1
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04506-9. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
2
|
Tang T, Wang M, Zhang Y, Chen Y. Improving regioselectivity of phenylalanine aminomutase from Taxus chinensis by semi-rational mutagenesis for the biocatalytic amination of cinnamates. Front Bioeng Biotechnol 2024; 12:1417962. [PMID: 39239258 PMCID: PMC11374720 DOI: 10.3389/fbioe.2024.1417962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
The occupancy of the binding pocket by the substrate ultimately determines the outcome of enzyme catalysis. Previous engineering and substrate scope of phenylalanine aminomutase from Taxus chinensis (TcPAM) has generated valuable knowledge about the regioselectivity with biocatalytic potentials for the preparation of α- and β-phenylalanine and their derivatives. However, the significantly different regioselectivity during the amination of cinnamates by TcPAM is not fully understood. In this study, we take a reconstruction approach to change the whole binding pocket of TcPAM for probing the factors affecting the regioselectivity, resulting in variant C107S/Q319M/I431V reaching a 25.5-fold enhancement of the β/α product ratio toward trans-cinnamate acid. Furthermore, when substituted cinnamates were used as substrates, the regioselectivity was strongly correlated with various changes in the binding pocket, and value-added 2-Cl-α-Phe (100% α-selectivity) and 4-CH3-β-Phe (98% β-selectivity) were individually verified by the mutants L104A and Q319M at a preparative scale, exemplifying the application feasibility of our engineering strategy. The present study uncovered the cooperative connection between aromatic binding and carboxylate binding to affect the regioselectivity, which provides new insights into the determinants of the regioselectivity possessed by TcPAM and paves the way for its biocatalytic applications on phenylalanine derivatives.
Collapse
Affiliation(s)
- Tao Tang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Miao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yunyun Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yijun Chen
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
4
|
Gröner B, Hoffmann C, Endepols H, Urusova EA, Brugger M, Neumaier F, Timmer M, Neumaier B, Zlatopolskiy BD. Radiosynthesis and Preclinical Evaluation of m-[ 18F]FET and [ 18F]FET-OMe as Novel [ 18F]FET Analogs for Brain Tumor Imaging. Mol Pharm 2024; 21:2795-2812. [PMID: 38747353 DOI: 10.1021/acs.molpharmaceut.3c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
O-([18F]Fluoroethyl)-l-tyrosine ([18F]FET) is actively transported into the brain and cancer cells by LAT1 and possibly other amino acid transporters, which enables brain tumor imaging by positron emission tomography (PET). However, tumor delivery of this probe in the presence of competing amino acids may be limited by a relatively low affinity for LAT1. The aim of the present work was to evaluate the meta-substituted [18F]FET analog m-[18F]FET and the methyl ester [18F]FET-OMe, which were designed to improve tumor delivery by altering the physicochemical, pharmacokinetic, and/or transport properties. Both tracers could be prepared with good radiochemical yields of 41-56% within 66-90 min. Preclinical evaluation with [18F]FET as a reference tracer demonstrated reduced in vitro uptake of [18F]FET-OMe by U87 glioblastoma cells and no advantage for in vivo tumor imaging. In contrast, m-[18F]FET showed significantly improved in vitro uptake and accelerated in vivo tumor accumulation in an orthotopic glioblastoma model. As such, our work identifies m-[18F]FET as a promising alternative to [18F]FET for brain tumor imaging that deserves further evaluation with regard to its transport properties and in vivo biodistribution.
Collapse
Affiliation(s)
- Benedikt Gröner
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Chris Hoffmann
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Heike Endepols
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Elizaveta A Urusova
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Melanie Brugger
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
| | - Felix Neumaier
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Marco Timmer
- Faculty of Medicine and University Hospital Cologne, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| |
Collapse
|
5
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
6
|
Kahlhofer J, Teis D. The human LAT1-4F2hc (SLC7A5-SLC3A2) transporter complex: Physiological and pathophysiological implications. Basic Clin Pharmacol Toxicol 2023; 133:459-472. [PMID: 36460306 PMCID: PMC11497297 DOI: 10.1111/bcpt.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
LAT1 and 4F2hc form a heterodimeric membrane protein complex, which functions as one of the best characterized amino acid transporters. Since LAT1-4F2hc is required for the efficient uptake of essential amino acids and hormones, it promotes cellular growth, in part, by stimulating mTORC1 (mechanistic target of rapamycin complex 1) signalling and by repressing the integrated stress response (ISR). Gain or loss of LAT1-4F2hc function is associated with cancer, diabetes, and immunological and neurological diseases. Hence, LAT1-4F2hc represents an attractive drug target for disease treatment. Specific targeting of LAT1-4F2hc will be facilitated by the increasingly detailed understanding of its molecular architecture, which provides important concepts for its function and regulation. Here, we summarize (i) structural insights that help to explain how LAT1 and 4F2hc assemble to transport amino acids across membranes, (ii) the role of LAT1-4F2hc in key metabolic signalling pathways, and (iii) how derailing these processes could contribute to diseases.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, BiocenterMedical University InnsbruckInnsbruckAustria
| | - David Teis
- Institute for Cell Biology, BiocenterMedical University InnsbruckInnsbruckAustria
| |
Collapse
|
7
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
8
|
Li B, Hu Y, Tochtrop GP. An Acid-Controlled Method for the Regioselective Functionalization of Anilines over Aliphatic Amines. Chemistry 2023; 29:e202301336. [PMID: 37527973 DOI: 10.1002/chem.202301336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Regioselective transformations at similar functional groups are of paramount importance in organic synthesis. Traditional strategies towards regioselective functionalization include serial protection/deprotection and sequential synthesis. Modern organic synthesis emphasizes pathway efficiency and protecting group free routes with a goal of exploiting inherent differences in reactivity. This study reports a method for the regioselective functionalization of anilines over aliphatic amines. Utilizing classic conditions for the Baeyer-Mills reaction, anilines were shown to react preferentially in the presence of aliphatic amines. Subsequently, this principle of reactivity was extended to other electrophiles and conditions.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemistry, Case Western Reserve University Millis Hall 410, 2080 Adelbert Road, Cleveland, Ohio, 44106, USA
| | - Yulun Hu
- Department of Chemistry, Case Western Reserve University Millis Hall 410, 2080 Adelbert Road, Cleveland, Ohio, 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University Millis Hall 410, 2080 Adelbert Road, Cleveland, Ohio, 44106, USA
| |
Collapse
|
9
|
Schlessinger A, Zatorski N, Hutchinson K, Colas C. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities. Trends Biochem Sci 2023; 48:801-814. [PMID: 37355450 PMCID: PMC10525040 DOI: 10.1016/j.tibs.2023.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023]
Abstract
Solute carrier (SLCs) transporters mediate the transport of a broad range of solutes across biological membranes. Dysregulation of SLCs has been associated with various pathologies, including metabolic and neurological disorders, as well as cancer and rare diseases. SLCs are therefore emerging as key targets for therapeutic intervention with several recently approved drugs targeting these proteins. Unlocking this large and complex group of proteins is essential to identifying unknown SLC targets and developing next-generation SLC therapeutics. Recent progress in experimental and computational techniques has significantly advanced SLC research, including drug discovery. Here, we review emerging topics in therapeutic discovery of SLCs, focusing on state-of-the-art approaches in structural, chemical, and computational biology, and discuss current challenges in transporter drug discovery.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Nicole Zatorski
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keino Hutchinson
- Department of Pharmacological Sciences Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria.
