1
|
Dhara TK, Khawas S, Sharma N. Lipid nanoparticles for pulmonary fibrosis: A comprehensive review. Pulm Pharmacol Ther 2024; 87:102319. [PMID: 39216596 DOI: 10.1016/j.pupt.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive and irreversible ailment associated with the proliferation of fibroblast and accumulation of extracellular matrix (ECM) with gradual scarring of lung tissue. Despite several research studies, the treatments available are not efficient enough for the reversal of the disease and are constantly in progress. No drugs other than Pirfenidone and Nintedanib have been approved for the treatment of IPF, necessitating the exploration of novel therapeutic strategies. Recently, lipid-based nanoparticles (LNPs) have drawn more attention because of their potential to enhance the solubility of drugs, cross biological barriers of the lungs and specifically target lung fibrotic tissues, overcoming various challenges in treating IPF. LNPs offer a versatile platform to encapsulate a wide range of drugs, both hydrophilic and lipophilic, improving their bioavailability, allowing sustained release and reducing toxicity, which radiates their significant role in addressing the complexities of IPF. This review summarizes the pathogenesis and conventional treatment of idiopathic pulmonary fibrosis, along with their drawbacks. The review focuses on different types of lipid-based nanoparticles that have been tested in the treatment of idiopathic pulmonary fibrosis, including nanoemulsions, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, niosomes and lipid-polymer hybrid nanoparticles. The review also highlights the future prospects that can offer a potential approach for developing novel strategies to treat idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Tushar Kanti Dhara
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sayak Khawas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Zhang X, Wang X, Qu J, Zhang Y, Li C, Wu W, Li W. Acoustic resonance technology and quality by design approach facilitate the development of the robust tetrandrine nano-delivery system. Eur J Pharm Biopharm 2024; 204:114522. [PMID: 39370058 DOI: 10.1016/j.ejpb.2024.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The aim of this study was to develop a sufficiently robust tetrandrine (Tet) nano-delivery system using acoustic resonance (AR) technology and freeze-drying technology. This system can effectively improve the solubility and dissolution properties of Tet, along with high stability and scale-up adaptability. Firstly, 54 stabilizers were screened simultaneously in a high-throughput manner with the help of AR technology to fully explore the optimal prescription space of tetrandrine nanosuspension (Tet-NS). The Plackett-Burman design was used to screen for critical variables severely affecting the quality of Tet-NS. The Box-Behnken design was used to investigate and optimize critical variables to obtain optimal nanosuspensions. The optimal prescription was successfully scaled up by 100 times, which was the initial exploration of its commercial scale production. Solidification studies have shown that formulations with 2.44% fructose as the cryoprotectant have excellent redispersibility. Compared with pure Tet, Tet in Tet-NS showed a significant increase in solubility and dissolution rate in water. Fourier transform infrared (FT-IR) demonstrated that no significant interactions occurred between the drug and excipients in Tet-NS. Powder x-ray diffraction analysis (PXRD) indicated that some of the Tet transformed into amorphous state during the preparation process. In short-term stability study, Tet-NS successfully maintained its physical stability. In summary, under the guidance of the QbD concept, this study rapidly developed Tet-NS using acoustic resonance technology, which can effectively improve the solubility and dissolution properties of Tet. During the development of Tet-NS, AR technology has demonstrated high particle size reduction capability, the ability to process multiple sets of formulations in parallel, and excellent scale-up capability. Meanwhile, the method and concept of this study are not limited to Tet, but also applicable to other poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianlu Qu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yao Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cunhao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Wu
- Shenzhen Huasheng Process Intensification Technology Co., Ltd., China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Guo Y, Song J, Liu Y, Yuan M, Zhong W, Guo Y, Guo L. Study on the Hepatotoxicity of Emodin and Its Application in the Treatment of Liver Fibrosis. Molecules 2024; 29:5122. [PMID: 39519763 PMCID: PMC11547690 DOI: 10.3390/molecules29215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Emodin (EMO) is an anthraquinone compound derived from Rheum palmatum L., which has rich pharmacological activity. However, studies have shown that EMO may cause hepatotoxicity. In this study, EMO was combined with tetrandrine and prepared as lipid nanoparticles (E-T/LNPs). The anti-liver fibrosis activity of EMO before and after formulation was evaluated by zebrafish and mice. In addition, the toxicity of EMO and E-T/LNPs was compared and the toxicity-efficacy concentrations of E-T/LNPs in zebrafish were verified. E-T/LNPs are morphologically stable (particle size within 100 nm), have high encapsulation efficiency and good stability, and are capable of long-lasting slow release in vitro. The combination and preparation can reduce the toxicity and enhance the effect of EMO, and increase the toxicity and effect concentration of E-T/LNPs in vivo. In a short period, low doses of E-T/LNPs can be used for the treatment of liver fibrosis; high doses of E-T/LNPs cause toxicity in vivo. Immunohistochemistry showed that E-T/LNPs inhibited hepatic fibrosis by downregulating the levels of IL-1β and TGF-β. Based on the advantages of combination therapy and nanotechnology, it can play a role in reducing the toxicity and increasing the efficacy of EMO in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yurou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenxiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Li J, Cui P, Jing H, Chen S, Ma L, Zhang W, Wang T, Ma J, Cao M, Yang Y, Bai J, Shao H, Du Z. Hydrogen combined with tetrandrine attenuates silica-induced pulmonary fibrosis via suppressing NF-kappaB/NLRP3 signaling pathway-mediated epithelial mesenchymal transition and inflammation. Int Immunopharmacol 2024; 138:112563. [PMID: 38943976 DOI: 10.1016/j.intimp.2024.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Silicosis is a progressive disease characterized by interstitial fibrosis resulting from inhalation of silica particles, and currently lacks specific treatment. Hydrogen (H2) has demonstrated antioxidative, anti-inflammatory, and anti-fibrotic properties, yet its efficacy in treating silicosis remains unexplored. In this study, rats exposed to silica were administered interventions of H2 combined with tetrandrine, and euthanized at 14, 28, and 56 days post-intervention. Lung tissues and serum samples were collected for analysis. Histological examination, MDA assay, enzyme-linked immunosorbent assay, hydroxyproline assay, and Western blotting were employed to assess the impact of H2 combined with tetrandrine on pulmonary fibrosis. The results revealed that this combination significantly alleviated inflammation in silicosis-afflicted rats, effectively suppressed levels of MDA, TNF-α, and IL-1β expression, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Notably, protein expression level of E-cadherin was increased,however protein expression levels of vimentin and α-SMA were reduced, and TGF-β were reduced, alongside a significant decrease in hydroxyproline content. Furthermore, H2 combined with tetrandrine downregulated protein expression of NF-κB p65, NF-κB p-p65, Caspase-1, ASC, and NLRP3. These findings substantiate the hypothesis that H2 combined with tetrandrine mitigates inflammation associated with silicosis and suppresses the EMT process to ameliorate fibrosis via the NF-κB/NLRP3 signaling pathway. However, the pressure of airway opening was not assessed in this study and dynamic readings of lung physiological function were not obtained, which is a major limitation of this study.
