1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Xu J, Wang S, Wu H, Chen D, Han J, Lin Q. Engineering a potent and long-acting GLP-1/Y 2 receptor dual agonist as a multi-agonist therapy for diabetes and obesity. Peptides 2023; 169:171073. [PMID: 37536423 DOI: 10.1016/j.peptides.2023.171073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Novel dual agonists for the glucagon-like peptide-1 (GLP-1) and Y2 receptor hold the potential for enhanced efficacy over GLP-1 receptor (GLP-1R) agonists in treating obesity and diabetes. In this study, we aimed to improve the stability and increase the drug development success rate of our previously identified GLP-1/Y2 receptor dual agonist, 6q. To achieve this, we first optimized the structure of the linker within 6q. Additionally, we explored various fatty acid albumin binders to further enhance the stability of 6q. These binders were mainly selected from approved or clinically developed GLP-1R agonists or GLP-1-based multi-agonists. Through this process, we were able to identify a lead peptide, xGLP/PYY-6, that exhibited comparable in vitro potency toward the GLP-1 and Y2 receptors as 6q but with significantly improved stability compared to 6q. In Kunming and DIO mice, xGLP/PYY-6 showed a comparable hypoglycemic effect to semaglutide, and a significantly better effect on inhibiting food intake than semaglutide. In a chronic study in DIO mice, xGLP/PYY-6 exhibited significant metabolic benefits, as reflected by regulation of lipid levels, improved glucose tolerance, weight loss, decreased hepatocellular vacuolation, and the reversal of steatosis effects caused by xGLP/PYY-6. These results indicate the potential of developing xGLP/PYY-6 as an antiobesity, lipid regulation, antisteatotic, and antidiabetic agent.
Collapse
Affiliation(s)
- Jing Xu
- Department of Pharmacy, Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000, PR China
| | - Shuang Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Han Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - De Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Jing Han
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning 530021, China.; School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Qisi Lin
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
3
|
Chen W, Binbin G, Lidan S, Qiang Z, Jing H. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity. Bioorg Chem 2023; 140:106808. [PMID: 37666110 DOI: 10.1016/j.bioorg.2023.106808] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Peptide YY (PYY) is a gastrointestinal hormone consisting of 36 amino acids, that is predominantly secreted by intestinal l-cells. Originally extracted from pig intestines, it belongs to the pancreatic polypeptide (PP) family, but has functions distinct from those of PP and neuropeptide Y (NPY). PYY is a potential treatment for type 2 diabetes mellitus (T2DM) because of its ability to delay gastric emptying, reduce appetite, decrease weight, and lower blood glucose. However, the clinical use of PYY is limited because it is rapidly cleared by the kidneys and degraded by enzymes. In recent years, researchers have conducted various structural modifications, including amino acid substitution, PEGylation, lipidation, and fusion of PYY with other proteins to prolong its half-life and enhance its biological activity. This study presents an overview of the recent progress on PYY, including its physiological functions, metabolites and structure-activity relationships.
Collapse
Affiliation(s)
- Wang Chen
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Gong Binbin
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Sun Lidan
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
4
|
Yuan Y, Yan Z, Lao Q, Jiang N, Wu S, Lu Q, Han J, Zhao S. Discovery of a potent and long-acting Xenopus GLP-1-based GLP-1/glucagon/Y 2 receptor triple agonist. Eur J Med Chem 2023; 247:115036. [PMID: 36571995 DOI: 10.1016/j.ejmech.2022.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The combination of incretin-based therapies and PYY analogue has shown great potential for the treatment of type 2 diabetes (T2DM) and obesity. In this study we developed the first example of a unimolecular triple agonist peptide to simultaneously target GLP-1, glucagon and Y2 receptors, aiming for superior weight loss and better glycemic control. The strategy for constructing such a unimolecular triple agonist peptide is the conjugation of the GLP-1R/GCGR dual-agonistic moiety and PYY moiety via maleimide-thiol specific reaction. A novel triple agonist peptide, 3b, was identified via stepwise structure optimization, long-acting modification and in vitro receptor screens. Peptide 3b exhibited potent and balanced GCGR and GLP-1R activities as well as potent and highly selective Y2R activity. Peptide 3b potently reduced food intake without triggering nausea associated behavior in kaolin consumption and conditioned taste aversion assays. In diet induced obesity (DIO) mice, a lower dose of 3b achieved significantly better effects on lipid metabolism, body weight, and glycemic control than higher dose of GLP-1R mono-agonist, GLP-1R/GCGR dual agonist and GLP-1R/Y2R dual agonist counterparts. Collectively, these data support the therapeutic potential of our GLP-1R/GCGR/Y2R triple agonist 3b as a novel anti-obesity and anti-diabetic agent. Targeting GLP-1R, GCGR and Y2R with unimolecular triple agonist peptide offers a route to develop new obesity and T2DM treatments.
