alkynyl compounds. Thus, the error is significantly smaller than finite nucleus size effects for heavy elements. The basis set convergence and the impact of different density functional approximations are further studied. We propose a simple scheme to develop segmented-contracted relativistic all-electron basis sets for NMR spin-spin couplings. Our implementation allows us to perform calculations of extended molecules with reasonable computational effort, which is illustrated for the 1J(119Sn, 31P) coupling constant of a low-valent tin phosphinidenide complex. The corresponding results are in good agreement with the experimental findings.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
35
|
Holzer C, Franzke YJ, Kehry M. Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties. J Chem Theory Comput 2021; 17:2928-2947. [PMID: 33914504 DOI: 10.1021/acs.jctc.1c00203] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive overview of the performance of local hybrid functionals for molecular properties like excited states, ionization potentials within the GW framework, polarizabilities, magnetizabilities, NMR chemical shifts, and NMR spin-spin coupling constants is presented. We apply the generalization of the kinetic energy, τ, with the paramagnetic current density to all magnetic properties and the excitation energies from time-dependent density functional theory. This restores gauge invariance for these properties. Different ansätze for local mixing functions such as the iso-orbital indicator, the correlation length, the Görling-Levy second-order limit, and the spin polarization are compared. For the latter, we propose a modified version of the corresponding hyper-generalized gradient approximation functional of Perdew, Staroverov, Tao, and Scuseria (PSTS) [Phys. Rev. A 2008, 78, 052513] to allow for a numerically stable evaluation of the exchange-correlation kernel and hyperkernel. The PSTS functional leads to a very consistent improvement compared to the related TPSSh functional. It is further shown that the "best" choice of the local mixing function depends on the studied property and molecular class. While functionals based on the iso-orbital indicator lead to rather accurate excitation energies and ionization energies, the results are less impressive for NMR properties, for which a considerable dependence on the considered molecular test set and nuclei is observed. Johnson's local hybrid functional based on the correlation length yields remarkable results for NMR shifts of compounds featuring heavy elements and also for the excitation energies of organic compounds.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Max Kehry
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Schattenberg CJ, Kaupp M. Implementation and Validation of Local Hybrid Functionals with Calibrated Exchange-Energy Densities for Nuclear Shielding Constants. J Phys Chem A 2021; 125:2697-2707. [PMID: 33730855 DOI: 10.1021/acs.jpca.1c01135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently reported coupled-perturbed Kohn-Sham implementation to compute nuclear shielding constants with gauge-including atomic orbitals and local hybrid functionals has been extended to cover higher derivatives of the density in the local mixing function (LMF) of the local hybrid as well as the calibration function (CF) needed to deal with the ambiguity of exchange-energy densities. This allowed the first evaluation of state-of-the-art local hybrids with "calibrated" exchange-energy densities for nuclear shieldings. Compared to previously evaluated simpler local hybrids without a CF, appreciable improvements are found for proton shieldings. Furthermore, the recent LH20t functional is still competitive with the outstanding performance of the uncalibrated LH12ct-SsirSVWN and LH12ct-SsifSVWN LHs for heavier nuclei, suggesting that LH20t is possibly the most robust choice of any rung-four functional for computing the nuclear shieldings of main-group nuclei so far. Interestingly, the presence of a CF in the functional significantly reduces the number of artifacts introduced by the widely used Maximoff-Scuseria framework to treat the local kinetic energy τ. The latter occurs in so-called t-LMFs used in many of the present local hybrids. In any case, the use of Dobson's current-density functional framework is also recommended with more advanced calibrated τ-dependent local hybrid functionals.
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
37
|
Eulenstein AR, Franzke YJ, Lichtenberger N, Wilson RJ, Deubner HL, Kraus F, Clérac R, Weigend F, Dehnen S. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi 12] 4. Nat Chem 2021; 13:149-155. [PMID: 33288891 DOI: 10.1038/s41557-020-00592-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
The concept of aromaticity was originally defined as a property of unsaturated, cyclic planar organic molecules like benzene, which gain stability by the inherent delocalization of 4n + 2 π-electrons over the ring atoms. Since then, π-aromaticity has been observed for a large variety of organic and inorganic non-metal compounds, yet, for molecules consisting only of metal atoms, it has remained restricted to systems with three to five atoms. Here, we present the straightforward synthesis of a metal 12-ring that exhibits 2π-aromaticity and has a ring current much stronger than that of benzene (6π) and equivalent to that of porphine (26π), despite these organic molecules having (much) larger numbers of π-electrons. Highly reducing reaction conditions allowed access to the heterometallic anion [Th@Bi12]4-, with interstitial Th4+ stabilizing a Bi128- moiety. Our results show that it is possible to design and generate substantial π-aromaticity in large metal rings, and we hope that such π-aromatic heavy-metal cycles will eventually find use in cluster-based reactions.