| |
Collapse
|
10
|
Martins C, Araújo M, Malfanti A, Pacheco C, Smith SJ, Ucakar B, Rahman R, Aylott JW, Préat V, Sarmento B. Stimuli-Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood-to-Brain Trafficking and Tumor Targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300029. [PMID: 36852650 DOI: 10.1002/smll.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
| | - Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Stuart J Smith
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Ruman Rahman
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
11
|
Tork SD, Nagy EZA, Tomoiagă RB, Bencze LC. Engineered, Scalable Production of Optically Pure l-Phenylalanines Using Phenylalanine Ammonia-Lyase from Arabidopsis thaliana. J Org Chem 2023; 88:852-862. [PMID: 36583610 DOI: 10.1021/acs.joc.2c02106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient preparative-scale synthetic procedure of l-phenylalanine derivatives has been developed using mutant variants of phenylalanine ammonia-lyase from Arabidopsis thaliana (AtPAL). After rigorous reaction engineering, the AtPAL-catalyzed hydroamination reaction of cinnamic acids provided several unnatural amino acids of high synthetic value, such as (S)-m- and (S)-p-methoxyphenylalanine; (S)-o- and (S)-m-methylphenylalanine; and (S)-o- and (S)-p-bromophenylalanine at preparative scale, significantly surpassing the catalytic efficiency in terms of conversions and yields of the previously reported PcPAL-based biotransformations. The AtPAL variants tolerated high substrate and product concentrations, representing an important extension of the PAL-toolbox, while the engineered biocatalytic procedures of improved E-factor and space-time yields fulfill the requirements of sustainable and green chemistry, providing facile access to valuable amino acid building blocks.
Collapse
Affiliation(s)
- Souad Diana Tork
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Emma Zsófia Aletta Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Bahrami K, Järvinen J, Laitinen T, Reinisalo M, Honkakoski P, Poso A, Huttunen KM, Rautio J. Structural Features Affecting the Interactions and Transportability of LAT1-Targeted Phenylalanine Drug Conjugates. Mol Pharm 2023; 20:206-218. [PMID: 36394563 PMCID: PMC9811466 DOI: 10.1021/acs.molpharmaceut.2c00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.
Collapse
|
13
|
Hutchinson K, Silva DB, Bohlke J, Clausen C, Thomas AA, Bonomi M, Schlessinger A. Describing inhibitor specificity for the amino acid transporter LAT1 from metainference simulations. Biophys J 2022; 121:4476-4491. [PMID: 36369754 PMCID: PMC9748366 DOI: 10.1016/j.bpj.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The human L-type amino acid transporter 1 (LAT1; SLC7A5) is a membrane transporter of amino acids, thyroid hormones, and drugs such as the Parkinson's disease drug levodopa (L-Dopa). LAT1 is found in the blood-brain barrier, testis, bone marrow, and placenta, and its dysregulation has been associated with various neurological diseases, such as autism and epilepsy, as well as cancer. In this study, we combine metainference molecular dynamics simulations, molecular docking, and experimental testing, to characterize LAT1-inhibitor interactions. We first conducted a series of molecular docking experiments to identify the most relevant interactions between LAT1's substrate-binding site and ligands, including both inhibitors and substrates. We then performed metainference molecular dynamics simulations using cryoelectron microscopy structures in different conformations of LAT1 with the electron density map as a spatial restraint, to explore the inherent heterogeneity in the structures. We analyzed the LAT1 substrate-binding site to map important LAT1-ligand interactions as well as newly described druggable pockets. Finally, this analysis guided the discovery of previously unknown LAT1 ligands using virtual screening and cellular uptake experiments. Our results improve our understanding of LAT1-inhibitor recognition, providing a framework for rational design of future lead compounds targeting this key drug target.
Collapse
Affiliation(s)
- Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, California
| | - Joshua Bohlke
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Chase Clausen
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Massimiliano Bonomi
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
14
|
Srisongkram T, Bahrami K, Järvinen J, Timonen J, Rautio J, Weerapreeyakul N. Development of Sesamol Carbamate-L-Phenylalanine Prodrug Targeting L-Type Amino Acid Transporter1 (LAT1) as a Potential Antiproliferative Agent against Melanoma. Int J Mol Sci 2022; 23:ijms23158446. [PMID: 35955600 PMCID: PMC9369069 DOI: 10.3390/ijms23158446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Sesamol is a compound reported to have anti-melanogenesis and anti-melanoma actions. Sesamol, however, has low intracellular drug concentration and fast excretion, which can limit its benefits in the clinic. To overcome this drawback and increase intracellular delivery of sesamol into the target melanoma, research has focused on L-type amino acid transporter 1 (LAT1)-mediated prodrug delivery into melanoma cells. The sesamol prodrug was designed by conjugating sesamol with L-phenylalanine at the para position with a carbamate bond. LAT1 targeting was evaluated vis-à-vis a competitive [14C]-leucine uptake inhibition. The sesamol prodrug has a higher [14C]-leucine uptake inhibition than sesamol in human LAT1-transfected HEK293 cells. Moreover, the sesamol prodrug was taken up by LAT1-mediated transport into SK-MEL-2 cells more effectively than sesamol. The sesamol prodrug underwent complete hydrolysis, releasing the active sesamol at 72 h, which significantly exerted its cytotoxicity (IC50 of 29.3 µM) against SK-MEL-cells more than sesamol alone. Taken together, the strategy for LAT1-mediated prodrug delivery has utility for the selective uptake of sesamol, thereby increasing its intracellular concentration and antiproliferation activity, targeting melanoma SK-MEL-2 cells that overexpress the LAT1 protein. The sesamol prodrug thus warrants further evaluation in an in vivo model.
Collapse
Affiliation(s)
- Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Katayun Bahrami
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
| | - Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
| | - Juri Timonen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; (K.B.); (J.J.); (J.T.)
- Correspondence: (J.R.); (N.W.)
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (J.R.); (N.W.)
| |
Collapse
|
15
|
Khavinson V, Linkova N, Kozhevnikova E, Dyatlova A, Petukhov M. Transport of Biologically Active Ultrashort Peptides Using POT and LAT Carriers. Int J Mol Sci 2022; 23:ijms23147733. [PMID: 35887081 PMCID: PMC9323678 DOI: 10.3390/ijms23147733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrashort peptides (USPs), consisting of 2–7 amino-acid residues, are a group of signaling molecules that regulate gene expression and protein synthesis under normal conditions in various diseases and ageing. USPs serve as a basis for the development of drugs with a targeted mechanism of action. The purpose of this review is to systematize the available data on USP transport involving POT and LAT transporters in various organs and tissues under normal, pathological and ageing conditions. The carriers of the POT family (PEPT1, PEPT2, PHT1, PHT2) transport predominantly di- and tripeptides into the cell. Methods of molecular modeling and physicochemistry have demonstrated the ability of LAT1 to transfer not only amino acids but also some di- and tripeptides into the cell and out of it. LAT1 and 2 are involved in the regulation of the antioxidant, endocrine, immune and nervous systems’ functions. Analysis of the above data allows us to conclude that, depending on their structure, di- and tripeptides can be transported into the cells of various tissues by POT and LAT transporters. This mechanism is likely to underlie the tissue specificity of peptides, their geroprotective action and effectiveness in the case of neuroimmunoendocrine system disorders.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence: or ; Tel.: +7-(921)-9110800
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- The Laboratory “Problems of Aging”, Belgorod National Research University, 308015 Belgorod, Russia
| | - Ekaterina Kozhevnikova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Mikhael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Peter the Great St. Petersburg Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
16
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
17
|
Kondo N, Hirano F, Temma T. Evaluation of 3-Borono-l-Phenylalanine as a Water-Soluble Boron Neutron Capture Therapy Agent. Pharmaceutics 2022; 14:pharmaceutics14051106. [PMID: 35631692 PMCID: PMC9143228 DOI: 10.3390/pharmaceutics14051106] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Although 4-borono-l-phenylalanine (4-BPA) is currently the only marketed agent available for boron neutron capture therapy (BNCT), its low water solubility raises concerns. In this study, we synthesized 3-borono-l-phenylalanine (3-BPA), a positional isomer of 4-BPA, with improved water solubility. We further evaluated its physicochemical properties, tumor accumulation, and biodistribution. The water solubility of 3-BPA was 125 g/L, which is more than 100 times higher than that of 4-BPA. Due to the high water solubility, we prepared the administration solution of 3-BPA without a solubilizer sugar, which is inevitably added to 4-BPA preparation and has adverse effects. In in vitro and in vivo experiments, boron accumulation in cancers after administration was statistically equivalent in both sugar-complexed 3-BPA and 4-BPA. Furthermore, the biodistribution of 3-BPA was comparable with that of sugar-complexed 3-BPA. Since 3-BPA has high water solubility and tumor targetability equivalent to 4-BPA, 3-BPA can replace 4-BPA in future BNCT.