Collapse
Affiliation(s)
- Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhiming Yan
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, PR China
| | - Qifang Lao
- Department of Critical Care Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021, PR China
| | - Neng Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, PR China
| | - Shuangmin Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Qinpei Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
5
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
6
|
Yang Q, Tang W, Sun L, Yan Z, Tang C, Yuan Y, Zhou H, Zhou F, Zhou S, Wu Q, Song P, Fang T, Xu R, Han J, Jiang N. Design of Xenopus GLP-1-Based Long-Acting Dual GLP-1/Y 2 Receptor Agonists. J Med Chem 2022; 65:14201-14220. [PMID: 36214844 DOI: 10.1021/acs.jmedchem.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GLP-1 receptor (GLP-1R) and neuropeptide Y2 receptor (Y2R) dual agonists have shown great potential to treat obesity and type 2 diabetes (T2DM). We developed a multitarget strategy to design monomeric agonists based on Xenopus GLP-1 (xGLP-1) and PYY3-36 analogues with dual activation activities on GLP-1R and Y2R. A novel peptide, 6q, was obtained via stepwise structure optimization and in vitro receptor screens. In db/db and diet-induced obesity (DIO) mice, 6q produced greater effects on long-term glycemic control and body weight reduction than GLP-1R and Y2R monoagonist counterparts. Notably, in high-fat diet-induced nonalcoholic steatohepatitis (NASH) mice, 6q treatment significantly reduced hepatic triglyceride and total cholesterol levels and reversed hepatic steatosis compared with GLP-1R monoagonist (liraglutide) treatment. Collectively, these data support the therapeutic potential of our GLP-1R/Y2R dual agonist 6q as a novel antidiabetic, antiobesity, and antisteatotic agent.
Collapse
Affiliation(s)
- Qimeng Yang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China.,School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Weizhong Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Yongliang Yuan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P. R. China
| | - Huan Zhou
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| | - Feng Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Siyuan Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qingqing Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Peng Song
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Fang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ronglian Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, P. R. China
| |
Collapse
|
7
|
Wijesinghe A, Kumari S, Booth V. Conjugates for use in peptide therapeutics: A systematic review and meta-analysis. PLoS One 2022; 17:e0255753. [PMID: 35259149 PMCID: PMC8903268 DOI: 10.1371/journal.pone.0255753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
While peptides can be excellent therapeutics for several conditions, their limited in vivo half-lives have been a major bottleneck in the development of therapeutic peptides. Conjugating the peptide to an inert chemical moiety is a strategy that has repeatedly proven to be successful in extending the half-life of some therapeutics. This systematic review and meta-analysis was conducted to examine the available literature and assess it in an unbiased manner to determine which conjugates, both biological and synthetic, provide the greatest increase in therapeutic peptide half-life. Systematic searches run on PubMed, Scopus and SciFinder databases resulted in 845 studies pertaining to the topic, 16 of these were included in this review after assessment against pre-specified inclusion criteria registered on PROSPERO (#CRD42020222579). The most common reasons for exclusion were non-IV administration and large peptide size. Of the 16 studies that were included, a diverse suite of conjugates that increased half-life from 0.1 h to 33.57 h was identified. Amongst these peptides, the largest increase in half-life was seen when conjugated with glycosaminoglycans. A meta-analysis of studies that contained fatty acid conjugates indicated that acylation contributed to a statistically significant extension of half-life. Additionally, another meta-analysis followed by a sensitivity analysis suggested that conjugation with specifically engineered recombinant peptides might contribute to a more efficient extension of peptide half-life as compared to PEGylation. Moreover, we confirmed that while polyethylene glycol is a good synthetic conjugate, its chain length likely has an impact on its effectiveness in extending half-life. Furthermore, we found that most animal studies do not include as much detail when reporting findings as compared to human studies. Inclusion of additional experimental detail on aspects such as independent assessment and randomization may be an easily accomplished strategy to drive more conjugated peptides towards clinical studies.