Collapse
Affiliation(s)
- Juan Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Ping Cui
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Hua Jing
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Shangya Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Li Ma
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Wanxin Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Tian Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Jiazi Ma
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Mao Cao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Yong Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China
| | - Jin Bai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China.
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China.
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250062, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Song J, Liu Y, Guo Y, Yuan M, Zhong W, Tang J, Guo Y, Guo L. Therapeutic effects of tetrandrine in inflammatory diseases: a comprehensive review. Inflammopharmacology 2024; 32:1743-1757. [PMID: 38568399 DOI: 10.1007/s10787-024-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 05/30/2024]
Abstract
Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.
Collapse
Affiliation(s)
- Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yurou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Chu L, Zhuo J, Huang H, Chen W, Zhong W, Zhang J, Meng X, Zou F, Cai S, Zou M, Dong H. Tetrandrine alleviates pulmonary fibrosis by inhibiting alveolar epithelial cell senescence through PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 969:176459. [PMID: 38438063 DOI: 10.1016/j.ejphar.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the β-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.
Collapse
Affiliation(s)
- Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Wang K, Deng J, Yang J, Wang A, Ye M, Chen Q, Chen G, Lin D. Tetrandrine promotes the survival of the random skin flap via the PI3K/AKT signaling pathway. Phytother Res 2024; 38:527-538. [PMID: 37909161 DOI: 10.1002/ptr.8058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Acar T, Arayici PP, Ucar B, Coksu I, Tasdurmazli S, Ozbek T, Acar S. Host-Guest Interactions of Caffeic Acid Phenethyl Ester with β-Cyclodextrins: Preparation, Characterization, and In Vitro Antioxidant and Antibacterial Activity. ACS OMEGA 2024; 9:3625-3634. [PMID: 38284065 PMCID: PMC10809231 DOI: 10.1021/acsomega.3c07643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The aim of this study is to improve the solubility, chemical stability, and in vitro biological activity of caffeic acid phenethyl ester (CAPE) by forming inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (Hβ-CD) using the solvent evaporation method. The CAPE contents of the produced complexes were determined, and the complexes with the highest CAPE contents were selected for further characterization. Detailed characterization of inclusion complexes was performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrospray ionization-mass spectrometry (ESI-MS). pH and thermal stability studies showed that both selected inclusion complexes exhibited better stability compared to free CAPE. Moreover, their antimicrobial activities were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for the first time. According to the broth dilution assay, complexes with the highest CAPE content (10C/β-CD and 10C/Hβ-CD) exhibited considerable growth inhibition effects against both bacteria, 31.25 μg/mL and 62.5 μg/mL, respectively; contrarily, this value for free CAPE was 500 μg/mL. Furthermore, it was determined that the in vitro antioxidant activity of the complexes increased by about two times compared to free CAPE.
Collapse
Affiliation(s)
- Tayfun Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Pelin Pelit Arayici
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Burcu Ucar
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Irem Coksu
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Semra Tasdurmazli
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tulin Ozbek
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
9
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
10
|
Huang J, Huang S, Liu S, Feng L, Huang W, Wang Y, Huang D, Huang T, Huang X. Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2023; 25:4. [PMID: 38114843 DOI: 10.1208/s12249-023-02718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group (P < 0.01). Moreover, the qualitative and quantitative cellular uptake results revealed a significant enhancement in cellular uptake in the TET-HNC@GL administration group compared to the TET-HNC@PVPK30 group (P < 0.01). In vivo pharmacokinetic results showed that the bioavailability of TET-NC@GL group was 3.5 times higher than that of the TET group. The results demonstrate the successful preparation of TET-NC@GL nanocrystals.
Collapse
Affiliation(s)
- Jinping Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shuwen Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shengjun Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Lizhen Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Wenxiu Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yao Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Dongyi Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Tingting Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xingzhen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
11
|
Wan Q, Zhang X, Zhou D, Xie R, Cai Y, Zhang K, Sun X. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnology 2023; 21:215. [PMID: 37422665 DOI: 10.1186/s12951-023-01971-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.
Collapse
Affiliation(s)
- Qianyu Wan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongfang Zhou
- Zhejiang China Resources Sanjiu Zhongyi Pharmaceutical Co., Ltd, Lishui, 323000, China
| | - Rui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kehao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
12
|
Ma X, Xia K, Xie J, Yan B, Han X, Li S, Wang Y, Fu T. Treatment of Idiopathic Pulmonary Fibrosis by Inhaled Silybin Dry Powder Prepared via the Nanosuspension Spray Drying Technology. ACS Pharmacol Transl Sci 2023; 6:878-891. [PMID: 37325446 PMCID: PMC10262316 DOI: 10.1021/acsptsci.3c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 06/17/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a kind of life-threatening interstitial lung disease characterized by progressive dyspnea with accurate pathogenesis unknown. At present, heat shock protein inhibitors are gradually used to treat IPF. Silybin, a heat shock protein C-terminal inhibitor, has high safety and good application prospects. In this work, we have developed a silybin powder able to be used for inhalation administration for the treatment of IPF. Silybin powder was prepared by the spray drying method and identified using cascade impactometry, particle size, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. A rat model of bleomycin-induced IPF was used to assess the effect of inhaled silybin spray-dried powder. Lung hydroxyproline content, wet weight, histology, inflammatory factor expression, and gene expression were examined. The results showed that inhaled silybin spray-dried powder alleviated inflammation and fibrosis, limited hydroxyproline accumulation in the lungs, modulated gene expression in the development of IPF, and improved postoperative survival. The results of this study suggest that silybin spray-dried powder is an attractive candidate for the treatment of IPF.
Collapse
Affiliation(s)
| | | | - Jianjun Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baofei Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingxing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sipan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Gao P, Rao ZW, Li M, Sun XY, Gao QY, Shang TZ, Chen C, Zhang CL. Tetrandrine Represses Inflammation and Attenuates Osteoarthritis by Selective Inhibition of COX-2. Curr Med Sci 2023:10.1007/s11596-023-2725-6. [PMID: 37204627 DOI: 10.1007/s11596-023-2725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE There is a lack of effective and long-term safe drugs for the treatment of osteoarthritis (OA). Tetrandrine (Tet) has been approved and used to treat rheumatoid arthritis for several decades, but its effect on OA has not been investigated. Herein, we explored the effect of Tet on OA and its underlying mechanism. METHODS OA was induced using destabilization of the medial meniscus (DMM) in C57BL/6J mice. The animals were randomly divided into sham, DMM, Tet, celecoxib (CXB), and indomethacin (INDO) groups. Each group was given solvent or corresponding drugs by gavage for 7 weeks after convalescence. Pathological staining, OARSI scores, micro-computed tomography and behavior tests were performed to evaluate the effects of Tet. RESULTS Tet remarkably alleviated cartilage injury in the knee joint, limited bone remodeling in the subchondral bone, and delayed progression of OA. Tet also significantly relieved joint pain and maintained function. Further mechanistic studies revealed that Tet lowered inflammatory cytokine levels and selectively suppressed gene and protein expression of cyclooxygenase (COX)-2 but not COX-1 (P<0.01). Tet also reduced the production of prostaglandin E2 without damaging the gastric mucosa. CONCLUSION We found that Tet could selectively inhibit COX-2 gene expression and decrease cytokine levels in mice, thus reducing inflammation and improving OA without obvious gastric adverse events. These results provide a scientific basis for the clinical application of Tet in the treatment of OA.