Collapse
|
18
|
Synthesis, Biological Evaluation, and Docking Studies of Antagonistic Hydroxylated Arecaidine Esters Targeting mAChRs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103173. [PMID: 35630651 PMCID: PMC9145622 DOI: 10.3390/molecules27103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
The muscarinic acetylcholine receptor family is a highly sought-after target in drug and molecular imaging discovery efforts aimed at neurological disorders. Hampered by the structural similarity of the five subtypes’ orthosteric binding pockets, these efforts largely failed to deliver subtype-selective ligands. Building on our recent successes with arecaidine-derived ligands targeting M1, herein we report the synthesis of a related series of 11 hydroxylated arecaidine esters. Their physicochemical property profiles, expressed in terms of their computationally calculated CNS MPO scores and HPLC-logD values, point towards blood–brain barrier permeability. By means of a competitive radioligand binding assay, the binding affinity values towards each of the individual human mAChR subtypes hM1–hM5 were determined. The most promising compound of this series 17b was shown to have a binding constant towards hM1 in the single-digit nanomolar region (5.5 nM). Similar to our previously reported arecaidine-derived esters, the entire series was shown to act as hM1R antagonists in a calcium flux assay. Overall, this study greatly expanded our understanding of this recurring scaffolds’ structure–activity relationship and will guide the development towards highly selective mAChRs ligands.
Collapse
|
19
|
Ca 2+-mediated higher-order assembly of heterodimers in amino acid transport system b 0,+ biogenesis and cystinuria. Nat Commun 2022; 13:2708. [PMID: 35577790 PMCID: PMC9110406 DOI: 10.1038/s41467-022-30293-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.
Collapse
|
20
|
Role of Amino Acid Transporter SNAT1/SLC38A1 in Human Melanoma. Cancers (Basel) 2022; 14:cancers14092151. [PMID: 35565278 PMCID: PMC9099705 DOI: 10.3390/cancers14092151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Malignant melanoma originates from melanocytes. Due to its high metastatic potential and its increasing incidence, it is one of the most aggressive types of cancer. Cancer cells generally exhibit an elevated metabolism, consequently adapting their expression of transport proteins to meet the increased demand of nutrients, such as amino acids. The aim of this study was to analyze the expression and function of the amino acid transporter SNAT1 in human melanoma. In addition, we wanted to determine its role in development and progression of malignant melanoma. We revealed that SNAT1 is overexpressed in melanoma tissue samples, as well as primary and metastatic cell lines. Moreover, we were able to show that SNAT1 plays an important role in forcing proliferation, colony formation, migration and invasion, and inhibiting senescence of melanoma cells. Amino acid transporters like SNAT1 are therefore promising targets for the development of novel therapeutic strategies against melanoma. Abstract The tumor metabolism is an important driver of cancer cell survival and growth, as rapidly dividing tumor cells exhibit a high demand for energetic sources and must adapt to microenvironmental changes. Therefore, metabolic reprogramming of cancer cells and the associated deregulation of nutrient transporters are a hallmark of cancer cells. Amino acids are essential for cancer cells to synthesize the necessary amount of protein, DNA, and RNA. Although cancer cells can synthesize glutamine de novo, most cancer cells show an increased uptake of glutamine from the tumor microenvironment. Especially SNAT1/SLC38A1, a member of the sodium neutral amino acid transporter (SNAT) family, plays an essential role during major net import of glutamine. In this study, we revealed a significant upregulation of SNAT1 expression in human melanoma tissue in comparison to healthy epidermis and an increased SNAT1 expression level in human melanoma cell lines when compared to normal human melanocytes (NHEMs). We demonstrated that functional inhibition of SNAT1 with α-(methylamino) isobutyric acid (MeAIB), as well as siRNA-mediated downregulation reduces cancer cell growth, cellular migration, invasion, and leads to induction of senescence in melanoma cells. Consequently, these results demonstrate that the amino acid transporter SNAT1 is essential for cancer growth, and indicates a potential target for cancer chemotherapy.
Collapse
|
21
|
Chang X, Ran JD, Liu XT, Wang CJ. Catalytic Asymmetric Benzylation of Azomethine Ylides Enabled by Synergistic Lewis Acid/Palladium Catalysis. Org Lett 2022; 24:2573-2578. [PMID: 35348342 DOI: 10.1021/acs.orglett.2c00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synergistic chiral Lewis acid/achiral Pd catalyst system was successfully applied in the enantioselective benzylation of various imine esters, giving a range of α-benzyl-substituted α-amino acid derivatives in satisfactory yield with excellent enantioselectivity. It is worth noting that this strategy exhibits good tolerance for bicyclic and monocyclic benzylic electrophiles. Furthermore, the utility of this synthetic protocol was demonstrated by the expedient preparation of enantioenriched antihypertensive drug α-methyl-l-dopa.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing-Di Ran
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Gou FH, Ma MJ, Wang AJ, Zhao L, Wang H, Tong J, Wang Z, Wang Z, He CY. Nickel-Catalyzed Cross-Coupling of Amino-Acid-Derived Alkylzinc Reagents with Alkyl Bromides/Chlorides: Access to Diverse Unnatural Amino Acids. Org Lett 2022; 24:240-244. [PMID: 34958223 DOI: 10.1021/acs.orglett.1c03884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unnatural α-amino acids are important synthetic targets in the field of peptide science. Herein we report an efficient, versatile, and straightforward strategy for the synthesis of homophenylalanine derivatives via the nickel-catalyzed Csp3-Csp3 cross-coupling of (fluoro)benzyl bromides/chlorides with natural α-amino-acid-derived alkylzinc reagents. The current protocol features the advantages of a low-cost nickel catalyst system, synthetic convenience, and the tolerance of rich functionality and stereochemistry.
