1
|
Gebeyehu ZM, Mišeikis V, Forti S, Rossi A, Mishra N, Boschi A, Ivanov YP, Martini L, Ochapski MW, Piccinini G, Watanabe K, Taniguchi T, Divitini G, Beltram F, Pezzini S, Coletti C. Decoupled High-Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404590. [PMID: 39248701 DOI: 10.1002/adma.202404590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/17/2024] [Indexed: 09/10/2024]
Abstract
The growth of high-quality graphene on flat and rigid templates, such as metal thin films on insulating wafers, is regarded as a key enabler for technologies based on 2D materials. In this work, the growth of decoupled graphene is introduced via non-reducing low-pressure chemical vapor deposition (LPCVD) on crystalline Cu(111) films deposited on sapphire. The resulting film is atomically flat, with no detectable cracks or ripples, and lies atop of a thin Cu2O layer, as confirmed by microscopy, diffraction, and spectroscopy analyses. Post-growth treatment of the partially decoupled graphene enables full and uniform oxidation of the interface, greatly simplifying subsequent transfer processes, particularly dry-pick up - a task that proves challenging when dealing with graphene directly synthesized on metallic Cu(111). Electrical transport measurements reveal high carrier mobility at room temperature, exceeding 104 cm2 V-1 s-1 on SiO2/Si and 105 cm2 V-1 s-1 upon encapsulation in hexagonal boron nitride (hBN). The demonstrated growth approach yields exceptional material quality, in line with micro-mechanically exfoliated graphene flakes, and thus paves the way toward large-scale production of pristine graphene suitable for high-performance next-generation applications.
Collapse
Affiliation(s)
- Zewdu M Gebeyehu
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Vaidotas Mišeikis
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Stiven Forti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Antonio Rossi
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Leonardo Martini
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Michal W Ochapski
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Giulia Piccinini
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels, Barcelona, 08860, Spain
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Beltram
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
| | - Sergio Pezzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
2
|
Shin M, Kim JH, Ko JY, Haidari MM, Jang DJ, Lee K, Kim K, Kim H, Park BH, Choi JS. Excimer-ultraviolet-lamp-assisted selective etching of single-layer graphene and its application in edge-contact devices. NANO CONVERGENCE 2024; 11:34. [PMID: 39174704 PMCID: PMC11341517 DOI: 10.1186/s40580-024-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Since the discovery of graphene and its remarkable properties, researchers have actively explored advanced graphene-patterning technologies. While the etching process is pivotal in shaping graphene channels, existing etching techniques have limitations such as low speed, high cost, residue contamination, and rough edges. Therefore, the development of facile and efficient etching methods is necessary. This study entailed the development of a novel technique for patterning graphene through dry etching, utilizing selective photochemical reactions precisely targeted at single-layer graphene (SLG) surfaces. This process is facilitated by an excimer ultraviolet lamp emitting light at a wavelength of 172 nm. The effectiveness of this technique in selectively removing SLG over large areas, leaving the few-layer graphene intact and clean, was confirmed by various spectroscopic analyses. Furthermore, we explored the application of this technique to device fabrication, revealing its potential to enhance the electrical properties of SLG-based devices. One-dimensional (1D) edge contacts fabricated using this method not only exhibited enhanced electrical transport characteristics compared to two-dimensional contact devices but also demonstrated enhanced efficiency in fabricating conventional 1D-contacted devices. This study addresses the demand for advanced technologies suitable for next-generation graphene devices, providing a promising and versatile graphene-patterning approach with broad applicability and high efficiency.
