1
|
Wang H, Zhao Y, Pei Z, Zhao J, Zhang P, Zhang X, Zhang Z, Lu W. Effect of Mixed Probiotics on Alleviating H1N1 Influenza Infection and Regulating Gut Microbiota. Foods 2024; 13:3079. [PMID: 39410114 PMCID: PMC11475989 DOI: 10.3390/foods13193079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Influenza and other respiratory infections cause annual epidemics worldwide, with high incidence and mortality rates reported among immunocompromised infants and elderly individuals. Probiotics can modulate the immune system through their bacterial compositions and metabolites, affecting influenza infections and effectively responding to viral mutations. Therefore, we evaluated the anti-influenza effects of mixed probiotics administered orally before and after influenza infection. The results showed that the mixed probiotics consisting of Lacticaseibacillus rhamnosus CCFM1279, Limosilactobacillus reuteri CCFM1145, and Lacticaseibacillus casei CCFM1127 inhibited viral replication and reduced lung inflammatory damage against influenza. In addition, the mixed-probiotics treatment activated the systemic immune response of the host. The gut microbiota analysis revealed a notable increase in the abundance of Alistipes and Rikenella following mixed-probiotic supplementation. The metabolomic analysis indicated a significant increase in adenosine levels, which was positively correlated with the abundance of Parvibacter. These findings highlight the effectiveness of mixed probiotics in fighting influenza viruses and suggest that certain gut microbiota and their metabolites may play a significant role in influencing the outcomes of influenza infections.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhao Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pinghu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225009, China; (P.Z.)
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225009, China; (P.Z.)
| | - Zhijian Zhang
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Rd, Wuxi 214000, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Untargeted serum metabolomics analysis of Trichinella spiralis-infected mouse. PLoS Negl Trop Dis 2023; 17:e0011119. [PMID: 36809241 PMCID: PMC9943014 DOI: 10.1371/journal.pntd.0011119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Trichinellosis, caused by a parasitic nematode of the genus Trichinella, is a zoonosis that affects people worldwide. After ingesting raw meat containing Trichinella spp. larvae, patients show signs of myalgia, headaches, and facial and periorbital edema, and severe cases may die from myocarditis and heart failure. The molecular mechanisms of trichinellosis are unclear, and the sensitivity of the diagnostic methods used for this disease are unsatisfactory. Metabolomics is an excellent tool for studying disease progression and biomarkers; however, it has never been applied to trichinellosis. We aimed to elucidate the impacts of Trichinella infection on the host body and identify potential biomarkers using metabolomics. METHODOLOGY/PRINCIPAL FINDINGS Mice were infected with T. spiralis larvae, and sera were collected before and 2, 4, and 8 weeks after infection. Metabolites in the sera were extracted and identified using untargeted mass spectrometry. Metabolomic data were annotated via the XCMS online platform and analyzed with Metaboanalyst version 5.0. A total of 10,221 metabolomic features were identified, and the levels of 566, 330, and 418 features were significantly changed at 2-, 4-, and 8-weeks post-infection, respectively. The altered metabolites were used for further pathway analysis and biomarker selection. A major pathway affected by Trichinella infection was glycerophospholipid metabolism, and glycerophospholipids comprised the main metabolite class identified. Receiver operating characteristic revealed 244 molecules with diagnostic power for trichinellosis, with phosphatidylserines (PS) being the primary lipid class. Some lipid molecules, e.g., PS (18:0/19:0)[U] and PA (O-16:0/21:0), were not present in metabolome databases of humans and mice, thus they may have been secreted by the parasites. CONCLUSIONS/SIGNIFICANCE Our study highlighted glycerophospholipid metabolism as the major pathway affected by trichinellosis, hence glycerophospholipid species are potential markers of trichinellosis. The findings of this study represent the initial steps in biomarker discovery that may benefit future trichinellosis diagnosis.
Collapse
|
3
|
Spatial Metabolomics Reveals Localized Impact of Influenza Virus Infection on the Lung Tissue Metabolome. mSystems 2022; 7:e0035322. [PMID: 35730946 PMCID: PMC9426520 DOI: 10.1128/msystems.00353-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza virus (IAV) is a major cause of respiratory disease, with significant infection increases in pandemic years. Vaccines are a mainstay of IAV prevention but are complicated by IAV’s vast strain diversity and manufacturing and vaccine uptake limitations. While antivirals may be used for treatment of IAV, they are most effective in early stages of the infection, and several virus strains have become drug resistant. Therefore, there is a need for advances in IAV treatment, especially host-directed therapeutics. Given the spatial dynamics of IAV infection and the relationship between viral spatial distribution and disease severity, a spatial approach is necessary to expand our understanding of IAV pathogenesis. We used spatial metabolomics to address this issue. Spatial metabolomics combines liquid chromatography-tandem mass spectrometry of metabolites extracted from systematic organ sections, 3D models, and computational techniques to develop spatial models of metabolite location and their role in organ function and disease pathogenesis. In this project, we analyzed serum and systematically sectioned lung tissue samples from uninfected or infected mice. Spatial mapping of sites of metabolic perturbations revealed significantly lower metabolic perturbation in the trachea compared to other lung tissue sites. Using random forest machine learning, we identified metabolites that responded differently in each lung position based on infection, including specific amino acids, lipids and lipid-like molecules, and nucleosides. These results support the implementation of spatial metabolomics to understand metabolic changes upon respiratory virus infection. IMPORTANCE The influenza virus is a major health concern. Over 1 billion people become infected annually despite the wide distribution of vaccines, and antiviral agents are insufficient to address current clinical needs. In this study, we used spatial metabolomics to understand changes in the lung and serum metabolome of mice infected with influenza A virus compared to uninfected controls. We determined metabolites altered by infection in specific lung tissue sites and distinguished metabolites perturbed by infection between lung tissue and serum samples. Our findings highlight the utility of a spatial approach to understanding the intersection between the lung metabolome, viral infection, and disease severity. Ultimately, this approach will expand our understanding of respiratory disease pathogenesis.
