1
|
Meng Z, Zhu L, Wang J, Li T, He C, Liu R, Hui G, Zhao B. TiO 2 nanofilms for surface-enhanced Raman scattering analysis of urea. Talanta 2024; 279:126664. [PMID: 39098238 DOI: 10.1016/j.talanta.2024.126664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
In this study, titanium dioxide (TiO2) nanofilms with nanoparticle structure were grown in situ on metallic aluminum (Al) sheets using a simple sol-hydrothermal method. Al sheets were chosen because they can form Schottky junctions with TiO2 during the calcination process, thus achieving a tight bonding between the nanoparticles and the solid substrate, which cannot be achieved with conventional glass substrates. The substrates synthesized with different contents of titanium butoxide [Ti(OBu)4] were investigated using 4-mercaptobenzoic acid as a probe molecule, and the results showed that the substrate with 9 % of the total volume of Ti(OBu)4 had the highest surface-enhanced Raman scattering (SERS) performance. As a low-cost SERS substrate that is simple to synthesize, it has excellent signal reproducibility, with a relative standard deviation of 4.51 % for the same substrate and 6.43 % for different batches of synthesized substrates. Meanwhile, the same batch of substrate can be stored at room temperature for at least 20 weeks and still maintain stable SERS signals. In addition, the synthetic substrate was used to quantitatively detect urea with a detection limit of 4.23 × 10-3 mol/L, which is comparable to the application of noble metal substrates. The feasibility of this method was verified in human urine, and the results were consistent with the clinical results, indicating that this method has great potential for clinical application.
Collapse
Affiliation(s)
- Zhen Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lin Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Tingmiao Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| | - Ge Hui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Zhang H, Yang L, Zhang M, Wei H, Tong L, Xu H, Li Z. A Statistical Route to Robust SERS Quantitation Beyond the Single-Molecule Level. NANO LETTERS 2024; 24:11116-11123. [PMID: 39116042 DOI: 10.1021/acs.nanolett.4c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) holds great potential to revolutionize ultratrace quantitative analysis. However, achieving quantitative SM-SERS is challenging because of strong intensity fluctuation and blinking characteristics. In this study, we reveal the relation P = 1 - e-α between the statistical SERS probability P and the microscopic average molecule number α in SERS spectra, which lays the physical foundation for a statistical route to implement SM-SERS quantitation. Utilizing SERS probability calibration, we achieve quantitative SERS analysis with batch-to-batch robustness, extremely wide detection range of concentration covering 9 orders of magnitude, and ultralow detection limit far below the single-molecule level. These results indicate the physical feasibility of robust SERS quantitation through statistical route and certainly open a new avenue for implementing SERS as a practical analysis tool in various application scenarios.
Collapse
Affiliation(s)
- Hao Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Longkun Yang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Meng Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Hong Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lianming Tong
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Zhipeng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
3
|
Qin Z, Liu Y, Jia X, Zhou J, Li H, Wang X, Zhang S, Chang H, Wang G. One-step synthesized multisize AuAg alloy nanoparticles with high SERS sensitivity in directly detecting SARS-CoV-2 spike protein. Anal Chim Acta 2024; 1317:342919. [PMID: 39030015 DOI: 10.1016/j.aca.2024.342919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread disease transmission, challenging the stability of global healthcare systems. Surface-enhanced Raman scattering (SERS) as an easy operation, fast, and low-cost technology illustrates a good potential in detecting SARS-CoV-2. In the study, one-step fabrication of gold-silver alloy nanoparticles (AuAgNPs) with adjustable metal proportions and diameters is employed as SERS substrates. The angiotensin-converting enzyme 2 (ACE2) functionalized AuAgNPs are applied as sensor surfaces to detect SARS-CoV-2 S protein. By optimizing the SERS substrates, ACE2/Au35Ag65NPs illustrate higher performance in detecting the SARS-CoV-2 S protein with a limit of detection (LOD) of 10 fg/mL in both phosphate-buffered saline (PBS) and pharyngeal swabs solution (PSS). It also provides excellent reproducibility with a relative standard deviation (RSD) of 7.7 % and 7.9 %, respectively. This easily preparable and highly reproducible SERS substrate has good potential in the practical application of detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China.
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Shaohui Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan, 430074, Hubei, China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China.
| |
Collapse
|
4
|
Ten A, Lomonosov V, Boukouvala C, Ringe E. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. ACS NANO 2024; 18:18785-18799. [PMID: 38963330 PMCID: PMC11256891 DOI: 10.1021/acsnano.4c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼102 at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 103 along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Andrey Ten
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Vladimir Lomonosov
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Christina Boukouvala
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
5
|
Dasgupta S, Ray K. Plasmon-enhanced fluorescence for biophotonics and bio-analytical applications. Front Chem 2024; 12:1407561. [PMID: 38988729 PMCID: PMC11233826 DOI: 10.3389/fchem.2024.1407561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fluorescence spectroscopy serves as an ultrasensitive sophisticated tool where background noises which serve as a major impediment to the detection of the desired signals can be safely avoided for detections down to the single-molecule levels. One such way of bypassing background noise is plasmon-enhanced fluorescence (PEF), where the interactions of fluorophores at the surface of metals or plasmonic nanoparticles are probed. The underlying condition is a significant spectral overlap between the localized surface plasmon resonance (LSPR) of the nanoparticle and the absorption or emission spectra of the fluorophore. The rationale being the coupling of the excited state of the fluorophore with the localized surface plasmon leads to an augmented emission, owing to local field enhancement. It is manifested in enhanced quantum yields concurrent with a decrease in fluorescence lifetimes, owing to an increase in radiative rate constants. This improvement in detection provided by PEF allows a significant scope of expansion in the domain of weakly emitting fluorophores which otherwise would have remained unperceivable. The concept of coupling of weak emitters with plasmons can bypass the problems of photobleaching, opening up avenues of imaging with significantly higher sensitivity and improved resolution. Furthermore, amplification of the emission signal by the coupling of free electrons of the metal nanoparticles with the electrons of the fluorophore provides ample opportunities for achieving lower detection limits that are involved in biological imaging and molecular sensing. One avenue that has attracted significant attraction in the last few years is the fast, label-free detection of bio-analytes under physiological conditions using plasmonic nanoparticles for point-of-care analysis. This review focusses on the applications of plasmonic nanomaterials in the field of biosensing, imaging with a brief introduction on the different aspects of LSPR and fabrication techniques.