Collapse
Affiliation(s)
- Minjeong Shin
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin Hong Kim
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Yong Ko
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Mohd Musaib Haidari
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dong Jin Jang
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kihyun Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hakseong Kim
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Bae Ho Park
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Jin Sik Choi
- Department of Physics, Division of Quantum Phases and Devices, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Pochet P, Johnson HT. A double-helix dislocation in graphene. NATURE MATERIALS 2024; 23:306-307. [PMID: 37587252 DOI: 10.1038/s41563-023-01654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Affiliation(s)
- Pascal Pochet
- Department of Physics, IriG, Univ. Grenoble-Alpes and CEA, Grenoble, France
| | - Harley T Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Zhang Y, Hossain MA, Hwang KJ, Ferrari PF, Maduzia J, Peña T, Wu SM, Ertekin E, van der Zande AM. Patternable Process-Induced Strain in 2D Monolayers and Heterobilayers. ACS NANO 2024; 18:4205-4215. [PMID: 38266246 DOI: 10.1021/acsnano.3c09354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Strain engineering in two-dimensional (2D) materials is a powerful but difficult to control approach to tailor material properties. Across applications, there is a need for device-compatible techniques to design strain within 2D materials. This work explores how process-induced strain engineering, commonly used by the semiconductor industry to enhance transistor performance, can be used to pattern complex strain profiles in monolayer MoS2 and 2D heterostructures. A traction-separation model is identified to predict strain profiles and extract the interfacial traction coefficient of 1.3 ± 0.7 MPa/μm and the damage initiation threshold of 16 ± 5 nm. This work demonstrates the utility to (1) spatially pattern the optical band gap with a tuning rate of 91 ± 1 meV/% strain and (2) induce interlayer heterostrain in MoS2-WSe2 heterobilayers. These results provide a CMOS-compatible approach to design complex strain patterns in 2D materials with important applications in 2D heterogeneous integration into CMOS technologies, moiré engineering, and confining quantum systems.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Abir Hossain
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439 United States
| | - Kelly J Hwang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paolo F Ferrari
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joseph Maduzia
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tara Peña
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Stephen M Wu
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nano Technology Lab, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Kim M, Joo SH, Wang M, Menabde SG, Luo D, Jin S, Kim H, Seong WK, Jang MS, Kwak SK, Lee SH, Ruoff RS. Direct Electrochemical Functionalization of Graphene Grown on Cu Including the Reaction Rate Dependence on the Cu Facet Type. ACS NANO 2023; 17:18914-18923. [PMID: 37781814 DOI: 10.1021/acsnano.3c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We present an electrochemical method to functionalize single-crystal graphene grown on copper foils with a (111) surface orientation by chemical vapor deposition (CVD). Graphene on Cu(111) is functionalized with 4-iodoaniline by applying a constant negative potential, and the degree of functionalization depends on the applied potential and reaction time. Our approach stands out from previous methods due to its transfer-free method, which enables more precise and efficient functionalization of single-crystal graphene. We report the suggested effects of the Cu substrate facet by comparing the reactivity of graphene on Cu(111) and Cu(115). The electrochemical reaction rate changes dramatically at the potential threshold for each facet. Kelvin probe force microscopy was used to measure the work function, and the difference in onset potentials of the electrochemical reaction on these two different facets are explained in terms of the difference in work function values. Density functional theory and Monte Carlo calculations were used to calculate the work function of graphene and the thermodynamic stability of the aniline functionalized graphene on these two facets. This study provides a deeper understanding of the electrochemical behavior of graphene (including single-crystal graphene) on Cu(111) and Cu(115). It also serves as a basis for further study of a broad range of reagents and thus functional groups and of the role of metal substrate beneath graphene.
Collapse
Affiliation(s)
- Minhyeok Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sergey G Menabde
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunghwan Jin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeongjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Won Kyung Seong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sun Hwa Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Lee F, Tripathi M, Sanchez Salas R, Ogilvie SP, Amorim Graf A, Jurewicz I, Dalton AB. Localised strain and doping of 2D materials. NANOSCALE 2023; 15:7227-7248. [PMID: 37038962 DOI: 10.1039/d2nr07252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is a growing interest in 2D materials-based devices as the replacement for established materials, such as silicon and metal oxides in microelectronics and sensing, respectively. However, the atomically thin nature of 2D materials makes them susceptible to slight variations caused by their immediate environment, inducing doping and strain, which can vary between, and even microscopically within, devices. One of the misapprehensions for using 2D materials is the consideration of unanimous intrinsic properties over different support surfaces. The interfacial interaction, intrinsic structural disorder and external strain modulate the properties of 2D materials and govern the device performance. The understanding, measurement and control of these factors are thus one of the significant challenges for the adoption of 2D materials in industrial electronics, sensing, and polymer composites. This topical review provides a comprehensive overview of the effect of strain-induced lattice deformation and its relationship with physical and electronic properties. Using the example of graphene and MoS2 (as the prototypical 2D semiconductor), we rationalise the importance of scanning probe techniques and Raman spectroscopy to elucidate strain and doping in 2D materials. These effects can be directly and accurately characterised through Raman shifts in a non-destructive manner. A generalised model has been presented that deconvolutes the intertwined relationship between strain and doping in graphene and MoS2 that could apply to other members of the 2D materials family. The emerging field of straintronics is presented, where the controlled application of strain over 2D materials induces tuneable physical and electronic properties. These perspectives highlight practical considerations for strain engineering and related microelectromechanical applications.
