1
|
Zhang DY, Xu Z, Li JY, Mao S, Wang H. Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics. ACS NANO 2024. [PMID: 39723464 DOI: 10.1021/acsnano.4c12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions. We highlight the crucial role of graphene grids in cryogenic electron microscopy for achieving Ångstrom-level resolution for resolving molecular structures and the importance of graphene liquid cells in liquid-phase TEM for directly observing dynamics with subnanometer resolution at a frame rate of several frames per second, as well as the cross-talks of the two imaging modes. To understand the chemistry and physics encoded in these molecular movies, incorporating machine learning algorithms for image analysis provides a promising approach that further bolsters the resolution adventure. Besides reviewing the recent advances and methodologies in TEM imaging of individual molecules using graphene, this review also outlines future directions to improve these techniques and envision problems in molecular science, chemistry, and biology that could benefit from these experiments.
Collapse
Affiliation(s)
- De-Yi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhipeng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Abdellah AM, Salem KE, DiCecco LA, Ismail F, Rakhsha A, Grandfield K, Higgins D. In Situ Transmission Electron Microscopy of Electrocatalyst Materials: Proposed Workflows, Technical Advances, Challenges, and Lessons Learned. SMALL METHODS 2024:e2400851. [PMID: 39707656 DOI: 10.1002/smtd.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/19/2024] [Indexed: 12/23/2024]
Abstract
In situ electrochemical liquid phase transmission electron microscopy (LP-TEM) measurements utilize micro-chip three-electrode cells with electron transparent silicon nitride windows that confine the liquid electrolyte. By imaging electrocatalysts deposited on micro-patterned electrodes, LP-TEM provides insight into morphological, phase structure, and compositional changes within electrocatalyst materials under electrochemical reaction conditions, which have practical implications on activity, selectivity, and durability. Despite LP-TEM capabilities becoming more accessible, in situ measurements under electrochemical reaction conditions remain non-trivial, with challenges including electron beam interactions with the electrolyte and electrode, the lack of well-defined experimental workflows, and difficulty interpreting particle behavior within a liquid. Herein a summary of the current state of LP-TEM technique capabilities alongside a discussion of the relevant experimental challenges researchers typically face, with a focus on in situ studies of electrochemical CO2 conversion catalysts is provided. A methodological approach for in situ LP-TEM measurements on CO2R catalysts prepared by electro-deposition, sputtering, or drop-casting is presented and include case studies where challenges and proposed workflows for each are highlighted. By providing a summary of LP-TEM technique capabilities and guidance for the measurements, the goal is for this paper to reduce barriers for researchers who are interested in utilizing LP-TEM characterization to answer their scientific questions.
Collapse
Affiliation(s)
- Ahmed M Abdellah
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Kholoud E Salem
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fatma Ismail
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Amirhossein Rakhsha
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
3
|
Yashima Y, Yamazaki T, Kimura Y. Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy. ACS OMEGA 2024; 9:39914-39924. [PMID: 39346859 PMCID: PMC11425617 DOI: 10.1021/acsomega.4c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In situ liquid-cell transmission microscopy has attracted much attention as a method for the direct observations of the dynamics of soft matter. A graphene liquid cell (GLC) has previously been investigated as an alternative to a conventional SiN x liquid cell. Although GLCs are capable of scavenging radicals and providing high spatial resolutions, their production is fundamentally stochastic, and a significant compositional change in liquids encapsulated in GLCs has recently been pointed out. We found that graphene-based liquid cells were formed in nano- to micrometer sizes with high reproducibility when the concentration of the encapsulated aqueous salt solution was high. In contrast, when we revisited conventional fabrication methods, water-encapsulated GLC was formed with low yield, and any electron diffraction spots from ice were not confirmed by a cooling experiment. The reason for this was the presence of intrinsic defects in the graphene, the presence of which we confirmed by the etch-pit method. The shrinkage of a water-encapsulated cell and a decrease in the bubble area in an aqueous (NH4)2SO4 solution cell suggested that volatile water molecules and gas molecules can leak from the cells during the fabrication and observation processes. Further revision of the conditions for the formation of liquid cells and a reduction in the number of intrinsic graphene defects are expected to lead to the provision of graphene-based liquid cells capable of encapsulating dilute aqueous solutions or pure water.
Collapse
Affiliation(s)
- Yuga Yashima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
4
|
Li JY, Wang ZB, Xu ZP, Xiao DD, Gu L, Wang H. Modes of Nanodroplet Formation and Growth on an Ultrathin Water Film. J Phys Chem B 2024; 128:3732-3741. [PMID: 38568211 DOI: 10.1021/acs.jpcb.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.
Collapse
Affiliation(s)
- Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Zi-Bing Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Zhi-Peng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Dong-Dong Xiao
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Material Science and Engineering, Tsinghua University, Beijing 100190, P. R. China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Toleukhanova S, Shen TH, Chang C, Swathilakshmi S, Bottinelli Montandon T, Tileli V. Graphene Electrode for Studying CO 2 Electroreduction Nanocatalysts under Realistic Conditions in Microcells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311133. [PMID: 38217533 DOI: 10.1002/adma.202311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Indexed: 01/15/2024]
Abstract
The ability to resolve the dynamic evolution of electrocatalytically induced processes with electrochemical liquid-phase electron microscopy (EM) is limited by the microcell configuration. Herein, a free-standing tri-layer graphene is integrated as a membrane and electrode material into the electrochemical chip and its suitability as a substrate electrode at the high cathodic potentials required for CO2 electroreduction (CO2ER) is evaluated. The three-layer stacked graphene is transferred onto an in-house fabricated single-working electrode chip for use with bulk-like reference and counter electrodes to facilitate evaluation of its effectiveness. Electrochemical measurements show that the graphene working electrode exhibits a wider inert cathodic potential range than the conventional glassy carbon electrode while achieving good charge transfer properties for nanocatalytic redox reactions. Operando scanning electron microscopy studies clearly demonstrate the improvement in spatial resolution but reveal a synergistic effect of the electron beam and the applied potential that limits the stability time window of the graphene-based electrochemical chip. By optimizing the operating conditions, in situ monitoring of Cu nanocube degradation is achieved at the CO2ER potential of -1.1 V versus RHE. Thus, this improved microcell configuration allows EM observation of catalytic processes at potentials relevant to real systems.
