1
|
Wang Y, Li L, Ge S, Zhang L, Wang X, Yu J. DNAzyme-Mediated Biodeposition Coupling Adjustable Cascade Electric Fields for Photoelectrochemical Telomerase Activity Monitoring. ACS Sens 2023; 8:3538-3546. [PMID: 37672644 DOI: 10.1021/acssensors.3c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Telomerase, as a specialized reverse transcriptase, plays a vital role in early cancer diagnostics and prognosis; thus, developing efficient sensing technologies is of vital importance. Herein, an innovative "signal-on-off" photoelectrochemical (PEC) sensing platform was developed for ultrasensitive evaluation of telomerase activity based on an electron-transfer tunneling distance regulation strategy and DNAzyme-triggerable biocatalytic precipitation. Concretely, cascade internal electric fields between CuInS2 quantum dots (QDs), graphitic carbon nitride nanosheets (g-C3N4 NSs), and TiO2 nanorod arrays (NRAs) were developed to realize cascade electron extraction and hole transfer. Enabled by such a design, an effective "signal-on" state to gain a progressively enhanced PEC output was designed by suppressing the photogenerated electron-hole pair recombination. With the introduction of hairpin probe H2 and the subsequent extension of the primer sequence driven by the target telomerase, the CuInS2 QDs labeled with hairpin probe H1 were programmatically unfolded, resulting in CuInS2 QDs' close proximity to the working electrode away from the cascade interface, accompanied by the formation of G-quadruplex/hemin complexes. The gradual undermining of tunneling distance and implantation of DNAzyme-initiating biocatalytic precipitation tremendously induced the sluggish migration kinetics of the photoinduced charge, accompanied by the photocurrent intensity decrement, leading to the "signal-off" state. Under optimized conditions, the as-prepared PEC biosensor realizes ultrasensitive detection of telomerase activity from 10 to 105 cell·mL-1 with a detection limitation of 3 cells·mL-1. As a proof of concept, this well-designed method provides new insights into signal amplification for telomerase activity evaluation and also presents promising potential for further development in drug screening, healthcare diagnostics, and biological assays.
Collapse
Affiliation(s)
- Yanhu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Liang Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
2
|
Nguyen AT, Baucom DR, Wang Y, Heyes CD. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:251-259. [PMID: 37388960 PMCID: PMC10302876 DOI: 10.1021/cbmi.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 07/01/2023]
Abstract
Quantum dots (QDs) can be used as fluorescent probes in single molecule localization microscopy to achieve subdiffraction limit resolution (super-resolution fluorescence imaging). However, the toxicity of Cd in the prototypical CdSe-based QDs can limit their use in biological applications. Furthermore, commercial CdSe QDs are usually modified with relatively thick shells of both inorganic and organic materials to render them in the 10-20 nm size range, which is relatively large for biological labels. In this report, we present compact (4-6 nm) CuInS2/ZnS (CIS/ZnS) and compare them to commercially sourced CdSe/ZnS QDs for their blinking behavior, localization precision and super-resolution imaging. Although commercial CdSe/ZnS QDs are brighter than the more compact Cd-free CIS/ZnS QD, both give comparable results of 4.5-5.0-fold improvement in imaging resolution over conventional TIRF imaging of actin filaments. This likely results from the fact that CIS/ZnS QDs show very short on-times and long off times which leads to less overlap in the point spread functions of emitting CIS/ZnS QD labels on the actin filaments at the same labeling density. These results demonstrate that CIS/ZnS QDs are an excellent candidate to complement and perhaps even replace the larger and more toxic CdSe-based QDs for robust single- molecule super-resolution imaging.
Collapse
Affiliation(s)
- Anh T. Nguyen
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Dustin R. Baucom
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Yong Wang
- Department
of Physics, University of Arkansas, 825 West Dickson Street, Fayetteville, Arkansas 72701, United States
| | - Colin D. Heyes
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
4
|
Lv Y, Fan J, Zhao M, Wu R, Li LS. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. NANOSCALE 2023; 15:5560-5578. [PMID: 36866747 DOI: 10.1039/d2nr07247e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.