Collapse
Affiliation(s)
- Frank Lee
- University of Sussex, Brighton, BN1 9RH, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Surana M, Ananthakrishnan G, Poss MM, Yaacoub JJ, Zhang K, Ahmed T, Admal NC, Pochet P, Johnson HT, Tawfick S. Strain-Driven Faceting of Graphene-Catalyst Interfaces. NANO LETTERS 2023; 23:1659-1665. [PMID: 36745111 DOI: 10.1021/acs.nanolett.2c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interfacial interaction of 2D materials with the substrate leads to striking surface faceting affecting its electronic properties. Here, we quantitatively study the orientation-dependent facet topographies observed on the catalyst under graphene using electron backscatter diffraction and atomic force microscopy. The original flat catalyst surface transforms into two facets: a low-energy low-index surface, e.g. (111), and a vicinal (high-index) surface. The critical role of graphene strain, besides anisotropic interfacial energy, in forming the observed topographies is revealed by molecular simulations. These insights are applicable to other 2D/3D heterostructures.
Collapse
Affiliation(s)
- Mitisha Surana
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Ganesh Ananthakrishnan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Matthew M Poss
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Jad Jean Yaacoub
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Kaihao Zhang
- The Hong Kong University of Science and Technology, Guangzhou999077, Hong Kong, China
| | - Tusher Ahmed
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Nikhil Chandra Admal
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Pascal Pochet
- Department of Physics, IriG, Univ. Grenoble-Alpes and CEA, GrenobleF-38054, France
| | - Harley T Johnson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
| | - Sameh Tawfick
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, USA
| |
Collapse
|
8
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
9
|
Kim SD, Sarkar A, Ahn JH. Graphene-Based Nanomaterials for Flexible and Stretchable Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006262. [PMID: 33682293 DOI: 10.1002/smll.202006262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Recently, as flexible and wearable electronic devices have become widely popular, research on light weight and large-capacity batteries suitable for powering such devices has been actively conducted. In particular, graphene has attracted considerable attention from researchers in the battery field owing to its good mechanical properties and its applicability in various processes to fabricate electrodes for batteries. Graphene is classified into two types: flake-type, fabricated from graphite, and film-type, synthesized using chemical vapor deposition. The unique processes involved in these two types enable the fabrication of flexible and stretchable batteries with various shapes and functions. In this article, the recent progress in the development of flexible and stretchable batteries based on graphene, as well as its important technical issues are reviewed.
Collapse
Affiliation(s)
- Seong Dae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Arijit Sarkar
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Picheau E, Impellizzeri A, Rybkovskiy D, Bayle M, Mevellec JY, Hof F, Saadaoui H, Noé L, Torres Dias AC, Duvail JL, Monthioux M, Humbert B, Puech P, Ewels CP, Pénicaud A. Intense Raman D Band without Disorder in Flattened Carbon Nanotubes. ACS NANO 2021; 15:596-603. [PMID: 33444504 DOI: 10.1021/acsnano.0c06048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.