Collapse
Affiliation(s)
- Ping Gao
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Zhi-Wei Rao
- Department of Pharmacy, Central Hospital of Xianning, the First Affiliate Hospital of Hubei University of Science and Technology, Xianning, 437100, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu-Ying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Yan Gao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Ze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Liu J, Wang F, Wang X, Fan S, Li Y, Xu M, Hu H, Liu K, Zheng B, Wang L, Zhang H, Li J, Li W, Zhang W, Hu Z, Cao R, Zhuang X, Wang M, Zhong W. Antiviral effects and tissue exposure of tetrandrine against SARS-CoV-2 infection and COVID-19. MedComm (Beijing) 2023; 4:e206. [PMID: 36699286 PMCID: PMC9851407 DOI: 10.1002/mco2.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Tetrandrine (TET) has been used to treat silicosis in China for decades. The aim of this study was to facilitate rational repurposing of TET against SARS-CoV-2 infection. In this study, we confirmed that TET exhibited antiviral potency against SARS-CoV-2 in the African green monkey kidney (Vero E6), human hepatocarcinoma (Huh7), and human lung adenocarcinoma epithelial (Calu-3) cell lines. TET functioned during the early-entry stage of SARS-CoV-2 and impeded intracellular trafficking of the virus from early endosomes to endolysosomes. An in vivo study that used adenovirus (AdV) 5-human angiotensin-converting enzyme 2 (hACE2)-transduced mice showed that although TET did not reduce pulmonary viral load, it significantly alleviated pathological damage in SARS-CoV-2-infected murine lungs. The systemic preclinical pharmacokinetics were investigated based on in vivo and in vitro models, and the route-dependent biodistribution of TET was explored. TET had a large volume of distribution, which contributed to its high tissue accumulation. Inhaled administration helped TET target the lung and reduced its exposure to other tissues, which mitigated its off-target toxicity. Based on the available human pharmacokinetic data, it appeared feasible to achieve an unbound TET 90% maximal effective concentration (EC90) in human lungs. This study provides insights into the route-dependent pulmonary biodistribution of TET associated with its efficacy.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Furun Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xi Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Shiyong Fan
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yufeng Li
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Mingyue Xu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Hengrui Hu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Ke Liu
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Bohong Zheng
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Lingchao Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Huanyu Zhang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Jiang Li
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Wei Li
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Wenpeng Zhang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Zhihong Hu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiaomei Zhuang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Manli Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Hubei Jiangxia LaboratoryWuhanChina
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
15
|
Patil SM, Barji DS, Chavan T, Patel K, Collazo AJ, Prithipaul V, Muth A, Kunda NK. Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment. AAPS PharmSciTech 2023; 24:49. [PMID: 36702977 DOI: 10.1208/s12249-023-02510-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is a contiguous airborne disease caused by Mycobacterium tuberculosis (M.tb), primarily affecting the human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become a global challenge toward eradicating TB. Conventional TB treatment involves frequent dosing and prolonged treatment regimens predominantly by an oral or invasive route, leading to treatment-related systemic adverse effects and patient's noncompliance. Pulmonary delivery is an attractive option as we could reduce dose, limit systemic side-effects, and achieve rapid onset of action. Delamanid (DLD), an antituberculosis drug, has poor aqueous solubility, and in this study, we aim to improve its solubility using cyclodextrin complexation. We screened different cyclodextrins and found that HP-β-CD resulted in a 54-fold increase in solubility compared to a 27-fold and 13-fold increase by SBE-β-CD and HP-ɣ-CD, respectively. The stability constant (265 ± 15 M-1) and complexation efficiency (8.5 × 10-4) suggest the formation of a stable inclusion complex of DLD and HP-β-CD in a 2:1 ratio. Solid-state characterization studies (DSC, PXRD, and NMR) further confirmed successful complexation of DLD in HP-β-CD. The nebulized DLD-CD complex solution showed a mass median aerodynamic diameter of 4.42 ± 0.62 μm and fine particle fraction of 82.28 ± 2.79%, suggesting deposition in the respiratory airways. In bacterial studies, minimum inhibitory concentration of DLD-CD complex was significantly reduced (four-fold) compared to free DLD in M.tb (H37Ra strain). Furthermore, accelerated stability studies confirmed that the inclusion complex was stable for 4 weeks with 90%w/w drug content. In conclusion, we increased the aqueous solubility of DLD through cyclodextrin complexation and improved its efficacy in vitro.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Kinjal Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Andrew J Collazo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Vasudha Prithipaul
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA.
| |
Collapse
|
16
|
Luo J, Wen W, Chen J, Zeng X, Wang P, Xu S. Differences in tissue distribution ability of evodiamine and dehydroevodiamine are due to the dihedral angle of the molecule stereo-structure. Front Pharmacol 2023; 14:1109279. [PMID: 37089948 PMCID: PMC10117637 DOI: 10.3389/fphar.2023.1109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: This researcher focused at the evodiamine and dehydroevodiamine tissue distribution and structure-pharmacokinetics (PK) relationship after intravenous injection in mice. Methods: Using a transmembrane transport experiment, the permeability of evodiamine and dehydroevodiamine on Caco-2 cells was evaluated. The tissue distribution and pharmacokinetics (PK) of evodiamine and dehydroevodiamine in mice were studied. To comprehend the connection between structure and tissue distribution, physicochemical property evaluations and molecular electrostatic potential (MEP) calculations were performed. Results: Dehydroevodiamine's Papp values in vitro were 10-5 cm/s, whereas evodiamine's were 10-6 cm/s. At a dose of 5 mg/kg, the brain concentration of dehydroevodiamine was 6.44 times more than that of evodiamine. By MEP or physicochemical measures, the permeability difference between evodiamine and dehydroevodiamine is unaffected. The dihedral angle of the stereo-structure appears to be the main cause of the difference in tissue distribution ability between evodiamine and dehydroevodiamine. Discussion: Dehydroevodiamine has a dihedral angle of 3.71° compared to 82.34° for evodiamine. Dehydroevodiamine can more easily pass through the phospholipid bilayer than evodiamine because it has a more planar stereo-structure. Dehydroevodiamine is therefore more likely to pass cross the blood-brain barrier and enter the brain in a tissue-specific manner.
