1
|
Gwak N, Shin S, Yoo H, Seo GW, Kim S, Jang H, Lee M, Park TH, Kim BJ, Lim J, Kim SY, Kim S, Hwang GW, Oh N. Highly Luminescent Shell-Less Indium Phosphide Quantum Dots Enabled by Atomistically Tailored Surface States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404480. [PMID: 39016602 DOI: 10.1002/adma.202404480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Contrary to the prevailing notion that shell structures arise from the intricate chemistry and surface defects of InP quantum dots (QDs), an innovative strategy that remarkably enhances the luminescence efficiency of core-only InP QDs to over 90% is introduced. This paradigm shift is achieved through the concurrent utilization of group 2 and 3 metal-derived ligands, providing an effective remedy for surface defects and facilitating charge recombination. Specifically, a combination of Zn carboxylate and Ga chloride is employed to address the undercoordination issues associated with In and P atoms, leading to the alleviation of in-gap trap states. The intricate interplay and proportional ratio between Ga- and Zn-containing ligands play pivotal roles in attaining record-high luminescence efficiency in core-only InP QDs, as successfully demonstrated across various sizes and color emissions. Moreover, the fabrication of electroluminescent devices relying solely on InP core emission opens a new direction in optoelectronics, demonstrating the potential of the approach not only in optoelectronic applications but also in catalysis or energy conversion by charge transfer.
Collapse
Affiliation(s)
- Namyoung Gwak
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seungki Shin
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyeri Yoo
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gyeong Won Seo
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seongchan Kim
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyunwoo Jang
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minwoo Lee
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tae Hwan Park
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byong Jae Kim
- Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Future Energy Engineering (DFEE), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jaehoon Lim
- Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Future Energy Engineering (DFEE), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sangtae Kim
- Department of Nuclear Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Gyu Weon Hwang
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Stam M, Almeida G, Ubbink RF, van der Poll LM, Vogel YB, Chen H, Giordano L, Schiettecatte P, Hens Z, Houtepen AJ. Near-Unity Photoluminescence Quantum Yield of Core-Only InP Quantum Dots via a Simple Postsynthetic InF 3 Treatment. ACS NANO 2024; 18:14685-14695. [PMID: 38773944 PMCID: PMC11155241 DOI: 10.1021/acsnano.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Indium phosphide (InP) quantum dots (QDs) are considered the most promising alternative for Cd and Pb-based QDs for lighting and display applications. However, while core-only QDs of CdSe and CdTe have been prepared with near-unity photoluminescence quantum yield (PLQY), this is not yet achieved for InP QDs. Treatments with HF have been used to boost the PLQY of InP core-only QDs up to 85%. However, HF etches the QDs, causing loss of material and broadening of the optical features. Here, we present a simple postsynthesis HF-free treatment that is based on passivating the surface of the InP QDs with InF3. For optimized conditions, this results in a PLQY as high as 93% and nearly monoexponential photoluminescence decay. Etching of the particle surface is entirely avoided if the treatment is performed under stringent acid-free conditions. We show that this treatment is applicable to InP QDs with various sizes and InP QDs obtained via different synthesis routes. The optical properties of the resulting core-only InP QDs are on par with InP/ZnSe/ZnS core-shell QDs, with significantly higher absorption coefficients in the blue, and with potential for faster charge transport. These are important advantages when considering InP QDs for use in micro-LEDs or photodetectors.
Collapse
Affiliation(s)
- Maarten Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Guilherme Almeida
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Reinout F. Ubbink
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Lara M. van der Poll
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Yan B. Vogel
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Hua Chen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Luca Giordano
- Physics
and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Pieter Schiettecatte
- Physics
and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
3
|
Segura Lecina O, Newton MA, Green PB, Albertini PP, Leemans J, Marshall KP, Stoian D, Loiudice A, Buonsanti R. Surface Chemistry Dictates the Enhancement of Luminescence and Stability of InP QDs upon c-ALD ZnO Hybrid Shell Growth. JACS AU 2023; 3:3066-3075. [PMID: 38034959 PMCID: PMC10685429 DOI: 10.1021/jacsau.3c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Indium phosphide quantum dots (InP QDs) are a promising example of Restriction of Hazardous Substances directive (RoHS)-compliant light-emitting materials. However, they suffer from low quantum yield and instability upon processing under ambient conditions. Colloidal atomic layer deposition (c-ALD) has been recently proposed as a methodology to grow hybrid materials including QDs and organic/inorganic oxide shells, which possess new functions compared to those of the as-synthesized QDs. Here, we demonstrate that ZnO shells can be grown on InP QDs obtained via two synthetic routes, which are the classical sylilphosphine-based route and the more recently developed aminophosphine-based one. We find that the ZnO shell increases the photoluminescence emission only in the case of aminophosphine-based InP QDs. We rationalize this result with the different chemistry involved in the nucleation step of the shell and the resulting surface defect passivation. Furthermore, we demonstrate that the ZnO shell prevents degradation of the InP QD suspension under ambient conditions by avoiding moisture-induced displacement of the ligands from their surface. Overall, this study proposes c-ALD as a methodology for the synthesis of alternative InP-based core@shell QDs and provides insight into the surface chemistry that results in both enhanced photoluminescence and stability required for application in optoelectronic devices and bioimaging.
Collapse
Affiliation(s)
- Ona Segura Lecina
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Mark A. Newton
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Philippe B. Green
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Petru P. Albertini
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jari Leemans
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Kenneth P. Marshall
- The
Swiss-Norwegian Beamlines, European Synchrotron
Radiation Facility (ESRF), 38000 Grenoble, France
| | - Dragos Stoian
- The
Swiss-Norwegian Beamlines, European Synchrotron
Radiation Facility (ESRF), 38000 Grenoble, France
| | - Anna Loiudice
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
4
|
Paul S, Nandi S, Das M, Bora A, Hossain MT, Ghosh S, Giri PK. Two-dimensional bismuth oxyselenide quantum dots as nanosensors for selective metal ion detection over a wide dynamic range: sensing mechanism and selectivity. NANOSCALE 2023; 15:12612-12625. [PMID: 37462457 DOI: 10.1039/d3nr02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bismuth oxyselenide (Bi2O2Se) nanosheets, a new 2D non-van der Waals nanomaterial having unique semiconducting properties, could be favorable for various sensing applications. In the present report, a top-down chemical approach was adopted to synthesize ultrathin Bi2O2Se quantum dots (QDs) in an appropriate solution. The as-prepared 2D Bi2O2Se QDs with an average size of ∼3 nm, exhibiting strong visible fluorescence, were utilized for heavy-metal ion detection with high selectivity. The QDs show a high optical band gap and a reasonably high fluorescence quantum yield (∼4%) in the green region without any functionalization. A series of heavy metal ions were detected using these QDs. The as-prepared QDs exhibit selective detection of Fe3+ over a wide dynamic range with a high quenching ratio and a low detection limit (<0.5 μM). The mechanism of visible fluorescence and Fe3+ ion-induced quenching was investigated in detail based on a model involving adsorption and charge transfer. Density functional theory (DFT) first principles calculations show that fluorescence quenching occurred selectively due to the efficient trapping of electrons in the bandgap states created by the Fe atoms. This work presents a sustainable and scalable method to synthesize 2D Bi2O2Se QDs for heavy metal ion sensing over a wide dynamic range and these 2D QDs could find potential uses in gas sensors, biosensors and optoelectronics.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Mandira Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Abhilasha Bora
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhradip Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
5
|
Manoj B, Rajan D, Thomas KG. InP quantum dots: Stoichiometry regulates carrier dynamics. J Chem Phys 2023; 158:2887769. [PMID: 37129142 DOI: 10.1063/5.0146484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.