Collapse
Affiliation(s)
- Fei-Hu Gou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming-Jian Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - An-Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haoyang Wang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Tong
- School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Ze Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhen Wang
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
23
|
Zhao X, Sakamoto S, Maimaiti M, Anzai N, Ichikawa T. Contribution of LAT1-4F2hc in Urological Cancers via Toll-like Receptor and Other Vital Pathways. Cancers (Basel) 2022; 14:cancers14010229. [PMID: 35008399 PMCID: PMC8750950 DOI: 10.3390/cancers14010229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary LAT1-4F2hc complex is an important amino acid transporter. It mainly transports specific amino acids through the cell membrane, provides nutrition for cells, and participates in a variety of metabolic pathways. LAT1 plays a role in transporting essential amino acids including leucine, which regulates the mTOR signaling pathway. However, the importance of SLCs is still not well known in the field of urological cancer. Therefore, the purpose of this review is to report the role of the LAT1-4F2hc complex in urological cancers, as well as their clinical significance and application. Moreover, the inhibitor of LAT1-4F2hc complex is a promising direction as a targeted therapy to improve the treatment and prognosis of urological cancers. Abstract Tumor cells are known for their ability to proliferate. Nutrients are essential for rapidly growing tumor cells. In particular, essential amino acids are essential for tumor cell growth. Tumor cell growth nutrition requires the regulation of membrane transport proteins. Nutritional processes require amino acid uptake across the cell membrane. Leucine, one of the essential amino acids, has recently been found to be closely associated with cancer, which activate mTOR signaling pathway. The transport of leucine into cells requires an L-type amino acid transporter protein 1, LAT1 (SLC7A5), which requires the 4F2 cell surface antigen heavy chain (4F2hc, SLC3A2) to form a heterodimeric amino acid transporter protein complex. Recent evidence identified 4F2hc as a specific downstream target of the androgen receptor splice variant 7 (AR-V7). We stressed the importance of the LAT1-4F2hc complex as a diagnostic and therapeutic target in urological cancers in this review, which covered the recent achievements in research on the involvement of the LAT1-4F2hc complex in urinary system tumors. In addition, JPH203, which is a selective LAT1 inhibitor, has shown excellent inhibitory effects on the proliferation in a variety of tumor cells. The current phase I clinical trials of JPH203 in patients with biliary tract cancer have also achieved good results, which is the future research direction for LAT1 targeted therapy drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
- Correspondence: ; Tel.: +81-43-226-2134; Fax: +81-43-226-2136
| | - Maihulan Maimaiti
- Department of Tumor Pathology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
| |
Collapse
|
24
|
Huttunen J, Agami M, Tampio J, Montaser AB, Huttunen KM. Comparison of Experimental Strategies to Study l-Type Amino Acid Transporter 1 (LAT1) Utilization by Ligands. Molecules 2021; 27:molecules27010037. [PMID: 35011270 PMCID: PMC8746705 DOI: 10.3390/molecules27010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
l-Type amino acid transporter 1 (LAT1), expressed abundantly in the brain and placenta and overexpressed in several cancer cell types, has gained a lot of interest in drug research and development, as it can be utilized for brain-targeted drug delivery, as well as inhibiting the essential amino acid supply to cancer cells. The structure of LAT1 is today very well-known and the interactions of ligands at the binding site of LAT1 can be modeled and explained. However, less is known of LAT1′s life cycle within the cells. Moreover, the functionality of LAT1 can be measured by several different methods, which may vary between the laboratories and make the comparison of the results challenging. In the present study, the usefulness of indirect cis-inhibition methods and direct cellular uptake methods and their variations to interpret the interactions of LAT1-ligands were evaluated. Moreover, this study also highlights the importance of understanding the intracellular kinetics of LAT1-ligands, and how they can affect the regular function of LAT1 in critical tissues, such as the brain. Hence, it is discussed herein how the selected methodology influences the outcome and created knowledge of LAT1-utilizing compounds.
Collapse
|
25
|
Wang Y, Qin L, Chen W, Chen Q, Sun J, Wang G. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem 2021; 226:113806. [PMID: 34517305 DOI: 10.1016/j.ejmech.2021.113806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Poor selectivity, potential systemic toxicity and drug resistance are the main challenges associated with chemotherapeutic drugs. MCT1 and MCT4 and LAT1 play vital roles in tumour metabolism and growth by taking up nutrients and are thus potential targets for tumour therapy. An increasing number of studies have shown the feasibility of including these transporters as components of tumour-targeting therapy. Here, we summarize the recent progress in MCT1-, MCT4-and LAT1-based therapeutic strategies. First, protein structures, expression, relationships with cancer, and substrate characteristics are introduced. Then, different drug targeting and delivery strategies using these proteins have been reviewed, including designing protein inhibitors, prodrugs and nanoparticles. Finally, a dual targeted strategy is discussed because these proteins exert a synergistic effect on tumour proliferation. This article concentrates on tumour treatments targeting MCT1, MCT4 and LAT1 and delivery techniques for improving the antitumour effect. These innovative tactics represent current state-of-the-art developments in transporter-based antitumour drugs.
Collapse
Affiliation(s)
- Yang Wang
- Personnel Department, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Liuxin Qin
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Weiwei Chen
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Jin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
26
|
Substrate-Dependent Trans-Stimulation of Organic Cation Transporter 2 Activity. Int J Mol Sci 2021; 22:ijms222312926. [PMID: 34884730 PMCID: PMC8657912 DOI: 10.3390/ijms222312926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
The search of substrates for solute carriers (SLCs) constitutes a major issue, owing notably to the role played by some SLCs, such as the renal electrogenic organic cation transporter (OCT) 2 (SLC22A2), in pharmacokinetics, drug-drug interactions and drug toxicity. For this purpose, substrates have been proposed to be identified by their cis-inhibition and trans-stimulation properties towards transporter activity. To get insights on the sensitivity of this approach for identifying SLC substrates, 15 various exogenous and endogenous OCT2 substrates were analysed in the present study, using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DiASP) as a fluorescent OCT2 tracer substrate. All OCT2 substrates cis-inhibited DiASP uptake in OCT2-overexpressing HEK293 cells, with IC50 values ranging from 0.24 µM (for ipratropium) to 2.39 mM (for dopamine). By contrast, only 4/15 substrates, i.e., acetylcholine, agmatine, choline and metformin, trans-stimulated DiASP uptake, with a full suppression of the trans-stimulating effect of metformin by the reference OCT2 inhibitor amitriptyline. An analysis of molecular descriptors next indicated that trans-stimulating OCT2 substrates exhibit lower molecular weight, volume, polarizability and lipophilicity than non-trans-stimulating counterparts. Overall, these data indicated a rather low sensitivity (26.7%) of the trans-stimulation assay for identifying OCT2 substrates, and caution with respect to the use of such assay may therefore be considered.
Collapse
|
27
|
Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2021; 11:768108. [PMID: 34804998 PMCID: PMC8599158 DOI: 10.3389/fcimb.2021.768108] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhixuan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuang He
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, Li Q, Li W, Sun H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J Med Chem 2021; 64:13152-13173. [PMID: 34505508 DOI: 10.1021/acs.jmedchem.1c00910] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development of central nervous system (CNS) drugs, the blood-brain barrier (BBB) restricts many drugs from entering the brain to exert therapeutic effects. Although many novel delivery methods of large molecule drugs have been designed to assist transport, small molecule drugs account for the vast majority of the CNS drugs used clinically. From this perspective, we review studies from the past five years that have sought to modify small molecules to increase brain exposure. Medicinal chemists make it easier for small molecules to cross the BBB by improving diffusion, reducing efflux, and activating carrier transporters. On the basis of their excellent work, we summarize strategies for structural modification of small molecules to improve BBB penetration. These strategies are expected to provide a reference for the future development of small molecule CNS drugs.