Collapse
Affiliation(s)
- Armin R Eulenstein
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Niels Lichtenberger
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany
| | - Robert J Wilson
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany
| | - H Lars Deubner
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Kraus
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany. .,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
38
|
Feng R, Duignan TJ, Autschbach J. Electron-Nucleus Hyperfine Coupling Calculated from Restricted Active Space Wavefunctions and an Exact Two-Component Hamiltonian. J Chem Theory Comput 2021; 17:255-268. [PMID: 33385321 DOI: 10.1021/acs.jctc.0c01005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exact two-component (X2C) relativistic nuclear hyperfine magnetic field operators were incorporated in X2C ab initio wavefunction calculations at the multireference restricted active space (RAS) level for calculations of nuclear hyperfine magnetic properties. Spin-orbit coupling was treated via RAS state interaction (SO-RASSI). The method was tested by calculations of electron-nucleus hyperfine coupling constants. The approach, implemented in the OpenMolcas program, overcomes a major limitation of a previous SO-RASSI implementation for hyperfine coupling that relied on nonrelativistic hyperfine operators [J. Chem. Theor. Comput. 2015, 11, 538-549] and therefore had limited applicability. Results from calculations on systems with light and heavy main group elements, transition metals, lanthanides, and one actinide complex demonstrate reasonably good agreement with experimental data, where available, as long as the active space can generate sufficient spin polarization.
Collapse
Affiliation(s)
- Rulin Feng
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Thomas J Duignan
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
39
|
Holzer C. An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory. J Chem Phys 2020; 153:184115. [DOI: 10.1063/5.0022755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
40
|
Eulenstein AR, Franzke YJ, Bügel P, Massa W, Weigend F, Dehnen S. Stabilizing a metalloid {Zn 12} unit within a polymetallide environment in [K 2Zn 20Bi 16] 6. Nat Commun 2020; 11:5122. [PMID: 33046705 PMCID: PMC7552394 DOI: 10.1038/s41467-020-18799-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The access to molecules comprising direct Zn–Zn bonds has become very topical in recent years for various reasons. Low-valent organozinc compounds show remarkable reactivities, and larger Zn–Zn-bonded gas-phase species exhibit a very unusual coexistence of insulating and metallic properties. However, as Zn atoms do not show a high tendency to form clusters in condensed phases, synthetic approaches for generating purely inorganic metalloid Znx units under ambient conditions have been lacking so far. Here we show that the reaction of a highly reductive solid with the nominal composition K5Ga2Bi4 with ZnPh2 at room temperature yields the heterometallic cluster anion [K2Zn20Bi16]6–. A 24-atom polymetallide ring embeds a metalloid {Zn12} unit. Density functional theory calculations reveal multicenter bonding, an essentially zero-valent situation in the cluster center, and weak aromaticity. The heterometallic character, the notable electron-delocalization, and the uncommon nano-architecture points at a high potential for nano-heterocatalysis. Low-valent zinc clusters, though exceedingly rare, are appealing synthetic targets because there is evidence that they may show unconventional chemical and physical behavior. Here, the authors obtain a large heterometallic zinc-bismuth cluster anion and discover that it bears a metalloid {Zn12} core with four-center bonding and essentially zero-valent character.