Collapse
|
4
|
Karimi Z, Oskouie AA, Rezaie F, Ajaminejad F, Marashi SM, Azad TM. The Effect of Influenza Virus on The Metabolism of Peripheral Blood Mononuclear Cells with Metabolomics Approach. J Med Virol 2022; 94:4383-4392. [DOI: 10.1002/jmv.27843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zeinab Karimi
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Afsaneh Arefi Oskouie
- Department of Basic, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical SciencesTehranIran
| | - Farhad Rezaie
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Fatemeh Ajaminejad
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| |
Collapse
|
5
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
6
|
Loy SL, Zhou J, Cui L, Tan TY, Ee TX, Chern BSM, Chan JKY, Lee YH. Discovery and validation of peritoneal endometriosis biomarkers in peritoneal fluid and serum. Reprod Biomed Online 2021; 43:727-737. [PMID: 34446375 DOI: 10.1016/j.rbmo.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
RESEARCH QUESTION What are the potential biomarkers for peritoneal endometriosis in peritoneal fluid and serum? DESIGN Case-control studies composed of independent discovery and validation sets were conducted. In the discovery set, untargeted liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics, multivariable and univariable analyses were conducted to generate global metabolomic profiles of peritoneal fluid for endometriosis and to identify potential metabolites that could distinguish peritoneal endometriosis (n = 10) from controls (n = 31). The identified metabolites from the discovery set were validated in independent peritoneal fluid (n =19 peritoneal endometriosis and n = 20 controls) and serum samples (n = 16 peritoneal endometriosis and n = 19 controls) using targeted metabolomics. The area under the receiver-operating characteristics curve (AUC) analysis was used to evaluate the diagnostic performance of peritoneal endometriosis metabolites. RESULTS In the discovery set, peritoneal fluid phosphatidylcholine (34:3) and phenylalanyl-isoleucine were significantly increased in peritoneal endometriosis groups compared with control groups, with AUC 0.77 (95% CI 0.61 to 0.92; P = 0.018) and AUC 0.98 (95% CI 0.95 to 1.02; P < 0.001), respectively. In the validation set, phenylalanyl-isoleucine retained discriminatory performance to distinguish peritoneal endometriosis from controls in both peritoneal fluid (AUC 0.77, 95% CI 0.61 to 0.92; P = 0.006) and serum samples (AUC 0.81, 95% CI 0.64 to 0.99; P = 0.004), with notably stronger discrimination between peritoneal endometriosis and controls in proliferative phase. CONCLUSION Our preliminary results propose phenylalanyl-isoleucine as a potential biomarker of peritoneal endometriosis, which may be used as a minimally invasive diagnostic biomarker of peritoneal endometriosis.
Collapse
Affiliation(s)
- See Ling Loy
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899; Obstetrics and Gynaecology-Academic Clinical Program, Duke-NUS Medical School, Singapore 169857
| | - Jieliang Zhou
- KK Research Centre, KK Women's and Children's Hospital, Singapore 229899
| | - Liang Cui
- KK Research Centre, KK Women's and Children's Hospital, Singapore 229899; Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602
| | - Tse Yeun Tan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899
| | - Tat Xin Ee
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899
| | - Bernard Su Min Chern
- Obstetrics and Gynaecology-Academic Clinical Program, Duke-NUS Medical School, Singapore 169857; Department of Obstetrics and Gynaecology, KK Women's and Children's Hospital, Singapore 229899
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899; Obstetrics and Gynaecology-Academic Clinical Program, Duke-NUS Medical School, Singapore 169857
| | - Yie Hou Lee
- Obstetrics and Gynaecology-Academic Clinical Program, Duke-NUS Medical School, Singapore 169857; KK Research Centre, KK Women's and Children's Hospital, Singapore 229899; Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602.