Collapse
Affiliation(s)
- Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
29
|
Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021; 12:722889. [PMID: 34447313 PMCID: PMC8383457 DOI: 10.3389/fphar.2021.722889] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Helena Batoulis
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Felix Bärenz
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Eckhard Bender
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Daniela Digles
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Laura H. Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Körzö
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas Licher
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vanessa Schneider
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, Netherlands
| | | | | | | | | | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Diana Zindel
- Drug Discovery Sciences–Lead Discovery, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Claire M. Steppan
- Pfizer Worldwide Research, Development and Medical, Groton, MA, United States
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Chakraborty M, Haag SL, Bernards MT, Waynant KV. Synthesis of a zwitterionic N-Ser-Ser-C dimethacrylate cross-linker and evaluation in polyampholyte hydrogels. Biomater Sci 2021; 9:5508-5518. [PMID: 34232245 DOI: 10.1039/d1bm00603g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyampholyte hydrogels are attractive materials for tissue engineering scaffolds as they offer a wide variety of features including nonfouling, selective protein delivery, and tunable physical characteristics. However, to improve the potential performance of these materials for in vivo applications, there is a need for a higher diversity of zwitterionic cross-linker species to replace commonly used ethylene glycol (EG) based chemistries. Towards this end, the synthesis of a dipeptide based zwitterionic cross-linker, N-Ser-Ser-C dimethacrylate (S-S) from N-Boc-l-serine is presented. The strategy utilized a convergent coupling of methacrylated serine partners followed by careful global deprotection to yield the zwitterionic cross-linker with good overall yields. This novel cross-linker was incorporated into a polyampholyte hydrogel and its physical properties and biocompatibility were compared against a polyampholyte hydrogel synthesized with an EG-based cross-linker. The S-S cross-linked hydrogel demonstrated excellent nonfouling performance, while promoting enhanced cellular adhesion to fibrinogen delivered from the hydrogel. Therefore, the results suggest that the S-S cross-linker will demonstrate superior future performance for in vivo applications.
Collapse
Affiliation(s)
| | - Stephanie L Haag
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA.
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA.
| | | |
Collapse
|
31
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
32
|
Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V, Mignon V, Curis E, Lochus M, Nicolic S, Dodacki A, Cisternino S, Declèves X, Bourasset F. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 2021; 191:108588. [PMID: 33940010 DOI: 10.1016/j.neuropharm.2021.108588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Camille Taccola
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France; INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Pascal Barneoud
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Sylvaine Cartot-Cotton
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Delphine Valente
- Drug Metabolism & Pharmacokinetics, Research platform, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Nathalie Schussler
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Bruno Saubaméa
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Stéphanie Chasseigneaux
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Mignon
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB(2), EA 7537 « BioSTM », UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France; Service de bioinformatique et statistique médicale, hôpital Saint-Louis, APHP, 1, avenue Claude Vellefaux, 75010, Paris, France
| | - Murielle Lochus
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Agnès Dodacki
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fanchon Bourasset
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| |
Collapse
|
33
|
Kärkkäinen J, Laitinen T, Markowicz-Piasecka M, Montaser A, Lehtonen M, Rautio J, Gynther M, Poso A, Huttunen KM. Molecular characteristics supporting l-Type amino acid transporter 1 (LAT1)-mediated translocation. Bioorg Chem 2021; 112:104921. [PMID: 33933805 DOI: 10.1016/j.bioorg.2021.104921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.
Collapse
Affiliation(s)
- Jussi Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Pharmacy, Kuopio University Hospital, Finland, P.O. Box 100, FI-70029, KYS, Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
34
|
Fairweather SJ, Okada S, Gauthier-Coles G, Javed K, Bröer A, Bröer S. A GC-MS/Single-Cell Method to Evaluate Membrane Transporter Substrate Specificity and Signaling. Front Mol Biosci 2021; 8:646574. [PMID: 33928121 PMCID: PMC8076599 DOI: 10.3389/fmolb.2021.646574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Amino acid transporters play a vital role in metabolism and nutrient signaling pathways. Typically, transport activity is investigated using single substrates and competing amounts of other amino acids. We used GC-MS and LC-MS for metabolic screening of Xenopus laevis oocytes expressing various human amino acid transporters incubated in complex media to establish their comprehensive substrate profiles. For most transporters, amino acid selectivity matched reported substrate profiles. However, we could not detect substantial accumulation of cationic amino acids by SNAT4 and ATB0,+ in contrast to previous reports. In addition, comparative substrate profiles of two related sodium neutral amino acid transporters known as SNAT1 and SNAT2, revealed the latter as a significant leucine accumulator. As a consequence, SNAT2, but not SNAT1, was shown to be an effective activator of the eukaryotic cellular growth regulator mTORC1. We propose, that metabolomic profiling of membrane transporters in Xe nopus laevis oocytes can be used to test their substrate specificity and role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Institute (CSIRO) Land and Water, Canberra, ACT, Australia
| | | | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
35
|
Lopes C, Pereira C, Medeiros R. ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation. Cancers (Basel) 2021; 13:E203. [PMID: 33429909 PMCID: PMC7828050 DOI: 10.3390/cancers13020203] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The role of the amino acid transporters ASCT2 and LAT1 in cancer has been explored throughout the years. In this review, we report their impact on the hallmarks of cancer, as well as their clinical significance. Overall, both proteins have been associated with cell death resistance through dysregulation of caspases and sustainment of proliferative signaling through mTOR activation. Furthermore, ASCT2 appears to play an important role in cellular energetics regulation, whereas LAT1 expression is associated with angiogenesis and invasion and metastasis activation. The molecular impact of these proteins on the hallmarks of cancer translates into various clinical applications and both transporters have been identified as prognostic factors in many types of cancer. Concerning their role as therapeutic targets, efforts have been undertaken to synthesize competitive or irreversible ASCT2 and LAT1 inhibitors. However, JHP203, a selective inhibitor of the latter, is, to the best of our knowledge, the only compound included in a Phase 1 clinical trial. In conclusion, considering the usefulness of ASCT2 and LAT1 in a variety of cancer-related pathways and cancer therapy/diagnosis, the development and testing of novel inhibitors for these transporters that could be evaluated in clinical trials represents a promising approach to cancer prognosis improvement.
Collapse
Affiliation(s)
- Catarina Lopes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- Research Department of the Portuguese League Against Cancer—North (LPCC-NRNorte), Estrada da Circunvalação, 4200-177 Porto, Portugal
| |
Collapse
|
36
|
Venteicher B, Merklin K, Ngo HX, Chien HC, Hutchinson K, Campbell J, Way H, Griffith J, Alvarado C, Chandra S, Hill E, Schlessinger A, Thomas AA. The Effects of Prodrug Size and a Carbonyl Linker on l-Type Amino Acid Transporter 1-Targeted Cellular and Brain Uptake. ChemMedChem 2020; 16:869-880. [PMID: 33230949 DOI: 10.1002/cmdc.202000824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Indexed: 11/08/2022]
Abstract
The l-type amino acid transporter 1 (LAT1, SLC7A5) imports dietary amino acids and amino acid drugs (e. g., l-DOPA) into the brain, and plays a role in cancer metabolism. Though there have been numerous reports of LAT1-targeted amino acid-drug conjugates (prodrugs), identifying the structural determinants to enhance substrate activity has been challenging. In this work, we investigated the position and orientation of a carbonyl group in linking hydrophobic moieties including the anti-inflammatory drug ketoprofen to l-tyrosine and l-phenylalanine. We found that esters of meta-carboxyl l-phenylalanine had better LAT1 transport rates than the corresponding acylated l-tyrosine analogues. However, as the size of the hydrophobic moiety increased, we observed a decrease in LAT1 transport rate with a concomitant increase in potency of inhibition. Our results have important implications for designing amino acid prodrugs that target LAT1 at the blood-brain barrier or on cancer cells.