Collapse
Affiliation(s)
- Saltanat Toleukhanova
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Tzu-Hsien Shen
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Chen Chang
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | | | | | - Vasiliki Tileli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
6
|
Kunnas P, de Jonge N, Patterson JP. The effect of nanochannel length on in situ loading times of diffusion-propelled nanoparticles in liquid cell electron microscopy. Ultramicroscopy 2024; 255:113865. [PMID: 37856919 DOI: 10.1016/j.ultramic.2023.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Liquid cell transmission electron microscopy is a powerful tool for visualizing nanoparticle (NP) assemblies in liquid environments with nanometer resolution. However, it remains a challenge to control the NP concentration in the high aspect ratio liquid enclosure where the diffusion of dispersed NPs is affected by the exposed surface of the liquid cell walls. Here, we introduce a semi-empirical model based on the 1D diffusion equation, to predict the NP loading time as they pass through the nanochannel into the imaging volume of the liquid cell. We show that loading of NPs into the imaging volume of the liquid cell may take several days if NPs are prone to attach to the surface of the mm-long nanochannel when using an industry-standard flat microchip. As a means to facilitate mass transport via diffusion, we tested a liquid cell incorporating a microchannel geometry resulting in a NP loading time in the order minutes that allowed us to observe the formation of a randomly oriented self-assembled monolayer in situ using scanning transmission electron microscopy.
Collapse
Affiliation(s)
- Peter Kunnas
- University of Vienna, Faculty of Physics, VCQ, Vienna A-1090, Austria; University of Vienna, Max Perutz Laboratories, Department of Structural and Computational Biology, Vienna A-1030, Austria
| | - Niels de Jonge
- Leibniz Institute for New Materials, Saarbrücken, Germany; Department of Physics, Saarland University, Saarbrücken, Germany; Bruker AXS, Karlsruhe, Germany
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, United States.
| |
Collapse
|
7
|
Chee SW, Lunkenbein T, Schlögl R, Roldán Cuenya B. Operando Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research? Chem Rev 2023; 123:13374-13418. [PMID: 37967448 PMCID: PMC10722467 DOI: 10.1021/acs.chemrev.3c00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.
Collapse
Affiliation(s)
- See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
8
|
Pivak Y, Park J, Basak S, Eichel RA, Beker A, Rozene A, Pérez Garza HH, Sun H. High-resolution and analytical electron microscopy in a liquid flow cell via gas purging. Microscopy (Oxf) 2023; 72:520-524. [PMID: 37162280 DOI: 10.1093/jmicro/dfad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
Liquid-phase transmission electron microscopy (LPTEM) technique has been used to perform a wide range of in situ and operando studies. While most studies are based on the sample contrast change in the liquid, acquiring high qualitative results in the native liquid environment still poses a challenge. Herein, we present a novel and facile method to perform high-resolution and analytical electron microscopy studies in a liquid flow cell. This technique is based on removing the liquid from the observation area by a flow of gas. It is expected that the proposed approach can find broad applications in LPTEM studies.
Collapse
Affiliation(s)
- Yevheniy Pivak
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Junbeom Park
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Shibabrata Basak
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Rüdiger-Albert Eichel
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Anne Beker
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Alejandro Rozene
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | | | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| |
Collapse
|
9
|
Qu J, Sui M, Li R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience 2023; 26:107072. [PMID: 37534164 PMCID: PMC10391733 DOI: 10.1016/j.isci.2023.107072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The process of heterogeneous catalytic reaction under working conditions has long been considered a "black box", which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
| |
Collapse
|
10
|
Lee S, Schneider NM, Tan SF, Ross FM. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS NANO 2023; 17:5609-5619. [PMID: 36881385 DOI: 10.1021/acsnano.2c11477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid cell transmission electron microscopy has become a powerful and increasingly accessible technique for in situ studies of nanoscale processes in liquid and solution phase. Exploring reaction mechanisms in electrochemical or crystal growth processes requires precise control over experimental conditions, with temperature being one of the most critical factors. Here we carry out a series of crystal growth experiments and simulations at different temperatures in the well-studied system of Ag nanocrystal growth driven by the changes in redox environment caused by the electron beam. Liquid cell experiments show strong changes in both morphology and growth rate with temperature. We develop a kinetic model to predict the temperature-dependent solution composition, and we discuss how the combined effect of temperature-dependent chemistry, diffusion, and the balance between nucleation and growth rates affect the morphology. We discuss how this work may provide guidance in interpreting liquid cell TEM and potentially larger-scale synthesis experiments for systems controlled by temperature.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Bultema LA, Bücker R, Schulz EC, Tellkamp F, Gonschior J, Miller RD, Kassier GH. The effect of secondary electrons on radiolysis as observed by in liquid TEM: The role of window material and electrical bias. Ultramicroscopy 2022; 240:113579. [DOI: 10.1016/j.ultramic.2022.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
|
13
|
Lee C, Huang M, Luo D, Jang JE, Park C, Kang S, Ruoff RS, Jin S, Lee HW. Using Single-Crystal Graphene to Form Arrays of Nanocapsules Enabling the Observation of Light Elements in Liquid Cell Transmission Electron Microscopy. NANO LETTERS 2022; 22:7423-7431. [PMID: 36044736 DOI: 10.1021/acs.nanolett.2c02323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have designed and fabricated a TEM (transmission electron microscopy) liquid cell with hundreds of graphene nanocapsules arranged in a stack of two Si3N4-x membranes. These graphene nanocapsules are formed on arrays of nanoholes patterned on the Si3N4-x membrane by focused ion beam milling, allowing for better resolution than for the conventional graphene liquid cells, which enables the observation of light elements, such as atomic structures of silicon. We suggest that multiple nanocapsules provide opportunities for consecutive imaging under the same conditions in a single liquid cell. The use of single-crystal graphene windows offers an excellent signal-to-noise ratio and high spatial resolution. The motion of silicon nanoparticles (a low atomic number (Z) material) interacting with nanobubbles was observed, and analyzed, in detail. Our approach will help advance liquid-phase TEM observations by providing a straightforward method to encapsulate liquid between monolayers of various 2-dimensional materials.