| |
Collapse
|
7
|
Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, Pérez-Fragoso A, Torres-Ruíz JJ, Gómez-Martín D, Campillo-Navarro M, Álvarez-Jiménez VD, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Maravillas-Montero JL, Chacón-Salinas R. Severe COVID-19 is marked by dysregulated serum levels of carboxypeptidase A3 and serotonin. J Leukoc Biol 2021; 110:425-431. [PMID: 34057753 PMCID: PMC8242632 DOI: 10.1002/jlb.4hi0221-087r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
The immune response plays a critical role in the pathophysiology of SARS‐CoV‐2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS‐CoV‐2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID‐19 patients. We noticed that SARS‐CoV‐2‐infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS‐CoV‐2‐negative patients. CPA3 levels correlated with C‐reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID‐19 patients, whereas serotonin was a good predictor of SARS‐CoV‐2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS‐CoV‐2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID‐19 and may represent targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José J Torres-Ruíz
- Departamento de Atención Institucional Continua y Urgencias, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- División de Ciencia Básica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| |
Collapse
|
8
|
Wendt CH, Castro-Pearson S, Proper J, Pett S, Griffin TJ, Kan V, Carbone J, Koulouris N, Reilly C, Neaton JD. Metabolite profiles associated with disease progression in influenza infection. PLoS One 2021; 16:e0247493. [PMID: 33798209 PMCID: PMC8018623 DOI: 10.1371/journal.pone.0247493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We performed metabolomic profiling to identify metabolites that correlate with disease progression and death. METHODS We performed a study of adults hospitalized with Influenza A(H1N1)pdm09. Cases (n = 32) were defined by a composite outcome of death or transfer to the intensive care unit during the 60-day follow-up period. Controls (n = 64) were survivors who did not require transfer to the ICU. Four hundred and eight metabolites from eight families were measured on plasma sample at enrollment using a mass spectrometry based Biocrates platform. Conditional logistic regression was used to summarize the association of the individual metabolites and families with the composite outcome and its major two components. RESULTS The ten metabolites with the strongest association with disease progression belonged to five different metabolite families with sphingolipids being the most common. The acylcarnitines, glycerides, sphingolipids and biogenic metabolite families had the largest odds ratios based on the composite endpoint. The tryptophan odds ratio for the composite is largely associated with death (OR 17.33: 95% CI, 1.60-187.76). CONCLUSIONS Individuals that develop disease progression when infected with Influenza H1N1 have a metabolite signature that differs from survivors. Low levels of tryptophan had a strong association with death. REGISTRY ClinicalTrials.gov Identifier: NCT01056185.
Collapse
Affiliation(s)
- Chris H. Wendt
- Pulmonary, Allergy, Critical Care and Sleep Medicine Section, Minneapolis Veterans Administration Health Care System, Minneapolis, Minnesota, United States of America
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sandra Castro-Pearson
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer Proper
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarah Pett
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States of America
| | - Virginia Kan
- Infectious Diseases Section, Veterans Administration Health Care System, and George Washington University, Washington, DC, United States of America
| | - Javier Carbone
- Clinical Immunology Department, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Nikolaos Koulouris
- Respiratory Medicine Dept, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Cavan Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James D. Neaton
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | |
Collapse
|
9
|
Hu X, Zhao Y, Yang Y, Gong W, Sun X, Yang L, Zhang Q, Jin M. Akkermansia muciniphila Improves Host Defense Against Influenza Virus Infection. Front Microbiol 2021; 11:586476. [PMID: 33603716 PMCID: PMC7884316 DOI: 10.3389/fmicb.2020.586476] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza virus infection can alter the composition of the gut microbiota, while its pathogenicity can, in turn, be highly influenced by the gut microbiota. However, the details underlying these associations remain to be determined. The H7N9 influenza virus is an emerging zoonotic pathogen which has caused the death of 616 humans and has incurred huge losses in the poultry industry. Here, we investigated the effects of infection with highly pathogenic H7N9 on gut microbiota and determined potential anti-influenza microbes. 16S rRNA sequencing results show that H7N9 infection alters the mouse gut microbiota by promoting the growth of Akkermansia, Ruminococcus 1, and Ruminococcaceae UCG-010, and reducing the abundance of Rikenellaceae RC9 gut group and Lachnoclostridium. Although the abundance of Akkermansia muciniphila is positively related to H7N9 infection, the oral administration of cultures, especially of pasteurized A. muciniphila, can significantly reduce weight loss and mortality caused by H7N9 infection in mice. Furthermore, oral administration of live or pasteurized A. muciniphila significantly reduces pulmonary viral titers and the levels IL-1β and IL-6 but enhances the levels of IFN-β, IFN-γ, and IL-10 in H7N9-infected mice, suggesting that the anti-influenza role of A. muciniphila is due to its anti-inflammatory and immunoregulatory properties. Taken together, we showed that the changes in the gut microbiota are associated with H7N9 infection and demonstrated the anti-influenza role of A. muciniphila, which enriches current knowledge about how specific gut bacterial strains protect against influenza infection and suggests a potential anti-influenza probiotic.