Collapse
Affiliation(s)
- Emmanuel Picheau
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| | - Anthony Impellizzeri
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Dmitry Rybkovskiy
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121025, Russia
| | - Maxime Bayle
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Jean-Yves Mevellec
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Ferdinand Hof
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| | - Hassan Saadaoui
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| | - Laure Noé
- CEMES, UPR8011-CNRS, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse, CEDEX 04, France
| | - Abraao Cefas Torres Dias
- CEMES, UPR8011-CNRS, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse, CEDEX 04, France
| | - Jean-Luc Duvail
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Marc Monthioux
- CEMES, UPR8011-CNRS, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse, CEDEX 04, France
| | - Bernard Humbert
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Pascal Puech
- CEMES, UPR8011-CNRS, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse, CEDEX 04, France
| | - Christopher P Ewels
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Alain Pénicaud
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| |
Collapse
|
11
|
|
12
|
Deng B, Hou Y, Liu Y, Khodkov T, Goossens S, Tang J, Wang Y, Yan R, Du Y, Koppens FHL, Wei X, Zhang Z, Liu Z, Peng H. Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties. NANO LETTERS 2020; 20:6798-6806. [PMID: 32787178 DOI: 10.1021/acs.nanolett.0c02785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene grown on Cu by chemical vapor deposition is rough due to the surface roughening of Cu for releasing interfacial thermal stress and/or graphene bending energy. The roughness degrades the electrical conductance and mechanical strength of graphene. Here, by using vicinal Cu(111) and flat Cu(111) as model substrates, we investigated the critical role of original surface topography on the surface deformation of Cu covered by graphene. We demonstrated that terrace steps on vicinal Cu(111) dominate the formation of step bunches (SBs). Atomically flat graphene with roughness down to 0.2 nm was grown on flat Cu(111) films. When SB-induced ripples were avoided, as-grown ultraflat graphene maintained its flat feature after transfer. The ultraflat graphene exhibited extraordinary mechanical properties with Young's modulus ≈ 940 GPa and strength ≈ 117 GPa, comparable to mechanical exfoliated ones. Molecular dynamics simulation revealed the mechanism of softened elastic response and weakened strength of graphene with rippled structures.
Collapse
Affiliation(s)
- Bing Deng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ying Liu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Tymofiy Khodkov
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Stijin Goossens
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jilin Tang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yani Wang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rui Yan
- Beijing Graphene Institute (BGI), Beijing 100094, China
| | - Yin Du
- Beijing Graphene Institute (BGI), Beijing 100094, China
| | - Frank H L Koppens
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Zhong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100094, China
| | - Hailin Peng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100094, China
| |
Collapse
|
13
|
Yu J, Kim S, Ertekin E, van der Zande AM. Material-Dependent Evolution of Mechanical Folding Instabilities in Two-Dimensional Atomic Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10801-10808. [PMID: 32036649 DOI: 10.1021/acsami.9b20909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inducing and controlling three-dimensional deformations in monolayer two-dimensional materials is important for applications from stretchable electronics to origami nanoelectromechanical systems. For these applications, it is critical to understand how the properties of different materials influence the morphologies of two-dimensional atomic membranes under mechanical loading. Here, we systematically investigate the evolution of mechanical folding instabilities in uniaxially compressed monolayer graphene and MoS2 on a soft polydimethylsiloxane substrate. We examine the morphology of the compressed membranes using atomic force microscopy for compression from 0 to 33%. We find the membranes display roughly evenly spaced folds and observe two distinct stress release mechanisms under increasing compression. At low compression, the membranes delaminate to generate new folds. At higher compression, the membranes slip over the surface to enlarge existing folds. We observe a material-dependent transition between these two behaviors at a critical fold spacing of 1000 ± 250 nm for graphene and 550 ± 20 nm for MoS2. We establish a simple shear-lag model which attributes the transition to a competition between static friction and adhesion and gives the maximum interfacial static friction on polydimethylsiloxane of 3.8 ± 0.8 MPa for graphene and 7.7 ± 2.5 MPa for MoS2. Furthermore, in graphene, we observe an additional transition from standing folds to fallen folds at 8.5 ± 2.3 nm fold height. These results provide a framework to control the nanoscale fold structure of monolayer atomic membranes, which is a critical step in deterministically designing stretchable or foldable nanosystems based on two-dimensional materials.
Collapse
Affiliation(s)
- Jaehyung Yu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - SunPhil Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S Goodwin Avenue MC-230, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S Goodwin Avenue MC-230, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Lee U, Han Y, Lee S, Kim JS, Lee YH, Kim UJ, Son H. Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS NANO 2020; 14:919-926. [PMID: 31841304 DOI: 10.1021/acsnano.9b08205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The enhanced growth of Cu oxides underneath graphene grown on a Cu substrate has been of great interest to many groups. In this work, the strain and doping status of graphene, based on the gradual growth of Cu oxides from underneath, were systematically studied using time evolution Raman spectroscopy. The compressive strain to graphene, due to the thermal expansion coefficient difference between graphene and the Cu substrate, was almost released by the nonuniform Cu2O growth; however, slight tensile strain was exerted. This induced p-doping in the graphene with a carrier density up to 1.7 × 1013 cm-2 when it was exposed to air for up to 30 days. With longer exposure to ambient conditions (>1 year), we observed that graphene/Cu2O hybrid structures significantly slow down the oxidation compared to that using a bare Cu substrate. The thickness of the CuO layer on the bare Cu substrate was increased to approximately 270 nm. These findings were confirmed through white light interference measurements and scanning electron microscopy.