Collapse
Affiliation(s)
- B Manoj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Devika Rajan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
6
|
Asor L, Liu J, Xiang S, Tessler N, Frenkel AI, Banin U. Zn-Doped P-Type InAs Nanocrystal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208332. [PMID: 36398421 DOI: 10.1002/adma.202208332] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Doped heavy metal-free III-V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p-n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short-wave IR detection and emission applications, manifest heavy n-type character poising a challenge for their transition to p-type behavior. The p-type doping of InAs NCs is presented with Zn - enabling control over the charge carrier type in InAs QDs field effect transistors. The post-synthesis doping reaction mechanism is studied for Zn precursors with varying reactivity. Successful p-type doping is achieved by the more reactive precursor, diethylzinc. Substitutional doping by Zn2+ replacing In3+ is established by X-ray absorption spectroscopy analysis. Furthermore, enhanced near infrared photoluminescence is observed due to surface passivation by Zn as indicated from elemental mapping utilizing high-resolution electron microscopy corroborated by X-ray photoelectron spectroscopy study. The demonstrated ability to control the carrier type, along with the improved emission characteristics, paves the way towards fabrication of optoelectronic devices active in the short-wave infrared region utilizing heavy-metal free nanocrystal building blocks.
Collapse
Affiliation(s)
- Lior Asor
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jing Liu
- Department of Physics and Astronomy, Manhattan College, Riverdale, New York, 10471, USA
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Nir Tessler
- The Zisapel Nano-Electronics Center, Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Uri Banin
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
7
|
Du R, Li X, Li Y, Li Y, Hou T, Li Y, Qiao C, Zhang J. Cation Exchange Synthesis of Aliovalent Doped InP QDs and Their ZnSe xS 1-x Shell Coating for Enhanced Fluorescence Properties. J Phys Chem Lett 2023; 14:670-676. [PMID: 36637473 DOI: 10.1021/acs.jpclett.2c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
III-V quantum dots (QDs), in particular InP QDs, have emerged as high-performance and environmentally friendly candidates to replace cadmium based QDs. InP QDs exhibit properties of direct band gap structure, low toxicity, and high mobility, which make them suitable for high-performance optoelectronic applications. However, it is still challenging to precisely regulate the components and crystal structure of InP QDs, especially in the engineered stable aliovalent doping. In this work, we developed our original reverse cation exchange strategy to achieve Cu+ doped InP (InP:Cu) QDs at lower temperature. A ZnSexS1-x shell was then homogeneously grown on the InP:Cu QDs as the passivation shell. The as-prepared InP:Cu@ZnSexS1-x core-shell QDs exhibited better fluorescence properties with a photoluminescence quantum yield (PLQY) of 56.47%. Due to the existence of multiple luminous centers in the QDs, variable temperature-dependent fluorescence characteristics have been studied. The high photoluminescence characteristics in the near-infrared region indicate their potential applications in optoelectronic devices and biological fields.
Collapse
Affiliation(s)
- Ruizhi Du
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - You Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxi Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tailei Hou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuemei Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Qiao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity. Nat Commun 2023; 14:43. [PMID: 36596807 PMCID: PMC9810615 DOI: 10.1038/s41467-022-35731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Heteroepitaxy on colloidal semiconductor nanocrystals is an essential strategy for manipulating their optoelectronic functionalities. However, their practical synthesis typically leads to scattered and unexpected outcomes due to the intervention of multiple reaction pathways associated with complicated side products of reactants. Here, the heteroepitaxy mechanism of zinc chalcogenide initiated on indium phosphide (InP) colloidal nanocrystals is elucidated using the precursors, zinc carboxylate and trialkylphosphine selenide. The high magnetic receptivity of 77Se and the characteristic longitudinal optical phonon mode of ZnSe allowed for monitoring the sequence of epilayer formation at the molecular level. The investigation revealed the sterically hindered acyloxytrialkylphosphonium and diacyloxytrialkylphosphorane to be main intermediates in the surface reaction, which retards the metal ion adsorption by a large steric hindrance. The transformation of adsorbates to the crystalline epilayer was disturbed by surface oxides. Raman scattering disclosed the pathway of secondary surface oxidation triggered by carboxylate ligands migrated from zinc carboxylate. The surface-initiated heteroepitaxy protocol is proposed to fabricate core/shell heterostructured nanocrystals with atomic-scale uniformity of epilayers. Despite the large lattice mismatch of ZnS to InP, we realised a uniform and interface defect-free ZnS epilayer (~0.3 nm thickness) on InP nanocrystals, as evidenced by a high photoluminescence quantum yield of 97.3%.
Collapse
|
9
|
Bian Y, Chen F, Shen H, Du Z. Green InP-based quantum dots and electroluminescent light-emitting diodes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:414005. [PMID: 35905734 DOI: 10.1088/1361-648x/ac858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
With the advancement toward commercialization of quantum dots (QDs) in the field of lighting and display, improving the performance of Cd-free QDs and related quantum dot light-emitting diodes (QLEDs) becomes necessary. Thus far, the performance of ZnTeSe- and InP-based blue and red QLEDs has been significantly improved by optimizing QDs emitting materials and device structure. However, as one of the three primary color sources, the performance of green InP-based QLEDs still lags behind that of blue and red Cd-free QLEDs. Herein, this review discusses the latest progress of green InP-based emitting materials and corresponding QLEDs, covering the engineering of InP core, the optimization of nanostructure and surface ligands of core/shell QDs, as well as the majorization of device architecture and carrier transport materials. Finally, some challenges and possible development directions of green InP-based QDs and related QLEDs are also identified, which may speed up the commercialization process of Cd-free QDs and corresponding QLEDs.
Collapse
Affiliation(s)
- Yangyang Bian
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China
| | - Fei Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
10
|
Sun B, Najarian AM, Sagar LK, Biondi M, Choi MJ, Li X, Levina L, Baek SW, Zheng C, Lee S, Kirmani AR, Sabatini R, Abed J, Liu M, Vafaie M, Li P, Richter LJ, Voznyy O, Chekini M, Lu ZH, García de Arquer FP, Sargent EH. Fast Near-Infrared Photodetection Using III-V Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203039. [PMID: 35767306 DOI: 10.1002/adma.202203039] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Colloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping. Surface management using amphoteric ligand coordination is reported, and it is found that the approach addresses simultaneously the In and As surface dangling bonds. The new InAs CQD solids combine high mobility (0.04 cm2 V-1 s-1 ) with a 4× reduction in permittivity compared to PbS CQDs. The resulting photodiodes achieve a response time faster than 2 ns-the fastest photodiode among previously reported CQD photodiodes-combined with an external quantum efficiency (EQE) of 30% at 940 nm.
Collapse
Affiliation(s)
- Bin Sun
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Amin Morteza Najarian
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Laxmi Kishore Sagar
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Xiyan Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Larissa Levina
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Se-Woong Baek
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Chao Zheng
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Ahmad R Kirmani
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Randy Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Mengxia Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Maral Vafaie
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Peicheng Li
- Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Oleksandr Voznyy
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Mahshid Chekini
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Zheng-Hong Lu
- Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| |
Collapse
|
11
|
Li H, Zhang W, Bian Y, Ahn TK, Shen H, Ji B. ZnF 2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. NANO LETTERS 2022; 22:4067-4073. [PMID: 35536635 DOI: 10.1021/acs.nanolett.2c00763] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-quality InP-based quantum dots (QDs) have become very promising, environmentally benign light emitters for display applications, but their synthesis generally entails hazardous hydrofluoric acid. Here, we present a highly facile route to InP/ZnSe/ZnS core/shell/shell QDs with a near-unity photoluminescence quantum yield. As the key additive, the inorganic salt ZnF2 mildly reacts with carboxylic acid at a high temperature and in situ generates HF, which eliminates surface oxide impurities, thus facilitating epitaxial shell growth. The resulting InP/ZnSe/ZnS QDs exhibit a narrower emission line width and better thermal stability in comparison with QDs synthesized with hydrofluoric acid. Light-emitting diodes using large-sized InP/ZnSe/ZnS QDs without replacing original ligands achieve the highest peak external quantum efficiency of 22.2%, to the best of our knowledge, along with a maximum brightness of >110 000 cd/m2 and a T95 lifetime of >32 000 h at 100 cd/m2. This safe approach is anticipated to be applied for a wide range of III-V QDs.