Collapse
Affiliation(s)
- Xiaotong Hu
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Zhao
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yong Yang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxiao Gong
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Yang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
10
|
Harden SL, Zhou J, Gharanei S, Diniz-da-Costa M, Lucas ES, Cui L, Murakami K, Fang J, Chen Q, Brosens JJ, Lee YH. Exometabolomic Analysis of Decidualizing Human Endometrial Stromal and Perivascular Cells. Front Cell Dev Biol 2021; 9:626619. [PMID: 33585482 PMCID: PMC7876294 DOI: 10.3389/fcell.2021.626619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the menstrual cycle with decidual transformation of perivascular cells (PVC) surrounding the terminal spiral arterioles and endometrial stromal cells (EnSC) underlying the luminal epithelium. Decidualization involves extensive cellular reprogramming and acquisition of a secretory phenotype, essential for coordinated placental trophoblast invasion. Secreted metabolites are an emerging class of signaling molecules, collectively known as the exometabolome. Here, we used liquid chromatography-mass spectrometry to characterize and analyze time-resolved changes in metabolite secretion (exometabolome) of primary PVC and EnSC decidualized over 8 days. PVC were isolated using positive selection of the cell surface marker SUSD2. We identified 79 annotated metabolites differentially secreted upon decidualization, including prostaglandin, sphingolipid, and hyaluronic acid metabolites. Secreted metabolites encompassed 21 metabolic pathways, most prominently glycerolipid and pyrimidine metabolism. Although temporal exometabolome changes were comparable between decidualizing PVC and EnSC, 32 metabolites were differentially secreted across the decidualization time-course. Further, targeted metabolomics demonstrated significant differences in secretion of purine pathway metabolites between decidualized PVC and EnSC. Taken together, our findings indicate that the metabolic footprints generated by different decidual subpopulations encode spatiotemporal information that may be important for optimal embryo implantation.
Collapse
Affiliation(s)
- Sarah L. Harden
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jieliang Zhou
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Seley Gharanei
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Maria Diniz-da-Costa
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Emma S. Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Liang Cui
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
| | - Keisuke Murakami
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Jinling Fang
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jan J. Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Costa dos Santos Junior G, Pereira CM, Kelly da Silva Fidalgo T, Valente AP. Saliva NMR-Based Metabolomics in the War Against COVID-19. Anal Chem 2020; 92:15688-15692. [PMID: 33215503 PMCID: PMC7688045 DOI: 10.1021/acs.analchem.0c04679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is an emergent, worldwide public health concern. Joint efforts have been made by scientific communities of various fields to better understand the mechanisms of action of SARS-CoV-2. The need to understand the pathophysiological fingerprint and pathways of this disease make metabolomics-related approaches an indispensable tool for properly answering concerns relating to disease course. Determination of the metabolomic profile may help to explain the heterogeneous spectra of COVID-19 clinical phenotypes and be useful in monitoring disease progression as well as therapeutic treatments. In this sense, saliva has proven to be a strategic biofluid, owing not only to its appeal as a noninvasive sampling method but also due to the capacity of the virus to invade epithelial cells of the oral mucosa and salivary gland ducts via ACE2 receptors. Accordingly, important changes in metabolism have been described relating to COVID-19, indicating that metabolomics may open new avenues for understanding the pathophysiology of this disease, especially via longitudinal study designs. Thus, we discuss the importance of comprehending the SARS-CoV-2 salivary metabolomic fingerprint and also highlight the situation of Brazil on the frontlines of the war against COVID-19.
Collapse
Affiliation(s)
- Gilson Costa dos Santos Junior
- Laboratory of NMR Metabolomics, IBRAG, Department of
Genetics, State University of Rio de Janeiro, Boulevard 28 de
Setembro 77 fds, Vila Isabel, RJ, 20551-030 Rio de Janeiro,
Brazil
| | - Claudia Maria Pereira
- Postgraduate Program in Translational Biomedicine,
Grande Rio University, Rua Professor José de Souza
Herdy, 1160, Jardim Vinte e Cinco de Agosto, 25071-202 Duque de Caxias,
Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Dental School, Department of Preventive and Community
Dentistry, State University of Rio de Janeiro, Boulevard 28 de
Setembro, 157, Vila Isabel, 20551-030 Rio de Janeiro, Brazil
| | - Ana Paula Valente
- BioNMR, CENABIO I, Department of Structural Biology,
Federal University of Rio de Janeiro, Av. Carlos Chagas
Filho, 373, CCS/bloco K-anexo, 21941-599 Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Nunes EDC, Canuto GAB. Metabolomics applied in the study of emerging arboviruses caused by Aedes aegypti mosquitoes: A review. Electrophoresis 2020; 41:2102-2113. [PMID: 32885853 DOI: 10.1002/elps.202000133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Arboviruses, such as chikungunya, dengue, yellow fever, and zika, caused by the bite of the Aedes aegypti mosquito, have been a frequent public health problem, with a high incidence of outbreaks in tropical and subtropical countries. These diseases are easily confused with a flu-like illness and present very similar symptoms, difficult to distinguish, and treat appropriately. The effects that these infections cause in the organism are fundamentally derived from complex metabolic processes. A prominent area of science that investigates the changes in the metabolism of complex organisms is the metabolomics. Metabolomics measures the metabolites produced or altered in biological organisms, through the use of robust analytical platforms, such as separation techniques hyphenated with mass spectrometry, combined with bioinformatics. This review article presents an overview of the basic concepts of metabolomics workflow and advances in this field, and compiles research articles that use this omic approach to study these arboviruses. In this context, the metabolomics is applied to search new therapies, understand the viral replication mechanisms, and access the host-virus interactions.