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Lee S, Kwon S, Lee S, Oh MJ, Jung I, Park S. Combinatorial Effect of Tricomponent Dual-Rim Nanoring Building Blocks: Label-Free SERS Detection of Biomolecules. NANO LETTERS 2024; 24:3930-3936. [PMID: 38513221 DOI: 10.1021/acs.nanolett.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Detecting weakly adsorbing molecules via label-free surface-enhanced Raman scattering (SERS) has presented a significant challenge. To address this issue, we propose a novel approach for creating tricomponent SERS substrates using dual-rim nanorings (DRNs) made of Au, Ag, and CuO, each possessing distinct functionalities. Our method involves depositing different metals on Pt nanoring skeletons to obtain each nanoring with varying surface compositions while maintaining a similar size and shape. Next, the mixture of these nanorings is transferred into a monolayer assembly with homogeneous intermixing on a solid substrate. The surface of the CuO DRNs has dangling bonds (Cu2+) that facilitate the strong adsorption of carboxylates through the formation of chelating bonds, while the combination of Au and Ag DRNs significantly enhances the SERS signal intensity through a strong coupling effect. Notably, the tricomponent assemblies enable the successful SERS-based analysis of biomolecules such as amino acids, proteins, nucleobases, and nucleotides.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunwoo Kwon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Yang X, Zeng P, Zhou Y, Wang Q, Zuo J, Duan H, Hu Y. High-performance, large-area flexible SERS substrates prepared by reactive ion etching for molecular detection. NANOTECHNOLOGY 2024; 35:245301. [PMID: 38478979 DOI: 10.1088/1361-6528/ad3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
In the realm of molecular detection, the surface-enhanced Raman scattering (SERS) technique has garnered increasing attention due to its rapid detection, high sensitivity, and non-destructive characteristics. However, conventional rigid SERS substrates are either costly to fabricate and challenging to prepare over a large area, or they exhibit poor uniformity and repeatability, making them unsuitable for inspecting curved object surfaces. In this work, we present a flexible SERS substrate with high sensitivity as well as good uniformity and repeatability. First, the flexible polydimethylsiloxane (PDMS) substrate is manually formulated and cured. SiO2/Ag layer on the substrate can be obtained in a single process by using ion beam sputtering. Then, reactive ion etching is used to etch the upper SiO2layer of the film, which directly leads to the desired densely packed nanostructure. Finally, a layer of precious metal is deposited on the densely packed nanostructure by thermal evaporation. In our proposed system, the densely packed nanostructure obtained by etching the SiO2layer directly determines the SERS ability of the substrate. The bottom layer of silver mirror can reflect the penetrative incident light, the spacer layer of SiO2and the top layer of silver thin film can further localize the light in the system, which can realize the excellent absorption of Raman laser light, thus enhancing SERS ability. In the tests, the prepared substrates show excellent SERS performance in detecting crystalline violet with a detection limit of 10-11M. The development of this SERS substrate is anticipated to offer a highly effective and convenient method for molecular substance detection.
Collapse
Affiliation(s)
- Xing Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Qingyu Wang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jiankun Zuo
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Innovation Institute of the Greater Bay Area, Hunan University, Guangzhou, 511300, People's Republic of China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Innovation Institute of the Greater Bay Area, Hunan University, Guangzhou, 511300, People's Republic of China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, People's Republic of China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, People's Republic of China
| |
Collapse
|
8
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
9
|
Zhang X, Cai X, Yin N, Wang Y, Jiao Y, Liu C. Transferable G/Au Film for Constructing a Variety of SERS Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:566. [PMID: 38607101 PMCID: PMC11013602 DOI: 10.3390/nano14070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Surface-enhanced Raman scattering (SERS), as one of the most powerful analytical methods, undertakes important inspection tasks in various fields. Generally, the performance of an SERS-active substrate relies heavily on its structure, which makes it difficult to integrate multiple-functional detectability on the same substrate. To address this problem, here we designed and constructed a film of graphene/Au nanoparticles (G/Au film) through a simple method, which can be conveniently transferred to different substrates to form various composite SERS substrates subsequently. By means of the combination of the electromagnetic enhancement mechanism (EM) and the chemical enhancement mechanism (CM) of this structure, the film realized good SERS performance experimentally, with the enhancement factor (EF) approaching ca. 1.40 × 105. In addition, the G/Au film had high mechanical strength and had large specific surface area and good biocompatibility that is beneficial for Raman detection. By further transferring the film to an Ag/Si composite substrate and PDMS flexible film, it showed enhanced sensitivity and in situ detectability, respectively, indicating high compatibility and promising prospect in Raman detection.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xin Cai
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Naiqiang Yin
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
| | - Yingying Wang
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
| | - Yang Jiao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chundong Liu
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Feng R, Fu S, Liu H, Wang Y, Liu S, Wang K, Chen B, Zhang X, Hu L, Chen Q, Cai T, Han X, Wang C. Single-Atom Site SERS Chip for Rapid, Ultrasensitive, and Reproducible Direct-Monitoring of RNA Binding. Adv Healthc Mater 2024; 13:e2301146. [PMID: 38176000 DOI: 10.1002/adhm.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.
Collapse
Affiliation(s)
- Ran Feng
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Simiao Liu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Liming Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
- Thorgene Co., Ltd, Beijing, 100176, China
| |
Collapse
|
11
|
Roy P, Zhu S, Claude JB, Liu J, Wenger J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS NANO 2023; 17:22418-22429. [PMID: 37931219 PMCID: PMC10690780 DOI: 10.1021/acsnano.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/08/2023]
Abstract
Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.