Collapse
Affiliation(s)
- Haiyang Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Wenjing Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Yangyang Bian
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Tae Kyu Ahn
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Botao Ji
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
12
|
Chen PR, Hoang MS, Lai KY, Chen HS. Bifunctional Metal Oleate as an Alternative Method to Remove Surface Oxide and Passivate Surface Defects of Aminophosphine-Based InP Quantum Dots. NANOMATERIALS 2022; 12:nano12030573. [PMID: 35159918 PMCID: PMC8838112 DOI: 10.3390/nano12030573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
Abstract
The optical properties of indium phosphide (InP) quantum dots (QDs) are significantly influenced by their surface native oxides, which are generally removed by treating InP cores with hydrofluoric acid (HF). Besides the harmful health effects of HF, its etching may cause over-etching or QD size broadening, and surface oxidation can also reoccur rapidly. In the present study, a safer bifunctional metal oleate treatment was developed to simultaneously remove the surface oxide layer and passivate the surface defects for aminophosphine-based InP QDs. Compared to conventional HF etching, the bifunctional metal oleate was able to more efficiently remove the surface oxide of InP cores and effectively preserve the oxide-free surface, leading to a 20% narrower photoluminescence (PL) bandwidth after growing a ZnSe/ZnS shell. The metal oleate treatment is thus considered a greener and safer post-synthetic method to remove InP surface oxide and provide additional passivation to improve the optical properties of aminophosphine-based InP QDs, which could have potential in industrial mass production.
Collapse
|
13
|
Mamontova E, Salles F, Guari Y, Larionova J, Long J. Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on recent advances in the post-synthetic modification of nano-sized Prussian blue and its analogues and compares them with the current strategies used in metal–organic frameworks to give future outlooks in this field.
Collapse
Affiliation(s)
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
14
|
Sung YM, Kim TG, Yun DJ, Lim M, Ko DS, Jung C, Won N, Park S, Jeon WS, Lee HS, Kim JH, Jun S, Sul S, Hwang S. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102792. [PMID: 34636144 DOI: 10.1002/smll.202102792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Non-toxic InP-based nanocrystals have been developed for promising candidates for commercial optoelectronic applications and they still require further improvement on photophysical properties, compared to Cd-based quantum dots (QDs), for better device efficiency and long-term stability. It is, therefore, essential to understand the precise mechanism of carrier trapping even in the state-of-the-art InP-based QD with near-unity luminescence. Here, it is shown that using time-resolved spectroscopic measurements of systematically size-controlled InP/ZnSe/ZnS core/shell/shell QDs with the quantum yield close to one, carrier trapping decreases with increasing the energy difference between band-edge and trap states, indicating that the process follows the energy gap law, well known in molecular photochemistry for nonradiative internal conversion between two electronic states. Similar to the molecular view of the energy gap law, it is found that the energy gap between the band-edge and trap states is closely associated with ZnSe phonons that assist carrier trapping into defects in highly luminescent InP/ZnSe/ZnS QDs. These findings represent a striking departure from the generally accepted view of carrier trapping mechanism in QDs in the Marcus normal region, providing a step forward understanding how excitons in nanocrystals interact with traps, and offering valuable guidance for making highly efficient and stable InP-based QDs.
Collapse
Affiliation(s)
- Young Mo Sung
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Tae-Gon Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Dong-Jin Yun
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Mihye Lim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Dong-Su Ko
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Changhoon Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Nayoun Won
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Sungjun Park
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Woo Sung Jeon
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Hyo Sug Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Jung-Hwa Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Shinae Jun
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Soohwan Sul
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Sungwoo Hwang
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| |
Collapse
|
15
|
Park N, Eagle FW, DeLarme AJ, Monahan M, LoCurto T, Beck R, Li X, Cossairt BM. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots. J Chem Phys 2021; 155:084701. [PMID: 34470352 DOI: 10.1063/5.0060462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We demonstrate fine-tuning of the atomic composition of InP/ZnSe quantum dots (QDs) at the core/shell interface. Specifically, we control the stoichiometry of both anions (P, As, S, and Se) and cations (In and Zn) at the InP/ZnSe core/shell interface and correlate these changes with the resultant steady-state and time-resolved optical properties of the nanocrystals. The use of reactive trimethylsilyl reagents results in surface-limited reactions that shift the nanocrystal stoichiometry to anion-rich and improve epitaxial growth of the shell layer. In general, anion deposition on the InP QD surface results in a redshift in the absorption, quenching of the excitonic photoluminescence, and a relative increase in the intensity of broad trap-based photoluminescence, consistent with delocalization of the exciton wavefunction and relaxation of exciton confinement. Time-resolved photoluminescence data for the resulting InP/ZnSe QDs show an overall small change in the decay dynamics on the ns timescale, suggesting that the relatively low photoluminescence quantum yields may be attributed to the creation of new thermally activated charge trap states and likely a dark population that is inseparable from the emissive QDs. Cluster-model density functional theory calculations show that the presence of core/shell interface anions gives rise to electronic defects contributing to the redshift in the absorption. These results highlight a general strategy to atomistically tune the interfacial stoichiometry of InP QDs using surface-limited reaction chemistry allowing for precise correlations with the electronic structure and photophysical properties.
Collapse
Affiliation(s)
- Nayon Park
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Forrest W Eagle
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Asher J DeLarme
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Talia LoCurto
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Ryan Beck
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA
| |
Collapse
|
16
|
Pu YC, Fan HC, Chang JC, Chen YH, Tseng SW. Effects of Interfacial Oxidative Layer Removal on Charge Carrier Recombination Dynamics in InP/ZnSe xS 1-x Core/Shell Quantum Dots. J Phys Chem Lett 2021; 12:7194-7200. [PMID: 34309384 DOI: 10.1021/acs.jpclett.1c02125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Red-light-emitting InP/ZnSexS1-x core/shell quantum dots (QDs) were prepared by one-pot synthesis with optimal hydrogen fluoride (HF) treatment. Most of the surficial oxidative species could be removed, and the dangling bonds would be passivated by Zn ions for the InP cores during HF treatment, which would be beneficial to the subsequent ZnSexS1-x shell coating. Three-dimensional time-resolved photoluminescence spectra of the QD samples were analyzed by singular value decomposition global fitting to determine the radiative and nonradiative lifetimes of charge carriers. A proposed model illustrated that the charge carriers in the InP/ZnSexS1-x QDs with interfacial oxidative layer removal would evidently recombine through radiative pathways, mainly from the conduction band to the valence band (lifetime, 33 ns) and partially from the trap states (lifetime, 150 ns). This work offers the important physical insight into the charge carrier dynamics of low-toxicity QDs which have the desired optical properties for optoelectronic applications.
Collapse
Affiliation(s)
- Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Hsiao-Chuan Fan
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Jui-Cheng Chang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
| | - Yu-Hung Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shih-Wen Tseng
- Core Facility Center of National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
17
|
du Fossé I, Boehme SC, Infante I, Houtepen AJ. Dynamic Formation of Metal-Based Traps in Photoexcited Colloidal Quantum Dots and Their Relevance for Photoluminescence. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3349-3358. [PMID: 34054218 PMCID: PMC8154315 DOI: 10.1021/acs.chemmater.1c00561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Trap states play a crucial role in the design of colloidal quantum dot (QD)-based technologies. The presence of these in-gap states can either significantly limit the efficiency of devices (e.g., in solar cells or LEDs) or play a pivotal role in the functioning of the technology (e.g., in catalysis). Understanding the atomistic nature of traps is therefore of the highest importance. Although the mechanism through which undercoordinated chalcogenide atoms can lead to trap states in II-VI QDs is generally well understood, the nature of metal-based traps remains more elusive. Previous research has shown that reduction of metal sites in negatively charged QDs can lead to in-gap states. Here, we use density functional theory to show that metal-based traps are also formed in charge-neutral but photoexcited CdSe QDs. It is found that Cd-Cd dimers and the concomitant trap states are transient in nature and appear and disappear on the picosecond time scale. Subsequent nonradiative recombination from the trap is shown to be much faster than radiative recombination, indicating that dimer-related trap states can quench the photoluminescence. These results are expected to be transferable to other II-VI materials and highlight the importance of surface redox reactions for the optical properties of QDs. Moreover, they show that photoexcitation can lead to atomic rearrangements on the surface and thus create transient in-gap states.