Collapse
Affiliation(s)
- Ashan Wijesinghe
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
8
|
Miedzybrodzka EL, Gribble FM, Reimann F. Targeting the Enteroendocrine System for Treatment of Obesity. Handb Exp Pharmacol 2022; 274:487-513. [PMID: 35419620 DOI: 10.1007/164_2022_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were originally developed as insulinotropic anti-diabetic drugs but also evoke significant weight loss, leading to their recent approval as obesity therapeutics. Co-activation of receptors for GLP-1 and other gut hormones which reduce food intake - peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) - is now being explored clinically to enhance efficacy. An alternative approach involves pharmacologically stimulating endogenous secretion of these hormones from enteroendocrine cells (EECs) to recapitulate the metabolic consequences of bariatric surgery, where highly elevated postprandial levels of GLP-1 and PYY3-36 are thought to contribute to improved glycaemia and weight loss.
Collapse
Affiliation(s)
- Emily L Miedzybrodzka
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
9
|
Tanday N, Flatt PR, Irwin N. Amplifying the antidiabetic actions of glucagon-like peptide-1: Potential benefits of new adjunct therapies. Diabet Med 2021; 38:e14699. [PMID: 34562330 DOI: 10.1111/dme.14699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Clinically approved for the treatment of diabetes and obesity, glucagon-like peptide-1 (GLP-1) receptor agonists display prominent glucose- and weight-lowering effects as well as positive cardioprotective and neuroprotective actions. Despite these benefits, bariatric surgery remains superior in producing robust and sustained weight loss alongside improvements in metabolic control with possible diabetes remission. The current review considers the potential for adjunct therapies to augment the therapeutic actions of GLP-1 receptor agonists. In this regard, several gut-derived hormones also, modulated by bariatric surgery, display additive properties when combined with GLP-1 receptor agonists in both preclinical and clinical studies. In addition, glucocorticoids and oestrogen have shown promise in augmenting the biological actions of GLP-1 in animal models. Additionally, GLP-1 efficacy can also be enhanced by use of compounds that prolong GLP-1 receptor coupling to potentiate downstream receptor signalling. Taken together, therapies that activate GLP-1 receptor signalling, in combination with various other cell signalling pathways, show potential for treating type 2 diabetes and obesity with superiority over GLP-1 receptor agonist therapy alone.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
10
|
Zhang Y, Parrish KE, Tortolani DR, Poss MA, Huang A, Wan H, Purandare AV, Donnell AF, Kempson J, Hou X, Pawluczyk J, Yip S, Luk E, Raghavan N, Swanson J, Smalley J, Murtaza A, Yang Z, Augustine-Rauch K, Lombardo LJ, Borzilleri R. Long-Acting Tumor-Activated Prodrug of a TGFβR Inhibitor. J Med Chem 2021; 64:15787-15798. [PMID: 34704759 DOI: 10.1021/acs.jmedchem.0c02043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of TGFβ signaling in concert with a checkpoint blockade has been shown to provide improved and durable antitumor immune response in mouse models. However, on-target adverse cardiovascular effects have limited the clinical use of TGFβ receptor (TGFβR) inhibitors in cancer therapy. To restrict the activity of TGFβR inhibitors to tumor tissues and thereby widen the therapeutic index, a series of tumor-activated prodrugs of a selective small molecule TGFβR1 inhibitor 1 were prepared by appending 1 to a serine protease substrate and a half-life extension fatty acid carbon chain. The prodrugs were shown to be selectively metabolized in tumor tissues relative to the heart and blood and demonstrated a prolonged favorable increase in the tumor-to-heart ratio of the active drug in tissue distribution studies. Once-weekly administration of the most tissue-selective compound 10 provided anti-tumor efficacy comparable to the parent compound and reduced systemic exposure of the active drug.
Collapse
Affiliation(s)
- Yong Zhang
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Karen E Parrish
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - David R Tortolani
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Michael A Poss
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Audris Huang
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Honghe Wan
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Ashok V Purandare
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Andrew F Donnell
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - James Kempson
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Xiaoping Hou
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Joseph Pawluczyk
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Shiuhang Yip
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Emily Luk
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Nimmi Raghavan
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Jesse Swanson
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - James Smalley
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Anwar Murtaza
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Zheng Yang
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Karen Augustine-Rauch
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Louis J Lombardo
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Robert Borzilleri
- Bristol Myers Squibb, Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Østergaard S, Paulsson JF, Kofoed J, Zosel F, Olsen J, Jeppesen CB, Spetzler J, Ynddal L, Schleiss LG, Christoffersen BØ, Raun K, Sensfuss U, Nielsen FS, Jørgensen R, Wulff BS. The effect of fatty diacid acylation of human PYY 3-36 on Y 2 receptor potency and half-life in minipigs. Sci Rep 2021; 11:21179. [PMID: 34707178 PMCID: PMC8551270 DOI: 10.1038/s41598-021-00654-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Peptides are notoriously known to display very short in vivo half-lives often measured in minutes which in many cases greatly reduces or eliminates sufficient in vivo efficacy. To obtain long half-lives allowing for up to once-weekly dosing regimen, fatty acid acylation (lipidation) have been used to non-covalently associate the peptide to serum albumin thus serving as a circulating depot. This approach is generally considered in the scientific and patent community as a standard approach to protract almost any given peptide. However, it is not trivial to prolong the half-life of peptides by lipidation and still maintain high potency and good formulation properties. Here we show that attaching a fatty acid to the obesity-drug relevant peptide PYY3-36 is not sufficient for long pharmacokinetics (PK), since the position in the backbone, but also type of fatty acid and linker strongly influences PK and potency. Furthermore, understanding the proteolytic stability of the backbone is key to obtain long half-lives by lipidation, since backbone cleavage still occurs while associated to albumin. Having identified a PYY analogue with a sufficient half-life, we show that in combination with a GLP-1 analogue, liraglutide, additional weight loss can be achieved in the obese minipig model.