Collapse
Affiliation(s)
- Prithu Roy
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Siyuan Zhu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Benoît Claude
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jie Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jérôme Wenger
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
12
|
Kaja S, Nag A. Ag-Au-Cu Trimetallic Alloy Microflower: A Highly Sensitive SERS Substrate for Detection of Low Raman Scattering Cross-Section Thiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16562-16573. [PMID: 37943256 DOI: 10.1021/acs.langmuir.3c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Trimetallic Ag-Au-Cu alloy microflowers (MFs) with various surface compositions were synthesized on a glass coverslip and used as efficient surface-enhanced Raman spectroscopy (SERS) substrates for highly sensitive label-free detection of smaller Raman scattering cross-section molecules, namely, L-cysteine and toxic thiophenols. MFs of different compositions were synthesized via appropriate mixing of metal-alkyl ammonium halide precursors followed by a single-step thermolysis at 350 °C. While the Ag percentage was kept constant at 90% for all the substrates, the composition of Au and Cu was varied between 1 and 9% sequentially. The synthesized MFs were thoroughly characterized by using field emission scanning electron microscopy (FE-SEM), wide-angle X-ray scattering, X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence techniques. FE-SEM studies revealed that the MFs were present throughout the substrate, and the average size varied from 20 to 40 μm. XPS studies showed that the top surface of the alloy substrates was rich in either Au or Cu atoms, while Ag remained underneath. The performance of the trimetallic MFs as SERS substrates was evaluated using Rhodamine 6G as a probe molecule, which showed that the MFs with Ag-Au-Cu compositions 90-7-3 and 90-3-7 were found to be the best and of equal SERS efficiency. The SERS enhancement factor (EF) of both these MFs was found to be the same, approximately 9 × 107, when calculated using 1,2,3-benzatriazole as the probe molecule. Between the two, the trimetallic substrate with a higher Au percentage (Ag-Au-Cu as 90-7-3) was used for the sensitive SERS-based detection of thiols to exploit the strong Au-S binding interaction. By virtue of the high EF of the substrate, the inherently low Raman scattering cross-sections of the probe molecules were greatly enhanced in SERS mode. The 'limit of quantification (LOQ)' values were found to be 1 nM for aliphatic L-Cysteine and 1-0.1 pM for aromatic thiols using the trimetallic SERS sensor.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| |
Collapse
|
13
|
Varshney S, Oded M, Remennik S, Gutkin V, Banin U. Controlling the Surface of Aluminum Nanocrystals: From Aluminum Oxide to Aluminum Fluoride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304478. [PMID: 37420322 DOI: 10.1002/smll.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Aluminum nanocrystals are emerging as a promising alternative to silver and gold for various applications ranging from plasmonic functionalities to photocatalysis and as energetic materials. Such nanocrystals often exhibit an inherent surface oxidation layer, as aluminum is highly reactive. Its controlled removal is challenging but required, as it can hinder the properties of the encaged metal. Herein, two wet-chemical colloidal approaches toward the surface coating of Al nanocrystals, which afford control over the surface chemistry of the nanocrystals and the oxide thickness, are presented. The first approach utilizes oleic acid as a surface ligand by its addition toward the end of the Al nanocrystals synthesis, and the second approach is the post-synthesis treatment of Al nanocrystals with NOBF4 , in a "wet" colloidal-based approach, which is found to etch and fluorinate the surface oxides. As surface chemistry is an important handle for controlling materials' properties, this research paves a path for manipulating Al nanocrystals while promoting their utilization in diverse applications.
Collapse
Affiliation(s)
- Shalaka Varshney
- The Institute of Chemistry and the Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Meirav Oded
- The Institute of Chemistry and the Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Sergei Remennik
- The Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Vitaly Gutkin
- The Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Uri Banin
- The Institute of Chemistry and the Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
14
|
Mou HZ, Zhao CL, Song J, Xing L, Chen HY, Xu JJ. Ambient Temperature Affects Protein Self-Assembly by Interfering with the Interfacial Aggregation Behavior. ACS OMEGA 2023; 8:24999-25008. [PMID: 37483188 PMCID: PMC10357426 DOI: 10.1021/acsomega.3c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Amyloid fibrillation is known to be associated with degenerative diseases, and mature fibrils are also considered as valuable biomedical materials. Thus, the mechanism and influencing factors of fibrillation have always been the focus of research. However, in vitro studies are always plagued by low reproducibility of kinetics and the molecular mechanism of amyloid fibrillation is under debate until now. Here, we identified the ambient temperature (AT) as a non-negligible interfering factor in in vitro self-assembly of globular protein hen egg-white lysozyme for the first time. By multimodal molecular spectroscopy methods, not only the effect of ATs on the kinetics of protein aggregation was described but also the conformational changes of the molecular structure with different ATs were captured. Through investigating the dependence of interfacial area and catalysis, the reason for this influence was construed by the various aggregation behaviors of protein molecules in the two-phase interface. The results suggest that in vitro mechanism research on protein fibrillation needs to first clarify the AT for a more accurate comparative analysis. The proposal of this concept will provide a new clue for a deeper understanding of the mechanism of protein self-assembly and may have an impact on evaluating the efficiency of amyloid accelerators or inhibitors based on the comparative analysis of protein self-assembly.
Collapse
|
15
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
16
|
Peng F, Lu SY, Sun PQ, Zhang NN, Liu K. Branched Aluminum Nanocrystals with Internal Hot Spots: Synthesis and Single-Particle Surface-Enhanced Raman Scattering. NANO LETTERS 2023. [PMID: 37410961 DOI: 10.1021/acs.nanolett.3c01605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to their unique and sustainable surface plasmonic properties, Al nanocrystals have attracted increasing attention for plasmonic-enhanced applications, including single-particle surface-enhanced Raman scattering (SERS). However, whether Al nanocrystals can achieve single-particle SERS is still unknown, mainly due to the synthetic difficulty of Al nanocrystals with internal gaps. Herein, we report a regrowth method for the synthesis of Al nanohexapods with tunable and uniform internal gaps for single-particle SERS with an enhancement factor of up to 1.79 × 108. The uniform branches of the Al nanohexapods can be systematically tuned regarding their dimensions, terminated facets, and internal gaps. The Al nanohexapods generate hot spots concentrated in the internal gaps due to the strong plasmonic coupling between the branches. A single-particle SERS measurement of Al nanohexapods shows strong Raman signals with maximum enhancement factors comparable to that of Au counterparts. The large enhancement factor indicates that Al nanohexapods are good candidates for single-particle SERS.