Collapse
Affiliation(s)
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | |
Collapse
|
14
|
Cheng N, Sun H, Beker AF, van Omme JT, Svensson E, Arandiyan H, Lee HR, Ge B, Basak S, Eichel RA, Pivak Y, Xu Q, Hugo Pérez Garza H, Shao Z. Nanoscale visualization of metallic electrodeposition in a well-controlled chemical environment. NANOTECHNOLOGY 2022; 33:445702. [PMID: 35878519 DOI: 10.1088/1361-6528/ac83c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Liquid phase transmission electron microscopy (TEM) provides a useful means to study a wide range of dynamics in solution with near-atomic spatial resolution and sub-microsecond temporal resolution. However, it is still a challenge to control the chemical environment (such as the flow of liquid, flow rate, and the liquid composition) in a liquid cell, and evaluate its effect on the various dynamic phenomena. In this work, we have systematically demonstrated the flow performance of anin situliquid TEM system, which is based on 'on-chip flow' driven by external pressure pumps. We studied the effects of different chemical environments in the liquid cell as well as the electrochemical potential on the deposition and dissolution behavior of Cu crystals. The results show that uniform Cu deposition can be obtained at a higher liquid flow rate (1.38μl min-1), while at a lower liquid flow rate (0.1μl min-1), the growth of Cu dendrites was observed. Dendrite formation could be further promoted byin situaddition of foreign ions, such as phosphates. The generality of this technique was confirmed by studying Zn electrodeposition. Our direct observations not only provide new insights into understanding the nucleation and growth but also give guidelines for the design and synthesis of desired nanostructures for specific applications. Finally, the capability of controlling the chemical environment adds another dimension to the existing liquid phase TEM technique, extending the possibilities to study a wide range of dynamic phenomena in liquid media.
Collapse
Affiliation(s)
- Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Anne France Beker
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - J Tijn van Omme
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Emil Svensson
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, 2006, Sydney, Australia
| | - Hye Ryoung Lee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Shibabrata Basak
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Rüdiger A Eichel
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Yevheniy Pivak
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Qiang Xu
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | | | - Zongping Shao
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
15
|
Kelly DF, DiCecco LA, Jonaid GM, Dearnaley WJ, Spilman MS, Gray JL, Dressel-Dukes MJ. Liquid-EM goes viral - visualizing structure and dynamics. Curr Opin Struct Biol 2022; 75:102426. [PMID: 35868163 DOI: 10.1016/j.sbi.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Liquid-electron microscopy (EM), the room temperature correlate to cryo-EM, is an exciting new technique delivering real-time data of dynamic reactions in solution. Here, we explain how liquid-EM gained popularity in recent years by examining key experiments conducted on viral assemblies and host-pathogen interactions. We describe developing workflows for specimen preparation, data collection, and computing processes that led to the first high-resolution virus structures in a liquid environment. Equally important, we review why liquid-electron tomography may become the next big thing in biomedical research due to its ability to monitor live viruses entering cells within seconds. Taken together, we pose the idea that liquid-EM can serve as a dynamic complement to current cryo-EM methods, inspiring the "real-time revolution" in nanoscale imaging.
Collapse
Affiliation(s)
- Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA; Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.
| | - Liza-Anastasia DiCecco
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada. https://twitter.com/LizaDiCecco
| | - G M Jonaid
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - William J Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA; Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA. https://twitter.com/PennStateMRI
| | - Michael S Spilman
- Direct Electron, LP, San Diego, CA 92128, USA. https://twitter.com/DirectElectron
| | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
16
|
Kunnas P, Moradi MA, Sommerdijk N, de Jonge N. Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy. Ultramicroscopy 2022; 240:113596. [PMID: 35908325 DOI: 10.1016/j.ultramic.2022.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Observing processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30 nm diameter SiO2 nanoparticles (SiONPs), and 100 nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.