Collapse
Affiliation(s)
- Estéfane da Cruz Nunes
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
13
|
Zhao P, Hou K, Yang S, Xia X. Characterization of small metabolites alteration in mice brain tissues after infected by rabies virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104571. [PMID: 32980577 DOI: 10.1016/j.meegid.2020.104571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
Abstract
Rabies, caused by rabies virus (RABV), is still one of the deadliest infectious diseases. Host metabolomic changes against RABV infection has not yet been fully understood. We performed untargeted metabolomics to discover the metabolites associated with RABV infection. The brain tissues from 20 RABV infected mice and 10 mock infected mice were used for this method. A total of 1352 differential metabolites were identified after the first-run screen, and the number reduced to 75 after second-run screen. Multivariate analysis using PLS-DA and OPLS-DA clearly discriminated the RABV infected samples from controls. Pathways enrichment analysis revealed that most differential metabolites were associated with metabolism of nucleotide and amino acid, and aminoacyl - tRNA biosynthesis and purine metabolism were the most active pathways. The findings presented in our study would promote the understanding of metabolomics changes in brains of mice after RABV infection as well as a new perspective to study the relationship between RABV and host.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Shaoguan 512025, China.
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| |
Collapse
|
14
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
15
|
Kumar R, Ghosh M, Kumar S, Prasad M. Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Front Microbiol 2020; 11:1152. [PMID: 32582094 PMCID: PMC7286130 DOI: 10.3389/fmicb.2020.01152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral emergence is an unpredictable but obvious event, particularly in the era of climate change and globalization. Efficient management of viral outbreaks depends on pre-existing knowledge and alertness. The potential hotspots of viral emergence often remain neglected and the information related to them is insufficient, particularly for emerging viruses. Viral replication and transmission rely upon usurping the host metabolic machineries. So altered host metabolic pathways can be exploited for containment of these viruses. Metabolomics provides the insight for tracing out such checkpoints. Consequently introspection of metabolic alteration at virus-host interface has evolved as prime area in current virology research. Chromatographic separation followed by mass spectrometry has been used as the predominant analytical platform in bulk of the analyses followed by nuclear magnetic resonance (NMR) and fluorescence based techniques. Although valuable information regarding viral replication and modulation of host metabolic pathways have been extracted but ambiguity often superseded the real events due to population effect over the infected cells. Exploration of cellular heterogeneity and differentiation of infected cells from the nearby healthy ones has become essential. Single cell metabolomics (SCM) emerges as necessity to explore such minute details. Mass spectrometry imaging (MSI) coupled with several soft ionization techniques such as electrospray ionization (ESI), laser ablation electrospray ionization (LAESI), matrix assisted laser desorption/ionization (MALDI), matrix-free laser desorption ionization (LDI) have evolved as the best suited platforms for SCM analyses. The potential of SCM has already been exploited to resolve several biological conundrums. Thus SCM is knocking at the door of virus-host interface.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, India
| | - Sandeep Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
16
|
Keshavarz M, Solaymani-Mohammadi F, Namdari H, Arjeini Y, Mousavi MJ, Rezaei F. Metabolic host response and therapeutic approaches to influenza infection. Cell Mol Biol Lett 2020; 25:15. [PMID: 32161622 PMCID: PMC7059726 DOI: 10.1186/s11658-020-00211-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Based on available metabolomic studies, influenza infection affects a variety of cellular metabolic pathways to ensure an optimal environment for its replication and production of viral particles. Following infection, glucose uptake and aerobic glycolysis increase in infected cells continually, which results in higher glucose consumption. The pentose phosphate shunt, as another glucose-consuming pathway, is enhanced by influenza infection to help produce more nucleotides, especially ATP. Regarding lipid species, following infection, levels of triglycerides, phospholipids, and several lipid derivatives undergo perturbations, some of which are associated with inflammatory responses. Also, mitochondrial fatty acid β-oxidation decreases significantly simultaneously with an increase in biosynthesis of fatty acids and membrane lipids. Moreover, essential amino acids are demonstrated to decline in infected tissues due to the production of large amounts of viral and cellular proteins. Immune responses against influenza infection, on the other hand, could significantly affect metabolic pathways. Mainly, interferon (IFN) production following viral infection affects cell function via alteration in amino acid synthesis, membrane composition, and lipid metabolism. Understanding metabolic alterations required for influenza virus replication has revealed novel therapeutic methods based on targeted inhibition of these cellular metabolic pathways.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Influenza Center, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Byers NM, Fleshman AC, Perera R, Molins CR. Metabolomic Insights into Human Arboviral Infections: Dengue, Chikungunya, and Zika Viruses. Viruses 2019; 11:E225. [PMID: 30845653 PMCID: PMC6466193 DOI: 10.3390/v11030225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