Collapse
Affiliation(s)
- Yanbing Lv
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Jinjin Fan
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Man Zhao
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Ruili Wu
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Li T, Liu C, Li R, Huang X, Qi X, Mi X, Bai T, Xing S. Luminescent AgGaSe 2/ZnSe nanocrystals: rapid synthesis, color tunability, aqueous phase transfer, and bio-labeling application. Dalton Trans 2023; 52:4554-4561. [PMID: 36938844 DOI: 10.1039/d2dt03979f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The unique optoelectronic properties of I-III-VI2 nanocrystals (NCs) have attracted extensive attention. Herein, element Se in oleylamine reduced by alkythiol, which has been demonstrated to generate highly reactive alkylammonium selenide, was selected as the Se precursor by us to successfully synthesize high-quality tetragonal AgGaSe2 NCs via a facile colloidal method in just 2 minutes. Further, the photoluminescence (PL) properties of the as-synthesized AgGaSe2 NCs were systematically optimized through utilizing one Zn precursor to integrate shell coating and anionic/cationic alloying strategies into our reactive system, resulting in not only the obvious improvement of PL intensity but also tunable PL color from blue to red. Furthermore, the ligand exchange approach was adopted for the aqueous phase transfer of the oleophilic AgGaSe2/ZnSe NCs. Our data suggest that either metalated mercaptopropionic acid (Zn-MPA) short- or 11-mercaptoundecanoic acid long-chain ligand exchanged NCs all could maintain the original high crystallinity, present good water solubility, and retain up to nearly 95% and 70% of the initial PL intensity, respectively. Benefiting from the low cytotoxicity, the water-soluble AgGaSe2/ZnSe NCs can be applied as a fluorescent probe in cell imaging and signal labels for the fluoroimmunoassay of prostate-specific antigen, implying their potential in biological application.
Collapse
Affiliation(s)
- Tong Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China. .,Department of Laboratory, Xi'an No. 3 Hospital, the Affiliate Hospital of Northwest University, Xi'an 710018, P. R. China
| | - Cong Liu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Ruyi Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaofei Qi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaohan Mi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
6
|
Zeng HJ, Sun LJ, Qu LB, Yang R. Modulation of bovine serum albumin aggregation by glutathione functionalized MoS 2 quantum dots. Int J Biol Macromol 2022; 195:237-245. [PMID: 34896474 DOI: 10.1016/j.ijbiomac.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 11/05/2022]
Abstract
In present study, a novel glutathione functionalized MoS2 quantum dots (GSH-MoS2 QDs) was synthesized from sodium molybdate dehydrate and glutathione by using a one-pot hydrothermal method. After they were characterized, the influence of GSH-MoS2 QDs on amyloid aggregation of bovine serum albumin (BSA) was investigated by various analytical methods including thioflavin T fluorescence assay, circular dichroism and transmission electron microscope. Moreover, the effect of GSH-MoS2 QDs on cytotoxicity induced by BSA amyloid fibrils and cell penetration were evaluated by MTT assay and confocal fluorescence imaging, respectively. The results indicated that the GSH-MoS2 QDs not only had good water solubility, excellent biocompatibility and low cytotoxicity, but also could obviously inhibit the aggregation of BSA and depolymerize the formed BSA aggregates. The data obtained from this work demonstrated that the GSH-MoS2 QDs is expected to become a candidate drug for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Hua-Jin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Jun Sun
- The College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ling-Bo Qu
- The College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ran Yang
- The College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Fu L, Gao X, Dong S, Jia J, Xu Y, Wang D, Zou G. Coreactant-Free and Direct Electrochemiluminescence from Dual-Stabilizer-Capped InP/ZnS Nanocrystals: A New Route Involving n-Type Luminophore. Anal Chem 2021; 94:1350-1356. [PMID: 34962776 DOI: 10.1021/acs.analchem.1c04612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemiluminescence (ECL) is conventionally generated in either an annihilation or a coreactant route, and the overwhelming majority of ECL research is conducted in the coreactant route via oxidizing or reducing the coexisting coreactant and luminophore. The coreacant-free ECL generated via merely oxidizing the luminophore would break through the ceiling of coreactant ECL via excluding the detrimental effects of exogenous coreactant and dissolved oxygen. Herein, by exploiting the rich-electron nature of n-type nanocrystals (NCs), coreacant-free ECL is achieved via merely oxidizing 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) capped InP/ZnS NCs, i.e., InP/ZnSMPA-MSA. The electron-rich InP/ZnSMPA-MSA can be electrochemically injected with holes via two oxidative processes at around +0.75 and +1.37 V (vs Ag/AgCl), respectively, and the exogenous hole can directly combine the conduction band (CB) electron of InP/ZnSMPA-MSA, resulting in two coreactant-free ECL processes without employing any exogenous coreactant. The deprotonation process for the carboxyl group of the capping agents can provide a negatively charged surface to InP/ZnSMPA-MSA and enhance the coreactant-free ECL. The hole-injecting process at +1.37 is much stronger than that at +0.75 V and eventually enables an ∼2000-fold enhanced ECL at +1.37 V than that at +0.75 V. The ECL at +1.37 V can be utilized for coreactant-free ECL immunoassay with prostate-specific antigen (PSA) as analyte, which exhibits an acceptable linear response from 5 pg·mL-1 to 1 ng·mL-1 with a limit of detection of 0.3 pg·mL-1. The coreactant-free ECL route would provide an alternative to both annihilation and coreactant routes, simplify the ECL assay procedure and deepening the ECL mechanism investigations.