Collapse
Affiliation(s)
- Jie Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaobo Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ping Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Ping Wang, ; Shijun Xu,
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Ping Wang, ; Shijun Xu,
| |
Collapse
|
17
|
Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved Activity of Herbal Medicines through Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224073. [PMID: 36432358 PMCID: PMC9695685 DOI: 10.3390/nano12224073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/12/2023]
Abstract
Phytochemicals or secondary metabolites are substances produced by plants that have been shown to have many biological activities, providing a scientific basis for using herbs in traditional medicine. In addition, the use of herbs is considered to be safe and more economical compared to synthetic medicine. However, herbal medicines have disadvantages, such as having low solubility, stability, and bioavailability. Some of them can undergo physical and chemical degradation, which reduces their pharmacological activity. In recent decades, nanotechnology-based herbal drug formulations have attracted attention due to their enhanced activity and potential for overcoming the problems associated with herbal medicine. Approaches using nanotechnology-based delivery systems that are biocompatible, biodegradable, and based on lipids, polymers, or nanoemulsions can increase the solubility, stability, bioavailability, and pharmacological activity of herbals. This review article aims to provide an overview of the latest advances in the development of nanotechnology-based herbal drug formulations for increased activity, as well as a summary of the challenges these delivery systems for herbal medicines face.
Collapse
Affiliation(s)
- Mayang Kusuma Dewi
- Doctoral Study Program, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Jatinangor Km 21,5, Sumedang 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor 45363, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor 45363, Indonesia
| |
Collapse
|
18
|
Yu X, Liang TH, Wang M, Ren XL, Zhou ZY, Jiang MM, Zhang DQ. An innovative extraction strategy for herbal medicine by adopting p-sulphonatocalix[6]/[8]arenes. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1068-1085. [PMID: 35778370 DOI: 10.1002/pca.3160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alkaloids exist in various herbal medicine widely and exhibit diverse biological and pharmacological activities. p-Sulphonatocalix[6]arenes (SC6A) and p-sulphonatocalix[8]arenes (SC8A) are water-soluble supramolecular macrocycles and are applied to the extraction of alkaloids from herbal products. OBJECTIVE In this study, an innovative method of SC6A/SC8A assisted extraction of the alkaloids from herbs was established. METHODS SC6A and SC8A were designed to extract 27 alkaloids from seven herbal medicines. Based on the significant solubilisation and extraction effect, Stephaniae Tetrandrae Radix (Fangji, FJ) was selected to obtain the optimal extraction process by adopting single factor test and orthogonal experiment. Then, the alkaloids and SC6A/SC8A were separated by one-step alkalisation and SCnA were reused. The host-guest complexes between alkaloids and SCnA were determined by competitive fluorescence titration, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1 H-NMR) analysis. RESULTS The optimum condition for SC6A assisted extraction was 5:1:80 (g/g/mL) for herbs/SC6A/solution ratio, 355-250 μm particle size and ultrasonicate 0.5 h, whilst 10:1:40 (g/g/mL) for herbs/SC8A/solution ratio, 355-250 μm particle size and ultrasonicate 0.5 h for SC8A assisted extraction. The total yield of alkaloids (fangchinoline and tetrandrine) from FJ was increased by 4.87 times and 5.97 times with SC6A and SC8A. Moreover, a good reusability of SC6A/SC8A was achieved by alkalisation dissociation. Host-guest complexes were determined by competitive fluorescence titration at a molar ratio of 1:1 between most alkaloids (25/27, except evodiamine and rutaecarpine) and SC6A/SC8A. The complex structure was proved by DSC, FTIR and 1 H-NMR analysis. CONCLUSION The study provided an effective eco-friendly and energy-saving extraction method of alkaloids from herbal medicine.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Teng-Hui Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Liang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen-Yu Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao-Miao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Song JW, Liu YS, Guo YR, Zhong WX, Guo YP, Guo L. Nano-Liposomes Double Loaded with Curcumin and Tetrandrine: Preparation, Characterization, Hepatotoxicity and Anti-Tumor Effects. Int J Mol Sci 2022; 23:ijms23126858. [PMID: 35743311 PMCID: PMC9224699 DOI: 10.3390/ijms23126858] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Curcumin (CUR) and tetrandrine (TET) are natural compounds with various bioactivities, but have problems with low solubility, stability, and absorption rate, resulting in low bioavailability, and limited applications in food, medicine, and other fields. It is very important to improve the solubility while maintaining the high activity of drugs. Liposomes are micro–vesicles synthesized from cholesterol and lecithin. With high biocompatibility and biodegradability, liposomes can significantly improve drug solubility, efficacy, and bioavailability. (2) Methods: In this work, CUR and TET were encapsulated with nano–liposomes and g DSPE–MPEG 2000 (DP)was added as a stabilizer to achieve better physicochemical properties, biosafety, and anti–tumor effects. (3) Results: The nano–liposome (CT–DP–Lip) showed stable particle size (under 100 nm) under different conditions, high solubility, drug encapsulation efficiency (EE), loading capacity (LC), release rate in vitro, and stability. In addition, in vivo studies demonstrated CT–DP–Lip had no significant toxicity on zebrafish. Tumor cytotoxicity test showed that CT–DP–Lip had a strong inhibitory effect on a variety of cancer cells. (4) Conclusions: This work showed that nano–liposomes can significantly improve the physical and chemical properties of CUR and TET and make them safer and more efficient.
Collapse
Affiliation(s)
- Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Yu-Rou Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Wen-Xiao Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
- Correspondence: (Y.-P.G.); (L.G.); Tel.: +86-13881721018 (L.G.)
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (J.-W.S.); (Y.-S.L.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.-R.G.); (W.-X.Z.)
- Correspondence: (Y.-P.G.); (L.G.); Tel.: +86-13881721018 (L.G.)
| |
Collapse
|
20
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
21
|
Liang Y, Sun L, Rong F, Han X, Ma X, Deng X, Cheng M, Shan J, Li W, Fu T. Inhalation of tetrandrine liposomes for the treatment of bleomycin induced idiopathic pulmonary fibrosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
González-Martínez S, Valencia-Ochoa DP, Gálvez-Ruiz JC, Leyva-Peralta MA, Juárez-Sánchez O, Islas-Osuna MA, Calvillo-Páez VI, Höpfl H, Íñiguez-Palomares R, Rocha-Alonzo F, Ochoa Lara K. DNA-Binding Properties of Bis- N-substituted Tetrandrine Derivatives. ACS OMEGA 2022; 7:16380-16390. [PMID: 35601331 PMCID: PMC9118212 DOI: 10.1021/acsomega.2c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A series of bis-N-substituted tetrandrine derivatives carrying different aromatic substituents attached to both nitrogen atoms of the natural alkaloid were studied with double-stranded model DNAs (dsDNAs) to examine the binding properties and mechanism. Variable-temperature molecular recognition studies using UV-vis and fluorescence techniques revealed the thermodynamic parameters, ΔH, ΔS, and ΔG, showing that the tetrandrine derivatives exhibit high affinity toward dsDNA (K ≈ 105-107 M-1), particularly the bis(methyl)anthraquinone (BAqT) and bis(ethyl)indole compounds (BInT). Viscometry experiments, ethidium displacement assays, and molecular modeling studies enabled elucidation of the possible binding mode, indicating that the compounds exhibit a synergic interaction mode involving intercalation of one of the N-aryl substituents and interaction of the molecular skeleton in the major groove of the dsDNA. Cytotoxicity tests of the derivatives with tumor and nontumor cell lines demonstrated low cytotoxicity of these compounds, with the exception of the bis(methyl)pyrene (BPyrT) derivative, which is significantly more cytotoxic than the remaining derivatives, with IC50 values against the LS-180, A-549, and ARPE-19 cell lines that are similar to natural tetrandrine. Finally, complementary electrochemical characterization studies unveiled good electrochemical stability of the compounds.