Collapse
Affiliation(s)
- Peter Kunnas
- INM- Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Faculty of Physics, Quantum Imaging and Biophysics, University of Vienna, Vienna 1090, Austria
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Niels de Jonge
- INM- Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Department of Physics, Saarland University, Saarbrücken 66123, Germany.
| |
Collapse
|
17
|
Yoshida K, Sasaki Y, Kuwabara A, Ikuhara Y. Reliable Electrochemical Setup for in situ Observations with an Atmospheric SEM. Microscopy (Oxf) 2022; 71:311-314. [PMID: 35689557 DOI: 10.1093/jmicro/dfac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
A novel setup for the in situ observation of electrochemical reactions in liquids through atmospheric scanning electron microscopy is presented. The proposed liquid-phase electrochemical SEM system consists of a working electrode (WE) on an electrochemical chip (e-chip) and other two electrodes inserted into a liquid electrolyte; electrochemical reactions occurring at the WE are controlled precisely with an external potentiostat/galvanostat connected to the three electrodes. Copper deposition from a CuSO4 aqueous solution was conducted onto the WE, and simultaneous acquisition of nanoscale images and reliable electrochemical data was achieved with the proposed setup.
Collapse
Affiliation(s)
- Kaname Yoshida
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Yuki Sasaki
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Yuichi Ikuhara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan.,Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Sung J, Bae Y, Park H, Kang S, Choi BK, Kim J, Park J. Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu Rev Chem Biomol Eng 2022; 13:167-191. [PMID: 35700529 DOI: 10.1146/annurev-chembioeng-092120-034534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
Collapse
Affiliation(s)
- Jongbaek Sung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hayoung Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Jonaid GM, Casasanta MA, Dearnaley WJ, Berry S, Kaylor L, Dressel-Dukes MJ, Spilman MS, Gray JL, Kelly DF. Automated Tools to Advance High-Resolution Imaging in Liquid. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-10. [PMID: 35048845 DOI: 10.1017/s1431927621013921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid-electron microscopy (EM), the room-temperature correlate to cryo-EM, is a rapidly growing field providing high-resolution insights of macromolecules in solution. Here, we describe how liquid-EM experiments can incorporate automated tools to propel the field to new heights. We demonstrate fresh workflows for specimen preparation, data collection, and computing processes to assess biological structures in liquid. Adeno-associated virus (AAV) and the SARS-CoV-2 nucleocapsid (N) were used as model systems to highlight the technical advances. These complexes were selected based on their major differences in size and natural symmetry. AAV is a highly symmetric, icosahedral assembly with a particle diameter of ~25 nm. At the other end of the spectrum, N protein is an asymmetric monomer or dimer with dimensions of approximately 5–7 nm, depending upon its oligomerization state. Equally important, both AAV and N protein are popular subjects in biomedical research due to their high value in vaccine development and therapeutic efforts against COVID-19. Overall, we demonstrate how automated practices in liquid-EM can be used to decode molecules of interest for human health and disease.
Collapse
Affiliation(s)
- G M Jonaid
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - Michael A Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - William J Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - Samantha Berry
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | | | | | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
| | - Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
20
|
Kang S, Kim JH, Lee M, Yu JW, Kim J, Kang D, Baek H, Bae Y, Kim BH, Kang S, Shim S, Park SJ, Lee WB, Hyeon T, Sung J, Park J. Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. SCIENCE ADVANCES 2021; 7:eabi5419. [PMID: 34860549 PMCID: PMC8641935 DOI: 10.1126/sciadv.abi5419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/14/2021] [Indexed: 05/21/2023]
Abstract
Thermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations. The nanoparticles in a GLC exhibit non-Gaussian, diffusive motion, signifying dynamic fluctuation of the diffusion coefficient due to the dynamically heterogeneous environment surrounding nanoparticles, including organic ligands on the nanoparticle surface. Our study shows that the dynamics of nanoparticle coalescence is controlled by two elementary processes: diffusion-limited encounter complex formation and the subsequent coalescence of the encounter complex through rotational motion, where surface-passivating ligands play a critical role.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ji-Hyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Woong Yu
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayeon Baek
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jaeyoung Sung
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| |
Collapse
|
21
|
Gnanasekaran K, Korpanty J, Berger O, Hampu N, Halperin-Sternfeld M, Cohen-Gerassi D, Adler-Abramovich L, Gianneschi NC. Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopy. ACS NANO 2021; 15:16542-16551. [PMID: 34623126 PMCID: PMC9836046 DOI: 10.1021/acsnano.1c06130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we report the in situ growth of FF nanotubes examined via liquid-cell transmission electron microscopy (LCTEM). This direct, high spatial, and temporal resolution imaging approach allowed us to observe the growth of peptide-based nanofibrillar structures through directional elongation. Furthermore, the radial growth profile of FF nanotubes through the addition of monomers perpendicular to the tube axis has been observed in real-time with sufficient resolution to directly observe the increase in diameter. Our study demonstrates that the kinetics, dynamics, structure formation, and assembly mechanism of these supramolecular assemblies can be directly monitored using LCTEM. The performance of the peptides and the assemblies they form can be verified and evaluated using post-mortem techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS).