Collapse
Affiliation(s)
- Ukjae Lee
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Yoojoong Han
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
- Nano Technology Division , NANOBASE Inc. , Seoul 08502 , Republic of Korea
| | - Sanghyub Lee
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Jun Suk Kim
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Un Jeong Kim
- Imaging Device Laboratory , Samsung Advanced Institute of Technology , Suwon , Gyeonggi-do 16419 , Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| |
Collapse
|
15
|
Yuan G, Lin D, Wang Y, Huang X, Chen W, Xie X, Zong J, Yuan QQ, Zheng H, Wang D, Xu J, Li SC, Zhang Y, Sun J, Xi X, Gao L. Proton-assisted growth of ultra-flat graphene films. Nature 2020; 577:204-208. [DOI: 10.1038/s41586-019-1870-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/30/2019] [Indexed: 11/09/2022]
|
16
|
Dai Z, Liu L, Zhang Z. Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805417. [PMID: 30650204 DOI: 10.1002/adma.201805417] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/04/2018] [Indexed: 05/23/2023]
Abstract
Triggered by the growing needs of developing semiconductor devices at ever-decreasing scales, strain engineering of 2D materials has recently seen a surge of interest. The goal of this principle is to exploit mechanical strain to tune the electronic and photonic performance of 2D materials and to ultimately achieve high-performance 2D-material-based devices. Although strain engineering has been well studied for traditional semiconductor materials and is now routinely used in their manufacturing, recent experiments on strain engineering of 2D materials have shown new opportunities for fundamental physics and exciting applications, along with new challenges, due to the atomic nature of 2D materials. Here, recent advances in the application of mechanical strain into 2D materials are reviewed. These developments are categorized by the deformation modes of the 2D material-substrate system: in-plane mode and out-of-plane mode. Recent state-of-the-art characterization of the interface mechanics for these 2D material-substrate systems is also summarized. These advances highlight how the strain or strain-coupled applications of 2D materials rely on the interfacial properties, essentially shear and adhesion, and finally offer direct guidelines for deterministic design of mechanical strains into 2D materials for ultrathin semiconductor applications.
Collapse
Affiliation(s)
- Zhaohe Dai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
17
|
Anagnostopoulos G, Sygellou L, Paterakis G, Polyzos I, Aggelopoulos CA, Galiotis C. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation. NANOTECHNOLOGY 2019; 30:015704. [PMID: 30362463 DOI: 10.1088/1361-6528/aae683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanical integrity of composite materials depends primarily on the interface strength and the defect density of the reinforcement which is the provider of enhanced strength and stiffness. In the case of graphene/polymer nanocomposites which are characterized by an extremely large interface region, any defects in the inclusion (such as folds, cracks, holes, etc) will have a detrimental effect to the internal strain distribution and the resulting mechanical performance. This conventional wisdom, however, can be challenged if the defect size is reduced beyond the critical size for crack formation to the level of atomic vacancies. In that case, there should be no practical effect on crack propagation and depending on the nature of the vacancies the interface strength may in fact increase. In this work we employed argon ion (Ar+) bombardment and subsequent exposure to hydrogen (H2) to induce (as revealed by x-ray and ultraviolet photoelectron spectroscopy and Raman spectroscopy) passivated atomic single vacancies to CVD graphene. The modified graphene was subsequently transferred to PMMA bars and the morphology, wettability and the interface adhesion of the CVD graphene/PMMA system were investigated with atomic force microscopy technique and Raman analysis. The results obtained showed clearly an overall improved mechanical behavior of graphene/polymer interface, since an increase as well as a more uniform shift distribution with strain is observed. This paves the way for interface engineering in graphene/polymer systems which, in pristine condition, suffer from premature graphene slippage and subsequent failure.
