1
|
Zhang H, Wang W, Fan L, Li J, Ren Y, Li H, Gao R, Xu Y. The role of sulfur cycle in new particle formation: Cycloaddition reaction of SO 3 to H 2S. J Environ Sci (China) 2025; 148:489-501. [PMID: 39095183 DOI: 10.1016/j.jes.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 08/04/2024]
Abstract
The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.
Collapse
Affiliation(s)
- Haijie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liang Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yisheng Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Chen DP, Ma W, Yang CH, Li M, Zhou ZZ, Zhang Y, Wang XC, Quan ZJ. Formation of atmospheric molecular clusters containing nitric acid with ammonia, methylamine, and dimethylamine. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39392062 DOI: 10.1039/d4em00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This study investigates the formation of atmospheric molecular clusters containing ammonia (NH3, A), methylamine (CH3NH2, MA), or dimethylamine (CH3NHCH3, DMA) with nitric acid (HNO3, NA) using quantum mechanics. The Atmospheric Cluster Dynamic Code (ACDC) was employed to simulate the total evaporation rate, formation rate, and growth pathways of three types of clusters under dry and hydrated conditions. This study evaluates the enhancing potential of A/MA/DMA for NA-based new particle formation (NPF) at parts per trillion (ppt) levels. The results indicate that A/MA/DMA can enhance NA-based NPF at high nitric acid concentrations and low temperatures in the atmosphere. The enhancing potential of MA is weaker than that of DMA but stronger than that of A. Cluster growth predominantly follows the lowest free energy pathways on the acid-base grid, with the formation of initial acid-base dimers (NA)(A), (NA)(MA), and (NA)(DMA) being crucial. Hydration influences the evaporation rate and formation rate of clusters, especially for initial clusters. When the humidity is at 100%, the formation rate for NA-A, NA-MA, and NA-DMA clusters can increase by approximately 109, 107, and 104-fold compared to the corresponding unhydrated clusters, respectively. These results highlight the significance of nitric acid nucleation in NPF events in low-temperature, high-humidity atmospheres, particularly in regions like China with significant automobile exhaust pollution.
Collapse
Affiliation(s)
- Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Chun-Hong Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zhao-Zhen Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Liu H, Niu S, Chen Y, Dai W, Liu Y, Shen M, Guo X, Qi W, Zhang Y, Li L, Jiang Y, Wang Q, Li J. Comparison of aerosol number size distribution and new particle formation in summer at alpine and urban regions in the Guanzhong Plain, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176601. [PMID: 39349209 DOI: 10.1016/j.scitotenv.2024.176601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Ultrafine particles play a crucial role in understanding climate change, mitigating adverse health effects, and developing strategies for air pollution control. However, the factors influencing the occurrence and development of new particle formation (NPF) events, as well as the underlying chemical mechanisms, remain inadequately explained. This study compared number concentrations and size distributions of atmospheric ultrafine particles at Xi'an (urban area) and the summit of Mt. Hua (alpine region) in summer to investigate the NPF mechanism and particle growth in both clean and polluted areas of the Guanzhong Plain. The average particle number concentration in Xi'an was significantly higher than that at Mt. Hua. The diurnal variation of total particle number concentration differed between Xi'an and Mt. Hua indicating a divergence in influencing factors. The size distributions in Xi'an varied across different timescales and weather conditions, whereas Mt. Hua exhibited little variation. This stability at Mt. Hua is attributed to its cleaner background atmosphere and the steady influx of aging particles with larger diameters transported from the free atmosphere. In both areas, geometric mean diameters (GMDs) were inversely proportional to particle number concentrations suggesting that increase in particle numbers were primarily due to the generation of smaller particles. The potential governing factors for NPF events differed somewhat between the urban and mountainous stations. In the urban area, intense local stationary and mobile emission sources promoted the growth of newly formed nanoparticles, with ozone-oxidized condensable vapors serving as key precursors. In contrast, at the mountainous station, NPF process were significantly influenced by anthropogenic precursors from long-range transport and locally emitted biogenic organics. The rapid increase in ultrafine particle concentrations primarily poses serious health risks and degrades air quality in urban areas, while also contributing to climate-related effects in alpine regions.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Sining Niu
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yukun Chen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yali Liu
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Minxia Shen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiao Guo
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Weining Qi
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yifan Zhang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Lu Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yingkun Jiang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China..
| |
Collapse
|
4
|
Chen DP, Ma W, Yang CH, Li M, Zhou ZZ, Zhang Y, Quan ZJ. Interaction between hydroxymethanesulfonic acid and several organic compounds and its atmospheric significance. J Mol Graph Model 2024; 130:108782. [PMID: 38685182 DOI: 10.1016/j.jmgm.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The interactions of the micro-mechanism of hydroxymethanesulfonic acid (HMSA) with the typical small organic molecule in atmospheric (X = methanol, formaldehyde, formic acid, methyl formate, dimethyl ether, acetone) has been investigated by density functional theory (DFT), quantum theory of atoms in molecules (QTAIM), Generalized Kohn-Sham Enery Decomposition Analysis (GKS-EDA) and the atmospheric clusters dynamic code (ACDC). The results of DFT show that the stable six- to eight-membered ring structures are easily formed in HMSA-X clusters. According to the topological analysis results of the AIM theory and the IRI method, a strong hydrogen bonding interaction is present in the complex. GKS-EDA results show that electrostatic energy is the main contributor to the interaction energy as it accounts for 51 %-55 % of the total attraction energy. The evaporation rates of HMSA-HMSA and HMSA-HCOOH clusters were much lower than those of the other HMSA complexes. In addition, the Gibbs energy of formation (ΔG) of HMSA-X dimers is investigated under atmosphere temperature T = 217-298 K and p = 0.19-1.0 atm, the ΔG decreased with decreasing of the atmosphere temperature and increased with the decrease of atmospheric pressure, indicating that the low temperature and high pressure may significantly facilitate to the formation of dimers.
Collapse
Affiliation(s)
- Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China.
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Chun-Hong Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Zhao-Zhen Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
5
|
Zhang G, Liu M, Han Y, Wang Z, Liu W, Zhang Y, Xu J. The role of aldehydes on sulfur based-new particle formation: a theoretical study. RSC Adv 2024; 14:13321-13335. [PMID: 38694968 PMCID: PMC11061877 DOI: 10.1039/d4ra00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
Aldehydes play a crucial role in the formation of atmospheric particles, attracting significant attention due to their environmental impact. However, the microscopic mechanisms underlying the formation of aldehyde-involved particles remain uncertain. In this study, through quantum chemical calculations and molecular dynamics (MD) simulations, we investigate the microscopic formation mechanisms of binary and ternary systems composed of three representative aldehydes, two sulfur-based acids, water, and two bases. Our research findings reveal that the most stable structures of acid-aldehyde clusters involve the connection of acids and aldehyde compounds through hydrogen bonds without involving proton transfer reactions, indicating relatively poor cluster stability. However, with the introduction of a third component, the stability of 18 clusters significantly increase. Among these, in ten systems, acids act as catalysts, facilitating reactions between aldehyde compounds and water or alkaline substances to generate glycols and amino alcohols. However, according to MD simulations conducted at 300 K, these acids readily dissociate from the resulting products. In the remaining eight systems, the most stable structural feature involves ion pairs formed by proton transfer reactions between acids and aldehyde compounds. These clusters exhibit remarkable thermodynamic stability. Furthermore, the acidity of the acid, the nature of nucleophilic agents, and the type of aldehyde all play significant roles in cluster stability and reactivity, and they have synergistic effects on the nucleation process. This study offers microscopic insights into the processes of new particle formation involving aldehydes, contributing to a deeper understanding of atmospheric chemistry at the molecular level.