Collapse
Affiliation(s)
- Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shao-Yong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Pan-Qi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Ying Y, Tang Z, Liu Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. NANOSCALE 2023. [PMID: 37335252 DOI: 10.1039/d3nr01456h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful and non-invasive spectroscopic technique that can provide rich and specific chemical fingerprint information for various target molecules through effective SERS substrates. In view of the strong dependence of the SERS signals on the properties of the SERS substrates, design, exploration, and construction of novel SERS-active nanomaterials with low cost and excellent performance as the SERS substrates have always been the foundation and the top priority for the development and application of the SERS technology. This review specifically focuses on the extensive progress made in the SERS-active nanomaterials and their enhancement mechanism since the first discovery of SERS on the nanostructured plasmonic metal substrates. The design principles, unique functions, and influencing factors on the SERS signals of different types of SERS-active nanomaterials are highlighted, and insight into their future challenge and development trends is also suggested. It is highly expected that this review could benefit a complete understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to further development and wider application of the SERS technology.
Collapse
Affiliation(s)
- Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Zeng P, Zheng M, Chen H, Chen G, Shu Z, Chen L, Liang H, Zhou Y, Zhao Q, Duan H. Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111733. [PMID: 37299638 DOI: 10.3390/nano13111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Seeking sensitive, large-scale, and low-cost substrates is highly important for practical applications of surface-enhanced Raman scattering (SERS) technology. Noble metallic plasmonic nanostructures with dense hot spots are considered an effective construction to enable sensitive, uniform, and stable SERS performance and thus have attracted wide attention in recent years. In this work, we reported a simple fabrication method to achieve wafer-scale ultradense tilted and staggered plasmonic metallic nanopillars filled with numerous nanogaps (hot spots). By adjusting the etching time of the PMMA (polymethyl methacrylate) layer, the optimal SERS substrate with the densest metallic nanopillars was obtained, which possessed a detection limit down to 10-13 M by using crystal violet as the detected molecules and exhibited excellent reproducibility and long-term stability. Furthermore, the proposed fabrication approach was further used to prepare flexible substrates; for example, a SERS flexible substrate was proven to be an ideal platform for analyzing low-concentration pesticide residues on curved fruit surfaces with significantly enhanced sensitivity. This type of SERS substrate possesses potential in real-life applications as low-cost and high-performance sensors.
Collapse
Affiliation(s)
- Pei Zeng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Hao Chen
- Jihua Laboratory, Foshan 528000, China
| | | | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| | - Lei Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| | - Yuting Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Beijing 100084, China
| | - Qian Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
- Greater Bay Area Innovation Institute, Hunan University, Guangzhou 511300, China
| |
Collapse
|
19
|
Zhang M, Yang J, Yang L, Li Z. A robust SERS calibration using a pseudo-internal intensity reference. NANOSCALE 2023; 15:7403-7409. [PMID: 36970765 DOI: 10.1039/d2nr07161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) with high molecular sensitivity and specificity is a powerful nondestructive analytical tool. Since its discovery, SERS measurements have suffered from the vulnerability of calibration curve, which makes quantification analysis a great challenge. In this work, we report a robust calibration method by introducing a referenced measurement as the intensity standard. This intensity reference not only has the advantages of the internal standard method such as reflecting the SERS substrate enhancement, but also avoids the introduction of competing adsorption between target molecules and the internal standard. Based on the normalized calibration curve, the magnitude of the R6G concentration can be well evaluated from 10-7 M to 10-12 M. Furthermore, we demonstrate that this pseudo-internal standard method can also work well using a different type of molecule as the reference. This SERS calibration method would be beneficial for the development of quantitative SERS analysis.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Jingran Yang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Longkun Yang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Zhipeng Li
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
20
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Roy P, Claude JB, Tiwari S, Barulin A, Wenger J. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan. NANO LETTERS 2023; 23:497-504. [PMID: 36603115 DOI: 10.1021/acs.nanolett.2c03797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using the ultraviolet autofluorescence of tryptophan amino acids offers fascinating perspectives to study single proteins without the drawbacks of fluorescence labeling. However, the low autofluorescence signals have so far limited the UV detection to large proteins containing several tens of tryptophan residues. This limit is not compatible with the vast majority of proteins which contain only a few tryptophans. Here we push the sensitivity of label-free ultraviolet fluorescence correlation spectroscopy (UV-FCS) down to the single tryptophan level. Our results show how the combination of nanophotonic plasmonic antennas, antioxidants, and background reduction techniques can improve the signal-to-background ratio by over an order of magnitude and enable UV-FCS on thermonuclease proteins with a single tryptophan residue. This sensitivity breakthrough unlocks the applicability of UV-FCS technique to a broad library of label-free proteins.
Collapse
Affiliation(s)
- Prithu Roy
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Sunny Tiwari
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Aleksandr Barulin
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
23
|
Dhindsa P, Solti D, Jacobson CR, Kuriakose A, Naidu GN, Bayles A, Yuan Y, Nordlander P, Halas NJ. Facet Tunability of Aluminum Nanocrystals. NANO LETTERS 2022; 22:10088-10094. [PMID: 36525692 DOI: 10.1021/acs.nanolett.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aluminum nanocrystals (Al NCs) with a well-defined size and shape combine unique plasmonic properties with high earth abundance, potentially ideal for applications where sustainability and cost are important factors. It has recently been shown that single-crystal Al {100} nanocubes can be synthesized by the decomposition of AlH3 with Tebbe's reagent, a titanium(IV) catalyst with two cyclopentadienyl ligands. By systematically modifying the catalyst molecular structure, control of the NC growth morphology is observed spectroscopically, as the catalyst stabilizes the {100} NC facets. By varying the catalyst concentration, Al NC faceted growth is tunable from {100} faceted nanocubes to {111} faceted octahedra. This study provides direct insight into the role of catalyst molecular structure in controlling Al NC morphology.