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jingna Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuqi Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongyang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. NANOSCALE HORIZONS 2021; 6:676-695. [PMID: 34264247 DOI: 10.1039/d1nh00260k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper indium sulfide (CIS) quantum dots are ideal for bioimaging applications, by being characterized by high molar absorption coefficients throughout the entire visible spectrum, high photoluminescence quantum yield, high tolerance to the presence of lattice defects, emission tunability from the red to the near-infrared spectral region by changing their dimensions and composition, and long lifetimes (hundreds of nanoseconds) enabling time-gated detection to increase signal-to-noise ratio. The present review collects: (i) the most common procedures used to synthesize stable CIS QDs and the possible strategies to enhance their colloidal stability in aqueous environment, a property needed for bioimaging applications; (ii) their photophysical properties and parameters that affect the energy and brightness of their photoluminescence; (iii) toxicity and bioimaging applications of CIS QDs, including tumor targeting, time-gated detection and multimodal imaging, as well as theranostics. Future perspectives are analyzed in view of advantages and potential limitations of CIS QDs compared to most traditional QDs.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, 40126, Italy.
| | | | | | | | | |
Collapse
|
9
|
Choi MJ, Sagar LK, Sun B, Biondi M, Lee S, Najjariyan AM, Levina L, García de Arquer FP, Sargent EH. Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots. NANO LETTERS 2021; 21:6057-6063. [PMID: 34250796 DOI: 10.1021/acs.nanolett.1c01286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
III-V colloidal quantum dots (CQDs) are promising semiconducting materials for optoelectronic applications; however, their strong covalent character requires a distinct approach to surface management compared with widely investigated II-VI and IV-VI CQDs-dots, which by contrast are characterized by an ionic nature. Here we show stoichiometric reconstruction in InAs CQDs by ligand exchange. In particular, we find that indium-carboxylate ligands, which passivate as-synthesized InAs CQDs and are responsible for In-rich surfaces, can be replaced by anionic ligands such as thiols. This enables the production of inks consisting of balanced-stoichiomety CQDs; this is distinct from what is observed in II-VI and IV-VI CQDs, in which thiols replace carboxylates. The approach enables the implementation of InAs CQD solids as the active layer in photodiode detectors that exhibit an external quantum efficiency of 36% at 930 nm and a photoresponse time of 65 ns, which is 4 times shorter than that of reference PbS CQD devices.
Collapse
Affiliation(s)
- Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Laxmi Kishore Sagar
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Bin Sun
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Amin Morteza Najjariyan
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Larissa Levina
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
10
|
Wang XL, Han X, Tang XY, Chen XJ, Li HJ. A Review of Off-On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications. J Biomed Nanotechnol 2021; 17:1249-1272. [PMID: 34446130 DOI: 10.1166/jbn.2021.3117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the development of nanomaterials, fluorescent nanoprobes have attracted enormous attention in the fields of chemical sensing, optical materials, and biological detection. In this paper, the advantages of "off-on" fluorescent nanoprobes in disease detection, such as high sensitivity and short response time, are attentively highlighted. The characteristics, sensing mechanisms, and classifications of disease-related target substances, along with applications of these nanoprobes in cancer diagnosis and therapy are summarized systematically. In addition, the prospects of "off-on" fluorescent nanoprobe in disease detection are predicted. In this review, we presented information from all the papers published in the last 5 years discussing "off-on" fluorescent nanoprobes. This review was written in the hopes of being useful to researchers who are interested in further developing fluorescent nanoprobes. The characteristics of these nanoprobes are explained systematically, and data references and supports for biological analysis, clinical drug improvement, and disease detection have been provided appropriately.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Ying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Jun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Han-Jun Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules 2021; 26:molecules26092764. [PMID: 34066652 PMCID: PMC8125818 DOI: 10.3390/molecules26092764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ternary quantum dots (QDs) are novel nanomaterials that can be used in chemical analysis due their unique physicochemical and spectroscopic properties. These properties are size-dependent and can be adjusted in the synthetic protocol modifying the reaction medium, time, source of heat, and the ligand used for stabilization. In the last decade, several spectroscopic methods have been developed for the analysis of organic and inorganic analytes in biological, drug, environmental, and food samples, in which different sensing schemes have been applied using ternary quantum dots. This review addresses the different synthetic approaches of ternary quantum dots, the sensing mechanisms involved in the analyte detection, and the predominant areas in which these nanomaterials are used.