Collapse
Affiliation(s)
- Guohua Zhang
- Jinhua Advanced Research Institute Jinhua Zhejiang 321013 P. R. China
| | - Min Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Yaning Han
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Zhongteng Wang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Ying Zhang
- Jinhua Advanced Research Institute Jinhua Zhejiang 321013 P. R. China
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| |
Collapse
|
6
|
Perraud V, Roundtree K, Morris PM, Smith JN, Finlayson-Pitts BJ. Implications for new particle formation in air of the use of monoethanolamine in carbon capture and storage. Phys Chem Chem Phys 2024; 26:9005-9020. [PMID: 38440810 DOI: 10.1039/d4cp00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Alkanolamines are currently being deployed in carbon capture and storage (CCS) technology worldwide, and atmospheric emissions have been found to coincide with locations exhibiting elevated concentrations of methanesulfonic acid (MSA). It is thus critical to understand the fate and potential atmospheric reactions of these chemicals. This study reports the characterization of sub-10 nm nanoparticles produced through the acid-base reaction between gas phase monoethanolamine (MEA) and MSA, a product of organosulfur compound oxidation in air, using a flow reactor under dry and humid (up to ∼60% RH) conditions. Number size distribution measurements show that MEA is even more efficient than methylamine in forming nanoparticles on reaction with MSA. This is attributed to the fact that the MEA structure contains both an -NH2 and an -OH group that facilitate hydrogen bonding within the clusters, in addition to the electrostatic interactions. Due to this already strong H-bond network, water has a relatively small influence on new particle formation (NPF) and growth in this system, in contrast to MSA reactions with alkylamines. Acid/base molar ratios of unity for 4-12 nm particles were measured using thermal desorption chemical ionization mass spectrometry. The data indicate that reaction of MEA with MSA may dominate NPF under some atmospheric conditions. Thus, the unique characteristics of alkanolamines in NPF must be taken into account for accurate predictions of impacts of CCS on visibility, health and climate.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Kanuri Roundtree
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Patricia M Morris
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - James N Smith
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
7
|
Goss MB, Kroll JH. Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism. ATMOSPHERIC CHEMISTRY AND PHYSICS 2024; 24:1299-1314. [PMID: 38726054 PMCID: PMC11081431 DOI: 10.5194/acp-24-1299-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The oxidation of dimethyl sulfide (DMS) in the marine atmosphere represents an important natural source of non-sea-salt sulfate aerosol, but the chemical mechanisms underlying this process remain uncertain. While recent studies have focused on the role of the peroxy radical isomerization channel in DMS oxidation, this work revisits the impact of the other channels (OH addition and OH abstraction followed by bimolecular RO2 reaction) on aerosol formation from DMS. Due to the presence of common intermediate species, the oxidation of dimethyl sulfoxide (DMSO) and dimethyl disulfide (DMDS) can shed light on these two DMS reaction channels; they are also both atmospherically relevant species in their own right. This work examines the OH oxidation of DMSO and DMDS, using chamber experiments monitored by chemical ionization mass spectrometry and aerosol mass spectrometry to study the full range of sulfur-containing products across a range of NO concentrations. The oxidation of both compounds is found to lead to rapid aerosol formation (which does not involve the intermediate formation of SO2), with a substantial fraction (14%-47 % S yield for DMSO and 5 %-21 % for DMDS) of reacted sulfur ending up in the particle phase and the highest yields observed under elevated NO conditions. Aerosol is observed to consist mainly of sulfate, methanesulfonic acid, and methanesulfinic acid. In the gas phase, the NOx dependence of several products, including SO2 and S2-containing organosulfur species, suggest reaction pathways not included in current mechanisms. Based on the commonalities with the DMS oxidation mechanism, DMSO and DMDS results are used to reconstruct DMS aerosol yields; these reconstructions roughly match DMS aerosol yield measurements from the literature but differ in composition, underscoring remaining uncertainties in sulfur chemistry. This work indicates that both the abstraction and addition channels contribute to rapid aerosol formation from DMS and highlights the need for more study into the fate of small sulfur radical intermediates (e.g., CH3S, CH3SO2, and CH3SO3) that are thought to play central roles in the DMS oxidation mechanism.
Collapse
Affiliation(s)
- Matthew B. Goss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jesse H. Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Mandal I, Karimova NV, Zakai I, Gerber RB. Formation of Chlorine in the Atmosphere by Reaction of Hypochlorous Acid with Seawater. J Phys Chem Lett 2024; 15:432-438. [PMID: 38189241 PMCID: PMC11139381 DOI: 10.1021/acs.jpclett.3c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
The highly reactive dihalogens play a significant role in the oxidative chemistry of the troposphere. One of the main reservoirs of these halogens is hypohalous acids, HOX, which produce dihalogens in the presence of halides (Y-), where X, Y = Cl, Br, I. These reactions occur in and on aerosol particles and seawater surfaces and have been studied experimentally and by field observations. However, the mechanisms of these atmospheric reactions are still unknown. Here, we establish the atomistic mechanism of HOCl + Cl- → Cl2 + OH- at the surface of the water slab by performing ab initio molecular dynamics (AIMD) simulations. Main findings are (1) This reaction proceeds by halogen-bonded complexes of (HOCl)···(Cl-)aq surrounded with the neighboring water molecules. (2) The halogen bonded (HOCl)···(Cl-)aq complexes undergo charge transfer from Cl- to OH- to form transient Cl2 at neutral pH. (3) The addition of a proton to one proximal water greatly facilitates the Cl2 formation, which explains the enhanced rate at low pH.
Collapse
Affiliation(s)
- Imon Mandal
- The
Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Natalia V. Karimova
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Itai Zakai
- The
Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - R. Benny Gerber
- The
Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
9
|
Zhang R, Ma F, Zhang Y, Chen J, Elm J, He XC, Xie HB. HIO 3-HIO 2-Driven Three-Component Nucleation: Screening Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:649-659. [PMID: 38131199 DOI: 10.1021/acs.est.3c06098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Iodine oxoacids (HIO3 and HIO2)-driven nucleation has been suggested to efficiently contribute to new particle formation (NPF) in marine atmospheres. Abundant atmospheric nucleation precursors may further enhance HIO3-HIO2-driven nucleation through various multicomponent nucleation mechanisms. However, the specific enhancing potential (EP) of different precursors remains largely unknown. Herein, the EP-based screening model of precursors and enhancing mechanism of the precursor with the highest EP on HIO3-HIO2 nucleation were investigated. The formation free energies (ΔG), as critical parameters for evaluating EP, were calculated for the dimers of 63 selected precursors with HIO2. Based on the ΔG values, (1) a quantitative structure-activity relationship model was developed for evaluating ΔG of other precursors and (2) atmospheric concentrations of 63 (precursor)1(HIO2)1 dimer clusters were assessed to identify the precursors with the highest EP for HIO3-HIO2-driven nucleation by combining with earlier results for the nucleation with HIO3 as the partner. Methanesulfonic acid (MSA) was found to be one of the precursors with the highest EP. Finally, we found that MSA can effectively enhance HIO3-HIO2 nucleation at atmospheric conditions by studying larger MSA-HIO3-HIO2 clusters. These results augment our current understanding of HIO3-HIO2 and MSA-driven nucleation and may suggest a larger impact of HIO2 in atmospheric aerosol nucleation.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yangjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Wu N, Ning A, Liu L, Zu H, Liang D, Zhang X. Methanesulfonic acid and iodous acid nucleation: a novel mechanism for marine aerosols. Phys Chem Chem Phys 2023. [PMID: 37323049 DOI: 10.1039/d3cp01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By seeding clouds, new particle formation (NPF) has a substantial impact on radiation balance, bio-geochemical cycles and global climate. Over oceans, both methanesulfonic acid (CH3S(O)2OH, MSA) and iodous acid (HIO2) have been reported to be closely associated with NPF events; however, much less is known about whether they can jointly nucleate to form nanoclusters. Hence, quantum chemical calculations and Atmospheric Cluster Dynamics Code (ACDC) simulations were performed to investigate the novel mechanism of MSA-HIO2 binary nucleation. The results indicate that MSA and HIO2 can form stable clusters via multiple interactions including hydrogen bonds, halogen bonds, and electrostatic forces between ion pairs after proton transfer, which are more diverse than those in MSA-iodic acid (HIO3) and MSA-dimethylamine (DMA) clusters. Interestingly, HIO2 can be protonated by MSA exhibiting base-like behavior, but it differs from base nucleation precursors by self-nucleation rather than solely binding to MSA. Due to the greater stability of MSA-HIO2 clusters, the formation rate of MSA-HIO2 clusters can be even higher than that of MSA-DMA clusters, suggesting that MSA-HIO2 nucleation is a non-negligible source of marine NPF. This work proposes a novel mechanism of MSA-HIO2 binary nucleation for marine aerosols and provides deeper insights into the distinctive nucleation characteristics of HIO2, which can help in constructing a more comprehensive sulfur- and iodine-bearing nucleation model for marine NPF.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Haotian Zu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
11
|
Huff AK, Love N, Leopold KR. Microwave and Computational Study of Methanesulfonic Acid and Its Complex with Water. J Phys Chem A 2023; 127:3658-3667. [PMID: 37043823 DOI: 10.1021/acs.jpca.3c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Spectra of methanesulfonic acid (CH3SO3H, MSA) and its complex with water have been studied by microwave spectroscopy and density functional theory calculations. For the monomer, spectra were obtained for both the parent and -OD isotopologues and, in each case, revealed a pair of tunneling states that are attributed to large amplitude motion of the hydroxyl hydrogen about the S-O(H) bond. Transitions crossing between tunneling states were not found in the parent spectrum and are estimated to be outside the range of the spectrometer, thus precluding the direct determination of the tunneling energy. For the -OD form, however, the tunneling energy was determined to be ΔE = 6471.9274(18) MHz from direct measurement of the cross-state c-type transitions. In its complex with water, the acidic hydrogen of the MSA forms a hydrogen bond with the water oxygen. A secondary hydrogen bond involving the water hydrogen and an SO3 oxygen completes a six-membered ring, forming a cyclic structure typical of hydrated oxyacids. No evidence of internal motion was observed. Rotational spectra of the CH3SO3H···D2O and CH3SO3D···D2O isotopologues were also obtained and analyzed. Comparison with theoretical calculations confirms the cyclic structure, though the orientation of the unbound water hydrogen is ambiguous.