Collapse
Affiliation(s)
- Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Simon C. Boehme
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ivan Infante
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Leemans J, Dümbgen KC, Minjauw MM, Zhao Q, Vantomme A, Infante I, Detavernier C, Hens Z. Acid–Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III–V Colloidal Quantum Dots. J Am Chem Soc 2021; 143:4290-4301. [DOI: 10.1021/jacs.0c12871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jari Leemans
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Kim C. Dümbgen
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Matthias M. Minjauw
- Department of Solid State Sciences, COCOON group, Ghent University, 9000 Gent, Belgium
| | - Qiang Zhao
- Institute for Nuclear and Radiation Physics, KU Leuven, Celestijnenlaan 200d, B-3001 Leuven, Belgium
| | - André Vantomme
- Institute for Nuclear and Radiation Physics, KU Leuven, Celestijnenlaan 200d, B-3001 Leuven, Belgium
| | - Ivan Infante
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
19
|
Heyne B, Geßner A, Wedel A, Taubert A. Dispersion of InPZnS/ZnSe/ZnS multishell quantum dots (QDs) in water: extension to QDs with different core sizes and identical shell thickness. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin Heyne
- Functional Materials and Devices Fraunhofer Institute for Applied Polymer Research Geiselbergstr. 69 D-14476 Potsdam Germany
| | - André Geßner
- Functional Materials and Devices Fraunhofer Institute for Applied Polymer Research Geiselbergstr. 69 D-14476 Potsdam Germany
| | - Armin Wedel
- Functional Materials and Devices Fraunhofer Institute for Applied Polymer Research Geiselbergstr. 69 D-14476 Potsdam Germany
| | - Andreas Taubert
- Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 D-14476 Potsdam Germany
| |
Collapse
|
20
|
Calvin JJ, O'Brien EA, Sedlak AB, Balan AD, Alivisatos AP. Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots. ACS NANO 2021; 15:1407-1420. [PMID: 33404231 DOI: 10.1021/acsnano.0c08683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantum dot surfaces can have a substantial effect on their physical, chemical, and optoelectronic properties. When the chemistry that occurs at the surface of nanocrystals is studied, critical insights can be gained into the fundamental structural, thermodynamic, and optical properties of quantum dot materials providing a valuable guide for how to best adapt them for desired applications. Colloidal quantum dots are often terminated with organic ligands that consist of a long aliphatic chain and a head group that binds tightly to the nanocrystal surface. While extensive work has been done to understand how ligand head groups influence quantum dot properties, studies to unravel the influence of the organic ligand tail on ligands and surface reaction equilibria are incomplete. To further investigate the driving forces of quantum dot surface modification, a series of ligand exchange reactions with oleic acid were performed on indium phosphide quantum dots, initially terminated with straight-chain carboxylates of variable lengths. The reaction was monitored using isothermal titration calorimetry and 1H NMR to determine the extent of each reaction and its associated thermodynamics. From these measurements, interligand interactions were observed to be dependent on the length of the straight-chain ligand. A modified Ising model was used to investigate the enthalpic and entropic effects contributing to these ligand exchanges and reveal that interligand interactions play a much larger role than previously thought. Additional experimentation with phosphonic acid ligand exchange reveals complexity in the reaction mechanism but further illustrates the significant impact of ligand tail group length on thermodynamics, even in cases where there is a large difference in head group binding energy.
Collapse
Affiliation(s)
- Jason J Calvin
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erin A O'Brien
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Arunima D Balan
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Hartley CL, Kessler ML, Dempsey JL. Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. J Am Chem Soc 2021; 143:1251-1266. [PMID: 33442974 DOI: 10.1021/jacs.0c10658] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semiconductor nanocrystals exhibit attractive photophysical properties for use in a variety of applications. Advancing the efficiency of nanocrystal-based devices requires a deep understanding of the physical defects and electronic states that trap charge carriers. Many of these states reside at the nanocrystal surface, which acts as an interface between the semiconductor lattice and the molecular capping ligands. While a detailed structural and electronic understanding of the surface is required to optimize nanocrystal properties, these materials are at a technical disadvantage: unlike molecular structures, semiconductor nanocrystals lack a specific chemical formula and generally must be characterized as heterogeneous ensembles. Therefore, in order for the field to improve current nanocrystal-based technologies, a creative approach to gaining a "molecular-level" picture of nanocrystal surfaces is required. To this end, an expansive toolbox of experimental and computational techniques has emerged in recent years. In this Perspective, we critically evaluate the insight into surface structure and reactivity that can be gained from each of these techniques and demonstrate how their strategic combination is already advancing our molecular-level understanding of nanocrystal surface chemistry.
Collapse
Affiliation(s)
- Carolyn L Hartley
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Melody L Kessler
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
22
|
Rodosthenous P, Gómez-Campos FM, Califano M. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. J Phys Chem Lett 2020; 11:10124-10130. [PMID: 33191752 DOI: 10.1021/acs.jpclett.0c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
InP nanocrystals exhibit a low photoluminescence quantum yield. As in the case of CdS, this is commonly attributed to their poor surface quality and difficult passivation, which give rise to trap states and negatively affect emission. Hence, the strategies adopted to improve their quantum yield have focused on the growth of shells, to improve passivation and get rid of the surface states. Here, we employ state-of-the-art atomistic semiempirical pseudopotential modeling to isolate the effect of surface stoichiometry from features due to the presence of surface trap states and show that, even with an atomistically perfect surface and an ideal passivation, InP nanostructures may still exhibit very long radiative lifetimes (on the order of tens of microseconds), broad and weak emission, and large Stokes' shifts. Furthermore, we find that all these quantities can be varied by orders of magnitude, by simply manipulating the surface composition, and, in particular, the number of surface P atoms. As a consequence it should be possible to substantially increase the quantum yield in these nanostructures by controlling their surface stoichiometry.
Collapse
Affiliation(s)
- Panagiotis Rodosthenous
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francisco M Gómez-Campos
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- CITIC-UGR, C/Periodista Rafael Gómez Montero, n 2, Granada E-18071, Spain
| | - Marco Califano
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
23
|
Calvin JJ, Swabeck JK, Sedlak AB, Kim Y, Jang E, Alivisatos AP. Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. J Am Chem Soc 2020; 142:18897-18906. [PMID: 33095575 DOI: 10.1021/jacs.0c08954] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing the quantum yields of InP quantum dots is important for their applications, particularly for use in consumer displays. While several methods exist to improve quantum yield, the addition of inorganic metal halide salts has proven promising. To further investigate this phenomenon, InP quantum dots dispersed in tetrahydrofuran were titrated with ZnCl2, ZnBr2, and InCl3. The optical properties were observed, and the reactions were studied by using quantitative 1H NMR and thermodynamic measurements from isothermal titration calorimetry. These measurements contradict the previously hypothesized reaction mechanism in which metal halide salts, acting as Z-type ligands, passivate undercoordinated anions on the surface of the quantum dots. This work provides evidence for a newly proposed mechanism wherein the metal halide salts undergo a ligand exchange with indium myristate. Thermodynamic measurements prove key to supporting this new mechanism, particularly in describing the organic ligand interactions on the surface. An Ising model was used to simulate the quantum dot surface and was fit by using thermodynamic and 1H NMR data. Together, these data and the proposed exchange mechanism provide greater insight into the surface chemistry of quantum dots.
Collapse
Affiliation(s)
- Jason J Calvin
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joseph K Swabeck
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Yongwook Kim
- Inorganic Material Lab, Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Eunjoo Jang
- Inorganic Material Lab, Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - A Paul Alivisatos
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Heyne B, Arlt K, Geßner A, Richter AF, Döblinger M, Feldmann J, Taubert A, Wedel A. Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10091858. [PMID: 32957490 PMCID: PMC7557590 DOI: 10.3390/nano10091858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/03/2023]
Abstract
Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%.
