1
|
Vesamäki S, Meteling H, Nasare R, Siiskonen A, Patrakka J, Roas-Escalona N, Linder M, Virkki M, Priimagi A. Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films. COMMUNICATIONS MATERIALS 2024; 5:209. [PMID: 39371916 PMCID: PMC11446815 DOI: 10.1038/s43246-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene's humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity. Our concept is based on thermal isomerisation kinetics of tautomerizable azobenzenes in polymer matrices which, using pre-defined calibration curves, can be converted to relative humidity at known temperature. We present a small library of tautomerizable azobenzenes exhibiting humidity sensitive isomerisation kinetics in hygroscopic polymer films. We also investigate how water absorption properties of the polymer used, and the isomerisation kinetics are linked and how the azobenzene content in the thin film affects both properties. Based on our findings we propose simple strategies for further development of azobenzene-based optical humidity sensors.
Collapse
Affiliation(s)
- Sami Vesamäki
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Henning Meteling
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Roshan Nasare
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Antti Siiskonen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | | | - Markus Linder
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Matti Virkki
- VTT Technical Research Centre of Finland Ltd, Oulu, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Sunny AS, Cleven EC, Kumar P, Venkataramani S, Walls JD, Ramamurthy V. Structure, Dynamics, and Reactivity of Encapsulated Molecules in Restricted Spaces: Arylazoisoxazoles within an Octa Acid Capsule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17638-17655. [PMID: 39110852 DOI: 10.1021/acs.langmuir.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this study, a well-defined organic capsule assembled from two octa acid (OA) molecules acting as host and select arylazoisoxazoles (AAIO) acting as guests were employed to demonstrate that confined molecules have restricted freedom that translates into reaction selectivity in both ground and excited states. The behavior of these AAIO guests in confined capsules was found to be different from that found in both crystals, where there is very little freedom, and in isotropic solvents, where there is complete freedom. Through one-dimensional (1D) and two-dimensional (2D) 1H NMR spectroscopic experiments, we have established a relationship between structure, dynamics and reactivity of molecules confined in an OA capsule. Introduction of CF3 and CH3 substitution at the 4-position of the aryl group of AAIO reveals that in addition to space confinement, weak interactions between the guest and the OA capsule control the dynamics and reactivity of guest molecules. 1H NMR studies revealed that there is a temperature-dependence to guest molecules tumbling (180° rotation along the capsular short axis) within an OA capsule. While 1H NMR points to the occurrence of tumbling motion, MD simulations and simulation of the temperature-dependent NMR signals provide an insight into the mechanism of tumbling within OA capsules. Thermal and photochemical isomerization of AAIO were found to occur within an OA capsule just as in organic solvents. The observed selectivity noted during thermal and photo induced isomerization of OA encapsulated AAIOs can be qualitatively understood in terms of the well-known concepts due to Bell-Evans-Polanyi (BEP principle), Hammond and Zimmerman.
Collapse
Affiliation(s)
- Amal Sam Sunny
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Elliott C Cleven
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | |
Collapse
|
3
|
Kumar H, Parthiban G, Velloth A, Saini J, De R, Pal SK, Hazra KS, Venkataramani S. Arylazo-3,5-diphenylpyrazole Derivatives: Molecular Probes Exhibiting Reversible Light-induced Phase Transitions for Energy Storage and Direct Photolithographic Patterning. Chemistry 2024:e202401836. [PMID: 38818932 DOI: 10.1002/chem.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Gayathri Parthiban
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Jyoti Saini
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Kiran Shankar Hazra
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| |
Collapse
|
4
|
Kumar Gaur A, Gupta D, Narayanan Nampoothiry D, Velloth A, Kaur R, Kaur N, Venkataramani S. Azopyridinium Ionic Photoswitches: Tuning Half-Lives of Z Isomers from Seconds to Days in Water. Chemistry 2024:e202401239. [PMID: 38818941 DOI: 10.1002/chem.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Herein, we describe water-soluble heteroaryl azopyridinium ionic photoswitches (HAPIPs). We aim to combine variations in five-membered heterocycles, their substitutions, N-alkyl groups at pyridinium nitrogen, the position of pyridinium center relative to azo group, counterions, and solvents, in achieving better photoswitching. Through these studies, we successfully tuned the half-life of Z isomers of the resultant HAPIPs between seconds to days in water. Extensive spectroscopic studies and density functional theory (DFT) computations unravelled the factors responsible for thermal relaxation behavior. Considering the versatility of these photoswitches, the tunability of half-lives and photoswitching in aqueous medium allows the scope of applications in several fields.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ramanpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