Collapse
|
12
|
Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B 2021; 8:4778-4812. [PMID: 32226981 DOI: 10.1039/d0tb00182a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper chalcogenides have a simple general formula, variable atomic ratios, and complicated crystal structures, which lead to their wealth of optical, electrical, and magnetic properties with great potential for wide applications ranging from energy conversion to the biomedical field. Herein, we summarize the recent advances in (1) the synthesis of size- and morphology tunable nanostructures by different methods; (2) surface modification and functionalization for different purposes; and (3) bioapplications for diagnosis and treatment of tumors by different imaging and therapy methods, as well as antibacterial applications. We also briefly discuss the future directions and challenges of copper chalcogenide nanoparticles in the biomedical field.
Collapse
Affiliation(s)
- Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Jiaxin Yuan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China.
| |
Collapse
|
13
|
Guo Z, Huang X, Li Z, Shi J, Zhai X, Hu X, Zou X. Employing CuInS 2 quantum dots modified with vancomycin for detecting Staphylococcus aureus and iron(iii). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1517-1526. [PMID: 33710200 DOI: 10.1039/d0ay02253e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper describes a near-infrared quantum dot (CuInS2 QD)/antibiotic (vancomycin) nanoparticle-based assay for the Staphylococcus aureus and iron(iii) detection. CuInS2 QDs with good biological tissue permeability and biocompatibility are combined with vancomycin through covalent interaction to form a detection system for two harmful factors. The detection principle of Staphylococcus aureus is mainly the fluorescence quenching caused by the accumulation of CuInS2@Van QDs on the surface of Staphylococcus aureus. The detection principles of the iron(iii) ion are mainly ascribed to the aggregation of quantum dots and the transfer of charges, which cause the fluorescence signal to change. The linear range of S. aureus and the Fe3+ ion is 103 to 108 CFU mL-1 and 10-90 μM, respectively. Their detection limits are 665 CFU mL-1 and 3.5 μM, respectively. The procedure was validated by the quantitation of Staphylococcus aureus and iron(iii) in spiked samples, and was found to demonstrate the feasibility of this method.
Collapse
Affiliation(s)
- Ziang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen CT, Salunke S, Wei TT, Tang YA, Wang YC. Fluorescent Nanohybrids from ZnS/CdSe Quantum Dots Functionalized with Triantennary, N-Hydroxy- p-(4-arylbutanamido)benzamide/Gallamide Dendrons That Act as Inhibitors of Histone Deacetylase for Lung Cancer. ACS APPLIED BIO MATERIALS 2021; 4:2475-2489. [DOI: 10.1021/acsabm.0c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Santosh Salunke
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Tang Wei
- Department of Pharmacology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-An Tang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
15
|
Long Z, Zhang W, Tian J, Chen G, Liu Y, Liu R. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01228a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We discuss the synthesis and luminescence mechanisms of CuInS2 QDs, the strategies to improve their luminous performance and their potential application in light-emitting devices, solar energy conversion, and the biomedical field.