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas Hampu
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Jonaid GM, Dearnaley WJ, Casasanta MA, Kaylor L, Berry S, Dukes MJ, Spilman MS, Gray JL, Kelly DF. High-Resolution Imaging of Human Viruses in Liquid Droplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103221. [PMID: 34302401 PMCID: PMC8440499 DOI: 10.1002/adma.202103221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Indexed: 05/29/2023]
Abstract
Liquid-phase electron microscopy (LP-EM) is an exciting new area in the materials imaging field, providing unprecedented views of molecular processes. Time-resolved insights from LP-EM studies are a strong complement to the remarkable results achievable with other high-resolution techniques. Here, the opportunities to expand LP-EM technology beyond 2D temporal assessments and into the 3D regime are described. The results show new structures and dynamic insights of human viruses contained in minute volumes of liquid while acquired in a rapid timeframe. To develop this strategy, adeno-associated virus (AAV) is used as a model system. AAV is a well-known gene therapy vehicle with current applications involving drug delivery and vaccine development for COVID-19. Improving the understanding of the physical properties of biological entities in a liquid state, as maintained in the human body, has broad societal implications for human health and disease.
Collapse
Affiliation(s)
- GM Jonaid
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - William J. Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael A. Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Samantha Berry
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | - Jennifer L. Gray
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Verification of water presence in graphene liquid cells. Micron 2021; 149:103109. [PMID: 34332298 DOI: 10.1016/j.micron.2021.103109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Graphene liquid cells (GLCs) present the thinnest possible sample enclosures for liquid phase electron microscopy. However, the actual presence of liquid within a GLC is not always guaranteed. Of key importance is to reliably test the presence of the liquid, which is most frequently water or saline. Here, the commonly used methods for verifying the presence of water were evaluated. It is shown that depending on the type of sample, applying a single criterion does not always conclusively verify the presence of water. Testing liquid filling for a specific GLC sample preparation protocol should thus be considered critically. The most reliable method is direct observation of the water exciton peak using electron energy loss spectroscopy (EELS). But if this method cannot be carried out, water filling of the GLC can be verified from a combination of higher contrast in the image, the presence of bubbles, and an oxygen signal in the EEL spectrum, which can be accomplished at a high electron dose in spot mode. Nanoparticle movement does not always occur in a GLC.
Collapse
|
24
|
Serra-Maia R, Kumar P, Meng AC, Foucher AC, Kang Y, Karki K, Jariwala D, Stach EA. Nanoscale Chemical and Structural Analysis during In Situ Scanning/Transmission Electron Microscopy in Liquids. ACS NANO 2021; 15:10228-10240. [PMID: 34003639 DOI: 10.1021/acsnano.1c02340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-cell scanning/transmission electron microscopy (S/TEM) has impacted our understanding of multiple areas of science, most notably nanostructure nucleation and growth and electrochemistry and corrosion. In the case of electrochemistry, the incorporation of electrodes requires the use of silicon nitride membranes to confine the liquid. The combined thickness of the liquid layer and the confining membranes prevents routine atomic-resolution characterization. Here, we show that by performing electrochemical water splitting in situ to generate a gas bubble, we can reduce the thickness of the liquid to a film approximately 30 nm thick that remains covering the sample. The reduced thickness of the liquid allows the acquisition of atomic-scale S/TEM images with chemical and valence analysis through electron energy loss spectroscopy (EELS) and structural analysis through selected area electron diffraction (SAED). This contrasts with a specimen cell entirely filled with liquid, where the broad plasmon peak from the liquid obscures the EELS signal from the sample and induces beam incoherence that impedes SAED analysis. The gas bubble generation is fully reversible, which allows alternating between a full cell and thin-film condition to obtain optimal experimental and analytical conditions, respectively. The methodology developed here can be applied to other scientific techniques, such as X-ray scattering, Raman spectroscopy, and X-ray photoelectron spectroscopy, allowing for a multi-modal, nanoscale understanding of solid-state samples in liquid media.
Collapse
Affiliation(s)
- Rui Serra-Maia
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pawan Kumar
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yijin Kang
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Khim Karki
- Hummingbird Scientific, USA, Lacey, Washington 98516, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Wu H, Su H, Joosten RRM, Keizer ADA, van Hazendonk LS, Wirix MJM, Patterson JP, Laven J, de With G, Friedrich H. Mapping and Controlling Liquid Layer Thickness in Liquid-Phase (Scanning) Transmission Electron Microscopy. SMALL METHODS 2021; 5:e2001287. [PMID: 34927906 DOI: 10.1002/smtd.202001287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/18/2021] [Indexed: 06/14/2023]
Abstract
Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx ) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e- Å-2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.
Collapse
Affiliation(s)
- Hanglong Wu
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Hao Su
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Arthur D A Keizer
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Laura S van Hazendonk
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Maarten J M Wirix
- Materials & Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Jozua Laven
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
26
|
Fritsch B, Hutzler A, Wu M, Khadivianazar S, Vogl L, Jank MPM, März M, Spiecker E. Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopy. NANOSCALE ADVANCES 2021; 3:2466-2474. [PMID: 36134158 PMCID: PMC9419575 DOI: 10.1039/d0na01027h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 05/26/2023]
Abstract
A significant electron-beam induced heating effect is demonstrated for liquid-phase transmission electron microscopy at low electron flux densities using Au nanoparticles as local nanothermometers. The obtained results are in agreement with theoretical considerations. Furthermore, the impact of beam-induced heating on radiolysis chemistry is estimated and the consequences of the effect are discussed.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Andreas Hutzler
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Saba Khadivianazar
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Lilian Vogl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Michael P M Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Martin März
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| |
Collapse
|
27
|
Huart L, Nicolas C, Hervé du Penhoat MA, Guigner JM, Gosse C, Palaudoux J, Lefrançois S, Mercere P, Dasilva P, Renault JP, Chevallard C. A microfluidic dosimetry cell to irradiate solutions with poorly penetrating radiations: a step towards online dosimetry for synchrotron beamlines. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:778-789. [PMID: 33949986 PMCID: PMC8127378 DOI: 10.1107/s1600577521002691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/11/2021] [Indexed: 05/21/2023]
Abstract
Synchrotron radiation can induce sample damage, whether intended or not. In the case of sensitive samples, such as biological ones, modifications can be significant. To understand and predict the effects due to exposure, it is necessary to know the ionizing radiation dose deposited in the sample. In the case of aqueous samples, deleterious effects are mostly induced by the production of reactive oxygen species via water radiolysis. These species are therefore good indicators of the dose. Here the application of a microfluidic cell specifically optimized for low penetrating soft X-ray radiation is reported. Sodium benzoate was used as a fluorescent dosimeter thanks to its specific detection of hydroxyl radicals, a radiolytic product of water. Measurements at 1.28 keV led to the determination of a hydroxyl production yield, G(HO.), of 0.025 ± 0.004 µmol J-1. This result is in agreement with the literature and confirms the high linear energy transfer behavior of soft X-rays. An analysis of the important parameters of the microfluidic dosimetry cell, as well as their influences over dosimetry, is also reported.