Collapse
Affiliation(s)
- Benjamin Heyne
- Fraunhofer IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (B.H.); (K.A.); (A.G.)
| | - Kristin Arlt
- Fraunhofer IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (B.H.); (K.A.); (A.G.)
| | - André Geßner
- Fraunhofer IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (B.H.); (K.A.); (A.G.)
| | - Alexander F. Richter
- Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany; (A.F.R.); (J.F.)
| | - Markus Döblinger
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstraße 5-13 (E), 81377 Munich, Germany;
| | - Jochen Feldmann
- Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany; (A.F.R.); (J.F.)
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, 14469 Potsdam, Germany
- Correspondence: (A.T.); (A.W.); Tel.: +49-(0)331-977-5773 (A.T.); +49-(0)331-568-1910 (A.W.)
| | - Armin Wedel
- Fraunhofer IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (B.H.); (K.A.); (A.G.)
- Correspondence: (A.T.); (A.W.); Tel.: +49-(0)331-977-5773 (A.T.); +49-(0)331-568-1910 (A.W.)
| |
Collapse
|
25
|
Yu S, Xie Z, Ran M, Wu F, Zhong Y, Dan M, Zhou Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J Colloid Interface Sci 2020; 573:71-77. [DOI: 10.1016/j.jcis.2020.03.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022]
|
26
|
Chen B, Li D, Wang F. InP Quantum Dots: Synthesis and Lighting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002454. [PMID: 32613755 DOI: 10.1002/smll.202002454] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Indexed: 05/24/2023]
Abstract
InP quantum dots (QDs) are typical III-V group semiconductor nanocrystals that feature large excitonic Bohr radius and high carrier mobility. The merits of InP QDs include large absorption coefficient, broad color tunability, and low toxicity, which render them promising alternatives to classic Cd/Pb-based QDs for applications in practical settings. Over the past two decades, the advances in wet-chemistry methods have enabled the synthesis of small-sized colloidal InP QDs with the assistance of organic ligands. By proper selection of synthetic protocols and precursor materials coupled with surface passivation, the QYs of InP QDs are pushed to near unity with modest color purity. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications with the potential for commercialization. This work focuses on the recent development of wet-chemistry protocols and various precursor materials for the synthesis and surface modification of InP QDs. Current methods for constructing light-emitting diodes using novel InP-based QDs are also summarized.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Dongyu Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- Key Laboratory of Environmentally Friendly Functional Materials and Devices, Lingnan Normal University, Zhanjiang, 524048, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
27
|
Leemans J, Singh S, Li C, Ten Brinck S, Bals S, Infante I, Moreels I, Hens Z. Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets. J Phys Chem Lett 2020; 11:3339-3344. [PMID: 32272839 PMCID: PMC7213063 DOI: 10.1021/acs.jpclett.0c00870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 05/19/2023]
Abstract
We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.
Collapse
Affiliation(s)
- Jari Leemans
- Physics
and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Shalini Singh
- Physics
and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Chen Li
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stephanie Ten Brinck
- Department
of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Sara Bals
- Electron
Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ivan Infante
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
(ACMM), VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iwan Moreels
- Physics
and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
28
|
Zhang J, Gu H. Growth of InZnP/ZnS core/shell quantum dots with wide-range and refined tunable photoluminescence wavelengths. Dalton Trans 2020; 49:6119-6126. [PMID: 32323683 DOI: 10.1039/d0dt00575d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to their environmentally friendly characteristic, InP-based quantum dots (QDs) show great potential in various fields as an alternative to Cd-based QDs. However, the current mainstream synthesis process, the (TMS)3P-based injection method, still faces many challenges, such as the high cost of (TMS)3P and complex temperature control. In contrast, the solvothermal method is considered to be more feasible and reproducible. Despite its potential advantages, little has been done to understand how the precursors influence the synthesis of InP QDs using the solvothermal method. In this research, InZnP/ZnS QDs were synthesized using practical phosphorus precursors (DEA)3P or (DMA)3P. Through the feasible regulation of zinc, indium, phosphorus and sulfur precursors, the band gap of the QDs could be widely and accurately tuned, and a much wider photoluminescence wavelength ranging from 484 nm to 651 nm could be achieved. Furthermore, InI3 and InBr3 contributed to the blueshift in the PL wavelengths, and the combination of (DEA)3P, (DMA)3P, n-DDT and t-DDT refined the PL wavelength with a small tuning gap of 5 nm.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China.
| | | |
Collapse
|
29
|
Zhang H, Ma X, Lin Q, Zeng Z, Wang H, Li LS, Shen H, Jia Y, Du Z. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. J Phys Chem Lett 2020; 11:960-967. [PMID: 31957438 DOI: 10.1021/acs.jpclett.9b03567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
InP quantum dots (QDs) are considered as one of the most promising candidates of Cd- or Pb-based QDs in the applications of display and lighting. However, the performances of blue InP QDs and the corresponding light emitting devices (LEDs) are far inferior to those of their red and green counterparts, which strongly limits the development of InP QD based LEDs (QLEDs) technology. Here, high quantum yield (∼81%) and large size (∼7.0 ± 0.9 nm) InP/GaP/ZnS//ZnS QDs with a thick shell have been successfully synthesized by a shell engineering approach, and the corresponding QLEDs exhibit a record brightness and external quantum efficiency of 3120 cd·m-2 and 1.01%, respectively. Large-scale density functional theory calculations on thousands-of-atoms QDs indicate that thicker-shell ones favor a more balanced carrier injection in the QD film and simultaneously suppress the FRET between closely packed QDs, which collectively contribute to the improved blue device performances.
Collapse
Affiliation(s)
- Han Zhang
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Xiaoyu Ma
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Qingli Lin
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Zaiping Zeng
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Hongzhe Wang
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Lin Song Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Huaibin Shen
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| | - Yu Jia
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
- International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering , Zhengzhou University , Zhengzhou 450001 , Henan , China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , Henan , China
| |
Collapse
|
30
|
Saha D, Negi DPS. Particle size enlargement and 6-fold fluorescence enhancement of colloidal CdS quantum dots induced by selenious acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117486. [PMID: 31491615 DOI: 10.1016/j.saa.2019.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/31/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Herein, colloidal CdS QDs have been synthesized by using cysteine as a stabilizing agent. The interaction between the CdS QDs and selenious acid was monitored by using UV-visible, fluorescence and Fourier transform infrared (FTIR) spectroscopy. The onset of absorption of the CdS QDs (430 nm) was progressively red-shifted upon increase in the concentration of selenious acid at pH 10. It indicated enlargement of the particle size which was confirmed by the dynamic light scattering (DLS) measurements. Interestingly, the addition of 100 μM selenious acid at pH 6 resulted in a 6-fold enhancement of the red emission (λmax = 617 nm) of the CdS QDs. The particle size enlargement of CdS was due to an electrostatic interaction between selenious acid and QD stabilizer cysteine. The 6-fold fluorescence enhancement was of the CdS QDs was explained on the basis of hydrogen-bonding interaction between selenious acid and cysteine. The fluorescence-based method was applied for the sensing of selenious acid at pH 6.
Collapse
Affiliation(s)
- Dipika Saha
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Devendra P S Negi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
31
|
Yang X, Yang X, Wang T, Wang B, Chen Q, Wang Y, Liu D. CdS structures prepared in AAO nanochannels via different synthesis methods under limited conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj04796d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CdS is mainly prepared in nonlimited condition, inspired by the potential application of biomimetic nanochannels, we used AAO template as the limited condition to synthesize CdS structures via different synthesis methods for new application.