Collapse
Affiliation(s)
- Anna K Huff
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Nathan Love
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Kenneth R Leopold
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Johnson JS, Jen CN. Role of Methanesulfonic Acid in Sulfuric Acid-Amine and Ammonia New Particle Formation. ACS EARTH & SPACE CHEMISTRY 2023; 7:653-660. [PMID: 36960424 PMCID: PMC10026172 DOI: 10.1021/acsearthspacechem.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Aerosol nucleation accounts for over half of all seed particles for cloud droplet formation. In the atmosphere, sulfuric acid (SA) nucleates with ammonia, amines, oxidized organics, and many more compounds to form particles. Studies have also shown that methanesulfonic acid (MSA) nucleates independently with amines and ammonia. MSA and SA are produced simultaneously via dimethyl sulfide oxidation in the marine atmosphere. However, limited knowledge exists on how MSA and SA nucleate together in the presence of various atmospherically relevant base compounds, which is critical to predicting marine nucleation rates accurately. This work provides experimental evidence that SA and MSA react to form particles with amines and that the SA-MSA-base nucleation has different reaction pathways than SA-base nucleation. Specifically, the formation of the SA-MSA heterodimer creates more energetically favorable pathways for SA-MSA-methylamine nucleation and an enhancement of nucleation rates. However, SA-trimethylamine nucleation is suppressed by MSA, likely due to the steric hindrance of the MSA and trimethylamine. These results display the importance of including nucleation reactions between SA, MSA, and various amines to predict particle nucleation rates in the marine atmosphere.
Collapse
Affiliation(s)
- Jack S. Johnson
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Coty N. Jen
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Myllys N. The role of hydration in atmospheric salt particle formation. Phys Chem Chem Phys 2023; 25:7394-7400. [PMID: 36843365 DOI: 10.1039/d3cp00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
New-particle formation from condensable acid and base molecules is a ubiquitous phenomenon in the atmosphere. The role of water in salt particle formation is not fully understood as it can stabilize or destabilize cluster structures, which leads to non-linear effects on cluster formation dynamics. In the studied systems, increased relative humidity can enhance the particle formation for up to four orders of magnitude in the case of nitric acid, but it can also slightly reduce the particle formation in the cases of sulfuric acid and methanesulfonic acid. As the effect of relative humidity in salt particle formation varies many orders of magnitude depending on the acid and base molecules, neglecting hydration or using the same value for different systems may introduce remarkable inaccuracies in large-scale models.
Collapse
Affiliation(s)
- Nanna Myllys
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland. .,Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
14
|
Liu Y, Zhou M, Lu K. Compilation of reaction kinetics parameters determined in the Key Development Project for Air Pollution Formation Mechanism and Control Technologies in China. J Environ Sci (China) 2023; 123:327-340. [PMID: 36521996 DOI: 10.1016/j.jes.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/17/2023]
Abstract
A compilation of new advances made in the research field of laboratory reaction kinetics in China's Key Development Project for Air Pollution Formation Mechanism and Control Technologies was presented. These advances are grouped into six broad, interrelated categories, including volatile organic compound (VOC) oxidation, secondary organic aerosol (SOA) formation, new particle formation (NPF) and gas-particle partitioning, ozone chemistry, model parameters, and secondary inorganic aerosol (SIA) formation, highlighting the laboratory work done by Chinese researchers. For smog chamber applications, the current knowledge gained from laboratory studies is reviewed, with emphasis on summarizing the oxidation mechanisms of long-chain alkanes, aromatics, alkenes, aldehydes/ketones in the atmosphere, SOA formation from anthropogenic emission sources, and oxidation of aromatics, isoprene, and limonene, as well as SIA formation. For flow tube applications, atmospheric oxidation mechanisms of toluene and methacrolein, SOA formation from limonene oxidation by ozone, gas-particle partitioning of peroxides, and sulfuric acid-water (H2SO4-H2O) binary nucleation, methanesulfonic acid-water (MSA-H2O) binary nucleation, and sulfuric acid-ammonia-water (H2SO4-NH3-H2O) ternary nucleation are discussed.
Collapse
Affiliation(s)
- Yuehui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ming Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
16
|
Zhang R, Xie HB, Ma F, Chen J, Iyer S, Simon M, Heinritzi M, Shen J, Tham YJ, Kurtén T, Worsnop DR, Kirkby J, Curtius J, Sipilä M, Kulmala M, He XC. Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14166-14177. [PMID: 36126141 PMCID: PMC9536010 DOI: 10.1021/acs.est.2c04328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- . Phone: +86-411-84707251
| | - Fangfang Ma
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Mario Simon
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Martin Heinritzi
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Jiali Shen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yee Jun Tham
- School
of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Douglas R. Worsnop
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne
Research, Inc., Billerica, Massachusetts 01821, United States
| | - Jasper Kirkby
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN,
the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Joachim Curtius
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Kulmala
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Xu-Cheng He
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Rasmussen FR, Kubečka J, Elm J. Contribution of Methanesulfonic Acid to the Formation of Molecular Clusters in the Marine Atmosphere. J Phys Chem A 2022; 126:7127-7136. [PMID: 36191242 DOI: 10.1021/acs.jpca.2c04468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the lack of long-term measurements, new particle formation (NPF) in the marine atmosphere remains puzzling. Using quantum chemical methods, this study elucidates the cluster formation and further growth of sulfuric acid-methanesulfonic acid-dimethylamine (SA-MSA-DMA) clusters, relevant to NPF in the marine atmosphere. The cluster structures and thermochemical parameters of (SA)n(MSA)m(DMA)l (n + m ≤ 4 and l ≤ 4) systems are calculated using density functional theory at the ωB97X-D/6-31++G(d,p) level of theory, and the single-point energies are calculated using high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculations. The calculated thermochemistry is used as input to the Atmospheric Cluster Dynamics Code (ACDC) to gain insight into the cluster dynamics. At ambient conditions (298.15 K, 1 atm), we find that the distribution of outgrowing clusters primarily consists of SA and DMA, with a minor contribution from the mixed SA-MSA-DMA clusters. At lower temperature (278.15 K, 1 atm) the distribution broadens, and clusters containing one or more MSA molecules emerge. These findings show that in the cold marine atmosphere MSA likely participates in atmospheric NPF.
Collapse
Affiliation(s)
| | - Jakub Kubečka
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, iClimate, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Knattrup Y, Elm J. Clusteromics IV: The Role of Nitric Acid in Atmospheric Cluster Formation. ACS OMEGA 2022; 7:31551-31560. [PMID: 36092558 PMCID: PMC9453938 DOI: 10.1021/acsomega.2c04278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Nitric acid (NA) has previously been shown to affect atmospheric new particle formation; however, its role still remains highly uncertain. Through the employment of state-of-the-art quantum chemical methods, we study the (acid)1-2(base)1-2 and (acid)3(base)2 clusters containing at least one nitric acid (NA) and sulfuric acid (SA) or methanesulfonic acid (MSA) with bases ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). The initial cluster configurations are generated using the ABCluster program. PM7 and ωB97X-D/6-31++G(d,p) calculations are used to reduce the number of relevant configurations. The thermochemical parameters are calculated at the ωB97X-D/6-31++G(d,p) level of theory with the quasi-harmonic approximation, and the final single-point energies are calculated with high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculations. The enhancing effect from the presence of nitric acid on cluster formation is studied using the calculated thermochemical data and cluster dynamics simulations. We find that when NA is in excess compared with the other acids, it has a substantial enhancing effect on the cluster formation potential.