Collapse
Affiliation(s)
- Sandra
Mónica González-Martínez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| | - Drochss Pettry Valencia-Ochoa
- Departamento
de Ciencias Naturales y Matemáticas, Facultad de Ingeniería
y Ciencias, Pontificia Universidad Javeriana, Calle 18 No. 118-250, CP 760031 Cali, Colombia
| | - Juan Carlos Gálvez-Ruiz
- Departamento
de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Mario Alberto Leyva-Peralta
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Ave. Universidad e Irigoyen s/n, CP 83621 H. Caborca, Sonora, México
| | - Octavio Juárez-Sánchez
- Departamento
de Investigación en Física, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - María A. Islas-Osuna
- Laboratorio
de Biología Biomolecular, Centro
de Investigación en Alimentación y Desarrollo, A. C., Gustavo Enrique Astiazaran Rosas,
No. 46., CP 83304 Hermosillo, Sonora, México
| | - Viviana Isabel Calvillo-Páez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| | - Herbert Höpfl
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, México
| | - Ramón Íñiguez-Palomares
- Departamento
de Física, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Fernando Rocha-Alonzo
- Departamento
de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Karen Ochoa Lara
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| |
Collapse
|
23
|
Yin J, Lin Y, Fang W, Zhang X, Wei J, Hu G, Liu P, Niu J, Guo J, Zhen Y, Li J. Tetrandrine Citrate Suppresses Breast Cancer via Depletion of Glutathione Peroxidase 4 and Activation of Nuclear Receptor Coactivator 4-Mediated Ferritinophagy. Front Pharmacol 2022; 13:820593. [PMID: 35614944 PMCID: PMC9124810 DOI: 10.3389/fphar.2022.820593] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrandrine citrate (TetC), a novel tetrandrine salt with high water solubility, demonstrates a potent antitumor activity in chronic myeloid leukemia. Studies have indicated an important role of ferroptosis in breast cancer (BC). However, whether TetC inhibits BC progression via ferroptosis has never been explored. In the present study, we showed that TetC had a significant inhibitory effect on the proliferation and migration of MCF7 and MDA-MB-231 cells. Then, we combined TetC with different inhibitors to determine which form of cell death could be driven by TetC. MTT assay showed that ferrostatin (Fer-1) demonstrated the most potent effect on improving TetC-induced cell death in contrast to other inhibitors. TetC was also shown to significantly increase the mRNA level of prostaglandin-endoperoxide synthase 2 (Ptgs2), a ferroptosis marker. Further studies showed that TetC significantly suppressed the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) but increased the expression of nuclear receptor coactivator 4 (NCOA4) in MCF7 and MDA-MB-231 cells even in the presence of erastin or Ras-selective lethal 3 (RSL3). Collectively, we showed novel data that ferroptosis was a major form of TetC-induced cell death. Moreover, TetC-induced ferroptotic cell death was achieved via suppressing GPX4 expression and activating NCOA4-mediated ferritinophagy in BC cells.
Collapse
Affiliation(s)
- Jiameng Yin
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiwei Fang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Department of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Gang Hu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Niu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Jun Guo, ; Yongzhan Zhen, ; Jian Li,
| | - Yongzhan Zhen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
- *Correspondence: Jun Guo, ; Yongzhan Zhen, ; Jian Li,
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institue of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Jun Guo, ; Yongzhan Zhen, ; Jian Li,
| |
Collapse
|
24
|
Dehghani A, Bahlakeh G, Ramezanzadeh B, Hossein Jafari Mofidabadi A. Electronic DFT-D modeling of L-citrulline molecules interactions with Beta-CD aligned rGO-APTES multi-functional nano-capsule for anti-corrosion application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Xie J, Meng Z, Han X, Li S, Ma X, Chen X, Liang Y, Deng X, Xia K, Zhang Y, Zhu H, Fu T. Cholesterol Microdomain Enhances the Biofilm Eradication of Antibiotic Liposomes. Adv Healthc Mater 2022; 11:e2101745. [PMID: 35037424 DOI: 10.1002/adhm.202101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/09/2022] [Indexed: 11/06/2022]
Abstract
Resistance and tolerance of biofilms to antibiotics is the greatest challenge in the treatment of bacterial infections. Therefore, developing an effective strategy against biofilms is a top priority. Liposomes are widely used as antibiotic drug carriers; however, common liposomes lack affinity for biofilms. Herein, biofilm-targeted antibiotic liposomes are created by simply adjusting their cholesterol content. The tailored liposomes exhibit significantly enhanced bacterial inhibition and biofilm eradication effects that are positively correlated with the cholesterol content of liposomes. The experiments further demonstrate that this enhanced effect can be ascribed to the effective drug release through the pores, which are formed by the combination of cholesterol microdomains in liposomal lipid bilayers with membrane-damaged toxins in biofilms. Consequently, liposome encapsulation with a high cholesterol concentration improves noticeably the pharmacodynamics and biocompatibility of antibiotics after pulmonary administration. This work may provide a new direction for the development of antibiofilm formulations that can be widely used for the treatment of infections caused by bacterial biofilms.