5
|
Severa L, Santos Hurtado C, Rončević I, Mašát M, Bastien G, Štoček JR, Dračínský M, Houska V, Kaletová E, Garza DJ, Císařová I, Cimatu KLA, Bastl Z, Kaleta J. Regular Arrays of Rod-Shaped Molecular Photoswitches: Synthesis, Preparation, Characterization, and Selective Photoswitching within Mono- and Bilayer Systems. Chemistry 2024; 30:e202302828. [PMID: 37858965 DOI: 10.1002/chem.202302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
We assembled photoresponsive mono- and bilayer systems with well-defined properties from rod-shaped molecules equipped with different photoswitches. Using properly chosen chromophores (diarylethene-based switch and unidirectional light-driven molecular motor), we then selectively targeted layers made of the same types of photoswitches using appropriate monochromatic light. UV-vis analysis confirmed smooth and unrestricted photoisomerization. To achieve this, we synthesized a new class of triptycene-based molecular pedestals adept at forming sturdy Langmuir-Blodgett films on a water-air interface. The films were smoothly transferred to gold and quartz surfaces. Repeated deposition afforded bilayer systems: one layer containing diarylethene-based photoswitches and the other a unidirectional light-driven molecular motor. Structural analysis of both mono- and bilayer systems revealed the molecules to be tilted with carboxylic functions pointing to the surface. At least two different polymorphs differing in monolayer thickness and tilt angle (~40° and ~60°) were identified on the gold surface.
Collapse
Affiliation(s)
- Lukáš Severa
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Milan Mašát
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Guillaume Bastien
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Václav Houska
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Eva Kaletová
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Danielle John Garza
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University Prague, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | | | - Zdeněk Bastl
- J. Heyrovský Institute of Physical Chemistry of the, Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| |
Collapse
|
6
|
Höglsperger F, Larik FA, Bai C, Seyfried MD, Daniliuc C, Klaasen H, Thordarson P, Beves JE, Ravoo BJ. Water-Soluble Arylazoisoxazole Photoswitches. Chemistry 2023; 29:e202302069. [PMID: 37578089 DOI: 10.1002/chem.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Azoheteroarenes are emerging as powerful alternatives to azobenzene molecular photoswitches. In this study, water-soluble arylazoisoxazole photoswitches are introduced. UV/vis and NMR spectroscopy revealed moderate to very good photostationary states and reversible photoisomerization between the E- and Z-isomers over multiple cycles with minimal photobleaching. Several arylazoisoxazoles form host-guest complexes with β- and γ-cyclodextrin with significant differences in binding constants for each photoisomer as shown by isothermal titration calorimetry and NMR experiments, indicating their potential for photoresponsive host-guest chemistry in water. One carboxylic acid functionalized arylazoisoxazole can act as a hydrogelator, allowing gel properties to be manipulated reversibly with light. The hydrogel was characterized by rheological experiments, atom force microscopy and transmission electron microscopy. These results demonstrate that arylazoisoxazoles can find applications as molecular photoswitches in aqueous media.
Collapse
Affiliation(s)
- Fabian Höglsperger
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Fayaz Ali Larik
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Changzhuang Bai
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Henning Klaasen
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Jonathon E Beves
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Gibalova A, Kortekaas L, Simke J, Ravoo BJ. Multi-responsive Electropolymer Surface Coatings Based on Azo Molecular Switches and Carbazoles: Light, pH, and Electrochemical Control of Z→E Isomerization in Thin Films. Chemistry 2023; 29:e202302215. [PMID: 37565655 DOI: 10.1002/chem.202302215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Light-responsive surfaces are attracting increasing interest, not least because their physicochemical properties can be selectively and temporally controlled by a non-invasive stimulus. Most existing immobilization strategies involve the chemical attachment of light-responsive moieties to the surface, although this approach often suffers from a low surface concentration of active species or a high inhomogeneity of applied coatings. Herein, electropolymerization of carbazoles as a facile and rapid approach for preparing light-responsive azo-based surface coatings is presented. The electrochemical oxidative polymerization of bis-carbazole containing azo-monomers yields stable films, in which the photochemical properties and specific pH sensitivity of azo molecular switches are retained. Moreover, the molecular design enables electrocatalytic control over Z→E azo double bond isomerization facilitated by the conductive polycarbazole backbone. Ultimately, the high degree of control over macromolecular properties yields conductive surface coatings responsive to a range of stimuli, showing great promise as a strategy for versatile application in organic electronics.