Collapse
Affiliation(s)
- Yosef Knattrup
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department
of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Liu F, Zhang G, Lian X, Fu Y, Lin Q, Yang Y, Bi X, Wang X, Peng P, Sheng G. Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China. ENVIRONMENTAL RESEARCH 2022; 212:113212. [PMID: 35367230 DOI: 10.1016/j.envres.2022.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Nine amine species in atmospheric particles during haze and low-pollution days with low and high relative humidity (RH) were analyzed in urban Guangzhou, China. The mean concentrations of total measured amines (Ʃamines) in fine particles were 208 ± 127, 63.7 ± 21.3, and 120 ± 20.1 ng m-3 during haze, low pollution-low RH (LP-LRH), and low pollution-high RH (LP-HRH) episodes, respectively. The dominant amine species were methylamine (MA), dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA), which in total accounted for 82-91% of the Ʃamines during different pollution episodes. The contributions of Ʃamines-C to water-soluble organic carbon (WSOC) and Ʃamines-N to water-soluble organic nitrogen (WSON) were 1.52% and 2.49% during haze, 1.24% and 1.96% during LP-LRH, and 2.00 and 2.98% during LP-HRH days, respectively. The mass proportion of Ʃamines in fine particles was higher during LP-HRH periods (0.19%) than during haze and LP-LRH periods (0.16%). The mass proportion of DBA in Ʃamines increased from 7% during haze and LP-LRH episodes to 25% during LP-HRH episodes. Compared with other amines, DBA showed a stronger linear relationship with RH (r = 0.867, p < 0.01), which demonstrates its high sensitivity to high RH conditions. Meteorological parameters (including RH, the mixed layer depth, wind speed and temperature), the oxidizing capacity (ozone concentration), and gaseous pollutants (NOx and SO2) correlated with amines under different pollution conditions. Under high RH, acid-base reactions were the dominant pathway for the gas-to-particle distribution of amines in urban areas, while direct dissolution dominated in the background site. To our knowledge, this study is the first attempt to conduct in situ measurements of particulate amines during different pollution conditions in China, and further research is needed to in-depth understanding of the influence of amines on haze formation.
Collapse
Affiliation(s)
- Fengxian Liu
- Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640, PR China
| | - Xiufeng Lian
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, PR China
| | - Yuzhen Fu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640, PR China
| | - Qinhao Lin
- Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yuxiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640, PR China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640, PR China.
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou, 510640, PR China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
20
|
Liu Y, Xie HB, Ma F, Chen J, Elm J. Amine-Enhanced Methanesulfonic Acid-Driven Nucleation: Predictive Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7751-7760. [PMID: 35593326 DOI: 10.1021/acs.est.2c01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric amines are considered to be an effective enhancer for methanesulfonic acid (MSA)-driven nucleation. However, out of the 195 detected atmospheric amines, the enhancing potential (EP) has so far only been studied for five amines. This severely hinders the understanding of the contribution of amines to MSA-driven nucleation. Herein, a two-step procedure was employed to probe the EP of various amines on MSA-driven nucleation. Initially, the formation free energies (ΔG) of 50 MSA-amine dimer clusters were calculated. Based on the calculated ΔG values, a robust quantitative structure-activity relationship (QSAR) model was built and utilized to predict the ΔG values of the remaining 145 amines. The QSAR model identified two guanidino-containing compounds as the potentially strongest enhancer for MSA-driven nucleation. Second, the EP of guanidino-containing compounds was studied by employing larger clusters and selecting guanidine (Gud) as a representative. The results indicate that Gud indeed has the strongest EP. The Gud-MSA system presents a unique clustering mechanism, proceeding via the initial formation of the (Gud)1(MSA)1 cluster, and subsequently by cluster collisions with either a (Gud)1(MSA)1 or (Gud)2(MSA)2 cluster. The developed QSAR model and the identification of amines with the strongest EP provide a foundation for comprehensively evaluating the contribution of atmospheric amines to MSA-driven nucleation.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
21
|
Elm J. Clusteromics III: Acid Synergy in Sulfuric Acid-Methanesulfonic Acid-Base Cluster Formation. ACS OMEGA 2022; 7:15206-15214. [PMID: 35572753 PMCID: PMC9089749 DOI: 10.1021/acsomega.2c01396] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 05/24/2023]
Abstract
Acid-base molecular clusters are an important stage in atmospheric new particle formation. While such clusters are most likely multicomponent in nature, there are very few reports on clusters consisting of multiple acid molecules and multiple base molecules. By applying state-of-the-art quantum chemical methods, we herein study electrically neutral (SA)1(MSA)1(base)0-2 clusters with base = ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA) and ethylenediamine (EDA). The cluster structures are obtained using a funneling approach employing the ABCluster program, semiempirical PM7 calculations and ωB97X-D/6-31++G(d,p) calculations. The final binding free energies are calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory using the quasi-harmonic approximation. Based on the calculated cluster geometries and thermochemistry (at 298.15 K and 1 atm), we find that the mixed (SA)1(MSA)1(base)1-2 clusters more resemble the (SA)2(base)1-2 clusters compared to the (MSA)2(base)1-2 clusters. Hence, some of the steric hindrance and lack of hydrogen bond capacity previously observed in the (MSA)2(base)1-2 clusters is diminished in the corresponding (SA)1(MSA)1(base)1-2 clusters. Cluster kinetics simulations reveal that the presence of an MSA molecule in the clusters enhances the cluster formation potential by up to a factor of 20. We find that the SA-MSA-DMA clusters have the highest cluster formation potential, and thus, this system should be further extended to larger sizes in future studies.
Collapse
|
22
|
Chen D, Yao X, Chan CK, Tian X, Chu Y, Clegg SL, Shen Y, Gao Y, Gao H. Competitive Uptake of Dimethylamine and Trimethylamine against Ammonia on Acidic Particles in Marine Atmospheres. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5430-5439. [PMID: 35435670 DOI: 10.1021/acs.est.1c08713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alkaline gases such as NH3 and amines play important roles in neutralizing acidic particles in the atmosphere. Here, two common gaseous amines (dimethylamine (DMA) and trimethylamine (TMA)), NH3, and their corresponding ions in PM2.5 were measured semicontinuously using an ambient ion monitor-ion chromatography (AIM-IC) system in marine air during a round-trip cruise of approximately 4000 km along the coastline of eastern China. The concentrations of particulate DMA, detected as DMAH+, varied from <4 to 100 ng m-3 and generally decreased with increasing atmospheric NH3 concentrations. Combining observations with thermodynamic equilibrium calculations using the extended aerosol inorganics model (E-AIM) indicated that the competitive uptake of DMA against NH3 on acidic aerosols generally followed thermodynamic equilibria and appeared to be sensitive to DMA/NH3 molar ratios, resulting in molar ratios of DMAH+ to DMA + DMAH+ of 0.31 ± 0.16 (average ± standard deviation) at atmospheric NH3 concentrations over 1.8 μg m-3 (with a corresponding DMA/NH3 ratio of (1.8 ± 1.0) × 10-3), 0.80 ± 0.15 at atmospheric NH3 concentrations below 0.3 μg m-3 (with a corresponding DMA/NH3 ratio of (1.3 ± 0.6) × 10-2), and 0.56 ± 0.19 in the remaining cases. Particulate TMA concentrations, detected as TMAH+, ranged from <2 to 21 ng m-3 and decreased with increasing concentrations of atmospheric NH3. However, TMAH+ was depleted concurrently with the formation of NH4NO3 under low concentrations of atmospheric NH3, contradictory to the calculated increase in the equilibrated concentration of TMAH+ by the E-AIM.
Collapse
Affiliation(s)
- Dihui Chen
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaomeng Tian
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Yangxi Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Simon Leslie Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Yanjie Shen
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Gao
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology (MoE), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Liu M, Myllys N, Han Y, Wang Z, Chen L, Liu W, Xu J. Microscopic Insights Into the Formation of Methanesulfonic Acid–Methylamine–Ammonia Particles Under Acid-Rich Conditions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.875585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the microscopic mechanisms of new particle formation under acid-rich conditions is of significance in atmospheric science. Using quantum chemistry calculations, we investigated the microscopic formation mechanism of methanesulfonic acid (MSA)–methylamine (MA)–ammonia (NH3) clusters. We focused on the binary (MSA)2n-(MA)n and ternary (MSA)3n-(MA)n-(NH3)n, (n = 1–4) systems which contain more acid than base molecules. We found that the lowest-energy isomers in each system possess considerable thermodynamic and dynamic stabilities. In studied cluster structures, all bases are protonated, and they form stable ion pairs with MSA, which contribute to the charge transfer and the stability of clusters. MA and NH3 have a synergistic effect on NPF under acid-rich conditions, and the role of NH3 becomes more remarkable as cluster size increases. The excess of MSA molecules does not only enhance the stability of clusters, but provides potential sites for further growth.