Collapse
Affiliation(s)
- Zhiwei Long
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Wenda Zhang
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Junhang Tian
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Guantong Chen
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Yuanhong Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Ronghui Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| |
Collapse
|
16
|
Miropoltsev M, Kuznetsova V, Tkach A, Cherevkov S, Sokolova A, Osipova V, Gromova Y, Baranov M, Fedorov A, Gun’ko Y, Baranov A. FRET-Based Analysis of AgInS 2/ZnAgInS/ZnS Quantum Dot Recombination Dynamics. NANOMATERIALS 2020; 10:nano10122455. [PMID: 33302496 PMCID: PMC7763287 DOI: 10.3390/nano10122455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Ternary quantum dots (QDs) are very promising nanomaterials with a range of potential applications in photovoltaics, light-emitting devices, and biomedicine. Despite quite intensive studies of ternary QDs over the last years, the specific relaxation channels involved in their emission mechanisms are still poorly understood, particularly in the corresponding core-shell nanostructures. In the present work, we have studied the recombination pathways of AgInS2 QDs stabilized with the ZnAgInS alloy layer and the ZnS shell (AIS/ZAIS/ZnS QDs) using time-resolved fluorescence spectroscopy. We have also investigated FRET in complexes of AIS/ZAIS/ZnS QDs and cyanine dyes with the absorption bands overlapping in the different regions of the QD emission spectrum, which allowed us to selectively quench the radiative transitions of the QDs. Our studies have demonstrated that FRET from QDs to dyes results in decreasing of all QD PL decay components with the shortest lifetime decreasing the most and the longest one decreasing the least. This research presents important approaches for the investigation of ternary QD luminescence mechanisms by the selective quenching of recombination pathways. These studies are also essential for potential applications of ternary QDs in photodynamic therapy, multiplex analysis, and time-resolved FRET sensing.
Collapse
Affiliation(s)
- Maksim Miropoltsev
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Vera Kuznetsova
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
- Correspondence:
| | - Anton Tkach
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Sergei Cherevkov
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Anastasiia Sokolova
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Viktoria Osipova
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Yulia Gromova
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Mikhail Baranov
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Anatoly Fedorov
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| | - Yurii Gun’ko
- Chemistry School, Trinity College Dublin, Dublin 2 Dublin, Ireland;
| | - Alexander Baranov
- Center of Information Optical Technology, ITMO University, 197101 Saint Petersburg, Russia; (M.M.); (A.T.); (S.C.); (A.S.); (V.O.); (Y.G.); (M.B.); (A.F.); (A.B.)
| |
Collapse
|
17
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
18
|
Zhao C, Man T, Xu X, Yang Q, Liu W, Jonas SJ, Teitell MA, Chiou PY, Weiss PS. Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. ACS MATERIALS LETTERS 2020; 2:1475-1483. [PMID: 34708213 PMCID: PMC8547743 DOI: 10.1021/acsmaterialslett.0c00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Local heating using pulsed laser-induced photothermal effects on plasmonic nanostructured substrates can be used for intracellular delivery applications. However, the fabrication of plasmonic nanostructured interfaces is hampered by complex nanomanufacturing schemes. Here, we demonstrate the fabrication of large-area plasmonic gold (Au) nanodisk arrays that enable photothermal intracellular delivery of biomolecular cargo at high efficiency. The Au nanodisks (350 nm in diameter) were fabricated using chemical lift-off lithography (CLL). Nanosecond laser pulses were used to excite the plasmonic nanostructures, thereby generating transient pores at the outer membranes of targeted cells that enable the delivery of biomolecules via diffusion. Delivery efficiencies of >98% were achieved using the cell impermeable dye calcein (0.6 kDa) as a model payload, while maintaining cell viabilities at >98%. The highly efficient intracellular delivery approach demonstrated in this work will facilitate translational studies targeting molecular screening and drug testing that bridge laboratory and clinical investigations.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qing Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Children's Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael A Teitell
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
The Photoluminescence and Biocompatibility of CuInS2-Based Ternary Quantum Dots and Their Biological Applications. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Semiconductor quantum dots (QDs) have become a unique class of materials with great potential for applications in biomedical and optoelectronic devices. However, conventional QDs contains toxic heavy metals such as Pb, Cd and Hg. Hence, it is imperative to find an alternative material with similar optical properties and low cytotoxicity. Among these materials, CuInS2 (CIS) QDs have attracted a lot of interest due to their direct band gap in the infrared region, large optical absorption coefficient and low toxic composition. These factors make them a good material for biomedical application. This review starts with the origin and photophysical characteristics of CIS QDs. This is followed by various synthetic strategies, including synthesis in organic and aqueous solvents, and the tuning of their optical properties. Lastly, their significance in various biological applications is presented with their prospects in clinical applications.