The global burden of arboviral diseases and the limited success in controlling them calls for innovative methods to understand arbovirus infections. Metabolomics has been applied to detect alterations in host physiology during infection. This approach relies on mass spectrometry or nuclear magnetic resonance spectroscopy to evaluate how perturbations in biological systems alter metabolic pathways, allowing for differentiation of closely related conditions. Because viruses heavily depend on host resources and pathways, they present unique challenges for characterizing metabolic changes. Here, we review the literature on metabolomics of arboviruses and focus on the interpretation of identified molecular features. Metabolomics has revealed biomarkers that differentiate disease states and outcomes, and has shown similarities in metabolic alterations caused by different viruses (e.g., lipid metabolism). Researchers investigating such metabolomic alterations aim to better understand host⁻virus dynamics, identify diagnostically useful molecular features, discern perturbed pathways for therapeutics, and guide further biochemical research. This review focuses on lessons derived from metabolomics studies on samples from arbovirus-infected humans.
Collapse
Affiliation(s)
- Nathaniel M Byers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Amy C Fleshman
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Rushika Perera
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-1692, USA.
| | - Claudia R Molins
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| |
Collapse
|
18
|
Elevated peritoneal fluid ceramides in human endometriosis-associated infertility and their effects on mouse oocyte maturation. Fertil Steril 2019; 110:767-777.e5. [PMID: 30196975 DOI: 10.1016/j.fertnstert.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the peritoneal fluid (PF) sphingolipid profile in endometriosis-associated infertility (EAI), and to assess the plausible functional role(s) of ceramides in oocyte maturation potential. DESIGN Retrospective case-control study and in vitro mouse oocyte study. SETTING University-affiliated hospital and university laboratory. SUBJECTS Twenty-seven infertile patients diagnosed with endometriosis and 20 infertile patients who did not have endometriosis; BALB/c female mice. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) PF sphingolipid concentrations. Number of metaphase II (MII) mouse oocytes. RESULT(S) Liquid chromatography-tandem mass spectrometry revealed 11 significantly elevated PF sphingolipids in infertile women with severe endometriosis compared with infertile women without endometriosis (change >50%, false discovery rate ≤10%). Logistic regression analysis identified three very-long-chain ceramides potentially associated with EAI. Functional studies revealed that very-long-chain ceramides may compromise or induce murine MII oocyte maturation. The oocyte maturation effects induced by the very long-chain ceramides were triggered by alterations in mitochondrial superoxide production in a concentration-dependent manner. Scavenging of mitochondrial superoxide reversed the maturation effects of C24:0 ceramide. CONCLUSION(S) EAI is associated with accumulation of PF very-long-chain ceramides. Mouse studies demonstrated how ceramides affect MII oocyte maturation, mediating through mitochondrial superoxide. These results provide an opportunity for direct functional readout of pathophysiology in EAI, and future therapies targeted at this sphingolipid metabolism may be harnessed for improved oocyte maturation.
Collapse
|
19
|
Association of polymorphisms in serotonin and nitric oxide genes with clinical outcome of dengue in Brazilian northeast population. Acta Trop 2019; 190:144-148. [PMID: 30452889 DOI: 10.1016/j.actatropica.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Serotonin and nitric oxide seem to be involved in Dengue virus infection. The aim of this study was to investigate if SNPs in serotonin and nitric oxide are associated with dengue severity. A retrospective case-control study was conducted, with groups of dengue fever (DF; n = 78) and dengue hemorrhagic fever patients (DHF; n = 49). Genotyping was performed using qPCR and PCR. The power of the sample size was calculated by G*power software. The heterozygous SL for 5-HTTLPR SNP was significantly correlated with protection against progression to DHF in the codominant SS/SL/LL (OR = 0.22, 95% CI = 0.06-0.81, p = 0.011) and overdominant models SL vs SS + LL (OR = 0.19, 95% CI = 0.06-0.65, p = 0.003). For the ENOS (rs1799983) SNP, the genotype GT was positively associated with protection for development of the clinical form in DHF compared to dengue fever (OR = 0.39, 95% CI = (0.13-1.14), p = 0.0058) in codominant GG/GT/TT and overdominant model GT vs GG + TT (OR = 0.35, 95% CI = (0.12-1.02), p = 0.04). To our knowledge, this is the first study to identify the association of the serotonin and nitric oxide SNPs with dengue severity.