Collapse
Affiliation(s)
- Xiande Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- P. R. China
| | - Xudong Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry
- China University of Geosciences
- 388 Lumo Road
- Wuhan 430074
- P. R. China
| | - Tinglan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry
- China University of Geosciences
- 388 Lumo Road
- Wuhan 430074
- P. R. China
| | - Boyou Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry
- China University of Geosciences
- 388 Lumo Road
- Wuhan 430074
- P. R. China
| | - Qiao Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry
- China University of Geosciences
- 388 Lumo Road
- Wuhan 430074
- P. R. China
| | - Yongqian Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry
- China University of Geosciences
- 388 Lumo Road
- Wuhan 430074
- P. R. China
| | - Deliang Liu
- State Key Laboratory of Geological Processes and Mineral Resources
- Collaborative Innovation Center for Exploration of Strategic Mineral Resources
- Faculty of Earth Resource
- China University of Geosciences
- Wuhan 430074
| |
Collapse
|
32
|
Hughes KE, Stein JL, Friedfeld MR, Cossairt BM, Gamelin DR. Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals. ACS NANO 2019; 13:14198-14207. [PMID: 31730352 DOI: 10.1021/acsnano.9b07027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Indium phosphide (InP) semiconductor nanocrystals (NCs) provide a promising alternative to traditional heavy-metal-based luminescent materials for lighting and display technologies, and implementation of InP NCs in consumer products is rapidly increasing. As-synthesized InP NCs typically have very low photoluminescence quantum yields (PLQY), however. Although empirical methods have led to NCs with near-unity PLQYs, a fundamental understanding of how specific synthetic and post-synthetic protocols can alter the electronic landscape of InP NCs is still lacking. Here, we have studied a series of homologous InP NCs prepared from InP clusters using a combination of room-temperature and low-temperature time-resolved spectroscopies to elucidate how specific charge-carrier trapping processes are affected when various surface modifications are performed. The data allow identification of large PLQY increases that occur specifically through elimination of surface electron traps and provide a rationale for understanding the microscopic origins of this trap suppression in terms of elimination of undercoordinated surface In3+ ions. Despite essentially complete elimination of surface electron trapping when surface In3+ is addressed, hole trapping still exists. This hole trapping is shown to be partially suppressed by even very thin shell growth, attributable to elimination of undercoordinated surface phosphides. We also observe signatures of bright-dark excitonic splitting in InP NCs with only submonolayer surface coverage of select additives (divalent Lewis acids or fluoride anions)-signatures that have only been previously observed in thick-shelled InP NCs. Together, these synthetic and spectroscopic results improve our understanding of relationships between specific InP NC surface chemistries and the resulting NC photophysics.
Collapse
Affiliation(s)
- Kira E Hughes
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Jennifer L Stein
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Max R Friedfeld
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Brandi M Cossairt
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Daniel R Gamelin
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| |
Collapse
|
33
|
Kim Y, Chang JH, Choi H, Kim YH, Bae WK, Jeong S. III-V colloidal nanocrystals: control of covalent surfaces. Chem Sci 2019; 11:913-922. [PMID: 34084346 PMCID: PMC8145357 DOI: 10.1039/c9sc04290c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023] Open
Abstract
Colloidal quantum dots (QDs) are nanosized semiconductors whose electronic features are dictated by the quantum confinement effect. The optical, electrical, and chemical properties of QDs are influenced by their dimensions and surface landscape. The surface of II-VI and IV-VI QDs has been extensively explored; however, in-depth investigations on the surface of III-V QDs are still lagging behind. This Perspective discusses the current understanding of the surface of III-V QDs, outlines deep trap states presented by surface defects, and suggests strategies to overcome challenges associated with deep traps. Lastly, we discuss a route to create well-defined facets in III-V QDs by providing a platform for surface studies and a recently reported approach in atomistic understanding of covalent III-V QD surfaces using the electron counting model with fractional dangling bonds.
Collapse
Affiliation(s)
- Youngsik Kim
- Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| | - Jun Hyuk Chang
- School of Chemical and Biological Engineering, Seoul National University Seoul Republic of Korea
| | - Hyekyoung Choi
- Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| | - Yong-Hyun Kim
- Graduate School of Nanoscience and Technology, Department of Physics, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Wan Ki Bae
- SKKU Advanced Institute of Nanotechnology (SAINT), Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| | - Sohee Jeong
- Department of Energy Science, Center for Artificial Atoms, Sungkyunkwan University Suwon-si Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
34
|
McVey BFP, Swain RA, Lagarde D, Tison Y, Martinez H, Chaudret B, Nayral C, Delpech F. Unraveling the role of zinc complexes on indium phosphide nanocrystal chemistry. J Chem Phys 2019; 151:191102. [PMID: 31757128 DOI: 10.1063/1.5128234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The addition of zinc complexes to the syntheses of indium phosphide nanocrystals (InP NCs) has become commonplace, due to their ability to alter and significantly improve observed optical properties. In this paper, the role of zinc complexes on the synthesis and observed properties of InP is carefully examined. Produced InP and InP:Zn2+ NCs are thoroughly characterized from both structural (core and surface) and optical perspectives over a wide range of Zn2+ compositions (0%-43% atomic content). We find no differences in the physical (NC size and polydispersity) and structural properties (crystallographic phase) of InP and InP:Zn2+ NCs. Optically, significant changes are observed when zinc is added to InP syntheses, including blueshifted absorption edges and maxima, increased quantum yields, and the near elimination of surface state emission. These improved optical properties result from surface passivation by zinc carboxylate moieties. Changes to the optical properties begin at zinc concentrations as low as 5%, demonstrating the high sensitivity of InP optical properties to exogenous species.
Collapse
Affiliation(s)
- B F P McVey
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - R A Swain
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - D Lagarde
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Y Tison
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM-ECP), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Ave. Président Angot, F-64053 Pau, France
| | - H Martinez
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM-ECP), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Ave. Président Angot, F-64053 Pau, France
| | - B Chaudret
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - C Nayral
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - F Delpech
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
35
|
Friedfeld MR, Stein JL, Johnson DA, Park N, Henry NA, Enright MJ, Mocatta D, Cossairt BM. Effects of Zn2+ and Ga3+ doping on the quantum yield of cluster-derived InP quantum dots. J Chem Phys 2019; 151:194702. [DOI: 10.1063/1.5126971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Max R. Friedfeld
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Jennifer L. Stein
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Dane A. Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Nayon Park
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Nicholas A. Henry
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Michael J. Enright
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - David Mocatta
- Nanomaterials Group, Performance Materials, Merck Group, Box 39082, 9139002 Jerusalem, Israel
| | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| |
Collapse
|
36
|
Huang F, Bi C, Guo R, Zheng C, Ning J, Tian J. Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copper Cations. J Phys Chem Lett 2019; 10:6720-6726. [PMID: 31549508 DOI: 10.1021/acs.jpclett.9b02386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colloidal InP quantum dots (QDs) have been considered as one of the most promising candidates for display and biolabeling applications because they are intrinsically toxicity-free and exhibit high photoluminescence. On account of the uncontrollable nucleation and growth during the synthesis of InP, obtaining high-quality blue-emitting InP QDs with uniform size distribution remains a challenge. Herein, we employ a novel synthetic approach for producing blue-emitting InP/ZnS core/shell QDs with the assistance of copper cations. The studies reveal that the copper ions could combine with phosphorus precursor to form hexagonal Cu3-xP nanocrystals, which competed with the nucleation process of InP QDs, resulting in the smaller sized InP QDs with blue photoluminescence emission. After the passivation of InP QDs with the ZnS shell, the synthesized InP/ZnS core/shell QDs present bright blue emission (∼425 nm) with a photoluminescence quantum yield of ∼25%, which is the shortest wavelength emission for InP QDs to date. This research provides a new way to synthesize ultrasmall semiconductor nanocrystals.
Collapse
Affiliation(s)
- Fan Huang
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Chenghao Bi
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Ruiqi Guo
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Chao Zheng
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jiajia Ning
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon , Hong Kong SAR , China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
37
|
Yang X, Wang T, Zhang H, Chen Q, Wang B, Wang Y, Meng D. Chiral cysteine selective transport of proteins by CdS nanostructures modified anodic aluminum oxide template. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Wegner KD, Dussert F, Truffier-Boutry D, Benayad A, Beal D, Mattera L, Ling WL, Carrière M, Reiss P. Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity. Front Chem 2019; 7:466. [PMID: 31316974 PMCID: PMC6610543 DOI: 10.3389/fchem.2019.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022] Open
Abstract
With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1-x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence quantum yields (PLQY) > 50% and similar PL decay times (64-67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant oxidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25-100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact.