Collapse
|
24
|
Pysanenko A, Huss T, Fárník M, Lengyel J. Effect of Hydration on Electron Attachment to Methanesulfonic Acid Clusters. J Phys Chem A 2022; 126:1542-1550. [PMID: 35230848 DOI: 10.1021/acs.jpca.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an experimental and computational study of the electron-induced chemistry of methanesulfonic acid (MSA, MeSO3H) in clusters. We combine the mass spectra after the 70 eV electron ionization with the negative ion spectra after electron attachment (EA) at low electron energies of 0-15 eV of the MSA molecule, small MSA clusters, and microhydrated MSA clusters to reveal the solvation effects. The MSA/He coexpansion only generates small MSA clusters with up to four molecules, but adding water substantially hydrates the MSA clusters, resulting in clusters composed of 1-2 MSA molecules accompanied by quite a few water molecules. The clustering strongly suppresses the fragmentation of the MSA molecules upon both the positive ionization and EA. The electron-energy-dependent ion yield for different negative ions is measured. For the MSA molecule and pure MSA clusters, EA leads to an H-abstraction yielding MeSO3-. It proceeds efficiently at low electron energies below 2 eV with a shoulder at 3-4 eV and a broad, almost 2 orders of magnitude weaker, peak around 8 eV. The hydrated (H2O)nMeSO3- ions with n ≤ 3 exhibit only a broad peak around 7 eV similar to EA of pure water clusters. Thus, for the small clusters, the electron attachment and hydrogen abstraction from water occur. On the other hand, the larger clusters with n > 4 display a peak below 2 eV, which quickly dominates the spectrum with increasing n. This peak is related to the formation of the H3O+·MeSO3- ion pair upon hydration and subsequent dipole-supported electron attachment followed by the hydronium neutralization and H3O• radical dissociation. The size-resolved experimental data indicate that the ionic dissociation of MSA starts to occur in the neutral MeSO3H(H2O)N clusters with about four water molecules.
Collapse
Affiliation(s)
- Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Tabea Huss
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jozef Lengyel
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
25
|
Yang S, Licina D, Weschler CJ, Wang N, Zannoni N, Li M, Vanhanen J, Langer S, Wargocki P, Williams J, Bekö G. Ozone Initiates Human-Derived Emission of Nanocluster Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14536-14545. [PMID: 34672572 DOI: 10.1021/acs.est.1c03379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocluster aerosols (NCAs, particles <3 nm) are important players in driving climate feedbacks and processes that impact human health. This study reports, for the first time, NCA formation when gas-phase ozone reacts with human surfaces. In an occupied climate-controlled chamber, we detected NCA only when ozone was present. NCA emissions were dependent on clothing coverage, occupant age, air temperature, and humidity. Ozone-initiated chemistry with human skin lipids (particularly their primary surface reaction products) is the key mechanism driving NCA emissions, as evidenced by positive correlations with squalene in human skin wipe samples and known gaseous products from ozonolysis of skin lipids. Oxidation by OH radicals, autoxidation reactions, and human-emitted NH3 may also play a role in NCA formation. Such chemical processes are anticipated to generate aerosols of the smallest size (1.18-1.55 nm), whereas larger clusters result from subsequent growth of the smaller aerosols. This study shows that whenever we encounter ozone indoors, where we spend most of our lives, NCAs will be produced in the air around us.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nijing Wang
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz 55128, Germany
| | - Nora Zannoni
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz 55128, Germany
| | - Mengze Li
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz 55128, Germany
| | - Joonas Vanhanen
- Airmodus Limited, Erik Palménin Aukio 1, Helsinki FI-00560, Finland
| | - Sarka Langer
- IVL Swedish Environmental Research Institute, Göteborg SE-400 14, Sweden
- Department of Architecture and Civil Engineering, Division of Building Services Engineering, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz 55128, Germany
- Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
26
|
Gonçalves DDS, Ghosh A, Chaudhuri P. Vibrational Spectra of Atmospherically Relevant Hydrogen-Bonded MSA···(H 2SO 4) n ( n = 1-3) Clusters. J Phys Chem A 2021; 125:8791-8802. [PMID: 34605656 DOI: 10.1021/acs.jpca.1c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanesulfonic acid (CH3SO3H), also known as MSA, has been found to be capable of forming a strong hydrogen-bonded interaction with sulfuric acid (H2SO4) under ambient conditions. The energetic stability of the MSA···H2SO4 clusters increases with decreasing temperature at higher altitudes in the troposphere, which is relevant in the context of atmospheric aerosol formation. We have performed, in the present work, a detailed and systematic quantum-chemical calculation with high-level density functional theory to characterize the hydrogen bond formation in the binary MSA···H2SO4, ternary MSA···(H2SO4)2, and quaternary MSA···(H2SO4)3 clusters. The five different conformations of MSA···(H2SO4)2 and six conformations of MSA···(H2SO4)3, considered in the present work for the spectroscopic analysis, have been taken from our previous work [J. Phys. Chem. A. 2020, 124, 11072-11085]. The hydrogen bonds were analyzed on the basis of infrared vibrational frequencies of different O-H stretching modes and quantum theory of atoms in molecules (QTAIM). A strong positive correlation has been observed between the red shift of the OH groups in MSA and H2SO4 and the corresponding O-H elongation as a result of hydrogen bond formation. Topological analysis employing QTAIM shows that most of the charge density and the Laplacian values at bond critical points (BCPs) of the hydrogen bonds of the MSA···(H2SO4)n (n = 1-3) complexes fall within the standard hydrogen-bond criteria. However, those outside these criteria fall in the category of a very strong hydrogen bond with a hydrogen bond length as low as 1.41 Å and an O-H bond elongation as high as 0.096 Å. In general, the charge densities of the BCPs located on hydrogen bonds increase as the hydrogen-bond lengths decrease. Proportionately, a larger number of hydrogen bonds in ternary MSA···(H2SO4)2 demonstrate a partial covalent character when compared with the quaternary clusters.
Collapse
Affiliation(s)
| | - Angsula Ghosh
- Department of Physics, Federal University of Amazonas, 69077-000 Manaus, Amazonas, Brazil
| | | |
Collapse
|
27
|
Abstract
Synergistic effects between different bases can greatly enhance atmospheric sulfuric acid (SA)-base cluster formation. However, only the synergy between two base components has previously been investigated. Here, we extend this concept to three bases by studying large atmospherically relevant (SA)3(base)3 clusters, with the bases ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA) and ethylenediamine (EDA). Using density functional theory—ωB97X-D/6-31++G(d,p)—we calculate the cluster structures and vibrational frequencies. The thermochemical parameters are calculated at 29,815 K and 1 atm, using the quasi-harmonic approximation. The binding energies of the clusters are calculated using high level DLPNO-CCSD(T0)/aug-cc-pVTZ. We find that the cluster stability in general depends on the basicity of the constituent bases, with some noteworthy additional guidelines: DMA enhances the cluster stability, TMA decreases the cluster stability and there is high synergy between DMA and EDA. Based on our calculations, we find it highly likely that three, or potentially more, different bases, are involved in the growth pathways of sulfuric acid-base clusters.
Collapse
|
28
|
Elm J. Clusteromics II: Methanesulfonic Acid-Base Cluster Formation. ACS OMEGA 2021; 6:17035-17044. [PMID: 34250361 PMCID: PMC8264942 DOI: 10.1021/acsomega.1c02115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 05/21/2023]
Abstract
The role of methanesulfonic acid (MSA) in atmospheric new particle formation remains highly uncertain. Using state-of-the-art computational methods, we study the electrically neutral (MSA)0-2(base)0-2 clusters, with base = ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). The cluster configurations are obtained using the ABCluster program and the number of initial cluster configurations is reduced based on PM7 calculations. Thermochemical parameters are calculated using the quasi-harmonic approximation based on the ωB97X-D/6-31++G(d,p) cluster structures and vibrational frequencies. The single point energies are calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ level of theory. We find that MSA shows a different interaction pattern with the bases compared to sulfuric acid and does not simply follow the basicity of the bases for these small clusters. In all cases, we find that the MSA-base clusters show very low cluster formation potential, indicating that electrically neutral clusters consisting solely of MSA as the clustering acid are most likely not capable of forming and growing under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry and
iClimate, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
29
|
Zhang S, Li D, Ge S, Liu S, Wu C, Wang Y, Chen Y, Lv S, Wang F, Meng J, Wang G. Rapid sulfate formation from synergetic oxidation of SO 2 by O 3 and NO 2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM 2.5 during haze events in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144897. [PMID: 33770894 DOI: 10.1016/j.scitotenv.2020.144897] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Extremely high levels of atmospheric sulfate aerosols have still frequently occurred in China especially in winter haze periods and often been underestimated by models due to some missing formation mechanisms. Here we investigated the heterogeneous reaction dynamics of SO2 oxidation by the abundantly co-existing O3 and NO2 in the urban atmosphere of China by using a laboratory smog chamber simulation technique. Our results showed that with an increase of NH3 concentrations from 0.05 ppm to 1.5 ppm, SO2 oxidation by O3 can be greatly promoted and lead to an exponential increase of diameter growth factor (GF) of particles in the chamber from 1.29 to 1.98 for NaCl seeds and from 1.20 to 1.60 for (NH4)2SO4 seeds, along with an increasing uptake coefficient (γ) of SO2 from 4.47 × 10-5 to 1.52 × 10-4 on NaCl seeds and from 2.32 × 10-5 to 5.74 × 10-5 on (NH4)2SO4 seeds, respectively. The heterogeneous production of sulfate from oxidation of SO2 under NH3-rich conditions by O3 and NO2 mixture in the chamber was 2.0-3.5 times the sum of sulfate from SO2 oxidations by O3 and NO2, suggesting a strongly synergetic effect of the mixed oxidants on the heterogeneous oxidation of SO2, which can cause rapid formation of (NH4)2SO4 and NH4NO3 and is responsible for the explosive growth of PM2.5 in the winter haze period of China. Our chamber results further showed that such synergetic process is only efficient under NH3-rich conditions, clearly indicating that the combined controls on O3, NOx and NH3 are necessary for further mitigating the PM2.5 pollution in China.