Collapse
Affiliation(s)
- George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras 265 04, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Anagnostopoulos G, Paterakis G, Polyzos I, Pappas PN, Kouroupis-Agalou K, Mirotta N, Scidà A, Palermo V, Parthenios J, Papagelis K, Galiotis C. Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43192-43202. [PMID: 30406999 DOI: 10.1021/acsami.8b14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical vapor deposition (CVD) is regarded as a promising fabrication method for the automated, large-scale, production of graphene and other two-dimensional materials. However, its full commercial exploitation is limited by the presence of structural imperfections such as folds, wrinkles, and even cracks that downgrade its physical and mechanical properties. For example, as shown here by means of Raman spectroscopy, the stress transfer from an epoxy matrix to CVD graphene is on average 30% of that of exfoliated monolayer graphene of over 10 μm in dimensions. However, in terms of electrical response, the situation is reversed; the resistance has been found here to decrease by the imposition of mechanical deformation possibly due to the opening up of the structure and the associated increase of electron mobility. This finding paves the way for employing CVD graphene/epoxy composites or coatings as conductive "networks" or bridges in cases for which the conductivity needs to be increased or at least retained when the system is under deformation. The tuning/control of such systems and their operative limitations are discussed here.
Collapse
Affiliation(s)
- George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Ioannis Polyzos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Panagiotis-Nektarios Pappas
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Kostantinos Kouroupis-Agalou
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
| | - Nicola Mirotta
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
| | - Alessandra Scidà
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
| | - Vincenzo Palermo
- ISOF-Istituto per la Sintesi Organica e la Fotoreattivita-Consiglio Nazionale delle Ricerche , via Gobetti 101 , 40129 Bologna , Italy
- Department of Industrial and Materials Science , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - John Parthenios
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
| | - Konstantinos Papagelis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
- Department of Solid State Physics, School of Physics , Aristotle University of Thessaloniki , Thessaloniki 54124 , Greece
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ ICE-HT) , Patras 265 04 , Greece
- Department of Chemical Engineering , University of Patras , Patras 26504 , Greece
| |
Collapse
|
19
|
Hell MG, Ehlen N, Senkovskiy BV, Hasdeo EH, Fedorov A, Dombrowski D, Busse C, Michely T, di Santo G, Petaccia L, Saito R, Grüneis A. Resonance Raman Spectrum of Doped Epitaxial Graphene at the Lifshitz Transition. NANO LETTERS 2018; 18:6045-6056. [PMID: 30157652 DOI: 10.1021/acs.nanolett.8b02979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 1014 cm-2 is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm-1. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.
Collapse
Affiliation(s)
- Martin G Hell
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
| | - Niels Ehlen
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
| | - Boris V Senkovskiy
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
| | - Eddwi H Hasdeo
- Department of Physics , Tohoku University , Sendai 980-8578 , Japan
- Research Center for Physics , Indonesian Institute of Sciences , Kawasan Puspiptek Serpong , Tangerang Selatan 15314 , Indonesia
| | - Alexander Fedorov
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
| | - Daniela Dombrowski
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
- Institut für Materialphysik , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 10 , 48149 Münster , Germany
| | - Carsten Busse
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
- Fakultät IV Physik , Universität Siegen , Walter-Flex-Str. 3 , 57072 Siegen , Germany
| | - Thomas Michely
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
| | - Giovanni di Santo
- Elettra Sincrotrone Trieste , Strada Statale 14 km 163.5 , 34149 Trieste , Italy
| | - Luca Petaccia
- Elettra Sincrotrone Trieste , Strada Statale 14 km 163.5 , 34149 Trieste , Italy
| | - Riichiro Saito
- Department of Physics , Tohoku University , Sendai 980-8578 , Japan
| | - Alexander Grüneis
- II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany
| |
Collapse
|
20
|
Lin L, Deng B, Sun J, Peng H, Liu Z. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chem Rev 2018; 118:9281-9343. [PMID: 30207458 DOI: 10.1021/acs.chemrev.8b00325] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Graphene, in its ideal form, is a two-dimensional (2D) material consisting of a single layer of carbon atoms arranged in a hexagonal lattice. The richness in morphological, physical, mechanical, and optical properties of ideal graphene has stimulated enormous scientific and industrial interest, since its first exfoliation in 2004. In turn, the production of graphene in a reliable, controllable, and scalable manner has become significantly important to bring us closer to practical applications of graphene. To this end, chemical vapor deposition (CVD) offers tantalizing opportunities for the synthesis of large-area, uniform, and high-quality graphene films. However, quite different from the ideal 2D structure of graphene, in reality, the currently available CVD-grown graphene films are still suffering from intrinsic defective grain boundaries, surface contaminations, and wrinkles, together with low growth rate and the requirement of inevitable transfer. Clearly, a gap still exits between the reality of CVD-derived graphene, especially in industrial production, and ideal graphene with outstanding properties. This Review will emphasize the recent advances and strategies in CVD production of graphene for settling these issues to bridge the giant gap. We begin with brief background information about the synthesis of nanoscale carbon allotropes, followed by the discussion of fundamental growth mechanism and kinetics of CVD growth of graphene. We then discuss the strategies for perfecting the quality of CVD-derived graphene with regard to domain size, cleanness, flatness, growth rate, scalability, and direct growth of graphene on functional substrate. Finally, a perspective on future development in the research relevant to scalable growth of high-quality graphene is presented.