Collapse
Affiliation(s)
- Anna Gibalova
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Luuk Kortekaas
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
- Materials Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Julian Simke
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
8
|
Qiu Q, Qi Q, Usuba J, Lee K, Aprahamian I, Han GGD. Visible light activated energy storage in solid-state Azo-BF 2 switches. Chem Sci 2023; 14:11359-11364. [PMID: 37886079 PMCID: PMC10599475 DOI: 10.1039/d3sc03465h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
We present here a group of Azo-BF2 photoswitches that store and release energy in response to visible light irradiation. Unmodified Azo-BF2 switches have a planar structure with a large π-conjugation system, which hinders E-Z isomerization when in a compacted state. To address this challenge, we modified the switches with one or two aliphatic groups, which altered the intermolecular interactions and arrangement of the photochromes in the solid state. The derivative with two substituents exhibited a non-planar configuration that provided particularly large conformational freedom, allowing for efficient isomerization in the solid phase. Our discovery highlights the potential of using double aliphatic functionalization as a promising approach to facilitate solid-state switching of large aromatic photoswitches. This finding opens up new possibilities for exploring various photoswitch candidates for molecular solar thermal energy storage applications.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qingkai Qi
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Karina Lee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
9
|
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and Diazocine Molecular Photoswitches: Self-Assembly, Responsive Materials and Photopharmacology. Angew Chem Int Ed Engl 2023; 62:e202304437. [PMID: 37212536 DOI: 10.1002/anie.202304437] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Aromatic units tethered with an azo (-N=N-) functionality comprise a unique class of compounds, known as molecular photoswitches, exhibiting a reversible transformation between their E- and Z-isomers in response to photo-irradiation. Photoswitches have been explored extensively in the recent past to prepare dynamic self-assembled materials, optoelectronic devices, responsive biomaterials, and more. Most of such materials involve azobenzenes as the molecular photoswitch and to date, SciFinder lists more than 7000 articles and 1000 patents. Subsequently, a great deal of effort has been invested to improve the photo-isomerization efficiency and related mesoscopic properties of azobenzenes. Recently, azoheteroarenes and cyclic azobenzenes, such as arylazopyrazoles, arylazoisoxazoles, arylazopyridines, and diazocines, have emerged as second generation molecular photoswitches beyond conventional azobenzenes. These photoswitches offer distinct photoswitching behavior and responsive properties which make them highly promising candidates for multifaceted applications ranging from photoresponsive materials to photopharmacophores. In this minireview, we introduce the structural refinement and photoresponsive properties of azoheteroarenes and diazocines and summarize the state-of-the-art on utilizing these photoswitches as responsive building blocks in supramolecular assembly, material science and photopharmacology, highlighting their versatile photochemical behavior, enhanced functionality, and latest applications.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
10
|
Komura M, Sotome H, Miyasaka H, Ogawa T, Tani Y. Photoinduced crystal melting with luminescence evolution based on conformational isomerisation. Chem Sci 2023; 14:5302-5308. [PMID: 37234907 PMCID: PMC10207888 DOI: 10.1039/d3sc00838j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The phenomenon of crystal melting by light irradiation, known as photo-induced crystal-to-liquid transition (PCLT), can dramatically change material properties with high spatiotemporal resolution. However, the diversity of compounds exhibiting PCLT is severely limited, which hampers further functionalisation of PCLT-active materials and the fundamental understandings of PCLT. Here, we report on heteroaromatic 1,2-diketones as the new class of PCLT-active compounds, whose PCLT is based on conformational isomerisation. In particular, one of the diketones demonstrates luminescence evolution prior to crystal melting. Thus, the diketone crystal exhibits dynamic multistep changes in the luminescence colour and intensity during continuous ultraviolet irradiation. This luminescence evolution can be ascribed to the sequential PCLT processes of crystal loosening and conformational isomerisation before macroscopic melting. Single-crystal X-ray structural analysis, thermal analysis, and theoretical calculations of two PCLT-active and one inactive diketones revealed weaker intermolecular interactions for the PCLT-active crystals. In particular, we observed a characteristic packing motif for the PCLT-active crystals, consisting of an ordered layer of diketone core and a disordered layer of triisopropylsilyl moieties. Our results demonstrate the integration of photofunction with PCLT, provide fundamental insights into the melting process of molecular crystals, and will diversify the molecular design of PCLT-active materials beyond classical photochromic scaffolds such as azobenzenes.