Collapse
Affiliation(s)
- Si Zhang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Dapeng Li
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Shuangshuang Ge
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Shijie Liu
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Can Wu
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Yiqian Wang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Yubao Chen
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Shaojun Lv
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Fanglin Wang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Gehui Wang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China.
| |
Collapse
|
30
|
Gerber RB. My Trajectory in Molecular Reaction Dynamics and Spectroscopy. Annu Rev Phys Chem 2021; 72:1-34. [PMID: 33276702 DOI: 10.1146/annurev-physchem-090519-124238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the story of a career in theoretical chemistry during a time of dramatic changes in the field due to phenomenal growth in the availability of computational power. It is likewise the story of the highly gifted graduate students and postdoctoral fellows that I was fortunate to mentor throughout my career. It includes reminiscences of the great mentors that I had and of the exciting collaborations with both experimentalists and theorists on which I built much of my research. This is an account of the developments of exciting scientific disciplines in which I was involved: vibrational spectroscopy, molecular reaction mechanisms and dynamics, e.g., in atmospheric chemistry, and the prediction of new, exotic molecules, in particular noble gas molecules. From my very first project to my current work, my career in science has brought me the excitement and fascination of research. What a wonderful pursuit!
Collapse
Affiliation(s)
- Robert Benny Gerber
- The Fritz Haber Research Center and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; .,Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
31
|
Rosati B, Christiansen S, Wollesen de Jonge R, Roldin P, Jensen MM, Wang K, Moosakutty SP, Thomsen D, Salomonsen C, Hyttinen N, Elm J, Feilberg A, Glasius M, Bilde M. New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS EARTH & SPACE CHEMISTRY 2021; 5:801-811. [PMID: 33889792 PMCID: PMC8054244 DOI: 10.1021/acsearthspacechem.0c00333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.
Collapse
Affiliation(s)
- Bernadette Rosati
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna AT-1090, Austria
| | - Sigurd Christiansen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | | | - Pontus Roldin
- Division
of Nuclear Physics, Lund University, P.O. Box 118, Lund SE-221
00, Sweden
| | - Mads Mørk Jensen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Kai Wang
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Shamjad P. Moosakutty
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Clean Combustion
Research Center, King Abdullah University
of Science and Technology, Thuwal KSA-23955, Saudi Arabia
| | - Ditte Thomsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Camilla Salomonsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Noora Hyttinen
- Nano
and Molecular Systems Research Unit, University
of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
- Department
of Applied Physics, University of Eastern
Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Anders Feilberg
- Department
of Biological and Chemical Engineering, Aarhus University, Finlandsgade
12, Aarhus N DK-8200, Denmark
| | - Marianne Glasius
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Merete Bilde
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
32
|
Elm J. Clusteromics I: Principles, Protocols, and Applications to Sulfuric Acid-Base Cluster Formation. ACS OMEGA 2021; 6:7804-7814. [PMID: 33778292 PMCID: PMC7992168 DOI: 10.1021/acsomega.1c00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 05/13/2023]
Abstract
We recently coined the term clusteromics as a holistic approach for obtaining insight into the chemical complexity of atmospheric molecular cluster formation and at the same time providing the foundation for thermochemical databases that can be utilized for developing machine learning models. Here, we present the first paper in the series that applies state-of-the-art computational methods to study multicomponent (SA)0-2(base)0-2 clusters, with SA = sulfuric acid and base = [ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA)] with all combinations of the five bases. The initial cluster configurations are obtained using the ABCluster program and the number of relevant configurations are reduced based on PM7 and ωB97X-D/6-31++G(d,p) calculations. Thermochemical parameters are calculated based on the ωB97X-D/6-31++G(d,p) cluster structures and vibrational frequencies using the quasi-harmonic approximation. The single-point energies are refined with a high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculation. Using the calculated thermochemical data, we perform kinetics simulations to evaluate the potential of these small (SA)0-2(base)0-2 clusters to grow into larger cluster sizes. In all cases we find that having more than one type of base molecule present in the cluster will increase the potential for forming larger clusters primarily due to the increased available vapor concentration.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry and
iClimate, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
de Souza Gonçalves D, Chaudhuri P. Atmospherically Relevant Hydrogen-Bonded Interactions between Methanesulfonic Acid and H 2SO 4 Clusters: A Computational Study. J Phys Chem A 2020; 124:11072-11085. [PMID: 33337158 DOI: 10.1021/acs.jpca.0c09087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A detailed and systematic quantum-chemical calculation has been performed with high-level density functional theory (DFT) to analyze the electrostatic interaction of methanesulfonic acid (CH3SO3H), also known as MSA, with pre-formed clusters of sulfuric acid (H2SO4) molecules in ambient conditions. Both MSA and H2SO4 are considered as atmospheric molecules that might play active roles in aerosol formation. The interactions between MSA and H2SO4 clusters lead to the formation of MSA···(H2SO4)n (n = 2, 3) complexes stabilized by the formation of different types of intermolecular hydrogen bond networks. Analyses of cluster binding energies and free energy changes associated with their formation indicate that MSA could bring additional stability into the atmospheric molecular clusters responsible for aerosol formation. Variations of Gibbs free energy with temperature and pressure have been analyzed. The lower temperatures and pressures at the higher altitudes of the troposphere are found to play in favor of higher stability of the MSA···(H2SO4)n clusters. Effects of hydrogen bond formation on dipole moment, mean polarizability, and anisotropy of polarizability of the clusters have been analyzed. Rayleigh scattering intensities are found to increase many-fold when light interacts with the MSA···(H2SO4)n clusters.
Collapse
|
34
|
Shen J, Elm J, Xie HB, Chen J, Niu J, Vehkamäki H. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13498-13508. [PMID: 33091300 DOI: 10.1021/acs.est.0c05358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atmospheric amines can enhance methanesulfonic acid (MSA)-driven new particle formation (NPF), but the mechanism is fundamentally different compared to that of the extensively studied sulfuric acid (SA)-driven process. Generally, the enhancing potentials of amines in SA-driven NPF follow the basicity, while this is not the case for MSA-driven NPF, where structural effects dominate, making MSA-driven NPF more prominent for methylamine (MA) compared to dimethylamine (DMA). Therefore, probing structural factors determining the enhancing potentials of amines on MSA-driven NPF is key to fully understanding the contribution of MSA to NPF. Here, we performed a comparative study on DMA and MA enhancing MSA-driven NPF by examining cluster formation using computational methods. The results indicate that DMA-MSA clusters are more stable than the corresponding MA-MSA clusters for cluster sizes up to (DMA)2(MSA)2, indicating that the basicity of amines dominates the initial cluster formation. The methyl groups of DMA were found to present significant steric hindrance beyond the (DMA)2(MSA)2 cluster and this adds to the lower hydrogen bonding capacity of DMA, making the cluster growth less favorable compared to MA. This study implies that several amines could synergistically enhance MSA-driven NPF by maximizing the advantage of different amines in different amine-MSA cluster growth stages.