Collapse
Affiliation(s)
- Li Lin
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Jingyu Sun
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Physics, Optoelectronics and Energy , Soochow University , Suzhou 215006 , P. R. China.,Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P. R. China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China.,Beijing Graphene Institute (BGI) , Beijing 100095 , P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China.,Beijing Graphene Institute (BGI) , Beijing 100095 , P. R. China
| |
Collapse
|
21
|
Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K. Interfacial engineering in graphene bandgap. Chem Soc Rev 2018. [PMID: 29513306 DOI: 10.1039/c7cs00836h] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Graphene exhibits superior mechanical strength, high thermal conductivity, strong light-matter interactions, and, in particular, exceptional electronic properties. These merits make graphene an outstanding material for numerous potential applications. However, a graphene-based high-performance transistor, which is the most appealing application, has not yet been produced, which is mainly due to the absence of an intrinsic electronic bandgap in this material. Therefore, bandgap opening in graphene is urgently needed, and great efforts have been made regarding this topic over the past decade. In this review article, we summarise recent theoretical and experimental advances in interfacial engineering to achieve bandgap opening. These developments are divided into two categories: chemical engineering and physical engineering. Chemical engineering is usually destructive to the pristine graphene lattice via chemical functionalization, the introduction of defects, doping, chemical bonds with substrates, and quantum confinement; the latter largely maintains the atomic structure of graphene intact and includes the application of an external field, interactions with substrates, physical adsorption, strain, electron many-body effects and spin-orbit coupling. Although these pioneering works have not met all the requirements for electronic applications of graphene at once, they hold great promise in this direction and may eventually lead to future applications of graphene in semiconductor electronics and beyond.
Collapse
Affiliation(s)
- Xiaozhi Xu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Deng B, Wu J, Zhang S, Qi Y, Zheng L, Yang H, Tang J, Tong L, Zhang J, Liu Z, Peng H. Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800725. [PMID: 29717818 DOI: 10.1002/smll.201800725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Corrugation is a ubiquitous phenomenon for graphene grown on metal substrates by chemical vapor deposition, which greatly affects the electrical, mechanical, and chemical properties. Recent years have witnessed great progress in controlled growth of large graphene single crystals; however, the issue of surface roughness is far from being addressed. Here, the corrugation at the interface of copper (Cu) and graphene, including Cu step bunches (CuSB) and graphene wrinkles, are investigated and ascribed to the anisotropic strain relaxation. It is found that the corrugation is strongly dependent on Cu crystallographic orientations, specifically, the packed density and anisotropic atomic configuration. Dense Cu step bunches are prone to form on loose packed faces due to the instability of surface dynamics. On an anisotropic Cu crystal surface, Cu step bunches and graphene wrinkles are formed in two perpendicular directions to release the anisotropic interfacial stress, as revealed by morphology imaging and vibrational analysis. Cu(111) is a suitable crystal face for growth of ultraflat graphene with roughness as low as 0.20 nm. It is believed the findings will contribute to clarifying the interplay between graphene and Cu crystal faces, and reducing surface roughness of graphene by engineering the crystallographic orientation of Cu substrates.