Collapse
Affiliation(s)
- Mao Komura
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Yosuke Tani
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
11
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
12
|
Arndt NB, Adolphs T, Arlinghaus HF, Heidrich B, Ravoo BJ. Arylazopyrazole-Modified Thiolactone Acrylate Copolymer Brushes for Tuneable and Photoresponsive Wettability of Glass Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5342-5351. [PMID: 37011284 DOI: 10.1021/acs.langmuir.2c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.
Collapse
Affiliation(s)
- Niklas B Arndt
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Thorsten Adolphs
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bastian Heidrich
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149 Münster, Germany
- Institute of Physical Chemistry, University of Münster, Corrensstraße 29, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
13
|
Kumar P, Bala I, De R, Kumar Pal S, Venkataramani S. Light Modulated Reversible "On-Off" Transformation of Arylazoheteroarene Based Discotics in Nematic Organization. Chemistry 2023; 29:e202202876. [PMID: 36205928 DOI: 10.1002/chem.202202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Three benzene-1,3,5-tricarboxamide (BTA) core-based molecular systems appended with phenylazo-3,5-dimethylisoxazole photoswitches at the peripheral position through variable-length alkoxy chains have been designed and synthesized. The supramolecular interactions of the mesogens provided discotic nematic liquid crystalline assembly as confirmed by polarized optical microscopy (POM) and X-ray diffraction (XRD) studies. Spectroscopic studies confirmed the reversible photoswitching and excellent thermal stability of the photoswitched states in solution phase and thin film. Also, atomic force microscopic (AFM) and POM investigations demonstrated the morphological changes in the self-assembly induced by the photoirradiation as monitored by the changes in the height profiles and optical appearance of the textures, respectively. Remarkably, the liquid crystalline discotic molecules showed reversible "on and off states" controlled by light at ambient temperature.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli, 140306, Punjab, India
| |
Collapse
|
14
|
Gonzalez A, Odaybat M, Le M, Greenfield JL, White AJP, Li X, Fuchter MJ, Han GGD. Photocontrolled Energy Storage in Azobispyrazoles with Exceptionally Large Light Penetration Depths. J Am Chem Soc 2022; 144:19430-19436. [PMID: 36222796 DOI: 10.1021/jacs.2c07537] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Azobispyrazole, 4pzMe-5pzH, derivatives with small terminal substituents (Me, Et, i-Pr, and n-Pr) are reported to undergo facile reversible photoswitching in condensed phases at room temperature, exhibiting unprecedentedly large effective light penetration depths (1400 μm of UV at 365 nm and 1400 μm of visible light at 530 nm). These small photoswitches exhibit crystal-to-liquid phase transitions upon UV irradiation, which increases the overall energy storage density of this material beyond 300 J/g that is similar to the specific energy of commercial Na-ion batteries. The impact of heteroarene design, the presence of ortho methyl substituents, and the terminal functional groups is explored for both condensed-phase switching and energy storage. The design principles elucidated in this work will help to develop a wide variety of molecular solar thermal energy storage materials that operate in condensed phases.