Collapse
Affiliation(s)
- Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64 Gustaf Hällströmin katu 2a, Helsinki FI-00014, Finland
| |
Collapse
|
35
|
Perraud V, Li X, Smith JN, Finlayson-Pitts BJ. Novel ionization reagent for the measurement of gas-phase ammonia and amines using a stand-alone atmospheric pressure gas chromatography (APGC) source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8561. [PMID: 31429122 DOI: 10.1002/rcm.8561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence of N-methyl-2-pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas-phase amines using chemical ionization mass spectrometry. METHODS Gas-phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas-phase N-methyl-2-pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. RESULTS This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+ cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. CONCLUSIONS The use of NMP as an ionizing agent with stand-alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xiaoxiao Li
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - James N Smith
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | | |
Collapse
|
36
|
XU J, HUANG MQ. Influence of Inorganic Gases on Formation and Chemical Composition of Monoaromatic Hydrocarbons Secondary Organic Aerosol. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60008-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Chen D, Li D, Wang C, Luo Y, Liu F, Wang W. Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study. CHEMOSPHERE 2020; 244:125538. [PMID: 31835047 DOI: 10.1016/j.chemosphere.2019.125538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 05/20/2023]
Abstract
The effect of hydration on the formation mechanism of clusters consisting of methanesulfonic acid (MSA) and methylamine (MA) is investigated by quantum chemistry (Density Functional Theory, DFT) and kinetics simulation (Atmospheric Chemical Dynamic Code, ACDC) methods. The results showed that the process of hydration is favorable from the thermodynamic point of view, and the presence of water molecules can promote proton transfer significantly. Although MA has a significant influence on the formation rate of MSA-based clusters at the parts per trillion (ppt) levels, the effective nucleation of MSA-MA anhydrous clusters hardly seems to occur under common typical atmospheric conditions. The high concentrations of precursors ([MSA] > 6 × 107 molecules·cm-3 and [MA] > 1 ppt or [MSA] > 1 × 106 molecules·cm-3 and [MA] > 100 ppt) is necessary for the effective nucleation of the MSA-MA system. The formation rate of the MSA-MA system is enhanced significantly by hydration. The formation rate increases with the relative humidity (RH) and reached up to a factor of 2700 at RH = 40%. The formation mechanism of the hydrous system is different from the anhydrous system. The formation of (MSA)2 and (MSA)(MA) dimers is the rate-determining step of the anhydrous and hydrous systems, respectively. In addition, the growth pathway of clusters was complicated by low temperature and simplified by high humidity, respectively. In general, although humidity is a very favorable factor for the formation of the MSA-MA system, the involvement of other species (such as sulfuric acid) may be more effective to promote the nucleation of the MSA-MA system under typical atmospheric environment.
Collapse
Affiliation(s)
- Dongping Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Danfeng Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Luo
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
38
|
Luo H, Li G, Chen J, Lin Q, Ma S, Wang Y, An T. Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China. ENVIRONMENTAL RESEARCH 2020; 183:109141. [PMID: 31999999 DOI: 10.1016/j.envres.2020.109141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ozone is currently one of the most important air pollutants. Volatile organic compounds (VOCs) can easily react with atmospheric radicals to form ozone. In-field measurement of VOCs may help in estimating the local VOC photochemical pollution level. METHOD This study examined the spatial and temporal distribution characteristics of VOCs during winter at three typical sites of varying classification in China; industrial (Guangzhou Economic and Technological Development District (GETDD)), urban (Guangzhou higher education mega center (HEMC)), and rural (Pingyuan county (PYC)), using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). RESULTS The concentrations of total VOCs (TVOCs) at the GETDD, HEMC and PYC sites were 352.5, 129.2 and 75.1 ppb, respectively. The dominant category of VOCs is nitrogen-containing VOCs (NVOCs, accounting for 43.3% of TVOCs) at GETDD, of which C4H11N (m/z+ = 74.10, butyl amine) was the predominant chemical species (80.5%). In contrast, oxygenated VOCs (OVOCs) were the most abundant at HEMC and PYC, accounting for 60.2% and 64.1% of the total VOCs, respectively; here, CH4O (m/z+ = 33.026, methanol) was the major compound, accounting for 40.5% of the VOCs at HEMC and 50.9% at PYC. The ratios of toluene to benzene (T/B) were calculated for different measured sites, as the ratios of T/B can reveal source resolution of aromatic VOCs. The average contributions to total ozone formation potentials (OFP) of the total measured VOCs in each area were 604.9, 315.9 and 111.7 μg/m3 at GETDD, HEMC and PYC, respectively; the highest OFP contributors of the identified VOCs were aliphatic hydrocarbons (AlHs) at GETDD, aromatic hydrocarbons (AHs) at HEMC, and OVOCs at PYC. CONCLUSIONS OFP assessment indicated that the photochemical pollution caused by VOCs at GETDD was serious, and was also significant in the HEMC region. The dominant VOC OFP groups (AlHs and AHs) should be prioritized for control, in order to help reduce these effects.
Collapse
Affiliation(s)
- Hao Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Perraud V, Xu J, Gerber RB, Finlayson-Pitts BJ. Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:305-328. [PMID: 31904037 DOI: 10.1039/c9em00431a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While new particle formation events have been observed worldwide, our fundamental understanding of the precursors remains uncertain. It has been previously shown that small alkylamines and ammonia (NH3) are key actors in sub-3 nm particle formation through reactions with acids such as sulfuric acid (H2SO4) and methanesulfonic acid (CH3S(O)(O)OH, MSA), and that water also plays a role. Because NH3 and amines co-exist in air, we carried out combined experimental and theoretical studies examining the influence of the addition of NH3 on particle formation from the reactions of MSA with methylamine (MA) and trimethylamine (TMA). Experiments were performed in a 1 m flow reactor at 1 atm and 296 K. Measurements using an ultrafine condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS) show that new particle formation was systematically enhanced upon simultaneous addition of NH3 to the MSA + amine binary system, with the magnitude depending on the amine investigated. For the MSA + TMA reaction system, the addition of NH3 at ppb concentrations produced a much greater effect (i.e. order of magnitude more particles) than the addition of ∼12 000 ppm water (corresponding to ∼45-50% relative humidity). The effect of NH3 on the MSA + MA system, which is already very efficient in forming particles on its own, was present but modest. Calculations of energies, partial charges and structures of small cluster models of the multi-component particles likewise suggest synergistic effects due to NH3 in the presence of MSA and amine. The local minimum structures and the interactions involved suggest mechanisms for this effect.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Jing Xu
- Department of Optical Engineering, Zhejiang A&F University, Lin'an 311300, Zhejiang, China
| | - R Benny Gerber
- Department of Chemistry, University of California, Irvine, CA 92697, USA. and Institute of Chemistry, The Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
40
|
Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nat Protoc 2020; 15:1013-1040. [DOI: 10.1038/s41596-019-0274-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/27/2019] [Indexed: 11/08/2022]
|
41
|
Chen D, Wang W, Li D, Wang W. Atmospheric implication of synergy in methanesulfonic acid–base trimers: a theoretical investigation. RSC Adv 2020; 10:5173-5182. [PMID: 35498315 PMCID: PMC9049051 DOI: 10.1039/c9ra08760e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022] Open
Abstract
Synergy between molecules is ubiquitous in atmospheric clusters and significantly affects new particle formation (NPF). Herein, the effects of the synergy between base molecules on the stability and evaporation of MSA–X–Y (MSA = methanesulfonic acid; X, Y = ammonia (A), methylamine (M), or dimethylamine (D)) trimers were investigated via density functional theory (DFT) and the atmospheric clusters dynamic code (ACDC) method. The results show that proton transfer from MSA to X is exothermal and barrierless due to the synergy between X and Y molecules in MSA–X–Y trimers compared with MSA-X dimers. Cyclic hydrogen bonds are a typical characteristic of the stable trimers. Topological analysis using atoms in molecules (AIM) theory indicates that the electron density (ρ) and Laplacian of the electron density (∇2ρ) at the bond critical points (BCPs) in the trimers exceed the standard range of hydrogen bonds. The affinity for attaching a Y molecule to the MSA–X dimers and the substitution of Y1 (Y = A and MA) by Y2 (Y2 = MA and DMA) in the MSA–X–Y trimers are thermodynamically spontaneous. In addition, the cyclic stabilization energy of the MSA–X–Y trimers increased as the alkalinities of X and Y increased. The total evaporation rate of the trimers decreased as the alkalinities of X and Y increased. Low temperature and high pressure significantly facilitate the formation of trimers. It is further confirmed that synergy plays an important role in atmospheric NPF events. The effects of synergy of between X and Y on the stability of MSA–X–Y trimers were investigated via quantum chemical and kinetics simulation method.![]()
Collapse
Affiliation(s)
- Dongping Chen
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Weina Wang
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Danfeng Li
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| |
Collapse
|
42
|
Shen J, Xie HB, Elm J, Ma F, Chen J, Vehkamäki H. Methanesulfonic Acid-driven New Particle Formation Enhanced by Monoethanolamine: A Computational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14387-14397. [PMID: 31710478 DOI: 10.1021/acs.est.9b05306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amines are recognized as significant enhancing species on methanesulfonic acid (MSA)-driven new particle formation (NPF). Monoethanolamine (MEA) has been detected in the atmosphere, and its concentration could be significantly increased once MEA-based postcombustion CO2 capture technology is widely implemented. Here, we evaluated the enhancing potential of MEA on MSA-driven NPF by examining the formation of MEA-MSA clusters using a combination of quantum chemical calculations and kinetics modeling. The results indicate that the -OH group of MEA can form at least one hydrogen bond with MSA or MEA in all MEA-containing clusters. The enhancing potential of MEA is higher than that of the strongest enhancing agent known so far, methylamine (MA), for MSA-driven NPF. Such high enhancing potential can be ascribed to not only the higher gas-phase basicity but also the role of the additional -OH group of MEA in increasing the binding free energy by forming additional hydrogen bonds. This clarifies the importance of hydrogen-bonding capacity from the nonamino group of amines in enhancing MSA-driven NPF. The main growth pathway for MEA-MSA clusters proceeds via the initial formation of the (MEA)1(MSA)1 cluster, followed by alternately adding one MSA and one MEA molecule, differing from the case of MA-MSA clusters.