Collapse
Affiliation(s)
- Karl David Wegner
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| | - Fanny Dussert
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
| | | | - Anass Benayad
- Univ. Grenoble Alpes, CEA-LITEN L2N, Grenoble, France
| | - David Beal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
| | - Lucia Mattera
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, Grenoble, France
| | - Marie Carrière
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
| | - Peter Reiss
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| |
Collapse
|
39
|
Ritchhart A, Cossairt BM. Quantifying Ligand Exchange on InP Using an Atomically Precise Cluster Platform. Inorg Chem 2019; 58:2840-2847. [DOI: 10.1021/acs.inorgchem.8b03524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew Ritchhart
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
40
|
Crisp RW, Kirkwood N, Grimaldi G, Kinge S, Siebbeles LDA, Houtepen AJ. Highly Photoconductive InP Quantum Dots Films and Solar Cells. ACS APPLIED ENERGY MATERIALS 2018; 1:6569-6576. [PMID: 30506040 PMCID: PMC6259048 DOI: 10.1021/acsaem.8b01453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 05/05/2023]
Abstract
InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb-providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Ryan W. Crisp
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Nicholas Kirkwood
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Gianluca Grimaldi
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Sachin Kinge
- Toyota
Motor Europe, Materials Research & Development, Hoge Wei 33, Zaventem B-1930, Belgium
| | - Laurens D. A. Siebbeles
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
| | - Arjan J. Houtepen
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, Delft2629 HZ , The Netherlands
- . Website: www.tudelft.nl/cheme/houtepengroup
| |
Collapse
|
41
|
Friedfeld MR, Stein JL, Ritchhart A, Cossairt BM. Conversion Reactions of Atomically Precise Semiconductor Clusters. Acc Chem Res 2018; 51:2803-2810. [PMID: 30387984 DOI: 10.1021/acs.accounts.8b00365] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Clusters are unique molecular species that can be viewed as a bridge between phases of matter and thus between disciplines of chemistry. The structural and compositional complexity observed in cluster chemistry serves as an inspiration to the material science community and motivates our search for new phases of matter. Moreover, the formation of kinetically persistent cluster molecules as intermediates in the nucleation of crystals makes these materials of great interest for determining and controlling mechanisms of crystal growth. Our lab developed a keen interest in clusters insofar as they relate to the nucleation of nanoscale semiconductors and the modeling of postsynthetic reaction chemistry of colloidal materials. In particular, our discovery of a structurally unique In37P20X51 (X = carboxylate) cluster en route to InP quantum dots has catalyzed our interest in all aspects of cluster conversion, including the use of clusters as precursors to larger nanoscale colloids and as platforms for examining postsynthetic reaction chemistry. This Account is presented in four parts. First, we introduce cluster chemistry in a historical context with a focus on main group, metallic, and semiconductor clusters. We put forward the concept of rational, mechanism-driven design of colloidal semiconductor nanocrystals as the primary motivation for the studies we have undertaken. Second, we describe the role of clusters as intermediates both in the synthesis of well-known material phases and in the discovery of unprecedented nanomaterial structures. The primary distinction between these two approaches is one of kinetics; in the case of well-known phases, we are often operating under high-temperature thermolysis conditions, whereas for materials discovery, we are discovering strategies to template the growth of kinetic phases as dictated by the starting cluster structure. Third, we describe reactions of clusters as model systems for their larger nanomaterial progeny with a primary focus on cation exchange. In the case of InP, cation exchange in larger nanostructures has been challenging due to the covalent nature of the crystal lattice. However, in the higher energy, strained cluster intermediates, cation exchange can be accomplished even at room temperature. This opens opportunities for accessing doped and alloyed nanomaterials using postsynthetically modified clusters as single-source precursors. Finally, we present surface chemistry of clusters as the gateway to subsequent chemistry and reactivity, and as an integral component of cluster structure and stability. Taken as a whole, we hope to make a compelling case for using clusters as a platform for mechanistic investigation and materials discovery.
Collapse
Affiliation(s)
- Max R. Friedfeld
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer L. Stein
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew Ritchhart
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
42
|
Yang W, Li J, Liu B, Zhang X, Zhang C, Niu P, Jiang X. Multi-wavelength tailoring of a ZnGa 2O 4 nanosheet phosphor via defect engineering. NANOSCALE 2018; 10:19039-19045. [PMID: 30280160 DOI: 10.1039/c8nr05072d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The multi-wavelength luminescence tailoring of an individual phosphor free of external dopants is of great interest and technologically important for practical applications. Using ZnGa2O4 nanosheets as a target phosphor, we demonstrate how to artificially control the luminescence wavelength centers and their emission intensities to simultaneously emit ultraviolet/blue, green and red light via a feasible defect engineering strategy. Simple high-temperature annealing of hydrothermally synthesized ZnGa2O4 nanosheets leads to the effective tunability of their emission process to present multi-wavelength luminescence due to the structural distortion and the formation of oxygen vacancies. Controlling the annealing temperature and time can further precisely modulate the wavelengths and their corresponding intensities. It is speculated that the migration of Ga into the [GaO4] tetrahedron and the O vacancy are responsible for the multi-wavelength luminescence of the ZnGa2O4 nanosheet phosphor. Finally, the tentative multi-wavelength luminescence behavior of the ZnGa2O4 nanosheet phosphor via defect engineering is discussed based on a series of evidenced experimental observations of XRD, XPS, HRTEM and CL.
Collapse
Affiliation(s)
- Wenjin Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72, Wenhua Road, Shenhe District, Shenyang 110016, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kumar BG, Sadeghi S, Melikov R, Aria MM, Jalali HB, Ow-Yang CW, Nizamoglu S. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. NANOTECHNOLOGY 2018; 29:345605. [PMID: 29846177 DOI: 10.1088/1361-6528/aac8c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W-1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.
Collapse
|
44
|
Brodu A, Ballottin MV, Buhot J, van Harten EJ, Dupont D, La Porta A, Prins PT, Tessier MD, Versteegh MAM, Zwiller V, Bals S, Hens Z, Rabouw FT, Christianen PCM, de Mello Donega C, Vanmaekelbergh D. Exciton Fine Structure and Lattice Dynamics in InP/ZnSe Core/Shell Quantum Dots. ACS PHOTONICS 2018; 5:3353-3362. [PMID: 30175158 PMCID: PMC6115013 DOI: 10.1021/acsphotonics.8b00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 05/05/2023]
Abstract
Nanocrystalline InP quantum dots (QDs) hold promise for heavy-metal-free optoelectronic applications due to their bright and size-tunable emission in the visible range. Photochemical stability and high photoluminescence (PL) quantum yield are obtained by a diversity of epitaxial shells around the InP core. To understand and optimize the emission line shapes, the exciton fine structure of InP core/shell QD systems needs be investigated. Here, we study the exciton fine structure of InP/ZnSe core/shell QDs with core diameters ranging from 2.9 to 3.6 nm (PL peak from 2.3 to 1.95 eV at 4 K). PL decay measurements as a function of temperature in the 10 mK to 300 K range show that the lowest exciton fine structure state is a dark state, from which radiative recombination is assisted by coupling to confined acoustic phonons with energies ranging from 4 to 7 meV, depending on the core diameter. Circularly polarized fluorescence line-narrowing (FLN) spectroscopy at 4 K under high magnetic fields (up to 30 T) demonstrates that radiative recombination from the dark F = ±2 state involves acoustic and optical phonons, from both the InP core and the ZnSe shell. Our data indicate that the highest intensity FLN peak is an acoustic phonon replica rather than a zero-phonon line, implying that the energy separation observed between the F = ±1 state and the highest intensity peak in the FLN spectra (6 to 16 meV, depending on the InP core size) is larger than the splitting between the dark and bright fine structure exciton states.