Collapse
Affiliation(s)
- Alejandra Gonzalez
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Magdalena Odaybat
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - My Le
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jake L Greenfield
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Matthew J Fuchter
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
15
|
Wu M, Chen S, Mei Y, Liu L, Wei Y. Interfacial Electrochemistry-Induced Detachable Adhesives with Ultra-High Bonding Strength and Detaching Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41456-41467. [PMID: 36043244 DOI: 10.1021/acsami.2c12553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Detachable adhesives with simultaneously high bonding strength and detaching efficiency have remained a great challenge in adhesion science. The existing detachable adhesives (e.g., solid-liquid phase transitions-based adhesives) usually show low initial cohesion and require long detaching time (several minutes or hours for transitions). Herein, by introducing ionic liquids (ILs) and soft polyethylene glycol (PEG) into a rigid epoxy precursor and curing, we demonstrated the adhesives with both high initial bonding strength (>13 MPa) and detaching efficiency (100% detachment within 10 s under a 90 V DC voltage). The high initial bonding strength is due to the imidazolium cations of ILs and their ion-dipole interactions with PEG can promote the curing of epoxy, decrease the glass-transition temperature, increase the interfacial wettability, and transmit external stress. Also, the outstanding detaching efficiency is because the tetrafluoroborate anions of ILs can electrochemically react rapidly under a voltage and generate fluorinated nanoparticles at the bonding interface within 1 minute. The high bonding and electrochemistry-induced detaching mechanism were further characterized. This work opens up a new avenue for the rational design of fast-detachable adhesives with high bonding strength, showing wide potential in many modern fields.
Collapse
Affiliation(s)
- Min Wu
- School of Materials and Chemistry, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Song Chen
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yang Mei
- School of Materials and Chemistry, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Lan Liu
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yong Wei
- School of Materials and Chemistry, Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
16
|
Meteling HJ, Bosse F, Schlichter L, Tyler BJ, Arlinghaus HF, Ravoo BJ. Versatile Surface Patterning with Low Molecular Weight Photoswitches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203245. [PMID: 35971144 DOI: 10.1002/smll.202203245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Surface patterning of functional materials is a key technology in various fields such as microelectronics, optics, and photonics. In micro- and nanofabrication, polymers are frequently employed either as photoreactive or thermoresponsive resists that enable further fabrication steps, or as functional adlayers in electronic and optical devices. In this article, a method is presented for imprint lithography using low molecular weight arylazoisoxazoles photoswitches instead of polymer resists. These photoswitches exhibit a rapid and reversible solid-to-liquid phase transition upon photo-isomerization at room temperature, making them highly suitable for reversible surface functionalization at ambient conditions. Beyond photo-induced imprint lithography with multiple write-and-erase cycles, prospective applications as patterned matrix for nanoparticles and etch resist on gold surfaces are demonstrated.
Collapse
Affiliation(s)
- Henning J Meteling
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Lisa Schlichter
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bonnie J Tyler
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| |
Collapse
|
17
|
Shangguan Z, Sun W, Zhang ZY, Fang D, Wang Z, Wu S, Deng C, Huang X, He Y, Wang R, Li T, Moth-Poulsen K, Li T. A rechargeable molecular solar thermal system below 0 °C. Chem Sci 2022; 13:6950-6958. [PMID: 35774182 PMCID: PMC9200126 DOI: 10.1039/d2sc01873j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/15/2022] [Indexed: 01/12/2023] Open
Abstract
An optimal temperature is crucial for a broad range of applications, from chemical transformations, electronics, and human comfort, to energy production and our whole planet. Photochemical molecular thermal energy storage systems coupled with phase change behavior (MOST-PCMs) offer unique opportunities to capture energy and regulate temperature. Here, we demonstrate how a series of visible-light-responsive azopyrazoles couple MOST and PCMs to provide energy capture and release below 0 °C. The system is charged by blue light at -1 °C, and discharges energy in the form of heat under green light irradiation. High energy density (0.25 MJ kg-1) is realized through co-harvesting visible-light energy and thermal energy from the environment through phase transitions. Coatings on glass with photo-controlled transparency are prepared as a demonstration of thermal regulation. The temperature difference between the coatings and the ice cold surroundings is up to 22.7 °C during the discharging process. This study illustrates molecular design principles that pave the way for MOST-PCMs that can store natural sunlight energy and ambient heat over a wide temperature range.