Collapse
Affiliation(s)
- Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
43
|
Ma F, Xie HB, Elm J, Shen J, Chen J, Vehkamäki H. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8785-8795. [PMID: 31287292 DOI: 10.1021/acs.est.9b02117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric amines and an alternative solvent to the widely used monoethanolamine in post-combustion CO2 capture. Participating in H2SO4 (sulfuric acid, SA)-based new particle formation (NPF) could be an important removal pathway for PZ. Here, we employed quantum chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ on SA-based NPF by examining the formation of PZ-SA clusters. The results indicate that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that of the chainlike diamine putrescine and greater than that of dimethylamine, which is one of the strongest enhancing agents confirmed by ambient observations and experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF and oxidations is 0.5-0.97 at 278.15 K. As a result, we conclude that participation in the NPF pathway could significantly alter the environmental impact of PZ compared to only considering oxidation pathways.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK- 8000 Aarhus C , Denmark
| | - Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
44
|
Horváth RA, Fábián B, Szőri M, Jedlovszky P. Investigation of the liquid-vapour interface of aqueous methylamine solutions by computer simulation methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Zhao F, Feng YJ, Liu YR, Jiang S, Huang T, Wang ZH, Xu CX, Huang W. Enhancement of Atmospheric Nucleation by Highly Oxygenated Organic Molecules: A Density Functional Theory Study. J Phys Chem A 2019; 123:5367-5377. [PMID: 31199633 DOI: 10.1021/acs.jpca.9b03142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New particle formation (NPF) by gas-particle conversion is the main source of atmospheric aerosols. Highly oxygenated organic molecules (HOMs) and sulfuric acid (SA) are important NPF participants. 2-Methylglyceric acid (MGA), a kind of HOMs, is a tracer of isoprene-derived secondary organic aerosols. The nucleation mechanisms of MGA with SA were studied using density functional theory and atmospheric cluster dynamics simulation in this study, along with that of MGA with methanesulfonic acid (MSA) as a comparison. Our theoretical works indicate that the (MGA)(SA) and (MGA)(MSA) clusters are the most stable ones in the (MGA) i(SA) j ( i = 1-2, j = 1-2) and (MGA) i(MSA) j ( i = 1-2, j = 1-2) clusters, respectively. Both the formation rates of (MGA)(SA) and (MGA)(MSA) clusters are quite large and could have significant contributions to NPF. The results imply that the homomolecular nucleation of MGA is unlikely to occur in the atmosphere, and MGA and SA can effectively contribute to heteromolecular nucleation mainly in the form of heterodimers. MSA exhibits properties similar to SA in its ability to form clusters with MGA but is slightly weaker than SA.
Collapse
Affiliation(s)
- Feng Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China.,School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ya-Juan Feng
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yi-Rong Liu
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shuai Jiang
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Zi-Hang Wang
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Cai-Xin Xu
- School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Hefei , Anhui 230031 , China.,School of Information Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China.,Center for Excellent in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| |
Collapse
|
46
|
Finlayson‐Pitts BJ. Multiphase chemistry in the troposphere: It all starts … and ends … with gases. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Kumar M, Li H, Zhang X, Zeng XC, Francisco JS. Nitric Acid–Amine Chemistry in the Gas Phase and at the Air–Water Interface. J Am Chem Soc 2018; 140:6456-6466. [DOI: 10.1021/jacs.8b03300] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
48
|
Sebastianelli P, Cometto PM, Pereyra RG. Systematic Characterization of Gas Phase Binary Pre-Nucleation Complexes Containing H2SO4 + X, [ X = NH3, (CH3)NH2, (CH3)2NH, (CH3)3N, H2O, (CH3)OH, (CH3)2O, HF, CH3F, PH3, (CH3)PH2, (CH3)2PH, (CH3)3P, H2S, (CH3)SH, (CH3)2S, HCl, (CH3)Cl)]. A Computational Study. J Phys Chem A 2018; 122:2116-2128. [DOI: 10.1021/acs.jpca.7b10205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Sebastianelli
- Fa.M.A.F., Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- FCEyN, Universidad Nacional de La Pampa, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
| | - Pablo M. Cometto
- FCEyN, Universidad Nacional de La Pampa, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
- Atmospheric Chemical Physics Laboratory, INCITAP-CONICET, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
| | - Rodolfo G. Pereyra
- Fa.M.A.F., Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- IFEG-CONICET, Medina Allende s/n, Ciudad
Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
49
|
Xu J, Perraud V, Finlayson-Pitts BJ, Gerber RB. Uptake of water by an acid–base nanoparticle: theoretical and experimental studies of the methanesulfonic acid–methylamine system. Phys Chem Chem Phys 2018; 20:22249-22259. [DOI: 10.1039/c8cp03634a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uptake of water by nanoparticles composed by methanesulfonic acid and methylamine using a combination of theoretical calculations and laboratory experiments.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry
- University of California
- Irvine
- USA
| | | | | | - R. Benny Gerber
- Department of Chemistry
- University of California
- Irvine
- USA
- Institute of Chemistry
| |
Collapse
|
50
|
Miao SK, Jiang S, Peng XQ, Liu YR, Feng YJ, Wang YB, Zhao F, Huang T, Huang W. Hydration of the methanesulfonate–ammonia/amine complex and its atmospheric implications. RSC Adv 2018; 8:3250-3263. [PMID: 35541186 PMCID: PMC9077587 DOI: 10.1039/c7ra12064h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/28/2017] [Indexed: 11/30/2022] Open
Abstract
Methanesulfonate (MSA−), found in substantial concentrations in the atmosphere, is expected to enhance aerosol nucleation and the growth of nanoparticles, but the details of methanesulfonate clusters are poorly understood. In this study, MSA− was chosen along with ammonia (NH3) or three common amines and water (H2O) to discuss the roles of ternary homogeneous nucleation and ion-induced nucleation in aerosol formation. We studied the structural characteristics and thermodynamics of the clusters using density functional theory at the PW91PW91/6-311++G(3df,3pd) level. The analysis of noncovalent interactions predicts that the amines can form more stable clusters with MSA− than NH3, in agreement with the results from structures and thermodynamics; however, the enhancement in stability for amines is not large enough to overcome the difference in the concentrations of NH3 and amines under typical atmospheric conditions. In addition, the favorable free energies of formation for the (MSA−)(NH3/amines)(H2O)n (n = 0–3) clusters at 298.15 K show that MSA− could contribute to the aerosol nucleation process with binding NH3/amines and H2O up to n = 3. There are strong temperature and humidity dependences for the formation of complexes; higher humidity and temperature promote the formation of larger hydrates. Finally, for the (MSA−)(NH3/amines)(H2O)n clusters, the evaporation rates were determined to further investigate the atmospheric implications. Methanesulfonate (MSA−), found in substantial concentrations in the atmosphere, is expected to enhance aerosol nucleation and the growth of nanoparticles, but the details of methanesulfonate clusters are poorly understood.![]()
Collapse
Affiliation(s)
- Shou-Kui Miao
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Shuai Jiang
- School of Information Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Xiu-Qiu Peng
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Yi-Rong Liu
- School of Information Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Ya-Juan Feng
- School of Information Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Yan-Bing Wang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Feng Zhao
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|