Collapse
|
20
|
Tan KS, Yan Y, Koh WLH, Li L, Choi H, Tran T, Sugrue R, Wang DY, Chow VT. Comparative Transcriptomic and Metagenomic Analyses of Influenza Virus-Infected Nasal Epithelial Cells From Multiple Individuals Reveal Specific Nasal-Initiated Signatures. Front Microbiol 2018; 9:2685. [PMID: 30487780 PMCID: PMC6246735 DOI: 10.3389/fmicb.2018.02685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
In vitro and in vivo research based on cell lines and animals are likely to be insufficient in elucidating authentic biological and physiological phenomena mimicking human systems, especially for generating pre-clinical data on targets and biomarkers. There is an obvious need for a model that can further bridge the gap in translating pre-clinical findings into clinical applications. We have previously generated a model of in vitro differentiated human nasal epithelial cells (hNECs) which elucidated the nasal-initiated repertoire of immune responses against respiratory viruses such as influenza A virus and rhinovirus. To assess their clinical utility, we performed a microarray analysis of influenza virus-infected hNECs to elucidate nasal epithelial-initiated responses. This was followed by a metagenomic analysis which revealed transcriptomic changes comparable with clinical influenza datasets. The primary target of influenza infection was observed to be the initiator of innate and adaptive immune genes, leaning toward type-1 inflammatory activation. In addition, the model also elucidated a down-regulation of metabolic processes specific to the nasal epithelium, and not present in other models. Furthermore, the hNEC model detected all 11 gene signatures unique to influenza infection identified from a previous study, thus supporting the utility of nasal-based diagnosis in clinical settings. In conclusion, this study highlights that hNECs can serve as a model for nasal-based clinical translational studies and diagnosis to unravel nasal epithelial responses to influenza in the population, and as a means to identify novel molecular diagnostic markers of severity.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wai Ling Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Richard Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. MASS SPECTROMETRY REVIEWS 2018; 37:772-792. [PMID: 29486047 DOI: 10.1002/mas.21562] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/02/2018] [Indexed: 05/03/2023]
Abstract
In the past decade, advances in liquid chromatography-mass spectrometry (LC-MS) have revolutionized untargeted metabolomics analyses. By mining metabolomes more deeply, researchers are now primed to uncover key metabolites and their associations with diseases. The employment of untargeted metabolomics has led to new biomarker discoveries and a better mechanistic understanding of diseases with applications in precision medicine. However, many major pertinent challenges remain. First, compound identification has been poor, and left an overwhelming number of unidentified peaks. Second, partial, incomplete metabolomes persist due to factors such as limitations in mass spectrometry data acquisition speeds, wide-range of metabolites concentrations, and cellular/tissue/temporal-specific expression changes that confound our understanding of metabolite perturbations. Third, to contextualize metabolites in pathways and biology is difficult because many metabolites partake in multiple pathways, have yet to be described species specificity, or possess unannotated or more-complex functions that are not easily characterized through metabolomics analyses. From a translational perspective, information related to novel metabolite biomarkers, metabolic pathways, and drug targets might be sparser than they should be. Thankfully, significant progress has been made and novel solutions are emerging, achieved through sustained academic and industrial community efforts in terms of hardware, computational, and experimental approaches. Given the rapidly growing utility of metabolomics, this review will offer new perspectives, increase awareness of the major challenges in LC-MS metabolomics that will significantly benefit the metabolomics community and also the broader the biomedical community metabolomics aspire to serve.
Collapse
Affiliation(s)
- Liang Cui
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Infectious Diseases-Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Haitao Lu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yie Hou Lee
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
- OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
22
|
Serum fatty acids and progression from dengue fever to dengue haemorrhagic fever/dengue shock syndrome. Br J Nutr 2018; 120:787-796. [PMID: 30105961 DOI: 10.1017/s0007114518002039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PUFA might modulate inflammatory responses involved in the development of severe dengue. We aimed to examine whether serum PUFA concentrations in patients diagnosed with dengue fever (DF) were related to the risk of progression to dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). A secondary aim was to assess correlations between fatty acids (FA) and inflammatory biomarkers in patients with DF. We conducted a prospective case-control study nested within a cohort of patients who were diagnosed with DF and followed during the acute episode. We compared the distribution of individual FA (% of total FA) at onset of fever between 109 cases who progressed to DHF/DSS and 235 DF non-progressing controls using unconditional logistic regression. We estimated correlations between baseline FA and cytokine concentrations and compared FA concentrations between the acute episode and >1 year post-convalescence in a subgroup. DHA was positively related to progression to DHF/DSS (multivariable adjusted OR (AOR) for DHA in quintile 5 v. 1=5·34, 95 % CI 2·03, 14·1; P trend=0·007). Dihomo-γ-linolenic acid (DGLA) was inversely associated with progression (AOR for quintile 5 v. 1=0·30, 95 % CI 0·13, 0·69; P trend=0·007). Pentadecanoic acid concentrations were inversely related to DHF/DSS. Correlations of PUFA with cytokines at baseline were low. PUFA were lower during the acute episode than in a disease-free period. In conclusion, serum DHA in patients with DF predicts higher odds of progression to DHF/DSS whereas DGLA and pentadecanoic acid predict lower odds.