Collapse
Affiliation(s)
- Bing Deng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shishu Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Qi
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Liming Zheng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao Yang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jilin Tang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lianming Tong
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| | - Hailin Peng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| |
Collapse
|
23
|
Wu JB, Lin ML, Cong X, Liu HN, Tan PH. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 2018; 47:1822-1873. [PMID: 29368764 DOI: 10.1039/c6cs00915h] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.
Collapse
Affiliation(s)
- Jiang-Bin Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | | | | | | | | |
Collapse
|
24
|
Li BW, Luo D, Zhu L, Zhang X, Jin S, Huang M, Ding F, Ruoff RS. Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1706504. [PMID: 29337385 DOI: 10.1002/adma.201706504] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Epitaxial graphene grown on single crystal Cu(111) foils by chemical vapor deposition is found to be free of wrinkles and under biaxial compressive strain. The compressive strain in the epitaxial regions (0.25-0.40%) is higher than regions where the graphene is not epitaxial with the underlying surface (0.20-0.25%). This orientation-dependent strain relaxation is through the loss of local adhesion and the generation of graphene wrinkles. Density functional theory calculations suggest a large frictional force between the epitaxial graphene and the Cu(111) substrate, and this is therefore an energy barrier to the formation of wrinkles in the graphene. Enhanced chemical reactivity is found in epitaxial graphene on Cu(111) foils as compared to graphene on polycrystalline Cu foils for certain chemical reactions. A higher compressive strain possibly favors lowering the formation energy and/or the energy gap between the initial and transition states, either of which can lead to an increase in chemical reactivity.
Collapse
Affiliation(s)
- Bao-Wen Li
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Liyan Zhu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Xu Zhang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sunghwan Jin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ming Huang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Feng Ding
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
25
|
Deng B, Pang Z, Chen S, Li X, Meng C, Li J, Liu M, Wu J, Qi Y, Dang W, Yang H, Zhang Y, Zhang J, Kang N, Xu H, Fu Q, Qiu X, Gao P, Wei Y, Liu Z, Peng H. Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS NANO 2017; 11:12337-12345. [PMID: 29191004 DOI: 10.1021/acsnano.7b06196] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wrinkles are ubiquitous for graphene films grown on various substrates by chemical vapor deposition at high temperature due to the strain induced by thermal mismatch between the graphene and substrates, which greatly degrades the extraordinary properties of graphene. Here we show that the wrinkle formation of graphene grown on Cu substrates is strongly dependent on the crystallographic orientations. Wrinkle-free single-crystal graphene was grown on a wafer-scale twin-boundary-free single-crystal Cu(111) thin film fabricated on sapphire substrate through strain engineering. The wrinkle-free feature of graphene originated from the relatively small thermal expansion of the Cu(111) thin film substrate and the relatively strong interfacial coupling between Cu(111) and graphene, based on the strain analyses as well as molecular dynamics simulations. Moreover, we demonstrated the transfer of an ultraflat graphene film onto target substrates from the reusable single-crystal Cu(111)/sapphire growth substrate. The wrinkle-free graphene shows enhanced electrical mobility compared to graphene with wrinkles.
Collapse
Affiliation(s)
- Bing Deng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zhenqian Pang
- LNM, Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
| | - Shulin Chen
- Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University , Beijing 100871, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology , Harbin 150001, China
| | - Xin Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Caixia Meng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Jiayu Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University , Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Juanxia Wu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yue Qi
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Wenhui Dang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Hao Yang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Jin Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Ning Kang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University , Beijing 100871, China
| | - Hongqi Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University , Beijing 100871, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Peng Gao
- Electron Microscopy Laboratory, International Center for Quantum Materials, School of Physics, Peking University , Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter , Beijing 100871, China
| | - Yujie Wei
- LNM, Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
- Beijing Graphene Institute (BGI) , Beijing 100094, China
| | - Hailin Peng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
- Beijing Graphene Institute (BGI) , Beijing 100094, China
| |
Collapse
|
26
|
A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons. COATINGS 2017. [DOI: 10.3390/coatings7100153] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Abstract
Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called "straintronics". In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.
Collapse
Affiliation(s)
- Chen Si
- School of Materials Science and Engineering, and Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Zhimei Sun
- School of Materials Science and Engineering, and Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA. and Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|