Collapse
Affiliation(s)
- Parmeet Dhindsa
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David Solti
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christian R Jacobson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anvy Kuriakose
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Gopal Narmada Naidu
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Aaron Bayles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yigao Yuan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
24
|
Chang YL, Su CJ, Lu LC, Wan D. Aluminum Plasmonic Nanoclusters for Paper-Based Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:16319-16327. [DOI: 10.1021/acs.analchem.2c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yu-Ling Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Chiao-Jung Su
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
25
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
26
|
Zhang T, Quan X, Cao N, Zhang Z, Li Y. Label-Free Detection of DNA via Surface-Enhanced Raman Spectroscopy Using Au@Ag Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183119. [PMID: 36144907 PMCID: PMC9505376 DOI: 10.3390/nano12183119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/12/2023]
Abstract
DNA is a building block of life; surface-enhanced Raman spectroscopy (SERS) has been broadly applied in the detection of biomolecules but there are challenges in obtaining high-quality DNA SERS signals under non-destructive conditions. Here, we developed a novel label-free approach for DNA detection based on SERS, in which the Au@AgNPs core-shell structure was selected as the enhancement substrate, which not only solved the problem of the weak enhancement effect of gold nanoparticles but also overcame the disadvantage of the inhomogeneous shapes of silver nanoparticles, thereby improving the sensitivity and reproducibility of the SERS signals of DNA molecules. The method obtained SERS signals for four DNA bases (A, C, G, and T) without destroying the structure, then further detected and qualified different specific structures of DNA molecules. These results promote the application of SERS technology in the field of biomolecular detection.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xubin Quan
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Naisi Cao
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhaoying Zhang
- The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
27
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
28
|
Liu D, Yi W, Fu Y, Kong Q, Xi G. In Situ Surface Restraint-Induced Synthesis of Transition-Metal Nitride Ultrathin Nanocrystals as Ultrasensitive SERS Substrate with Ultrahigh Durability. ACS NANO 2022; 16:13123-13133. [PMID: 35930704 DOI: 10.1021/acsnano.2c05914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is a major challenge to synthesize crystalline transition-metal nitride (TMN) ultrathin nanocrystals due to their harsh reaction conditions. Herein, we report that highly crystalline tungsten nitride (W2N, WN, W3N4, W2N3) nanocrystals with small size and excellent dispersibility are prepared by a mild and general in situ surface restraint-induced growth method. These ultrafine tungsten nitride nanocrystals are immobilized in ultrathin carbon layers, forming an interesting hybrid nanobelt structure. The hybrid WN/C nanobelts exhibit a strong localized surface plasmon resonance (LSPR) effect and surface-enhanced Raman scattering (SERS) effect, including a lowest detection limit of 1 × 10-12 M and a Raman enhancement factor of 6.5 × 108 comparable to noble metals, which may be one of the best records for non-noble metal SERS substrates. Moreover, they even can maintain the SERS performance in a variety of harsh environments, showing outstanding corrosion resistance, radiation resistance, and oxidation resistance, which is not available on traditional noble metal and semiconductor SERS substrates. A synergistic Raman enhancement mechanism of LSPR and interface charge transfer is found in the carbon-coated tungsten nitride substrate. A microfluidic SERS channel integrating the enrichment and detection of trace substances is constructed with the WN/C nanobelt, which realizes high-throughput dynamic SERS analysis.
Collapse
Affiliation(s)
- Damin Liu
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P.R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Yanling Fu
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P.R. China
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Guangcheng Xi
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P.R. China
| |
Collapse
|
29
|
Skvortsov A, Babich E, Lipovskii A, Redkov A, Yang G, Zhurikhina V. Raman Scattering Study of Amino Acids Adsorbed on a Silver Nanoisland Film. SENSORS (BASEL, SWITZERLAND) 2022; 22:5455. [PMID: 35891129 PMCID: PMC9317540 DOI: 10.3390/s22145455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
We studied the surface-enhanced Raman spectra of amino acids D-alanine and DL-serine and their mixture on silver nanoisland films (SNF) immersed in phosphate-buffered saline (PBS) solution at millimolar amino acid concentrations. It is shown that the spectra from the amino acid solutions differ from the reference spectra for microcrystallites due to the electrostatic orientation of amino acid zwitterions by the metal nanoisland film. Moreover, non-additive peaks are observed in the spectrum of the mixture of amino acids adsorbed on SNF, which means that intermolecular interactions between adsorbed amino acids are very significant. The results indicate the need for a thorough analysis of the Raman spectra from amino acid solutions, particularly, in PBS, in the presence of a nanostructured silver surface, and may also be of interest for studying molecular properties and intermolecular interactions.
Collapse
Affiliation(s)
- Alexey Skvortsov
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky 4, 194064 St. Petersburg, Russia
| | - Ekaterina Babich
- Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (E.B.); (V.Z.)
- Laboratory of Nanophotonics, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Andrey Lipovskii
- Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (E.B.); (V.Z.)
- Department of Physics and Technology of Nanostructures, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Alexey Redkov
- Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Boljshoy Prospekt V.O. 61, 199178 St. Petersburg, Russia;
| | - Guang Yang
- School of Materials Science and Engineering, Shanghai University, Shangda Rd. 99, Baoshan, Shanghai 200444, China;
| | - Valentina Zhurikhina
- Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (E.B.); (V.Z.)
| |
Collapse
|
30
|
Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107351. [PMID: 35271744 DOI: 10.1002/adma.202107351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The indispensable requirement for sustainable development of human society has forced almost all countries to seek highly efficient and cost-effective ways to harvest and convert solar energy. Though continuous progress has advanced, it remains a daunting challenge to achieve full-spectrum solar absorption and maximize the conversion efficiency of sunlight. Recently, thermoplasmonics has emerged as a promising solution, which involves several beneficial effects including enhanced light absorption and scattering, generation and relaxation of hot carriers, as well as localized/collective heating, offering tremendous opportunities for optimized energy conversion. Besides, all these functionalities can be tailored via elaborated designs of materials and nanostructures. Here, first the fundamental physics governing thermoplasmonics is presented and then the strategies for both material selection and nanostructured designs toward more efficient energy conversion are summarized. Based on this, recent progress in thermoplasmonic applications including solar evaporation, photothermal chemistry, and thermophotovoltaic is reviewed. Finally, the corresponding challenges and prospects are discussed.