Collapse
|
20
|
Hajipour F, Asad S, Amoozegar MA, Javidparvar AA, Tang J, Zhong H, Khajeh K. Developing a Fluorescent Hybrid Nanobiosensor Based on Quantum Dots and Azoreductase Enzyme forMethyl Red Monitoring. IRANIAN BIOMEDICAL JOURNAL 2020; 25:8-20. [PMID: 33129235 PMCID: PMC7748117 DOI: 10.29252/ibj.25.1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Azo dyes are the most widely used synthetic colorants in the textile, food, pharmaceutical, cosmetic, and other industries, accounting for nearly 70% of all dyestuffs consumed. Recently, much research attention has been paid to efficient monitoring of these hazardous chemicals and their related metabolites because of their potentially harmful effect on environmental issues. In contrast to the complex and expensive instrumental procedures, the detection system based on the QDs with the superior optochemical properties provides a new era in the pollution sensing and prevention. Methods: We have developed a QD-enzyme hybrid system to probe MR in aqueous solutions using a fluorescence quenching procedure. Results: The azoreductase enzyme catalyzed the reduction of azo group in MR, which can efficiently decrease the FRET between the QDs and MR molecules. The correlation between the QDs photoluminescence recovery and MR enzymatic decolorization at the neutral phosphate buffer permitted the creation of a fluorescence quenching-based sensor. The synthesized biosensor can be used for the accurate detection of MR in a linear calibration over MR concentrations of 5-84 μM, with the LOD of 0.5 μM in response time of three minutes. Conclusion: Our findings revealed that this fluorometric sensor has the potential to be successfully applied for monitoring a wide linear range of MR concentration with the relative standard deviation of 4% rather than the other method.
Collapse
Affiliation(s)
- Fahimeh Hajipour
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Asghar Javidparvar
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jialun Tang
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Roy P, Devatha G, Roy S, Rao A, Pillai PP. Electrostatically Driven Resonance Energy Transfer in an All-Quantum Dot Based Donor-Acceptor System. J Phys Chem Lett 2020; 11:5354-5360. [PMID: 32539403 DOI: 10.1021/acs.jpclett.0c01360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Demonstration of fundamental photophysical properties in environmentally friendly quantum dots (QDs) is essential to realize their practical use in various light harvesting applications. We accomplish here an efficient light induced resonance energy transfer in all-QD based donor-acceptor system in water, deprived of any commonly used organic dye component. Our nanohybrid system comprises surface engineered indium phosphide/zinc sulfide (InP/ZnS) QD as the donor, and copper indium sulfide/zinc sulfide (CIS/ZnS) QD as the acceptor. The electrostatic attraction between oppositely charged QDs is vital in achieving a strong ground state complexation in the [-] InP/ZnS:::[+] CIS/ZnS QD nanohybrid. A nonlinear Stern-Volmer plot confirms the involvement of both static and dynamic components in the PL quenching of InP/ZnS QD by CIS/ZnS QD. Moreover, a temporal evolution of resonance energy transfer is realized in the solid state as well, which can improve the potential of such "all-green QD" based nanohybrid systems for device level studies.
Collapse
Affiliation(s)
- Pradyut Roy
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Gayathri Devatha
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Soumendu Roy
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Anish Rao
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
22
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
23
|
Huangfu X, Shen Y, Yang A, Liu L, Luo W, Zhao W. Synthesis of water soluble CuGaS 2/ZnS quantum dots for ultrasensitive fluorescent detection of alkaline phosphatase based on inner filter effect. Colloids Surf B Biointerfaces 2020; 191:110984. [PMID: 32278281 DOI: 10.1016/j.colsurfb.2020.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Developing monitoring technique for alkaline phosphatase (ALP) is crucial due to the important role it plays in living cells. Here, a kind of biocompatible glutathione-modified CuGaS2/ZnS quantum dots (GSH-CGS/ZnS QDs) was used as a fluorescent substance and then fabricated "turn-off" fluorescent biosensor for detection of ALP by help of inner filter effect (IFE). Firstly, we prepared CuGaS2/ZnS (CGS/ZnS) QDs using solvothermal method and explored the efficient ligand (GSH) exchanges strategy for transferring oil-soluble CGS/ZnS QDs to aqueous phase. More importantly, we also explored the potential biological applications of the nanohybrid QDs. The obtained GSH-CGS/ZnS QDs emitted strong yellow fluorescence with the maximum excitation (400 nm) and emission (601 nm). Then, GSH-CGS/ZnS QDs were mixed with p-nitrophenylphosphate (PNPP) and ALP. PNPP could be hydrolyzed to p-nitrophenol (PNP) by help of catalysis of ALP, and the excitation spectrum of the GSH-CGS/ZnS QDs overlapped well with the absorption spectrum of PNP, so the fluorescence of GSH-CGS/ZnS QDs was initially quenched via the so-called "IFE". Finally, a novel "turn-off" biosensor for sensitive detection of ALP in the range of 0.05-10 U L -1(R2 = 0.98) with a detection limit of 0.01 U L-1 was successfully obtained. Results indicated that I-III-VI2 nanocrystals have great potential for their promising biomedical application.