Collapse
Affiliation(s)
- Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Dong Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhihang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Si Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Chao Deng
- College of Chemistry & Materials Engineering, Wenzhou University Wenzhou 325027 Zhejiang China
| | - Xianhui Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tingxian Li
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC 08193 Bellaterra Barcelona Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluís Companys 23 Barcelona Spain
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
18
|
Liang Y, Wang K, Li J, Zhang Y, Liu J, Zhang K, Cui Y, Wang M, Liu CS. Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator. MATERIALS HORIZONS 2022; 9:1700-1707. [PMID: 35421880 DOI: 10.1039/d2mh00156j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Currently developed adhesives are overwhelmingly polymeric in nature. Herein, we highlight for the first time the potential of supramolecular eutectogels assembled from small molecules as robust low-molecular-weight (LMW) supramolecular adhesives in air, water and organic solvents, and under low temperatures. These supramolecular eutectogels were produced from commercial alkyl trimethyl ammonium bromide (CnTAB) in emerging deep eutectic solvents (DESs), which demonstrated rapid (∼2 min), robust, and tunable adhesion to both hydrophilic and hydrophobic surfaces at room temperature in air. Moreover, high adhesion performance was maintained even in liquid nitrogen (-196 °C), underwater, and in organic solvents. A study of the structure-property relationship of these adhesives and molecular dynamics (MD) simulations further clarified the assembly and adhesion mechanism of the C12TAB molecules in DESs. Compared with traditional polymer adhesives and several existing examples of LMW supramolecular adhesives with solvent-free dry network structures, the spontaneous self-assembly of LMW gelators in versatile DESs provides a new strategy for the facile construction of high-strength supramolecular adhesives with gel network structures for a diverse range of harsh environments.
Collapse
Affiliation(s)
- Yujia Liang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Kaifang Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Yunfei Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Junpeng Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Kaihuang Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Yihan Cui
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Mengke Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
19
|
Gaur AK, Kumar H, Gupta D, Tom IP, Nampoothiry DN, Thakur SK, Mahadevan A, Singh S, Venkataramani S. Structure-Property Relationship for Visible Light Bidirectional Photoswitchable Azoheteroarenes and Thermal Stability of Z-Isomers. J Org Chem 2022; 87:6541-6551. [PMID: 35486716 DOI: 10.1021/acs.joc.2c00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modular approach has been adopted to synthesize a wide range of visible light-driven photoswitchable azoheteroarenes. In this regard, we considered ortho substitution of cyclic amines in the aryl ring and varied substitution patterns. Using detailed spectroscopic studies, we established a relationship between structure and photoswitching ability and also half-lives of the Z-isomers. Through this, we envision tunable and bidirectional longer wavelength photoswitches.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Irin Pottanani Tom
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Sandeep Kumar Thakur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Anjali Mahadevan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Sanjay Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| |
Collapse
|
20
|
Zhang L, Deng Y, Xie C, Wu Z. Disordered Low Molecular Weight Spiropyran Exhibiting Photoregulated Adhesion Ability. Chemistry 2022; 28:e202200245. [PMID: 35146806 DOI: 10.1002/chem.202200245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/12/2022]
Abstract
The functions of the materials composed of small molecules are highly dependent on their ordered molecular arrangements in both natural and artificial systems. Without ordered structure, small molecules hardly gain complicated functions, due to the absence of intermolecular covalent bond connection or strong network. Here, a low molecular weight spiropyran that could exhibit attractive photochromism and powerful adhesion property in disordered solid state is demonstrated. With maximum up to ∼8 MPa, the adhesion strength could be photoregulated in multiple levels, which also shows one-to-one correspondence to the specific color state. The working mechanism analysis on the photoregulated adhesion reveals that the isomer ratio of merocyanine form and the molecular packing density of spiropyran are the determining factors for the adhesion ability. The discovery of photoregulated adhesion from pure spiropyran provides a new strategy for developing functional materials by employing low molecular weight compounds.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yawen Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
21
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