Collapse
Affiliation(s)
- Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyu Li
- National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhifeng Wang
- Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Mokkath JH. Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and Ti 3C 2F MXene. Phys Chem Chem Phys 2022; 24:12389-12396. [PMID: 35574826 DOI: 10.1039/d2cp01150f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes are a novel class of two-dimensional materials that exhibit unique light-matter interactions. In this work, using quantum-mechanical simulations based on the time dependent density functional theory, we investigate the electronic and optical properties of a hybrid structure consisting of a mono-layered aluminum (Al) sheet and Ti3C2F MXene. As a key result of this work, we reveal that the coupling of a mono-layered Al sheet on top of Ti3C2F MXene causes interlayer charge transfer accompanied by strong signatures of localized surface plasmon resonances (LSPRs) in the visible region of the electromagnetic spectrum. Our theoretical findings demonstrate a promising strategy to generate LSPRs in MXene-based heterostructures.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait. .,Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
32
|
Wu L, Dias A, Diéguez L. Surface enhanced Raman spectroscopy for tumor nucleic acid: Towards cancer diagnosis and precision medicine. Biosens Bioelectron 2022; 204:114075. [DOI: 10.1016/j.bios.2022.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
|
33
|
Recent advances in nanoscale metal-organic frameworks biosensors for detection of biomarkers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Barik P, Pal S, Pradhan M. On-demand nanoparticle-on-mirror (NPoM) structure for cost-effective surface-enhanced Raman scattering substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120193. [PMID: 34314969 DOI: 10.1016/j.saa.2021.120193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 05/06/2023]
Abstract
We report a robust technique to fabricate a cost-efficient Raman substrate which is composed of polyvinylpyrrolidone (PVP) coated gold nanoparticles layer on commercial aluminum foil. The layer of metal nanoparticles on the aluminum foil, i.e., the nanoparticle-on-mirror (NPoM) structure was fabricated by spraying nanoparticle colloidal solution directly on the foil. The detection limit (LOD) of NPoM substrate is investigated by performing the SERS for Rhodamine 6G (R6G) with the concentration ranging from mM to nM without any post treatment of the substrate. The findings show that the LOD of 1 nM and maximum intensity enhancement factor of ~ 24 is accomplished. Field enhancement owing to reflection from the metallic mirror is the reason behind the signal enhancement and it would be beneficial for routine clinical applications, trace chemical detection, and disease diagnostics.
Collapse
Affiliation(s)
- Puspendu Barik
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India.
| | - Saptarshi Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Manik Pradhan
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India; Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India.
| |
Collapse
|
35
|
Dubey A, Mishra R, Cheng CW, Kuang YP, Gwo S, Yen TJ. Demonstration of a Superior Deep-UV Surface-Enhanced Resonance Raman Scattering (SERRS) Substrate and Single-Base Mutation Detection in Oligonucleotides. J Am Chem Soc 2021; 143:19282-19286. [PMID: 34748330 DOI: 10.1021/jacs.1c09762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In life science, rapid mutation detection in oligonucleotides is in a great demand for genomic and medical screening. To satisfy this demand, surface-enhanced resonance Raman spectroscopy (SERRS) in the deep-UV (DUV) regime offers a promising solution due to its merits of label-free nature, strong electromagnetic confinement, and charge transfer effect. Here, we demonstrate an epitaxial aluminum (Al) DUV-SERRS substrate that resonates effectively with the incident Raman laser and the ss-DNA at 266 nm, yielding significant SERRS signals of the detected analytes. For the first time, to the best of our knowledge, we obtaine SERRS spectra for all bases of oligonucleotides, not only revealing maximum characteristic Raman peaks but also recording the highest enhancement factor of up to 106 for a 1 nm thick adenine monomer. Moreover, our epitaxial Al DUV-SERRS substrate is able to enhance the Raman signal of all four bases of 12-mer ss-DNA and to further linearly quantify the single-base mutation in the 12-mer ss-DNA.
Collapse
Affiliation(s)
- Abhishek Dubey
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ragini Mishra
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chang-Wei Cheng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ping Kuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shangjr Gwo
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan.,Research Centre for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Chen H, Cheng Z, Zhou X, Wang R, Yu F. Emergence of Surface-Enhanced Raman Scattering Probes in Near-Infrared Windows for Biosensing and Bioimaging. Anal Chem 2021; 94:143-164. [PMID: 34812039 DOI: 10.1021/acs.analchem.1c03646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Chen
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xuejun Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
37
|
Wei Y, Pei H, Yan B, Zhu Y. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:045002. [PMID: 34670211 DOI: 10.1088/1361-648x/ac316d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The theoretical research on surface enhanced Raman spectroscopy (SERS) of triangular plate dimer (TPD) is of great significance for the design of experimental substrates. In this paper, the SERS properties of the TPD with Au, Ag, Al and Cu have been theoretical investigated in the ultra-ultraviolet, visible and near-infrared region. The influence of the TPD configuration, including the tip radian, the dimer distance and the aspect ratio on the electric field, Raman enhancement and spatial resolution are studied by the finite element method. The results show that there are dipole resonance band and quadruple dipole resonance band in the surface plasmon resonance band of TPD. The tip radian and dimer distance play the dominant role in the electric field enhancement, and the aspect ratio can be mainly used to tune the peak position of the electric field. The smaller tip radian and dimer distance will produce a stronger localized electric field and a small red shift of the peak position. Adjusting the aspect ratio can tune the position of electric field peak from ultraviolet (UV) to near-infrared without changing the peak value of the electric field significantly, especially for Al TPD. The maximum Raman enhancement factor of Au, Ag and Cu all reach 11 orders of magnitude, and 9 orders of magnitude for Al. The spatial resolution changes linearly with the gap distance, and the maximum spatial distributions of Au, Ag, Al and Cu achieve 0.65 nm, 0.67 nm, 0.69 nm and 0.70 nm with the dimer distance of 1 nm. Our results not only provide a better theoretical guidance for the optimization of TPD substrates in the SERS experiment, but also extend its application scope from ultra-UV to near-infrared range.
Collapse
Affiliation(s)
- Yong Wei
- College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, People's Republic of China
- College of Liren, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Huan Pei
- College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Baoxin Yan
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Yanying Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| |
Collapse
|
38
|
Gong ZH, Wei ZN, Liu YZ, Xiao LF. [ARTICLE WITHDRAWN] Semiconducting Polymer Dot-Based Ratiometric Fluorescence Nanoprobe for DNA Detection. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5776-5783. [PMID: 33980392 DOI: 10.1166/jnn.2021.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN MAY 2021
Collapse
Affiliation(s)
- Zhen-Hu Gong
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Zong-Nan Wei
- Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yi-Zhang Liu
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Lu-Fei Xiao
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| |
Collapse
|
39
|
Liu C, Lei F, Wei Y, Li Z, Zhang C, Peng Q, Man B, Yu J. Preparation of a superhydrophobic AgNP/GF substrate and its SERS application in a complex detection environment. OPTICS EXPRESS 2021; 29:34085-34096. [PMID: 34809206 DOI: 10.1364/oe.441606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely considered to be a fingerprint spectrum that can realize molecular identification, and it continues to receive a lot of attention due to its high sensitivity and powerful qualitative analysis capabilities. In recent years, there has been a lot of work and reports on super-sensitive SERS substrates, but often the enhanced ability of the substrate is also effective for impurities and irrelevant molecules. Therefore, a problem that still remains to be solved is how to perform effective trace detection of specific substances in a complex detection environment. Herein, a superhydrophobic Ag nanoparticle/glass microfibre filter (AgNP/GF) substrate was designed to realize the Raman detection of complex multiphase solutions. The hydrophobic three-dimensional net-like structure provides efficient Raman enhancement, making the substrate have extremely high detection limits for dye molecules and even achieving specific detection of the hexane phase component (thiram molecule) in a multiphase solution.