Collapse
Affiliation(s)
- Jianjun Xie
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zhiping Meng
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xingxing Han
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Sipan Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xinai Ma
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xuanyu Chen
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yinmei Liang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiaomin Deng
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Kexin Xia
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Yue Zhang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Huaxu Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Tingming Fu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 China
| |
Collapse
|
26
|
Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee SS. Natural Product-Based Potential Therapeutic Interventions of Pulmonary Fibrosis. Molecules 2022; 27:1481. [PMID: 35268581 PMCID: PMC8911636 DOI: 10.3390/molecules27051481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a disease-refractive lung condition with an increased rate of mortality. The potential factors causing PF include viral infections, radiation exposure, and toxic airborne chemicals. Idiopathic PF (IPF) is related to pneumonia affecting the elderly and is characterized by recurring scar formation in the lungs. An impaired wound healing process, defined by the dysregulated aggregation of extracellular matrix components, triggers fibrotic scar formation in the lungs. The potential pathogenesis includes oxidative stress, altered cell signaling, inflammation, etc. Nintedanib and pirfenidone have been approved with a conditional endorsement for the management of IPF. In addition, natural product-based treatment strategies have shown promising results in treating PF. In this study, we reviewed the recently published literature and discussed the potential uses of natural products, classified into three types-isolated active compounds, crude extracts of plants, and traditional medicine, consisting of mixtures of different plant products-in treating PF. These natural products are promising in the treatment of PF via inhibiting inflammation, oxidative stress, and endothelial mesenchymal transition, as well as affecting TGF-β-mediated cell signaling, etc. Based on the current review, we have revealed the signaling mechanisms of PF pathogenesis and the potential opportunities offered by natural product-based medicine in treating PF.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Nidhan Chandra Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Hafeza Akter
- Pharmacology and Toxicology Research Division, Health Medical Science Research Foundation, Dhaka 1207, Bangladesh;
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| |
Collapse
|
27
|
Zhang Y, Li Q, Hu J, Wang C, Wan D, Li Q, Jiang Q, Du L, Jin Y. Nasal Delivery of Cinnarizine Thermo- and Ion-Sensitive In Situ Hydrogels for Treatment of Microwave-Induced Brain Injury. Gels 2022; 8:gels8020108. [PMID: 35200489 PMCID: PMC8872061 DOI: 10.3390/gels8020108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: When the body is exposed to microwave radiation, the brain is more susceptible to damage than other organs. However, few effective drugs are available for the treatment of microwave-induced brain injury (MIBI) because most drugs are difficult to cross the blood–brain barrier (BBB) to reach the brain. (2) Methods: Nasal cinnarizine inclusion complexes with thermo-and ion-sensitive hydrogels (cinnarizine ISGs) were prepared to treat MIBI and the characteristics of the inclusion complexes and their thermo-and ion-sensitive hydrogels were evaluated. (3) Results: Due to high viscosity, cinnarizine ISGs can achieve long-term retention in the nasal cavity to achieve a sustained release effect. Compared with the model, the intranasal thermo-and ion-sensitive cinnarizine ISGs significantly improved the microwave-induced spatial memory and spontaneous exploration behavior with Morris water maze and open field tests. Cinnarizine ISGs inhibited the expression of calcineurin and calpain 1 in the brain, which may be related to the inhibition of calcium overload by cinnarizine. (4) Conclusion: Intranasal thermo- and ion-sensitive cinnarizine ISGs are a promising brain-targeted pharmaceutical preparation against MIBI.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Jinglu Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Chunqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Delian Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qingwei Jiang
- Key Laboratory of Natural Medicine of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Q.J.); (L.D.)
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (Q.J.); (L.D.)
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
28
|
Liu Y, Zhong W, Zhang J, Chen W, Lu Y, Qiao Y, Zeng Z, Huang H, Cai S, Dong H. Tetrandrine Modulates Rheb-mTOR Signaling-Mediated Selective Autophagy and Protects Pulmonary Fibrosis. Front Pharmacol 2021; 12:739220. [PMID: 34880752 PMCID: PMC8645995 DOI: 10.3389/fphar.2021.739220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive fatal disease characterized by interstitial remodeling, with high lethality and a lack of effective medical therapies. Tetrandrine has been proposed to present anti-fibrotic effects, but the efficacy and mechanisms have not been systematically evaluated. We sought to study the potential therapeutic effects and mechanisms of tetrandrine against lung fibrosis. The anti-fibrotic effects of tetrandrine were evaluated in bleomycin-induced mouse models and TGF-β1-stimulated murine lung fibroblasts. We performed Chromatin Immunoprecipitation (ChIP), Immunoprecipitation (IP), and mRFP-GFP-MAP1LC3B adenovirus construct to investigate the novel mechanisms of tetrandrine-induced autophagy. Tetrandrine decreased TGF-β1-induced expression of α-smooth muscle actin, fibronectin, vimentin, and type 1 collagen and proliferation in fibroblasts. Tetrandrine restored TGF-β1-induced impaired autophagy flux, accompanied by enhanced interaction of SQSTM1 and MAP1LC3-Ⅱ. ChIP studies revealed that tetrandrine induced autophagy via increasing binding of NRF2 and SQSTM1 promoter. Furthermore, tetrandrine inhibited TGF-β1-induced phosphorylation of mTOR by reducing activation of Rheb. In vivo tetrandrine suppressed the bleomycin-induced expression of fibrotic markers and improved pulmonary function. Our data suggest that protective effect of tetrandrine against lung fibrosis might be through promoting Rheb-mTOR and NRF2-SQSTM1 mediated autophagy. Tetrandrine may thus be potentially employed as a novel therapeutic medicine against IPF.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Lu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojin Zeng
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB, Ramnarayanan C. Aerosol Delivery of Surfactant Liposomes for Management of Pulmonary Fibrosis: An Approach Supporting Pulmonary Mechanics. Pharmaceutics 2021; 13:pharmaceutics13111851. [PMID: 34834265 PMCID: PMC8625129 DOI: 10.3390/pharmaceutics13111851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 01/13/2023] Open
Abstract
Excessive architectural re-modeling of tissues in pulmonary fibrosis due to proliferation of myofibroblasts and deposition of extracellular matrix adversely affects the elasticity of the alveoli and lung function. Progressively destructive chronic inflammatory disease, therefore, necessitates safe and effective non-invasive airway delivery that can reach deep alveoli, restore the surfactant function and reduce oxidative stress. We designed an endogenous surfactant-based liposomal delivery system of naringin to be delivered as an aerosol that supports pulmonary mechanics for the management of pulmonary fibrosis. Phosphatidylcholine-based liposomes showed 91.5 ± 2.4% encapsulation of naringin, with a mean size of 171.4 ± 5.8 nm and zeta potential of −15.5 ± 1.3 mV. Liposomes with the unilamellar structure were found to be spherical and homogeneous in shape using electron microscope imaging. The formulation showed surface tension of 32.6 ± 0.96 mN/m and was able to maintain airway patency of 97 ± 2.5% for a 120 s test period ensuring the effective opening of lung capillaries and deep lung delivery. In vitro lung deposition utilizing Twin Stage Impinger showed 79 ± 1.5% deposition in lower airways, and Anderson Cascade Impactor deposition revealed a mass median aerodynamic diameter of 2.35 ± 1.02 μm for the aerosolized formulation. In vivo efficacy of the developed formulation was analyzed in bleomycin-induced lung fibrosis model in rats after administration by the inhalation route. Lactate dehydrogenase activity, total protein content, and inflammatory cell infiltration in broncho-alveolar lavage fluid were substantially reduced by liposomal naringin. Oxidative stress was minimized as observed from levels of antioxidant enzymes. Masson’s Trichrome staining of lung tissue revealed significant amelioration of histological changes and lesser deposition of collagen. Overall results indicated the therapeutic potential of the developed non-invasive aerosol formulation for the effective management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-558-734-418
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakur Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.S.); (A.B.N.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.S.); (A.B.N.)