Collapse
Affiliation(s)
- Lucie Huart
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, 75005 Paris, France
- Synchrotron SOLEIL, 91 192 Saint Aubin, France
| | | | | | | | - Charlie Gosse
- Institut de Biologie de l’Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Sun M, Tian J, Chen Q. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 2021; 231:113271. [PMID: 33879369 DOI: 10.1016/j.ultramic.2021.113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
29
|
Azim S, Bultema LA, de Kock MB, Osorio-Blanco ER, Calderón M, Gonschior J, Leimkohl JP, Tellkamp F, Bücker R, Schulz EC, Keskin S, de Jonge N, Kassier GH, Miller RJD. Environmental Liquid Cell Technique for Improved Electron Microscopic Imaging of Soft Matter in Solution. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:44-53. [PMID: 33280632 DOI: 10.1017/s1431927620024654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 μm. We describe a variation of the conventional approach, wherein the Si3N4 windows are separated by a 10-μm-thick spacer, thus providing room for gas flow inside the liquid specimen enclosure. Adjusting the pressure and flow speed of humid air inside this environmental liquid cell (ELC) creates a stable liquid layer of controllable thickness on the bottom window, thus facilitating high-resolution observations of low mass-thickness contrast objects at low electron doses. We demonstrate controllable liquid thicknesses in the range 160 ± 34 to 340 ± 71 nm resulting in corresponding edge resolutions of 0.8 ± 0.06 to 1.7 ± 0.8 nm as measured for immersed gold nanoparticles. Liquid layer thickness 40 ± 8 nm allowed imaging of low-contrast polystyrene particles. Hydration effects in the ELC have been studied using poly-N-isopropylacrylamide nanogels with a silica core. Therefore, ELC can be a suitable tool for in situ investigations of liquid specimens.
Collapse
Affiliation(s)
- Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Lindsey A Bultema
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Michiel B de Kock
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
- Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607Hamburg, Germany
| | | | - Marcelo Calderón
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Josef Gonschior
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Jan-Philipp Leimkohl
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Eike C Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - Sercan Keskin
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department of Physics, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
| | - Günther H Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. Georg Street, Toronto, ONM5S 3H6, Canada
| |
Collapse
|
30
|
Yoon A, Herzog A, Grosse P, Alsem DH, Chee SW, Roldán Cuenya B. Dynamic Imaging of Nanostructures in an Electrolyte with a Scanning Electron Microscope. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:121-128. [PMID: 33403947 DOI: 10.1017/s1431927620024769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of microfabricated liquid cells has enabled dynamic studies of nanostructures within a liquid environment with electron microscopy. While such setups are most commonly found in transmission electron microscope (TEM) holders, their implementation in a scanning electron microscope (SEM) offers intriguing potential for multi-modal studies where the large chamber volume allows for the integration of multiple detectors. Here, we describe an electrochemical liquid cell SEM platform that employs the same cells enclosed by silicon nitride membrane windows found in liquid cell TEM holders and demonstrate the imaging of copper oxide nanoparticles in solution using both backscattered and transmitted electrons. In particular, the transmitted electron images collected at high scattering angles show contrast inversion at liquid layer thicknesses of several hundred nanometers, which can be used to determine the presence of liquid in the cell, while maintaining enough resolution to image nanoparticles that are tens of nanometers in size. Using Monte Carlo simulations, we show that both imaging modes have their advantages for liquid phase imaging and rationalize the contrast inversion observed in the transmitted electron image.
Collapse
Affiliation(s)
- Aram Yoon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Berlin, Germany
| | - Philipp Grosse
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Berlin, Germany
| | | | - See Wee Chee
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Berlin, Germany
| |
Collapse
|
31
|
Park J, Koo K, Noh N, Chang JH, Cheong JY, Dae KS, Park JS, Ji S, Kim ID, Yuk JM. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS NANO 2021; 15:288-308. [PMID: 33395264 DOI: 10.1021/acsnano.0c10229] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joon Ha Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Li M, Ran L, Knibbe R. Zn Electrodeposition by an In Situ Electrochemical Liquid Phase Transmission Electron Microscope. J Phys Chem Lett 2021; 12:913-918. [PMID: 33439668 DOI: 10.1021/acs.jpclett.0c03475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alternative battery technologies are required to meet growing energy demands and to solve the limitations of the present energy technologies. As such, it is necessary to look beyond lithium-ion batteries. Zinc batteries enable high power density while being sourced from abundant and cost-effective materials. In this paper, the effect of the applied current and electrolyte flow rate on the early stage of Zn dendrite formation was characterized by in situ electrochemical liquid phase transmission electron microscopy (EC-LPTEM). For the first time, the square root relation is revealed between time and Zn dendrite growth on the lateral direction, indicating a diffusion-limited growth. It is intriguing that a higher applied current leads to longer incubation time. In situ EC-LPTEM can provide a useful strategy for understanding characteristics of unstable dendritic growth. The finding can help rationalize the electrode engineering design and parameters selection to avoid dendrite formation.