Collapse
|
40
|
Ma J, Zhang X, Gao S. Tunable electron and hole injection channels at plasmonic Al-TiO 2 interfaces. NANOSCALE 2021; 13:14073-14080. [PMID: 34477688 DOI: 10.1039/d1nr03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metallic nanostructures can strongly absorb light through their plasmon excitations, whose nonradiative decay generates hot electron-hole pairs. When the metallic nanostructure is interfaced with a semiconductor, the spatial separation of hot carriers plays the central and decisive roles in photovoltaic and photocatalytic applications. In recent years, free-electron metals like Al have attracted tremendous attentions due to the much higher plasmon frequencies that could extend to the ultraviolet regime. Here, the plasmon excitations and charge separations at the Al-TiO2 interfaces have been investigated using quantum-mechanical calculations, where the atomic structures and electronic dynamics are all treated from first-principles. It is found that the high-frequency plasmon of Al produces abundant and broad-band hot-carrier distributions, where the electron-hole symmetry is broken by the presence of the semiconductor band gap. Such an asymmetric hot-carrier distribution provides two competing channels, which can be controlled either by tuning the laser frequency, or by harnessing the plasmon frequency through the geometry and shape of the metallic nanostructure. Our study suggests that the Al plasmon offers a versatile and tunable pathway for the charge transfer and separation, and has general implications in plasmon-assisted photovoltaics and photocatalysis.
Collapse
Affiliation(s)
- Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | | | | |
Collapse
|
41
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Calderon I, Guerrini L, Alvarez-Puebla RA. Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2021; 11:230. [PMID: 34356701 PMCID: PMC8301754 DOI: 10.3390/bios11070230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) merges nanotechnology with conventional Raman spectroscopy to produce an ultrasensitive and highly specific analytical tool that has been exploited as the optical signal read-out in a variety of advanced applications. In this feature article, we delineate the main features of the intertwined relationship between SERS and nucleic acids (NAs). In particular, we report representative examples of the implementation of SERS in biosensing platforms for NA detection, the integration of DNA as the biorecognition element onto plasmonic materials for SERS analysis of different classes of analytes (from metal ions to microorgniasms) and, finally, the use of structural DNA nanotechnology for the precise engineering of SERS-active nanomaterials.
Collapse
Affiliation(s)
- Irene Calderon
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo, s/n, 43007 Tarragona, Spain;
| | - Luca Guerrini
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo, s/n, 43007 Tarragona, Spain;
| | - Ramon A. Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo, s/n, 43007 Tarragona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
43
|
Chen R, Cheng X, Zhang C, Wu H, Zhu H, He S. Sub-3 nm Aluminum Nanocrystals Exhibiting Cluster-Like Optical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002524. [PMID: 32812331 DOI: 10.1002/smll.202002524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Metal nanoclusters with distinct photophysical and photochemical properties have drawn intense research interests for their applications in optoelectronics, catalysis, and biomedicine. Herein, strong evidence is provided that light metal is capable of generating comparable optical responses of noble metal nanoclusters, but at much shorter wavelength. Air-stable, size-uniform, sub-3 nm aluminum nanocrystals are prepared with simple solution based synthetic procedures, with photoluminescence located in the ultraviolet range and short exciton lifetime. Partial modulation of the photoluminescence is achieved, indicating the key role of surface oxides. This work is envisioned to inspire new frontiers of nanocluster research with light metals.
Collapse
Affiliation(s)
- Runze Chen
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Chi Zhang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haiming Zhu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
44
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
45
|
Fan X, Zhang H, Zhao X, Lv K, Zhu T, Xia Y, Yang C, Bai C. Three-dimensional SERS sensor based on the sandwiched G@AgNPs@G/PDMS film. Talanta 2021; 233:122481. [PMID: 34215109 DOI: 10.1016/j.talanta.2021.122481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) SERS substrate with the denser "hotspots" is synthesized by the constriction of PDMS film decorated with sandwiched graphene@AgNPs@graphene (G@AgNPs@G) nanostructure. Graphene layers above and below the AgNPs are used to absorb molecules onto the "hotspots", and prevent the oxidation of AgNPs in our design. PDMS films can be easily shrunk for 3D structures, causing advantages in enhancement ability and light-matter interaction. Benefiting from the above advantages, a detection limit of 10-14 M (CV) and enhancement factor (EF) of 3.9 × 109 were obtained in our experiment. Theoretical analyses (FDTD) were also used to study the enhancement mechanism. For practical purposes, in-situ detection of MG molecules on the fish surface and the label-free detection of DNA base of adenine (A) and cytosine (C) were also studied. The high enhancement factor, great sensitivity, reliability, and stability of substrate reasonably proved that it can be used as an excellent SERS substrate for biomolecular detection.
Collapse
Affiliation(s)
- Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Hao Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS) Center for Condensed Matter Physics Department of Physics, Capital Normal University, Beijing, 100048, China
| | - XinRu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Ke Lv
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Tiying Zhu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Yaping Xia
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Chengjie Bai
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
46
|
Koya A, Zhu X, Ohannesian N, Yanik AA, Alabastri A, Proietti Zaccaria R, Krahne R, Shih WC, Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS NANO 2021; 15:6038-6060. [PMID: 33797880 PMCID: PMC8155319 DOI: 10.1021/acsnano.0c10945] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 05/04/2023]
Abstract
The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis.