| | - Chandramouli Ramnarayanan
- Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India;
- Global Technical Enablement JMP Division, SAS India Pvt. Ltd., Lavelle Road, Bengaluru 560025, India
| |
Collapse
|
30
|
Špehar TK, Pocrnić M, Klarić D, Bertoša B, Čikoš A, Jug M, Padovan J, Dragojević S, Galić N. Investigation of Praziquantel/Cyclodextrin Inclusion Complexation by NMR and LC-HRMS/MS: Mechanism, Solubility, Chemical Stability, and Degradation Products. Mol Pharm 2021; 18:4210-4223. [PMID: 34670371 PMCID: PMC8564759 DOI: 10.1021/acs.molpharmaceut.1c00716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Praziquantel (PZQ) is a biopharmaceutical classification system (BCS) class II anthelmintic drug characterized by poor solubility and a bitter taste, both of which can be addressed by inclusion complexation with cyclodextrins (CD). In this work, a comprehensive investigation of praziquantel/cyclodextrin (PZQ/CD) complexes was conducted by means of UV-vis spectroscopy, spectrofluorimetry, NMR spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS), and molecular modeling. Phase solubility studies revealed that among four CDs tested, the randomly methylated β-CD (RMβCD) and the sulfobutylether sodium salt β-CD (SBEβCD) resulted in the highest increase in PZQ solubility (approximately 16-fold). The formation of 1:1 inclusion complexes was confirmed by HRMS, NMR, and molecular modeling. Both cyclohexane and the central pyrazino ring, as well as an aromatic part of PZQ are included in the CD central cavity through several different binding modes, which exist simultaneously. Furthermore, the influence of CDs on PZQ stability was investigated in solution (HCl, NaOH, H2O2) and in the solid state (accelerated degradation, photostability) by ultra-high-performance liquid chromatography-diode array detection-tandem mass spectrometry (UPLC-DAD/MS). CD complexation promoted new degradation pathways of the drug. In addition to three already known PZQ degradants, seven new degradation products were identified (m/z 148, 215, 217, 301, 327, 343, and 378) and their structures were proposed based on HRMS/MS data. Solid complexes were prepared by mechanochemical activation, a solvent-free and ecologically acceptable method.
Collapse
Affiliation(s)
| | - Marijana Pocrnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - David Klarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Ana Čikoš
- Institute Ruđer Bošković, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Jasna Padovan
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10 000 Zagreb, Croatia
| | | | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| |
Collapse
|
31
|
Bazdyrev E, Rusina P, Panova M, Novikov F, Grishagin I, Nebolsin V. Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals (Basel) 2021; 14:807. [PMID: 34451904 PMCID: PMC8398080 DOI: 10.3390/ph14080807] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
At the end of 2019, a highly contagious infection began its ominous conquest of the world. It was soon discovered that the disease was caused by a novel coronavirus designated as SARS-CoV-2, and the disease was thus abbreviated to COVID-19 (COVID). The global medical community has directed its efforts not only to find effective therapies against the deadly pathogen but also to combat the concomitant complications. Two of the most common respiratory manifestations of COVID are a significant reduction in the diffusing capacity of the lungs (DLCO) and the associated pulmonary interstitial damage. One year after moderate COVID, the incidence rate of impaired DLCO and persistent lung damage still exceeds 30%, and one-third of the patients have severe DLCO impairment and fibrotic lung damage. The persistent respiratory complications may cause substantial population morbidity, long-term disability, and even death due to the lung fibrosis progression. The incidence of COVID-induced pulmonary fibrosis caused by COVID can be estimated based on a 15-year observational study of lung pathology after SARS. Most SARS patients with fibrotic lung damage recovered within the first year and then remained healthy; however, in 20% of the cases, significant fibrosis progression was found in 5-10 years. Based on these data, the incidence rate of post-COVID lung fibrosis can be estimated at 2-6% after moderate illness. What is worse, there are reasons to believe that fibrosis may become one of the major long-term complications of COVID, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. In this review, we analyze the latest data from ongoing clinical trials aimed at treating post-COVID lung fibrosis and analyze the rationale for the current drug candidates. We discuss the use of antifibrotic therapy for idiopathic pulmonary fibrosis, the IN01 vaccine, glucocorticosteroids as well as the stromal vascular fraction for the treatment and rehabilitation of patients with COVID-associated pulmonary damage.
Collapse
Affiliation(s)
- Evgeny Bazdyrev
- Research Institute for Complex Issues of Cardiovascular Diseases, 6, Sosnoviy Blvd., 650002 Kemerovo, Russia
| | - Polina Rusina
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, Bolshoi Blvd., 42(1), 143026 Moscow, Russia; (P.R.); (M.P.); (F.N.); (V.N.)
| | - Maria Panova
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, Bolshoi Blvd., 42(1), 143026 Moscow, Russia; (P.R.); (M.P.); (F.N.); (V.N.)
| | - Fedor Novikov
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, Bolshoi Blvd., 42(1), 143026 Moscow, Russia; (P.R.); (M.P.); (F.N.); (V.N.)
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
| | - Ivan Grishagin
- Rancho BioSciences, 16955 Via Del Campo Suite 200, San Diego, CA 92127, USA;
| | - Vladimir Nebolsin
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, Bolshoi Blvd., 42(1), 143026 Moscow, Russia; (P.R.); (M.P.); (F.N.); (V.N.)
| |
Collapse
|
32
|
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021; 164:1-12. [PMID: 33882301 PMCID: PMC8154728 DOI: 10.1016/j.ejpb.2021.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal condition that causes severe scarring of the lungs. While the pathogenesis of IPF continues to be extensively studied and several factors have been considered, an exact cause has yet to be established. With inadequate treatment options and no cure available, overall disease prognosis is still poor. Existing oral therapies, pirfenidone and nintedanib, may attempt to improve the patients' quality of life by mitigating symptoms and slowing disease progression, however chronic doses and systemic deliveries of these drugs can lead to severe side effects. The lack of effective treatment options calls for further investigation of restorative as well as additional palliative therapies for IPF. Nanoparticle-based sustained drug delivery strategies can be utilized to ensure targeted delivery for site-specific treatment as well as long-acting therapy, improving overall patient compliance. This review provides an update on promising strategies for the delivery of anti-fibrotic agents, along with an overview of key therapeutic targets as well as relevant emerging therapies currently being evaluated for IPF treatment.
Collapse
Affiliation(s)
- Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren Fortier
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
33
|
Pang L, Zhu S, Ma J, Zhu L, Liu Y, Ou G, Li R, Wang Y, Liang Y, Jin X, Du L, Jin Y. Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder. Acta Pharm Sin B 2021; 11:2031-2047. [PMID: 34386336 PMCID: PMC8343172 DOI: 10.1016/j.apsb.2021.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disease that seriously affects brain function. Currently, selective serotonin reuptake inhibitors (SSRIs) are used to treat PTSD clinically but have decreased efficiency and increased side effects. In this study, nasal cannabidiol inclusion complex temperature-sensitive hydrogels (CBD TSGs) were prepared and evaluated to treat PTSD. Mice model of PTSD was established with conditional fear box. CBD TSGs could significantly improve the spontaneous behavior, exploratory spirit and alleviate tension in open field box, relieve anxiety and tension in elevated plus maze, and reduce the freezing time. Hematoxylin and eosin and c-FOS immunohistochemistry slides showed that the main injured brain areas in PTSD were the prefrontal cortex, amygdala, and hippocampus CA1. CBD TSGs could reduce the level of tumor necrosis factor-α caused by PTSD. Western blot analysis showed that CBD TSGs increased the expression of the 5-HT1A receptor. Intranasal administration of CBD TSGs was more efficient and had more obvious brain targeting effects than oral administration, as evidenced by the pharmacokinetics and brain tissue distribution of CBD TSGs. Overall, nasal CBD TSGs are safe and effective and have controlled release. There are a novel promising option for the clinical treatment of PTSD.