Collapse
Affiliation(s)
- Ming Li
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Lingbing Ran
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Ruth Knibbe
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
33
|
Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Lett 2021; 10:14-38. [PMID: 35548998 DOI: 10.1021/acsmacrolett.0c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.
Collapse
Affiliation(s)
- Lucas R. Parent
- Innovation Partnership Building, The University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
34
|
Koo K, Park J, Ji S, Toleukhanova S, Yuk JM. Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005468. [PMID: 33215775 DOI: 10.1002/adma.202005468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The recent advances in liquid-phase transmission electron microscopy represent tremendous potential in many different fields and exciting new opportunities. However, achieving both high-resolution imaging and operando capabilities remain a significant challenge. This work suggests a novel in situ imaging platform of liquid-flowing graphene chip TEM (LFGC-TEM) equipped with graphene viewing windows and a liquid exchange system. The LFGCs are robust under high-pressure gradients and rapid liquid circulation in ranges covering the experimental conditions accessible with conventional thick SiNx chips. LFGC-TEM provides atomic resolution for colloidal nanoparticles and molecular-level information limits for unstained wet biomolecules and cells that are comparable to the resolutions achievable with solid-phase and cryogenic TEM, respectively. This imaging platform can provide an opportunity for live imaging of biological phenomena that is not yet achieved using any current methods.
Collapse
Affiliation(s)
- Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saltanat Toleukhanova
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
35
|
Han Z, Porter AE. In situ Electron Microscopy of Complex Biological and Nanoscale Systems: Challenges and Opportunities. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.606253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In situ imaging for direct visualization is important for physical and biological sciences. Research endeavors into elucidating dynamic biological and nanoscale phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell electron microscopy (LC-EM) can overcome certain limitations of conventional electron microscopies and offer great promise. This review aims to examine the status-quo and practical challenges of in situ LC-EM and its applications, and to offer insights into a novel correlative technique termed microfluidic liquid cell electron microscopy. We conclude by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of biological and nanoscale systems.
Collapse
|
36
|
Beker AF, Sun H, Lemang M, van Omme JT, Spruit RG, Bremmer M, Basak S, Pérez Garza HH. In situ electrochemistry inside a TEM with controlled mass transport. NANOSCALE 2020; 12:22192-22201. [PMID: 33136106 DOI: 10.1039/d0nr04961a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities. Here, a platform for in situ electrochemical studies inside a TEM with a pressure-driven flow is presented, with the capability to control the flow direction and to ensure the liquid will always pass through the region of interest. As a result, the system offers the opportunity to define the mass transport and control the electric potential, giving access to the full kinetics of the redox reaction. In order to show the benefits of the system, copper dendrites are electrodeposited and show reliable electric potential control. Next, their morphology is changed by tuning the mass transport conditions. Finally, at a liquid thickness of approximately 100 nm, the diffraction pattern revealed the 1,1,1 planes of the copper crystals, indicating an atomic resolution down to 2.15 Å. Such control of the liquid thickness enabled elemental mapping, allowing us to distinguish the spatial distribution of different elements in liquid.
Collapse
Affiliation(s)
- Anne France Beker
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yesibolati MN, Laganá S, Kadkhodazadeh S, Mikkelsen EK, Sun H, Kasama T, Hansen O, Zaluzec NJ, Mølhave K. Electron inelastic mean free path in water. NANOSCALE 2020; 12:20649-20657. [PMID: 32614016 DOI: 10.1039/d0nr04352d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) is rapidly developing as a powerful tool for probing processes in liquid environments with close to atomic resolution. Knowledge of the water thickness is needed for reliable interpretation and modelling of analytical studies in LPTEM, and is particularly essential when using thin liquid layers, required for achieving the highest spatial resolutions. The log-ratio method in electron energy-loss spectroscopy (EELS) is often applied in TEM to quantify the sample thickness, which is measured relative to the inelastic mean free path (λIMFP). However, λIMFP itself is dependent on sample material, the electron energy, and the convergence and divergence angles of the microscope electronoptics. Here, we present a detailed quantitative analysis of the λIMFP of water as functions of the EELS collection angle (β) at 120 keV and 300 keV in a novel nanochannel liquid cell. We observe good agreement with earlier studies conducted on ice, but find that the most widely used theoretical models significantly underestimate λIMFP of water. We determine an adjusted average energy-loss term Em, water, and characteristic scattering angle θE, water that improve the accuracy. The results provide a comprehensive knowledge of the λIMFP of water (or ice) for reliable interpretation and quantification of observations in LPTEM and cryo-TEM studies.