Collapse
Affiliation(s)
- Xiaoxia Huangfu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Anzi Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lixiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Hu W, Yang S, Huang J. Composition effect on the carrier dynamics and catalytic performance of CuInS2/ZnS quantum dots for light driven hydrogen generation. J Chem Phys 2019; 151:214705. [DOI: 10.1063/1.5125024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, USA
| | - Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, USA
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
25
|
Lee S. Designing of low-cost, eco-friendly, and versatile photosensitive composites / inks based on carboxyl-terminated quantum dots and reactive prepolymers in a mixed solvent: Suppression of the coffee-ring strain and aggregation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Stroyuk O, Raevskaya A, Spranger F, Selyshchev O, Dzhagan V, Solonenko D, Gaponik N, Zahn DRT, Eychmüller A. Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. J Chem Phys 2019; 151:144701. [DOI: 10.1063/1.5119991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Immerwahrstr. 2, 91058 Erlangen, Germany
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Alexandra Raevskaya
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | | | - Oleksandr Selyshchev
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
- Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Dmytro Solonenko
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | | | - Dietrich R. T. Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | | |
Collapse
|
27
|
Man T, Zhu X, Chow YT, Dawson ER, Wen X, Patananan AN, Liu TL, Zhao C, Wu C, Hong JS, Chung PS, Clemens DL, Lee BY, Weiss PS, Teitell MA, Chiou PY. Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS NANO 2019; 13:10835-10844. [PMID: 31487464 DOI: 10.1021/acsnano.9b06025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient intracellular delivery of biomolecules into cells that grow in suspension is of great interest for biomedical research, such as for applications in cancer immunotherapy. Although tremendous effort has been expended, it remains challenging for existing transfer platforms to deliver materials efficiently into suspension cells. Here, we demonstrate a high-efficiency photothermal delivery approach for suspension cells using sharp nanoscale metal-coated tips positioned at the edge of microwells, which provide controllable membrane disruption for each cell in an array. Self-aligned microfabrication generates a uniform microwell array with three-dimensional nanoscale metallic sharp tip structures. Suspension cells self-position by gravity within each microwell in direct contact with eight sharp tips, where laser-induced cavitation bubbles generate transient pores in the cell membrane to facilitate intracellular delivery of extracellular cargo. A range of cargo sizes were tested on this platform using Ramos suspension B cells with an efficiency of >84% for Calcein green (0.6 kDa) and >45% for FITC-dextran (2000 kDa), with retained viability of >96% and a throughput of >100 000 cells delivered per minute. The bacterial enzyme β-lactamase (29 kDa) was delivered into Ramos B cells and retained its biological activity, whereas a green fluorescence protein expression plasmid was delivered into Ramos B cells with a transfection efficiency of >58%, and a viability of >89% achieved.