22
|
Lee TH, Han GY, Yi MB, Shin JH, Kim HJ. Photoresponsive, switchable, pressure-sensitive adhesives: influence of UV intensity and hydrocarbon chain length of low molecular weight azobenzene compounds. RSC Adv 2021; 11:37392-37402. [PMID: 35496405 PMCID: PMC9043784 DOI: 10.1039/d1ra06596c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022] Open
Abstract
Unlike traditional adhesives with a fixed adhesive force, switchable adhesives, which have an adhesive force that can be adjusted by external stimuli, are specifically designed to be released according to user demand, or to enable the transfer of fine electronic devices. Previously developed switchable adhesives have limitations such as a slow switching rate, narrow adhesion modulation range, or the lack of reusability. Thus, we fabricated switchable pressure-sensitive adhesives (PSAs) that can overcome these limitations. The adhesive force of each switchable PSA, which comprises an azobenzene-containing acrylic polymer and low molecular weight compounds, was designed to be activated/deactivated via ultraviolet (UV) and visible light irradiation. The adhesive force and UV intensity required for the switch were found to be dependent on the aliphatic chain length of the compound. The adhesive force of the SP-C10, i.e., a switchable PSA containing a azobenzene compound with an aliphatic chain of 10 hydrocarbons, increased to 3.5 N from nearly zero in response to only 30 s of low-level (25 mW cm−2) UV irradiation. Additionally, SP-C10 did not lose its adhesive force even after 30 cycles of repeated adhesion switching. The mechanism of adhesion switching influenced by UV intensity and the structure of low molecular weight azobenzene compounds are also reported. A photoresponsive switchable pressure-sensitive adhesive (PSA) was fabricated with an azobenzene-containing polymer and low molecular weight compounds. Its adhesion force was activated/deactivated rapidly by UV/visible light irradiation.![]()
Collapse
Affiliation(s)
- Tae-Hyung Lee
- Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Gi-Yeon Han
- Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Mo-Beom Yi
- Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Jae-Ho Shin
- Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Hyun-Joong Kim
- Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea .,Research Institute of Agriculture and Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
23
|
Solid-state photoswitching in arylazopyrazole-embedded polydimethylsiloxane composite thin films. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Sieredzinska B, Zhang Q, Berg KJVD, Flapper J, Feringa BL. Photo-crosslinking polymers by dynamic covalent disulfide bonds. Chem Commun (Camb) 2021; 57:9838-9841. [PMID: 34498635 PMCID: PMC8477374 DOI: 10.1039/d1cc03648c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023]
Abstract
A simple and general strategy to construct photo-crosslinkable polymers by introducing sidechain 1,2-dithiolanes based on natural thioctic acid is presented. The disulfide five-membered rings act both as light-absorbing and dynamic covalent crosslinking units, enabling efficient photo-crosslinking and reversible chemical decrosslinking of polydimethylsiloxane polymers.
Collapse
Affiliation(s)
- Bianka Sieredzinska
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Keimpe J van den Berg
- Akzo Nobel Car Refinishes B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Jitte Flapper
- Akzo Nobel Decorative Coatings B.V., Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
25
|
Lee TH, Han GY, Yi MB, Kim HJ, Lee JH, Kim S. Rapid Photoresponsive Switchable Pressure-Sensitive Adhesive Containing Azobenzene for the Mini-Light Emitting Diode Transfer Process. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43364-43373. [PMID: 34469097 DOI: 10.1021/acsami.1c11680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials that can switch adhesive properties based on external stimuli are required in several industries for temporary bonding or transfer processes. Previously studied materials achieve this under restricted conditions (hydration, heat, and long switching times), and some materials have limitations related to reuse because of irreversible reactions or residue formation on substrates. Herein, a rapid photoresponsive switchable pressure-sensitive adhesive (PSA) fabricated using an acrylic polymer and an aliphatic monomer containing azobenzene is reported. The adhesion force of the proposed PSA can be switched by photoisomerizing the azobenzene moiety. The process induces the transition of surface energy and modulus of the PSA. Ultraviolet and visible light irradiation can switch the probe tack force from 200 to 4 kPa within 15-30 s. Adhesion switching is possible in a state wherein the PSA remains adhered to a substrate. Mini-LEDs are selectively transferred from the carrier PSA to a polydimethylsiloxane substrate following the process of partial adhesion switching of the PSA. The novel and switchable PSA, which exhibits a selective and repeatable adhesion switching property and high switching ratio when stimulated by light stimuli, may be potentially used to realize the mini-LED or micro-LED transfer processes.