Collapse
Affiliation(s)
- Søren Østergaard
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.
| | - Johan F Paulsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Jacob Kofoed
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Franziska Zosel
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Jørgen Olsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Claus Bekker Jeppesen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Jane Spetzler
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Lars Ynddal
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.,Gubra Aps, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Luise Gram Schleiss
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | | | - Kirsten Raun
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Ulrich Sensfuss
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.,STipe Therapeutics, Copenhagen, Denmark
| | - Flemming Seier Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Rasmus Jørgensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.,CitoKi Pharma, Værløse, Denmark
| | - Birgitte S Wulff
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| |
Collapse
|
12
|
Sang P, Zeng H, Lee C, Shi Y, Wang M, Pan C, Wei L, Huang C, Wu M, Shen W, Li X, Cai J. α/Sulfono-γ-AApeptide Hybrid Analogues of Glucagon with Enhanced Stability and Prolonged In Vivo Activity. J Med Chem 2021; 64:13893-13901. [PMID: 34506138 PMCID: PMC8903076 DOI: 10.1021/acs.jmedchem.1c01289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peptide drugs have the advantages of target specificity and good drugability and have become one of the most increasingly important hotspots in new drug research in biomedical sciences. However, peptide drugs generally have low bioavailability and metabolic stability, and therefore, the modification of existing peptide drugs for the purpose of improving stability and retaining activity is of viable importance. It is known that glucagon is an effective therapy for treating severe hypoglycemia, but its short half-life prevents its wide therapeutic use. Herein, we report that combined unnatural residues and long fatty acid conjugation afford potent α/sulfono-γ-AApeptide hybrid analogues of Glucagon with enhanced stability and prolonged in vivo activity. This strategy could be adopted to develop stabilized analogues of other short-acting bioactive peptides.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hongxiang Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Candy Lee
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Cong Pan
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chenglong Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Weijun Shen
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
13
|
Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab 2020; 46:101090. [PMID: 32987188 PMCID: PMC8085566 DOI: 10.1016/j.molmet.2020.101090] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved to treat type 2 diabetes and obesity. They elicit robust improvements in glycemic control and weight loss, combined with cardioprotection in individuals at risk of or with pre-existing cardiovascular disease. These attributes make GLP-1 a preferred partner for next-generation therapies exhibiting improved efficacy yet retaining safety to treat diabetes, obesity, non-alcoholic steatohepatitis, and related cardiometabolic disorders. The available clinical data demonstrate that the best GLP-1R agonists are not yet competitive with bariatric surgery, emphasizing the need to further improve the efficacy of current medical therapy. Scope of review In this article, we discuss data highlighting the physiological and pharmacological attributes of potential peptide and non-peptide partners, exemplified by amylin, glucose-dependent insulinotropic polypeptide (GIP), and steroid hormones. We review the progress, limitations, and future considerations for translating findings from preclinical experiments to competitive efficacy and safety in humans with type 2 diabetes and obesity. Major conclusions Multiple co-agonist combinations exhibit promising clinical efficacy, notably tirzepatide and investigational amylin combinations. Simultaneously, increasing doses of GLP-1R agonists such as semaglutide produces substantial weight loss, raising the bar for the development of new unimolecular co-agonists. Collectively, the available data suggest that new co-agonists with robust efficacy should prove superior to GLP-1R agonists alone to treat metabolic disorders. GLP-1 is a preferred partner for co-agonist development. Co-agonist combinations must exhibit improved weight loss beyond GLP-1 alone. Unimolecular coagonists must exhibit retained or improved cardioprotection. Obesity represents an optimal condition for the development of new GLP-1 co-agonists.
Collapse
Affiliation(s)
- Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada.
| |
Collapse
|