Collapse
Affiliation(s)
- Murat Nulati Yesibolati
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Simone Laganá
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Shima Kadkhodazadeh
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Esben Kirk Mikkelsen
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Hongyu Sun
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Takeshi Kasama
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Ole Hansen
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| | - Nestor J Zaluzec
- Argonne National Laboratory, Photon Sciences Division, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Kristian Mølhave
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Building 307, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Alam SB, Yang J, Bustillo KC, Ophus C, Ercius P, Zheng H, Chan EM. Hybrid nanocapsules for in situ TEM imaging of gas evolution reactions in confined liquids. NANOSCALE 2020; 12:18606-18615. [PMID: 32970077 DOI: 10.1039/d0nr05281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid cell transmission electron microscopy (TEM) enables the direct observation of dynamic physical and chemical processes in liquids at the nanoscale. Quantitative investigations into reactions with fast kinetics and/or multiple reagents will benefit from further advances in liquid cell design that facilitate rapid in situ mixing and precise control over reagent volumes and concentrations. This work reports the development of inorganic-organic nanocapsules for high-resolution TEM imaging of nanoscale reactions in liquids with well-defined zeptoliter volumes. These hybrid nanocapsules, with 48 nm average diameter, consist of a thin layer of gold coating a lipid vesicle. As a model reaction, the nucleation, growth, and diffusion of nanobubbles generated by the radiolysis of water is investigated inside the nanocapsules. When the nanobubbles are sufficiently small (10-25 nm diameter), they are mobile in the nanocapsules, but their movement deviates from Brownian motion, which may result from geometric confinement by the nanocapsules. Gases and fluids can be transported between two nanocapsules when they fuse, demonstrating in situ mixing without using complex microfluidic schemes. The ability to synthesize nanocapsules with controlled sizes and to monitor dynamics simultaneously inside multiple nanocapsules provides opportunities to investigate nanoscale processes such as single nanoparticle synthesis in confined volumes and biological processes such as biomineralization and membrane dynamics.
Collapse
Affiliation(s)
- Sardar B Alam
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Gosse C, Stanescu S, Frederick J, Lefrançois S, Vecchiola A, Moskura M, Swaraj S, Belkhou R, Watts B, Haltebourg P, Blot C, Daillant J, Guenoun P, Chevallard C. A pressure-actuated flow cell for soft X-ray spectromicroscopy in liquid media. LAB ON A CHIP 2020; 20:3213-3229. [PMID: 32735308 DOI: 10.1039/c9lc01127g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies. The assembly of the described flow cell necessitates no sophisticated microfabrication and can be easily implemented in any laboratory. Furthermore, the design principles we relied on are transposable to all microscopies involving strongly absorbed radiation (e.g. X-ray, electron), as well as to all kinds of X-ray diffraction/scattering techniques.
Collapse
Affiliation(s)
- Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France.
| | - Stefan Stanescu
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Joni Frederick
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Stéphane Lefrançois
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Aymeric Vecchiola
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Mélanie Moskura
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Sufal Swaraj
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Rachid Belkhou
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Patrick Haltebourg
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Christian Blot
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Jean Daillant
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
40
|
Gnanasekaran K, Chang H, Smeets PJM, Korpanty J, Geiger FM, Gianneschi NC. In Situ Ni 2+ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopy. NANO LETTERS 2020; 20:4292-4297. [PMID: 32453587 DOI: 10.1021/acs.nanolett.0c00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solvated soft matter, both biological and synthetic, can now be imaged in liquids using liquid-cell transmission electron microscopy (LCTEM). However, such systems are usually composed solely of organic molecules (low Z elements) producing low contrast in TEM, especially within thick liquid films. We aimed to visualize liposomes by LCTEM rather than requiring cryogenic TEM (cryoTEM). This is achieved here by imaging in the presence of aqueous metal salt solutions. The increase in scattering cross-section by the cation gives a staining effect that develops in situ, which could be captured by real space TEM and verified by in situ energy dispersive x-ray spectroscopy (EDS). We identified beam-induced staining as a time-dependent process that enhances contrast to otherwise low contrast materials. We describe the development of this imaging method and identify conditions leading to exceptionally low electron doses for morphology visualization of unilamellar vesicles before beam-induced damage propagates.
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - HanByul Chang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Paul J M Smeets
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
42
|
Nunes JPF, Ledbetter K, Lin M, Kozina M, DePonte DP, Biasin E, Centurion M, Crissman CJ, Dunning M, Guillet S, Jobe K, Liu Y, Mo M, Shen X, Sublett R, Weathersby S, Yoneda C, Wolf TJA, Yang J, Cordones AA, Wang XJ. Liquid-phase mega-electron-volt ultrafast electron diffraction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024301. [PMID: 32161776 PMCID: PMC7062553 DOI: 10.1063/1.5144518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/13/2020] [Indexed: 05/23/2023]
Abstract
The conversion of light into usable chemical and mechanical energy is pivotal to several biological and chemical processes, many of which occur in solution. To understand the structure-function relationships mediating these processes, a technique with high spatial and temporal resolutions is required. Here, we report on the design and commissioning of a liquid-phase mega-electron-volt (MeV) ultrafast electron diffraction instrument for the study of structural dynamics in solution. Limitations posed by the shallow penetration depth of electrons and the resulting information loss due to multiple scattering and the technical challenge of delivering liquids to vacuum were overcome through the use of MeV electrons and a gas-accelerated thin liquid sheet jet. To demonstrate the capabilities of this instrument, the structure of water and its network were resolved up to the 3 rd hydration shell with a spatial resolution of 0.6 Å; preliminary time-resolved experiments demonstrated a temporal resolution of 200 fs.
Collapse
Affiliation(s)
- J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | - M Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D P DePonte
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - C J Crissman
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - M Dunning
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Guillet
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K Jobe
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - M Mo
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - X Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R Sublett
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - C Yoneda
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - A A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|