Collapse
Affiliation(s)
- Brooklynn Venteicher
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Kasey Merklin
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1550 4th St, Rm RH581, San Francisco, CA 94143, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1550 4th St, Rm RH581, San Francisco, CA 94143, USA
| | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt. Sinai, 1468 Madison Ave, Annenberg Building Floor 19, New York, NY 10029, USA
| | - Jerome Campbell
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Hannah Way
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Joseph Griffith
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Cesar Alvarado
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| | - Evan Hill
- Department of Psychology, University of Nebraska, at Kearney 2507 11th Ave, Copeland Hall, Kearney, NE, 68849, (USA)
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt. Sinai, 1468 Madison Ave, Annenberg Building Floor 19, New York, NY 10029, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, 2401 11th Ave, Bruner Hall of Science, Kearney, NE 68849, USA
| |
Collapse
|
37
|
Interaction of the neutral amino acid transporter ASCT2 with basic amino acids. Biochem J 2020; 477:1443-1457. [PMID: 32242892 DOI: 10.1042/bcj20190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Glutamine transport across cell membranes is performed by a variety of transporters, including the alanine serine cysteine transporter 2 (ASCT2). The substrate-binding site of ASCT2 was proposed to be specific for small amino acids with neutral side chains, excluding basic substrates such as lysine. A series of competitive inhibitors of ASCT2 with low µM affinity were developed previously, on the basis of the 2,4-diaminobutyric acid (DAB) scaffold with a potential positive charge in the side chain. Therefore, we tested whether basic amino acids with side chains shorter than lysine can interact with the ASCT2 binding site. Molecular docking of L-1,3-diaminopropionic acid (L-DAP) and L-DAB suggested that these compounds bind to ASCT2. Consistent with this prediction, L-DAP and L-DAB, but not ornithine, lysine or D-DAP, elicited currents when applied to ASCT2-expressing cells. The currents were carried by anions and showed the hallmark properties of ASCT2 currents induced by transported substrates. The L-DAP response could be eliminated by a competitive ASCT2 inhibitor, suggesting that binding occurs at the substrate binding site. The KM for L-DAP was weakly voltage dependent. Furthermore, the pH dependence of the L-DAP response showed that the compound can bind in several protonation states. Together, these results suggest that the ASCT2 binding site is able to recognize L-amino acids with short, basic side chains, such as the L-DAP derivative β-N-methylamino-l-Alanine (BMAA), a well-studied neurotoxin. Our results expand the substrate specificity of ASCT2 to include amino acid substrates with positively charged side chains.
Collapse
|
38
|
Cosco J, Scalise M, Colas C, Galluccio M, Martini R, Rovella F, Mazza T, Ecker GF, Indiveri C. ATP modulates SLC7A5 (LAT1) synergistically with cholesterol. Sci Rep 2020; 10:16738. [PMID: 33028978 PMCID: PMC7541457 DOI: 10.1038/s41598-020-73757-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/17/2020] [Indexed: 01/07/2023] Open
Abstract
The plasma membrane transporter hLAT1 is responsible for providing cells with essential amino acids. hLAT1 is over-expressed in virtually all human cancers making the protein a hot-spot in the fields of cancer and pharmacology research. However, regulatory aspects of hLAT1 biology are still poorly understood. A remarkable stimulation of transport activity was observed in the presence of physiological levels of cholesterol together with a selective increase of the affinity for the substrate on the internal site, suggesting a stabilization of the inward open conformation of hLAT1. A synergistic effect by ATP was also observed only in the presence of cholesterol. The same phenomenon was detected with the native protein. Altogether, the biochemical assays suggested that cholesterol and ATP binding sites are close to each other. The computational analysis identified two neighboring regions, one hydrophobic and one hydrophilic, to which cholesterol and ATP were docked, respectively. The computational data predicted interaction of the ϒ-phosphate of ATP with Lys 204, which was confirmed by site-directed mutagenesis. The hLAT1-K204Q mutant showed an impaired function and response to ATP. Interestingly, this residue is conserved in several members of the SLC7 family.
Collapse
Affiliation(s)
- Jessica Cosco
- Department of DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department of DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Claire Colas
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Michele Galluccio
- Department of DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Riccardo Martini
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Filomena Rovella
- Department of DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Department of DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Cesare Indiveri
- Department of DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via Bucci 4C, 87036, Arcavacata di Rende, Italy. .,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
39
|
Balcerzyk M, De-Miguel M, Guerrero C, Fernandez B. Quantification of Boron Compound Concentration for BNCT Using Positron Emission Tomography. Cells 2020; 9:cells9092084. [PMID: 32932575 PMCID: PMC7563863 DOI: 10.3390/cells9092084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Boron neutron capture therapy requires a 2 mM 10B concentration in the tumor. The well-known BNCT patient treatment method using boronophenylalanine (BPA) as a boron-carrying agent utilizes [18F]fluoroBPA ([18F]FBPA) as an agent to qualify for treatment. Precisely, [18F]FBPA must have at least a 3:1 tumor to background tissue ratio to qualify the patient for BNCT treatment. Normal, hyperplasia, and cancer thyroids capture iodine and several other large ions, including BF4−, through a sodium-iodine symporter (NIS) expressed on the cell surface in normal conditions. In cancer, NIS is also expressed within the thyroid cell and is not functional. Methods: To visualize the thyroids and NIS, we have used a [18F]NaBF4 positron emission tomography (PET) tracer. It was injected into the tail veins of rats. The [18F]NaBF4 PET tracer was produced from NaBF4 by the isotopic exchange of natural 19F with radioactive 18F. Rats were subject to hyperplasia and tumor-inducing treatment. The NIS in thyroids was visualized by immunofluorescence staining. The boron concentration was calculated from Standard Uptake Values (SUV) in the PET/CT images and from the production data. Results: 41 MBq, 0.64 pmol of [18F]NaBF4 PET tracer that contained 0.351 mM, 53 nmol of NaBF4 was injected into the tail vein. After 17 min, the peak activity in the thyroid reached 2.3 MBq/mL (9 SUVmax). The natB concentration in the thyroid with hyperplasia reached 381 nM. Conclusions: Such an incorporation would require an additional 110 mg/kg dose of [10B]NaBF4 to reach the necessary 2 mM 10B concentration in the tumor. For future BNCT treatments of thyroid cancer, contrary to the 131I used now, there is no post-treatment radioactive decay, the patient can be immediately discharged from hospital, and there is no six-month moratorium for pregnancy. This method can be used for BNCT treatment compounds of the type R-BFn, where 1 <= n <= 3, labeled with 18F relatively easily, as in our example. A patient may undergo injection of a mixture of nonradioactive R-BFn to reach the necessary 10B concentration for BNCT treatment in the tumor together, with [18F]R-BFn for boron mapping.
Collapse
Affiliation(s)
- Marcin Balcerzyk
- Centro Nacional de Aceleradores (Universidad de Sevilla—CSIC—Junta de Andalucía), C/Thomas Alva Edison 7, 41092 Sevilla, Spain; (C.G.); (B.F.)