Collapse
Key Words
- AUC, area under the curve
- BBB, blood‒brain barrier
- Blood‒brain barrier
- Brain targeting
- CBD TSGs, cannabidiol inclusion complex temperature-sensitive hydrogels
- CNS, central nervous system
- COVID-19, coronavirus disease 2019
- Cannabidiol
- DSC, differential scanning calorimetry
- HP-β-CD, hydroxypropyl-β-cyclodextrin
- Hydrogels
- Hydroxypropyl-β-cyclodextrin
- IR, infrared
- IS, internal standard
- Inclusion complex
- Intranasal administration
- MRM, multiple reaction monitoring
- PPV, percentage of persistent vibration
- PTSD, post-traumatic stress disorder
- PVD, persistent vibration duration
- Post-traumatic stress disorder
- SSRIs, selective serotonin reuptake inhibitors
- TNF-α, tumor necrosis factor-α
- WB, Western blot
Collapse
|
34
|
Repurposing Bedaquiline for Effective Non-Small Cell Lung Cancer (NSCLC) Therapy as Inhalable Cyclodextrin-Based Molecular Inclusion Complexes. Int J Mol Sci 2021; 22:ijms22094783. [PMID: 33946414 PMCID: PMC8124211 DOI: 10.3390/ijms22094783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-β-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-β-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.
Collapse
|
35
|
Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomed Pharmacother 2021; 133:111072. [PMID: 33378971 PMCID: PMC7836923 DOI: 10.1016/j.biopha.2020.111072] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Pathogenesis and characteristics of idiopathic pulmonary fibrosis (IPF) are presented. The history and current situation of traditional Chinese medicine (TCM) in treating lung diseases are introduced. Therapeutic mechanisms of different TCM to treat IPF are summarized. Advantages and types of pulmonary drug delivery systems (PDDS) are emphasized. Combining TCM with PDDS is a potential strategy to treat IPF.
Idiopathic pulmonary fibrosis (IPF) is a progressive pulmonary interstitial inflammatory disease of unknown etiology, and is also a sequela in severe patients with the Coronavirus Disease 2019 (COVID-19). Nintedanib and pirfenidone are the only two known drugs which are conditionally recommended for the treatment of IPF by the FDA. However, these drugs pose some adverse side effects such as nausea and diarrhoea during clinical applications. Therefore, it is of great value and significance to identify effective and safe therapeutic drugs to solve the clinical problems associated with intake of western medicine. As a unique medical treatment, Traditional Chinese Medicine (TCM) has gradually exerted its advantages in the treatment of IPF worldwide through a multi-level and multi-target approach. Further, to overcome the current clinical problems of oral and injectable intakes of TCM, pulmonary drug delivery system (PDDS) could be designed to reduce the systemic metabolism and adverse reactions of the drug and to improve the bioavailability of drugs. Through PubMed, Google Scholar, Web of Science, and CNKI, we retrieved articles published in related fields in recent years, and this paper has summarized twenty-seven Chinese compound prescriptions, ten single TCM, and ten active ingredients for effective prevention and treatment of IPF. We also introduce three kinds of inhaling PDDS, which supports further research of TCM combined with PDDS to treat IPF.
Collapse
|
36
|
Heister PM, Poston RN. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol Res Perspect 2020; 8:e00653. [PMID: 32930523 PMCID: PMC7503088 DOI: 10.1002/prp2.653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022] Open
Abstract
More than ten million patients worldwide have been diagnosed with coronavirus disease 19 (COVID-19) to date (WHO situation report, 1st July 2020). There is no vaccine to prevent infection with the causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nor a cure. In the struggle to devise potentially useful therapeutics in record time, the repurposing of existing compounds is a key route of action. In this hypothesis paper, we argue that the bisbenzylisoquinoline and calcium channel blocker tetrandrine, originally extracted from the plant Stephania tetrandra and utilized in traditional Chinese medicine, may have potential in the treatment of COVID-19 and should be further investigated. We collate and review evidence for tetrandrine's putative mechanism of action in viral infection, specifically its recently discovered antagonism of the two-pore channel 2 (TPC2). While tetrandrine's particular history of use provides a very limited pharmacological dataset, there is a suggestion from the available evidence that it could be effective at doses used in clinical practice. We suggest that further research to investigate this possibility should be conducted.
Collapse
|
37
|
Jiao B, Tang Y, Liu S, Guo C. Tetrandrine attenuates hyperoxia-induced lung injury in newborn rats via NF-κB p65 and ERK1/2 pathway inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1018. [PMID: 32953818 PMCID: PMC7475456 DOI: 10.21037/atm-20-5573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Bronchopulmonary dysplasia (BPD) is an important cause of respiratory illness in preterm newborns that results in significant morbidity and mortality. Hyperoxia is a critical factor in the pathogenesis of BPD, hyperoxia-induced lung injury model has similar pathological manifestations as human BPD. Tetrandrine (Tet) is known to suppress oxidative stress, apoptosis and inflammation. Thus it has been used to prevent organ injuries. However, the protective effect of Tet against hyperoxia-induced lung injury in newborn rats has not been reported. Methods A hyperoxia-induced lung injury model was established using newborn rats exposed to high O2 levels. The models were treated with various concentrations of Tet, and a lung function test was conducted. Then, the lung tissues and blood were collected to detect the effect of Tet on cell apoptosis, inflammatory response, and fibrosis. The effect of Tet on nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) pathways was also determined. Results Lung function was decreased in hyperoxia-induced rats, and Tet could reverse this inhibiting effect. For oxidative stress, Tet caused an increase in the levels of antioxidant enzymes. The apoptosis rate and apoptosis-related proteins were decreased in hyperoxia-induced rats after Tet treatment. Additionally, Tet treatment could reduce inflammatory factor levels, while increasing CD4+IFN-γ+ T cell levels and decreasing CD4+IL-4+ T cell levels. Tet treatment was also able to inhibit the expression of fibrosis-related markers and NF-κB and ERK1/2 pathways. Conclusions Tet demonstrated potent activity against hyperoxia-induced lung injury in newborn rats through NF-κB and ERK1/2 pathway inhibition.
Collapse
Affiliation(s)
- Beibei Jiao
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yan Tang
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Shan Liu
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Chunyan Guo
- Department of Pediatrics, The first Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|