Collapse
Affiliation(s)
- Annalisa Brodu
- Debye Institute
for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Mariana V. Ballottin
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The
Netherlands
| | - Jonathan Buhot
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The
Netherlands
| | - Elleke J. van Harten
- Debye Institute
for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Dorian Dupont
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Andrea La Porta
- Electron
Microscopy for Materials Research, EMAT, University of Antwerp, 2020 Antwerp, Belgium
| | - P. Tim Prins
- Debye Institute
for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Mickael D. Tessier
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Marijn A. M. Versteegh
- Department
of Applied Physics, Royal Institute of Technology
(KTH), 106 91 Stockholm, Sweden
| | - Val Zwiller
- Department
of Applied Physics, Royal Institute of Technology
(KTH), 106 91 Stockholm, Sweden
| | - Sara Bals
- Electron
Microscopy for Materials Research, EMAT, University of Antwerp, 2020 Antwerp, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Freddy T. Rabouw
- Debye Institute
for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Peter C. M. Christianen
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The
Netherlands
| | - Celso de Mello Donega
- Debye Institute
for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Daniel Vanmaekelbergh
- Debye Institute
for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
45
|
Cossairt BM, Stein JL, Holden WM, Seidler GT. 4‐1:
Invited Paper:
Role of Phosphorus Oxidation in Controlling the Luminescent Properties of Indium Phosphide Quantum Dots. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/sdtp.12481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brandi M. Cossairt
- Department of Chemistry University of Washington Box 351700 Seattle WA 98195-1700
| | - Jennifer L. Stein
- Department of Chemistry University of Washington Box 351700 Seattle WA 98195-1700
| | - William M. Holden
- Department of Physics University of Washington Box 351560 Seattle WA 98195-1560
| | - Gerald T. Seidler
- Department of Physics University of Washington Box 351560 Seattle WA 98195-1560
| |
Collapse
|
46
|
Shen Y, Gee MY, Greytak AB. Purification technologies for colloidal nanocrystals. Chem Commun (Camb) 2018; 53:827-841. [PMID: 27942615 DOI: 10.1039/c6cc07998a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Almost all applications of colloidal nanocrystals require some type of purification or surface modification process following nanocrystal growth. Nanocrystal purification - the separation of nanocrystals from undesired solution components - can perturb the surface chemistry and thereby the physical properties of colloidal nanocrystals due to changes in solvent, solute concentrations, and exposure of the nanocrystal surface to oxidation or hydrolysis. For example, nanocrystal quantum dots frequently exhibit decreased photoluminescence brightness after precipitation from the growth solvent and subsequent redissolution. Consequently, purification is an integral part of the synthetic chemistry of colloidal nanocrystals, and the effect of purification methods must be considered in order to accurately compare and predict the behavior of otherwise similar nanocrystal samples. In this Feature Article we examine established and emerging approaches to the purification of colloidal nanoparticles from a nanocrystal surface chemistry viewpoint. Purification is generally achieved by exploiting differences in properties between the impurities and the nanoparticles. Three distinct properties are typically manipulated: polarity (relative solubility), electrophoretic mobility, and size. We discuss precipitation, extraction, electrophoretic methods, and size-based methods including ultracentrifugation, ultrafiltration, diafiltration, and size-exclusion chromatography. The susceptibility of quantum dots to changes in surface chemistry, with changes in photoluminescence decay associated with surface chemical changes, extends even into the case of core/shell structures. Accordingly, the goal of a more complete description of quantum dot surface chemistry has been a driver of innovation in colloidal nanocrystal purification methods. We specifically examine the effect of purification on surface chemistry and photoluminescence in quantum dots as an example of the challenges associated with nanocrystal purification and how improved understanding can result from increasingly precise techniques, and associated surface-sensitive analytical methods.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Megan Y Gee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - A B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. and USC Nanocenter, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
47
|
Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W, Hahn SK. Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29363198 DOI: 10.1002/adma.201701460] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/20/2017] [Indexed: 05/08/2023]
Abstract
The last decade has seen dramatic progress in the principle, design, and fabrication of photonic nanomaterials with various optical properties and functionalities. Light-emitting and light-responsive nanomaterials, such as semiconductor quantum dots, plasmonic metal nanoparticles, organic carbon, and polymeric nanomaterials, offer promising approaches to low-cost and effective diagnostic, therapeutic, and theranostic applications. Reasonable endeavors have begun to translate some of the promising photonic nanomaterials to the clinic. Here, current research on the state-of-the-art and emerging photonic nanomaterials for diverse biomedical applications is reviewed, and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Hyemin Kim
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea
| | - Songeun Beack
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myeonghwan Shin
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Taehyung Lee
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yoonsang Park
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Ali K Yetisen
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Seoul, 04310, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
48
|
Enright MJ, Cossairt BM. Synthesis of tailor-made colloidal semiconductor heterostructures. Chem Commun (Camb) 2018; 54:7109-7122. [DOI: 10.1039/c8cc03498b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This feature article provides an account of the various bottom-up and top-down methods that have been developed to prepare colloidal heterostructures and highlights the benefits of a seeded assembly approach for greater control and customizability.
Collapse
|
49
|
Zhou K, Chen ZQ, Liu ZQ, Li J, Zhao FH, Pan CY. Temperature dependence of photoluminescence and hydrogen bonding revealed for the first time in a templated borate family: synthesis, structure and properties of a pentaborate [Emmim][B 5O 6(OH) 4]. Dalton Trans 2017; 46:16703-16710. [PMID: 29168856 DOI: 10.1039/c7dt03896h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a templated borate, [Emmim][B5O6(OH)4] (denoted 1, Emmim = 1-ethyl-2,3-dimethylimidazolium), has been synthesized. It is unexpectedly observed that 1 exhibits a series of broadened luminescence curves from -183 to 75 °C, the emission intensities are measured as a decreasing function of temperature, and the line width of the PL emission is strongly enhanced when temperatures decrease below -100 °C. In addition to this, hydrogen bonding (H-B) in 1 with distinctly enlarging trends was observed as the temperature increased. The influence of temperature on H-Bs and physical properties was explored through single crystal X-ray diffraction analysis, theoretical calculations, PL, and dielectric constant test. The results indicate that the temperature can impact weak H-Bs interactions and the PL can be seen as a prober to the varying of structure such as H-Bs in borate crystal.
Collapse
Affiliation(s)
- Kang Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of technology, Guangzhou, Guangdong 510006, China.
| | - Zhuo-Qing Chen
- School of Chemical Engineering and Light Industry, Guangdong University of technology, Guangzhou, Guangdong 510006, China.
| | - Zhi-Qiang Liu
- School of Chemical Engineering and Light Industry, Guangdong University of technology, Guangzhou, Guangdong 510006, China.
| | - Jun Li
- School of Chemical Engineering and Light Industry, Guangdong University of technology, Guangzhou, Guangdong 510006, China.
| | - Feng-Hua Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of technology, Guangzhou, Guangdong 510006, China.
| | - Chun-Yang Pan
- School of Chemical Engineering and Light Industry, Guangdong University of technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
50
|
Roberge A, Stein JL, Shen Y, Cossairt BM, Greytak AB. Purification and In Situ Ligand Exchange of Metal-Carboxylate-Treated Fluorescent InP Quantum Dots via Gel Permeation Chromatography. J Phys Chem Lett 2017; 8:4055-4060. [PMID: 28799766 DOI: 10.1021/acs.jpclett.7b01772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently the addition of M2+ Lewis acids (M = Cd, Zn) to InP quantum dots (QDs) has been shown to enhance the photoluminescence quantum yield (PL QY). Here we investigate the stability of this Lewis acid layer to postsynthetic processing such as purification and ligand exchange. We utilize gel permeation chromatography to purify the quantum-dot samples as well as to aid in the ligand-exchange reactions. The Lewis-acid-capped particles are stable to purification and maintain the enhanced luminescence properties. We demonstrate successful ligand exchange on the quantum dots by switching the native carboxylate ligands to phosphonate ligands. Changes in the optical spectra after exposure to ambient environment indicate that both carboxylate- and phosphonate-capped QDs remain air-sensitive.
Collapse
Affiliation(s)
- Adam Roberge
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Jennifer L Stein
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Yi Shen
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|