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain
- Correspondence: ; Tel.: +34-697-322-126
| | - Manuel De-Miguel
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, Avda. Sánchez-Pizjuán s/n, 41009 Sevilla, Spain;
| | - Carlos Guerrero
- Centro Nacional de Aceleradores (Universidad de Sevilla—CSIC—Junta de Andalucía), C/Thomas Alva Edison 7, 41092 Sevilla, Spain; (C.G.); (B.F.)
| | - Begoña Fernandez
- Centro Nacional de Aceleradores (Universidad de Sevilla—CSIC—Junta de Andalucía), C/Thomas Alva Edison 7, 41092 Sevilla, Spain; (C.G.); (B.F.)
| |
Collapse
|
40
|
Colas C. Toward a Systematic Structural and Functional Annotation of Solute Carriers Transporters-Example of the SLC6 and SLC7 Families. Front Pharmacol 2020; 11:1229. [PMID: 32973497 PMCID: PMC7466448 DOI: 10.3389/fphar.2020.01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
SLC transporters are emerging key drug targets. One important step for drug development is the profound understanding of the structural determinants defining the substrate selectivity of each transporter. Recently, the improvement of computational power and experimental methods such as X-ray and cryo-EM crystallography permitted to conduct structure-based studies on specific transporters having important pharmacological impact. However, a lot remains to be discovered regarding their dynamics, transport modulation and ligand recognition. A detailed functional characterization of transporters would provide opportunities to develop new compounds targeting these key drug targets. Here, we are giving an overview of two major human LeuT-fold families, SLC6 and SLC7, with an emphasis on the most relevant members of each family for drug development. We gather the most recent understanding on the structural determinants of selectivity within and across the two families. We then use this information to discuss the benefits of a more generalized structural and functional annotation of the LeuT fold and the implications of such mapping for drug discovery.
Collapse
Affiliation(s)
- Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| |
Collapse
|
41
|
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020; 37:88. [PMID: 32377929 PMCID: PMC7203094 DOI: 10.1007/s11095-020-02826-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
42
|
Pocasap P, Weerapreeyakul N, Timonen J, Järvinen J, Leppänen J, Kärkkäinen J, Rautio J. Tyrosine-Chlorambucil Conjugates Facilitate Cellular Uptake through L-Type Amino Acid Transporter 1 (LAT1) in Human Breast Cancer Cell Line MCF-7. Int J Mol Sci 2020; 21:ijms21062132. [PMID: 32244913 PMCID: PMC7139360 DOI: 10.3390/ijms21062132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
l-type amino acid transporter 1 (LAT1) is an amino acid transporter that is overexpressed in several types of cancer and, thus, it can be a potential target for chemotherapy. The objectives of this study were to (a) synthesize LAT1-targeted chlorambucil derivatives and (b) evaluate their LAT1-mediated cellular uptake as well as antiproliferative activity in vitro in the human breast cancer MCF-7 cell line. Chlorambucil was conjugated to l-tyrosine—an endogenous LAT1 substrate—via either ester or amide linkage (compounds 1 and 2, respectively). While chlorambucil itself did not bind to LAT1, its derivatives 1 and 2 bound to LAT1 with a similar affinity as with l-tyrosine and their respective cellular uptake was significantly higher than that of chlorambucil in MCF-7. The results of our cellular uptake study are indicative of antiproliferative activity, as a higher intracellular uptake of chlorambucil derivatives resulted in greater cytotoxicity than chlorambucil by itself. LAT1 thus contributes to intracellular uptake of chlorambucil derivatives and, therefore, increases antiproliferative activity. The understanding gained from our research can be used in the development of LAT1-targeted anticancer drugs and prodrugs for site-selective and enhanced chemotherapeutic activity.
Collapse
Affiliation(s)
- Piman Pocasap
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (N.W.); (J.R.)
| | - Juri Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jukka Leppänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jussi Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.T.); (J.J.); (J.L.); (J.K.)
- Correspondence: (N.W.); (J.R.)
| |
Collapse
|
43
|
Zhang L, Sui C, Yang W, Luo Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci 2020; 15:192-206. [PMID: 32373199 PMCID: PMC7193455 DOI: 10.1016/j.ajps.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Amino acid transporters, which play a vital role in transporting amino acids for the biosynthesis of mammalian cells, are highly expressed in types of tumors. Increasing studies have shown the feasibility of amino acid transporters as a component of tumor-targeting therapy. In this review, we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy. Firstly, the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed. Secondly, the recognition requirements are discussed, focusing on the "acid-base" properties, conformational isomerism and structural analogues. Finally, recent developments in amino acid transporter-targeting drug delivery strategies are highlighted, including prodrugs and nanocarriers, with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis. We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chengguang Sui
- Department of Biotherapy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhan Yang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Department of Pharmacy, China Medical University, Shenyang 110001, China
| |
Collapse
|
44
|
Asc-1 Transporter (SLC7A10): Homology Models And Molecular Dynamics Insights Into The First Steps Of The Transport Mechanism. Sci Rep 2020; 10:3731. [PMID: 32111919 PMCID: PMC7048771 DOI: 10.1038/s41598-020-60617-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
The alanine-serine-cysteine transporter Asc-1 regulates the synaptic availability of d-serine and glycine (the two co-agonists of the NMDA receptor) and is regarded as an important drug target. To shuttle the substrate from the extracellular space to the cytoplasm, this transporter undergoes multiple distinct conformational states. In this work, homology modeling, substrate docking and molecular dynamics simulations were carried out to learn more about the transition between the “outward-open” and “outward-open occluded” states. We identified a transition state involving the highly-conserved unwound TM6 region in which the Phe243 flips close to the d-serine substrate without major movements of TM6. This feature and those of other key residues are proposed to control the binding site and substrate translocation. Competitive inhibitors ACPP, LuAE00527 and SMLC were docked and their binding modes at the substrate binding site corroborated the key role played by Phe243 of TM6. For ACPP and LuAE00527, strong hydrophobic interactions with this residue hinder its mobility and prevent the uptake and the efflux of substrates. As for SMLC, the weaker interactions maintain the flexibility of Phe243 and the efflux process. Overall, we propose a molecular basis for the inhibition of substrate translocation of the Asc-1 transporter that should be valuable for rational drug design.
Collapse
|
45
|
Barthelemy C, André B. Ubiquitylation and endocytosis of the human LAT1/SLC7A5 amino acid transporter. Sci Rep 2019; 9:16760. [PMID: 31728037 PMCID: PMC6856120 DOI: 10.1038/s41598-019-53065-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
The human L-type amino acid transporter 1 (LAT1), also known as SLC7A5, catalyzes the transport of large neutral amino acids across the plasma membrane. As the main transporter of several essential amino acids, notably leucine, LAT1 plays an important role in mTORC1 activation. Furthermore, it is overexpressed in various types of cancer cells, where it contributes importantly to sustained growth. Despite the importance of LAT1 in normal and tumor cells, little is known about the mechanisms that might control its activity, for example by promoting its downregulation via endocytosis. Here we report that in HeLa cells, activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) triggers efficient endocytosis and degradation of LAT1. Under these conditions we found LAT1 downregulation to correlate with increased LAT1 ubiquitylation. This modification was considerably reduced in cells depleted of the Nedd4-2 ubiquitin ligase. By systematically mutagenizing the residues of the LAT1 cytosolic tails, we identified a group of three close lysines (K19, K25, K30) in the N-terminal tail that are important for PMA-induced ubiquitylation and downregulation. Our study thus unravels a mechanism of induced endocytosis of LAT1 elicited by Nedd4-2-mediated ubiquitylation of the transporter's N-terminal tail.