Collapse
Affiliation(s)
- Armin R Eulenstein
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Patrick Bügel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Werner Massa
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
41
|
Franzke YJ, Spiske L, Pollak P, Weigend F. Segmented Contracted Error-Consistent Basis Sets of Quadruple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations. J Chem Theory Comput 2020; 16:5658-5674. [DOI: 10.1021/acs.jctc.0c00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yannick J. Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Lucas Spiske
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Patrik Pollak
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straÿe. 4, 35032 Marburg, Germany
| |
Collapse
|
42
|
Kehry M, Franzke YJ, Holzer C, Klopper W. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1755064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Max Kehry
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yannick J. Franzke
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christof Holzer
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Wim Klopper
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
43
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 613] [Impact Index Per Article: 122.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
44
|
Zou W, Guo G, Suo B, Liu W. Analytic Energy Gradients and Hessians of Exact Two-Component Relativistic Methods: Efficient Implementation and Extensive Applications. J Chem Theory Comput 2020; 16:1541-1554. [DOI: 10.1021/acs.jctc.9b01120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenli Zou
- Shaanxi Key Laboratory for Theoretical Physics Frontiers and Institute of Modern Physics, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Guina Guo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers and Institute of Modern Physics, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers and Institute of Modern Physics, Northwest University, Xi’an 710127, Shaanxi, P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
45
|
Balmer M, Franzke YJ, Weigend F, von Hänisch C. Low-Valent Group 14 Phosphinidenide Complexes [({SIDipp}P) 2 M] Exhibit P-M pπ-pπ Interaction (M=Ge, Sn, Pb). Chemistry 2020; 26:192-197. [PMID: 31702848 PMCID: PMC6972534 DOI: 10.1002/chem.201905061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 11/10/2022]
Abstract
Herein, the synthesis of new low-valent Group 14 phosphinidenide complexes [({SIDipp}P)2 M] exhibiting P-M pπ-pπ interactions (SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene, M=Ge, Sn, Pb), is presented. These compounds were investigated by means of structural, spectroscopic, and quantum-chemical methods. Furthermore, the monosubstituted compounds [(SIDippP)MX]2 (M=Sn, X=Cl; M=Pb, X=Br) are presented, which show dimeric structures instead of multiple bonding interaction.
Collapse
Affiliation(s)
- Markus Balmer
- Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Yannick J. Franzke
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstrasse 1276131KarlsruheGermany
| | - Florian Weigend
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| |
Collapse
|
46
|
Wodyński A, Kaupp M. Density Functional Calculations of Electron Paramagnetic Resonance g- and Hyperfine-Coupling Tensors Using the Exact Two-Component (X2C) Transformation and Efficient Approximations to the Two-Electron Spin-Orbit Terms. J Phys Chem A 2019; 123:5660-5672. [PMID: 31184482 DOI: 10.1021/acs.jpca.9b03979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A two-component quasirelativistic density functional theory implementation of the computation of hyperfine and g-tensors at exact two-component (X2C) and Douglas-Kroll-Hess method (DKH) levels in the Turbomole code is reported and tested for a series of smaller 3d1, 4d1, and 5d1 complexes, as well as for some larger 5d7 Ir and Pt systems in comparison with earlier four-component matrix-Dirac-Kohn-Sham results. A main emphasis is placed on efficient approximations to the two-electron spin-orbit contributions, comparing an existing implementation of two variants of Boettger's "scaled nuclear spin-orbit" (SNSO) approximation in the code with a newly implemented atomic mean-field spin-orbit (AMFSO) approximation. The different variants perform overall comparably well with the four-component data. The AMFSO approximation has the added advantage of being able to include the spin-other-orbit contributions arising from the Gaunt term of relativistic electron-electron interactions. These are of comparably larger importance for the 3d complexes than for their heavier homologues. The excellent agreement between X2C and four-component electron paramagnetic resonance parameter results provides the opportunity to treat large systems efficiently and accurately with the computationally more expedient two-component quasirelativistic methodology.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie/Quantenchemie , Sekr. C7, Straße des 17. Juni 135, D-10623 , Berlin , Germany
| | - Martin Kaupp
- Technische Universität Berlin , Institut für Chemie, Theoretische Chemie/Quantenchemie , Sekr. C7, Straße des 17. Juni 135, D-10623 , Berlin , Germany
| |
Collapse
|
47
|
Franzke YJ, Treß R, Pazdera TM, Weigend F. Error-consistent segmented contracted all-electron relativistic basis sets of double- and triple-zeta quality for NMR shielding constants. Phys Chem Chem Phys 2019; 21:16658-16664. [DOI: 10.1039/c9cp02382h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present property-tailored all-electron relativistic Karlsruhe basis sets for the elements hydrogen to radon.
Collapse
Affiliation(s)
- Yannick J. Franzke
- Karlsruhe Institute of Technology (KIT)
- Institute of Physical Chemistry
- 76131 Karlsruhe
- Germany
| | - Robert Treß
- Karlsruhe Institute of Technology (KIT)
- Institute of Physical Chemistry
- 76131 Karlsruhe
- Germany
| | - Tobias M. Pazdera
- Karlsruhe Institute of Technology (KIT)
- Institute of Physical Chemistry
- 76131 Karlsruhe
- Germany
| | - Florian Weigend
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology
- 76344 Karlsruhe
- Germany
| |
Collapse
|