Collapse
Affiliation(s)
- Tae-Hyung Lee
- Program in Environmental Materials Science, Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mo-Beom Yi
- Program in Environmental Materials Science, Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae-Hak Lee
- Department of Ultra-Precision Machines and Systems, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| | - Seungman Kim
- Department of Ultra-Precision Machines and Systems, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| |
Collapse
|
26
|
Kortekaas L, Simke J, Arndt NB, Böckmann M, Doltsinis NL, Ravoo BJ. Acid-catalysed liquid-to-solid transitioning of arylazoisoxazole photoswitches. Chem Sci 2021; 12:11338-11346. [PMID: 34667544 PMCID: PMC8447883 DOI: 10.1039/d1sc03308e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 02/01/2023] Open
Abstract
Molecular photoswitches play a vital role in the development of responsive materials. These molecular building blocks are particularly attractive when multiple stimuli can be combined to bring about physical changes, sometimes leading to unexpected properties and functions. The arylazoisoxazole molecular switch was recently shown to be capable of efficient photoreversible solid-to-liquid phase transitions with application in photoswitchable surface adhesion. Here, we show that the arylazoisoxazole forms thermally stable and photoisomerisable protonated Z- and E-isomers in an apolar aprotic solvent when the pK a of the applied acid is sufficiently low. The tuning of isomerisation kinetics from days to seconds by the pK a of the acid not only opens up new reactivity in solution, but also the solid-state photoswitching of azoisoxazoles can be efficiently reversed with selected acid vapours, enabling acid-gated photoswitchable surface adhesion.
Collapse
Affiliation(s)
- Luuk Kortekaas
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| | - Julian Simke
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| | - Niklas B Arndt
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 10 48149 Münster Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 10 48149 Münster Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| |
Collapse
|
27
|
Adrion DM, Kaliakin DS, Neal P, Lopez SA. Benchmarking of Density Functionals for Z-Azoarene Half-Lives via Automated Transition State Search. J Phys Chem A 2021; 125:6474-6485. [PMID: 34260236 DOI: 10.1021/acs.jpca.1c01695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular photoswitches use light to interconvert from a thermodynamically stable isomer into a metastable isomer. Photoswitches have been used in photopharmacology, catalysis, and molecular solar thermal (MOST) materials because of their spatiotemporal activation. Visible-light-absorbing photoswitches are especially attractive because low-energy light minimizes undesired photochemical reactions and enables biological applications. Ideal photoswitches require well-separated absorption spectra for both isomers and long-lived metastable states. However, predicting thermal half-lives with density functional theory is difficult because it requires locating transition structures and chosing an accurate model chemistry. We now report EZ-TS; by automatically calculating activation energies for the thermal Z → E isomerization. We used 28 density functionals [local spin density approximation, generalized gradient approximation, meta-GGA, hybrid GGA, and hybrid meta-GGA] and five basis sets [6-31G(d), 6-31+G(d,p), 6-311+G(d,p), cc-pVDZ, and aug-cc-pVDZ]. The hybrid GGA functionals performed the best among all tested functionals. We demonstrate that the mean absolute errors of 14 model chemistries approach chemical accuracy.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Danil S Kaliakin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Patrick Neal
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007290. [PMID: 34028901 DOI: 10.1002/adma.202007290] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Azobenzene is a well-known derivative of stimulus-responsive molecular switches and has shown superior performance as a functional material in biomedical applications. The results of multiple studies have led to the development of light/hypoxia-responsive azobenzene for biomedical use. In recent years, long-wavelength-responsive azobenzene has been developed. Matching the longer wavelength absorption and hypoxia-response characteristics of the azobenzene switch unit to the bio-optical window results in a large and effective stimulus response. In addition, azobenzene has been used as a hypoxia-sensitive connector via biological cleavage under appropriate stimulus conditions. This has resulted in on/off state switching of properties such as pharmacology and fluorescence activity. Herein, recent advances in the design and fabrication of azobenzene as a trigger in biomedicine are summarized.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
29
|
Tuck JR, Tombari RJ, Yardeny N, Olson DE. A Modular Approach to Arylazo-1,2,3-triazole Photoswitches. Org Lett 2021; 23:4305-4310. [PMID: 34019429 DOI: 10.1021/acs.orglett.1c01230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Azoheteroarenes make up an emerging class of photoswitchable compounds with unique photophysical properties and advantages over traditional azobenzenes. Therefore, methods for synthesizing azoheteroarenes are highly desirable. Here, we utilize azide-alkyne click chemistry to access arylazo-1,2,3-triazoles, a previously unexplored class of azoheteroarenes that exhibit high thermal stabilities and near-quantitative bidirectional photoconversion. Controlling the catalyst or 1,3-dipole grants access to both regioisomeric arylazotriazoles and arylazoisoxazoles, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Jeremy R Tuck
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Robert J Tombari
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Noah Yardeny
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817, United States.,Center for Neuroscience, University of California, Davis, Davis, California 95618, United States
| |
Collapse
|