Collapse
Affiliation(s)
- Céline Barthelemy
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université libre de Bruxelles (ULB), IBMM (Biopark), Gosselies, Belgium.
| |
Collapse
|
46
|
Role of L-Type Amino Acid Transporter 1 (LAT1) for the Selective Cytotoxicity of Sesamol in Human Melanoma Cells. Molecules 2019; 24:molecules24213869. [PMID: 31717859 PMCID: PMC6865181 DOI: 10.3390/molecules24213869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/18/2022] Open
Abstract
Sesamol is effective against melanoma cells with less damage to normal cells. The underlying selective cytotoxicity of sesamol in melanoma vs. non-cancerous cells is undefined. Melanoma cells differ from normal cells by over-expression of the L-type amino acid transporter 1 (LAT1). We sought to clarify the transport mechanism on selective cytotoxicity of sesamol in melanoma cells. A human melanoma cell line (SK-MEL-2) and African monkey epithelial cell line (Vero) were used to study the cellular uptake and cytotoxicity of sesamol. The intracellular concentration of sesamol was quantified by UV-HPLC. The cytotoxicity was determined by neutral red uptake assay. Sesamol showed a higher distribution volume and uptake clearance in SK-MEL-2 than Vero cells. Sesamol was distributed by both carrier-mediated and passive transport by having greater carrier-mediated transport into SK-MEL-2 cells than Vero cells. Higher mRNA expression and function of LAT1 over LAT2 were evident in SK-MEL-2 cells compared to Vero cells. Sesamol uptake and sesamol cytotoxicity were inhibited by the LAT1 inhibitor, suggesting LAT1 had a role in sesamol transport and its bioactivity in melanoma. The LAT1-mediated transport of sesamol is indicative of how it engages cytotoxicity in melanoma cells with promising therapeutic benefits.
Collapse
|
47
|
Rigorous sampling of docking poses unveils binding hypothesis for the halogenated ligands of L-type Amino acid Transporter 1 (LAT1). Sci Rep 2019; 9:15061. [PMID: 31636293 PMCID: PMC6803698 DOI: 10.1038/s41598-019-51455-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
L-type Amino acid Transporter 1 (LAT1) plays a significant role in the growth and propagation of cancer cells by facilitating the cross-membrane transport of essential nutrients, and is an attractive drug target. Several halogen-containing L-phenylalanine-based ligands display high affinity and high selectivity for LAT1; nonetheless, their molecular mechanism of binding remains unclear. In this study, a combined in silico strategy consisting of homology modeling, molecular docking, and Quantum Mechanics-Molecular Mechanics (QM-MM) simulation was applied to elucidate the molecular basis of ligand binding in LAT1. First, a homology model of LAT1 based on the atomic structure of a prokaryotic homolog was constructed. Docking studies using a set of halogenated ligands allowed for deriving a binding hypothesis. Selected docking poses were subjected to QM-MM calculations to investigate the halogen interactions. Collectively, the results highlight the dual nature of the ligand-protein binding mode characterized by backbone hydrogen bond interactions of the amino acid moiety of the ligands and residues I63, S66, G67, F252, G255, as well as hydrophobic interactions of the ligand’s side chains with residues I139, I140, F252, G255, F402, W405. QM-MM optimizations indicated that the electrostatic interactions involving halogens contribute to the binding free energy. Importantly, our results are in good agreement with the recently unraveled cryo-Electron Microscopy structures of LAT1.
Collapse
|
48
|
Narayan A, Yan Y, Lisok A, Brummet M, Pomper MG, Lesniak WG, Dannals RF, Merino VF, Azad BB. A side-by-side evaluation of [ 18F]FDOPA enantiomers for non-invasive detection of neuroendocrine tumors by positron emission tomography. Oncotarget 2019; 10:5731-5744. [PMID: 31645896 PMCID: PMC6791383 DOI: 10.18632/oncotarget.27184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroendocrine tumors (NETs) are an extremely heterogenous group of malignancies with variable clinical behavior. Molecular imaging of patients with NETs allows for effective patient stratification and treatment guidance and is crucial in selection of targeted therapies. Positron emission tomography (PET) with the radiotracer L-[18F]FDOPA is progressively being utilized for non-invasive in vivo visualization of NETs and pancreatic β-cell hyperplasia. While L-[18F]FDOPA-PET is a valuable tool for disease detection and management, it also exhibits significant diagnostic limitations owing to its inherent physiological uptake in off-target tissues. We hypothesized that the D-amino acid structural isomer of that clinical tracer, D-[18F]FDOPA, may exhibit superior clearance capabilities owing to a reduced in vivo enzymatic recognition and enzyme-mediated metabolism. Here, we report a side-by-side evaluation of D-[18F]FDOPA with its counterpart clinical tracer, L-[18F]FDOPA, for the non-invasive in vivo detection of NETs. In vitro evaluation in five NET cell lines, including invasive small intestinal neuroendocrine carcinomas (STC-1), insulinomas (TGP52 and TGP61), colorectal adenocarcinomas (COLO-320) and pheochromocytomas (PC12), generally indicated higher overall uptake levels of L-[18F]FDOPA, compared to D-[18F]FDOPA. While in vivo PET imaging and ex vivo biodistribution studies in PC12, STC-1 and COLO-320 mouse xenografts further supported our in vitro data, they also illustrated lower off-target retention and enhanced clearance of D-[18F]FDOPA from healthy tissues. Cumulatively our results indicate the potential diagnostic applications of D-[18F]FDOPA for malignancies where the utility of L-[18F]FDOPA-PET is limited by the physiological uptake of L-[18F]FDOPA, and suggest D-[18F]FDOPA as a viable PET imaging tracer for NETs.
Collapse
Affiliation(s)
- Athira Narayan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yu Yan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vanessa F Merino
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Babak Behnam Azad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Kyriakou S, Mitsiogianni M, Mantso T, Cheung W, Todryk S, Veuger S, Pappa A, Tetard D, Panayiotidis MI. Anticancer activity of a novel methylated analogue of L-mimosine against an in vitro model of human malignant melanoma. Invest New Drugs 2019; 38:621-633. [PMID: 31240512 PMCID: PMC7211211 DOI: 10.1007/s10637-019-00809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
The anticancer activity of a series of novel synthesized, hydroxypyridone-based metal chelators (analogues of L-mimosine) was evaluated in an in vitro model of melanoma consisting of malignant melanoma (A375), non-melanoma epidermoid carcinoma (A431) and immortalized non-malignant keratinocyte (HaCaT) cells. More specifically, we have demonstrated that the L-enantiomer of a methylated analogue of L-mimosine (compound 22) can exert a potent anticancer effect in A375 cells when compared to either A431 or HaCaT cells. Moreover, we have demonstrated that this analogue has the ability to i) promote increased generation of reactive oxygen species (ROS), ii) activate both intrinsic and extrinsic apoptosis and iii) induce perturbations in cell cycle growth arrest. Our data highlights the potential of compound 22 to act as a promising therapeutic agent against an in vitro model of human malignant melanoma.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - William Cheung
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Stephany Veuger
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - David Tetard
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | | |
Collapse
|
50
|
Hall C, Wolfe H, Wells A, Chien HC, Colas C, Schlessinger A, Giacomini KM, Thomas AA. l-Type amino acid transporter 1 activity of 1,2,3-triazolyl analogs of l-histidine and l-tryptophan. Bioorg Med Chem Lett 2019; 29:2254-2258. [PMID: 31248771 DOI: 10.1016/j.bmcl.2019.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023]
Abstract
A series of 1,2,3-triazole analogs of the amino acids l-histidine and l-tryptophan were modeled, synthesized and tested for l-type amino acid transporter 1 (LAT1; SLC7A5) activity to guide the design of amino acid-drug conjugates (prodrugs). These triazoles were conveniently prepared by the highly convergent Huisgen 1,3-dipolar cycloaddition (Click Chemistry). Despite comparable predicted binding modes, triazoles generally demonstrated reduced cell uptake and LAT1 binding potency relative to their natural amino acid counterparts. The structure-activity relationship (SAR) data for these triazoles has important ramifications for treating cancer and brain disorders using amino acid prodrugs or LAT1 inhibitors.
Collapse
Affiliation(s)
- Colton Hall
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA
| | - Hannah Wolfe
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA
| | - Alyssa Wells
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claire Colas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA.
| |
Collapse
|