Collapse
Affiliation(s)
| | - Xiangchao Zhu
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Nareg Ohannesian
- Department
of Electrical and Computer Engineering, University of Houston, Houston Texas 77204, United States
| | - A. Ali Yanik
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Remo Proietti Zaccaria
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Cixi
Institute of Biomedical Engineering, Ningbo Institute of Materials
Technology and Engineering, Chinese Academy
of Sciences, Zhejiang 315201, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Wei-Chuan Shih
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Faculty of
Science and Technology, Free University
of Bozen, Piazza Università
5, 39100 Bolzano, Italy
| |
Collapse
|
47
|
Lai H, Zhang H, Li G, Hu Y. Bimetallic AgNPs@dopamine modified-halloysite nanotubes-AuNPs for adenine determination using surface-enhanced Raman scattering. Mikrochim Acta 2021; 188:127. [PMID: 33733686 DOI: 10.1007/s00604-021-04778-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023]
Abstract
A bimetallic nanoparticles modified halloysite nanotubes (HNTs) hybrid was prepared by embedding AgNPs and modifying AuNPs on the inner or outer wall of dopamine-modified HNTs (DHNTs) in sequence. The resulting bimetallic AgNPs@DHNTs-AuNPs hybrid as surface-enhanced Raman scattering (SERS) substrate exhibited improved enhancement ability over monometallic AgNPs@DHNTs, and DHNTs-AuNPs substrates, with intensity ratios of about 48:1:9 (crystal violet) and 11:1:2 (p-phenylenediamine). The giant SERS effect of AgNPs@DHNTs-AuNPs substrate is probably attributed to the synergetic enhancement of the electromagnetic field (Au/Ag), optical plasmon force, molecular enrichment (HNTs), and charge transfer (NPs-dopamine-molecules). The sensitive and reproductive AgNPs@DHNTs-AuNPs substrate was applied for SERS determination of adenine with a linear range of 0.010-0.50 mg·L-1 and a detection limit of 2.2 μg·L-1. The SERS method enables the rapid determination of adenine in fish, chicken kidney and heart, and serum samples, with recoveries of 83.5-121.6% and relative standard deviations of 2.5-7.9%. The SERS substrate has high value for rapid analysis of food and biomarker determinations. Schematic illustration of the preparation of AgNPs@HNTs-AuNPs for SERS analysis of adenine in complex sample.
Collapse
Affiliation(s)
- Huasheng Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Huadong Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
48
|
González-Campuzano R, Sato-Berrú RY, Mendoza D. Surface-enhanced Raman scattering effect in binary systems formed by graphene on aluminum plasmonic nanostructures. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Binary systems (BS) formed by graphene (GR) deposited on top of aluminum (Al) nanoconcaves (Al-NC) and Al nanodomes (Al-ND) were synthesized by electrochemical anodization of Al. Using the plasmonic response of Al-NC and Al-ND and the distinctive physical and chemical properties of GR, these BS are proposed as Surface-Enhanced Raman Scattering (SERS) sensors using rhodamine 6G (R6G) as a proof molecule. As expected, the BS significantly enhances Raman signals of R6G molecules in comparison with substrates used as references, also suppressing the fluorescence background of R6G molecules.
Collapse
|
49
|
Yang L, Ren Z, Zhang M, Song Y, Li P, Qiu Y, Deng P, Li Z. Three-dimensional porous SERS powder for sensitive liquid and gas detections fabricated by engineering dense "hot spots" on silica aerogel. NANOSCALE ADVANCES 2021; 3:1012-1018. [PMID: 36133286 PMCID: PMC9418486 DOI: 10.1039/d0na00849d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 06/16/2023]
Abstract
A three-dimensional porous SERS powder material, Ag nanoparticles-engineered-silica aerogel, was developed. Utilizing an in situ chemical reduction strategy, Ag nanoparticles were densely assembled on porous aerogel structures, thus forming three-dimensional "hot spots" distribution with intrinsic large specific surface area and high porosity. These features can effectively enrich the analytes on the metal surface and provide huge near field enhancement. Highly sensitive and homogeneous SERS detections were achieved not only on the conventional liquid analytes but also on gas with the enhancement factor up to ∼108 and relative standard deviation as small as ∼13%. Robust calibration curves were obtained from the SERS data, which demonstrates the potential for the quantification analysis. Moreover, the powder shows extraordinary SERS stability than the conventional Ag nanostructures, which makes long term storage and convenient usage feasible. With all of these advantages, the porous SERS powder material can be extended to on-site SERS "nose" applications such as liquid and gas detections for chemical analysis, environmental monitoring, and anti-terrorism.
Collapse
Affiliation(s)
- Longkun Yang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Zhifang Ren
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Meng Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Yanli Song
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Pan Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
- Beijing Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology Beijing 100089 P. R. China
| | - Yun Qiu
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Pingye Deng
- Beijing Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology Beijing 100089 P. R. China
| | - Zhipeng Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| |
Collapse
|
50
|
Zheng X, Wu G, Lv G, Yin L, Luo B, Lv X, Chen C. Combining derivative Raman with autofluorescence to improve the diagnosis performance of echinococcosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119083. [PMID: 33137629 DOI: 10.1016/j.saa.2020.119083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Echinococcosis is a zoonotic parasitic disease transmitted by animals and distributed all over the world. There is no standardized and widely accepted treatment method, and early and accurate diagnosis is crucial for the prevention and cure of echinococcosis. Here, we explored the feasibility of using derivative Raman in combination with autofluorescence (AF) to improve the diagnosis performance of echinococcosis. The spectra of serum samples from patients with echinococcosis, as well as healthy volunteers, were recorded at 633 nm excitation. The normalized mean Raman spectra showed that there is a decrease in the relative amounts of β carotene and phenylalanine and an increase in the percentage of tryptophan, tyrosine, and glutamic acid contents in the serum of echinococcosis patients as compared to that of healthy subjects. Then, principal components analysis (PCA), combined with linear discriminant analysis (LDA), were adopted to distinguish echinococcosis patients from healthy volunteers. Based on the area under the ROC curve (AUC) value, the derivative Raman + AF spectral data set achieved the optimal results. The AUC value was improved by 0.08 for derivative Raman + AF (AUC = 0.98), compared to Raman alone. The results demonstrated that the fusion of derivative Raman and AF could effectively improve the performance of the diagnostic model, and this technique has great application potential in the clinical screening of echinococcosis.
Collapse
Affiliation(s)
- Xiangxiang Zheng
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Guohua Wu
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Longfei Yin
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bin Luo
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xiaoyi Lv
- School of Software, Xinjiang University, Urumqi 830046, China; College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|