Collapse
|
23
|
Sun X, Song L, Feng S, Li L, Yu H, Wang Q, Wang X, Hou Z, Li X, Li Y, Zhang Q, Li K, Cui C, Wu J, Qin Z, Wu Q, Chen H. Fatty Acid Metabolism is Associated With Disease Severity After H7N9 Infection. EBioMedicine 2018; 33:218-229. [PMID: 29941340 PMCID: PMC6085509 DOI: 10.1016/j.ebiom.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human infections with the H7N9 virus could lead to lung damage and even multiple organ failure, which is closely associated with a high mortality rate. However, the metabolic basis of such systemic alterations remains unknown. METHODS This study included hospitalized patients (n = 4) with laboratory-confirmed H7N9 infection, healthy controls (n = 9), and two disease control groups comprising patients with pneumonia (n = 9) and patients with pneumonia who received steroid treatment (n = 10). One H7N9-infected patient underwent lung biopsy for histopathological analysis and expression analysis of genes associated with lung homeostasis. H7N9-induced systemic alterations were investigated using metabolomic analysis of sera collected from the four patients by using ultra-performance liquid chromatography-mass spectrometry. Chest digital radiography and laboratory tests were also conducted. FINDINGS Two of the four patients did not survive the clinical treatments with antiviral medication, steroids, and oxygen therapy. Biopsy revealed disrupted expression of genes associated with lung epithelial integrity. Histopathological analysis demonstrated severe lung inflammation after H7N9 infection. Metabolomic analysis indicated that fatty acid metabolism may be inhibited during H7N9 infection. Serum levels of palmitic acid, erucic acid, and phytal may negatively correlate with the extent of lung inflammation after H7N9 infection. The changes in fatty acid levels may not be due to steroid treatment or pneumonia. INTERPRETATION Altered structural and secretory properties of the lung epithelium may be associated with the severity of H7N9-infection-induced lung disease. Moreover, fatty acid metabolism level may predict a fatal outcome after H7N9 virus infection.
Collapse
Affiliation(s)
- Xin Sun
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Lijia Song
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuang Feng
- Department of Clinical Laboratory, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Li Li
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Hongzhi Yu
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Qiaoxing Wang
- Department of Clinical Laboratory, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Xing Wang
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Zhili Hou
- Department of Tuberculosis, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Xue Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Yu Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China
| | - Chao Cui
- Department of Thoracic Surgery, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Junping Wu
- Department of Respiratory Medicine, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Zhonghua Qin
- Department of Clinical Laboratory, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China; Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China.
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300070, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China.
| |
Collapse
|
24
|
Geluk A. Correlates of immune exacerbations in leprosy. Semin Immunol 2018; 39:111-118. [PMID: 29950273 DOI: 10.1016/j.smim.2018.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023]
Abstract
Leprosy is still a considerable health threat in pockets of several low and middle income countries worldwide where intense transmission is witnessed, and often results in irreversible disabilities and deformities due to delayed- or misdiagnosis. Early detection of leprosy represents a substantial hurdle in present-day leprosy health care. The dearth of timely diagnosis has, however, particularly severe consequences in the case of inflammatory episodes, designated leprosy reactions, which represent the major cause of leprosy-associated irreversible neuropathy. There is currently no accurate, routine diagnostic test to reliably detect leprosy reactions, or to predict which patients will develop these immunological exacerbations. Identification of host biomarkers for leprosy reactions, particularly if correlating with early onset prior to development of clinical symptoms, will allow timely interventions that contribute to decreased morbidity. Development of a point-of-care (POC) test based on such correlates would be a definite game changer in leprosy health care. In this review, proteomic-, transcriptomic and metabolomic research strategies aiming at identification of host biomarker-based correlates of leprosy reactions are discussed, next to external factors associated with occurrence of these episodes. The vast diversity in research strategies combined with the variability in patient- and control cohorts argues for harmonisation of biomarker discovery studies with geographically overarching study sites. This will improve identification of specific correlates associated with risk of these damaging inflammatory episodes in leprosy and subsequent application to rapid field tests.
Collapse
Affiliation(s)
- Annemieke Geluk
- Dept. of Infectious Diseases, LUMC, PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
25
|
Tan WL, Lee YK, Ho YF, Yusof R, Abdul Rahman N, Karsani SA. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection. PeerJ 2018; 5:e3939. [PMID: 29404200 PMCID: PMC5796277 DOI: 10.7717/peerj.3939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022] Open
Abstract
Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.
Collapse
Affiliation(s)
- Wei-Lian Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yen Fong Ho
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Medical Biotechnology Laboratory, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|