Collapse
Affiliation(s)
- Tianxing Man
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Emma R Dawson
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ximiao Wen
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Tingyi Leo Liu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Chuanzhen Zhao
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Cong Wu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Jason S Hong
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pei-Shan Chung
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, Department of Pediatrics, Jonsson Comprehensive Cancer Center, Broad Center of Regenerative Medicine and Stem Cell Research , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
28
|
Zhou J, Yuan K, Zhou L, Guo Y, Luo M, Guo X, Meng Q, Zhang Y. Boosting Electrochemical Reduction of CO
2
at a Low Overpotential by Amorphous Ag‐Bi‐S‐O Decorated Bi
0
Nanocrystals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun‐Hao Zhou
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Kun Yuan
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Liang Zhou
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Ming‐Yu Luo
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Xiao‐Yan Guo
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Qing‐Yuan Meng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Ya‐Wen Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| |
Collapse
|
29
|
Zhou J, Yuan K, Zhou L, Guo Y, Luo M, Guo X, Meng Q, Zhang Y. Boosting Electrochemical Reduction of CO
2
at a Low Overpotential by Amorphous Ag‐Bi‐S‐O Decorated Bi
0
Nanocrystals. Angew Chem Int Ed Engl 2019; 58:14197-14201. [DOI: 10.1002/anie.201908735] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jun‐Hao Zhou
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Kun Yuan
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Liang Zhou
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Ming‐Yu Luo
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Xiao‐Yan Guo
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Qing‐Yuan Meng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| | - Ya‐Wen Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University No.5 Yiheyuan Road Haidian District Beijing 100871 China
| |
Collapse
|
30
|
Kalinowska D, Drozd M, Grabowska-Jadach I, Pietrzak M, Dybko A, Malinowska E, Brzózka Z. The influence of selected ω-mercaptocarboxylate ligands on physicochemical properties and biological activity of Cd-free, zinc‑copper‑indium sulfide colloidal nanocrystals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:583-592. [DOI: 10.1016/j.msec.2018.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
|
31
|
Qi N, Zhao H, Wang Q, Qin Y, Yuan H, Li Y. Preparing CdS QDs in sodium alginate gel: realizing water solubility and stimuli responsiveness of QDs in an integrative way. SOFT MATTER 2019; 15:2319-2327. [PMID: 30747942 DOI: 10.1039/c8sm02483a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantum dots (QDs) are of great interest due to their excellent fluorescence properties and thus, they have been widely studied. Compared with the typical organometallic synthetic routes and hydrothermal methods usually carried out under high temperatures, methods employing colloidal templates can be used for preparing QDs in mild conditions and have gained increasing attention. In this prospect, a hydrogel is an ideal colloidal template for the preparation of QDs in an aqueous medium, while the related study for in situ preparation of QDs in a gel and the consequent functionalization of QDs are in demand. In this paper, we proposed a two-step method to prepare CdS QDs in a sodium alginate (SA) gel, which showed effective constraint in the uniform size distribution of QDs. Without the introduction of additional ligands, the prepared CdS-SA QDs exhibited responsiveness to pH and detection of Fe3+, thus providing a simplified way for the functionalization of QDs. CdS-SA QDs showed good biocompatibility and stability in a certain concentration, which indicated the prospective applications of CdS-SA QDs in the fields of biological labeling and environmental sensing.
Collapse
Affiliation(s)
- Na Qi
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, Shandong University, 27 South Road of ShanDa, Jinan, Shandong 250100, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
van Oversteeg CM, Oropeza FE, Hofmann JP, Hensen EJM, de Jongh PE, de Mello Donega C. Water-Dispersible Copper Sulfide Nanocrystals via Ligand Exchange of 1-Dodecanethiol. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:541-552. [PMID: 30686859 PMCID: PMC6345102 DOI: 10.1021/acs.chemmater.8b04614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/18/2018] [Indexed: 05/16/2023]
Abstract
In colloidal Cu2-x S nanocrystal synthesis, thiols are often used as organic ligands and the sulfur source, as they yield high-quality nanocrystals. However, thiol ligands on Cu2-x S nanocrystals are difficult to exchange, limiting the applications of these nanocrystals in photovoltaics, biomedical sensing, and photocatalysis. Here, we present an effective and facile procedure to exchange native 1-dodecanethiol on Cu2-x S nanocrystals by 3-mercaptopropionate, 11-mercaptoundecanoate, and S2- in formamide under inert atmosphere. The product hydrophilic Cu2-x S nanocrystals have excellent colloidal stability in formamide. Furthermore, the size, shape, and optical properties of the nanocrystals are not significantly affected by the ligand exchange. Water-dispersible Cu2-x S nanocrystals are easily obtained by precipitation of the nanocrystals capped by S2-, 3-mercaptopropionate, or 11-mercaptoundecanoate from formamide, followed by redispersion in water. Interestingly, the ligand exchange rates for Cu2-x S nanocrystals capped with 1-dodecanethiol are observed to depend on the preparation method, being much slower for Cu2-x S nanocrystals prepared through heating-up than through hot-injection synthesis protocols. XPS studies reveal that the differences in the ligand exchange rates are due to the surface chemistry of the Cu2-x S nanocrystals, where the nanocrystals prepared via hot-injection synthesis have a less dense ligand layer due to the presence of trioctylphosphine oxide during synthesis. A model is proposed that explains the observed differences in the ligand exchange rates. The facile ligand exchange procedures reported here enable the use of high-quality colloidal Cu2-x S nanocrystals prepared in the presence of 1-dodecanethiol in various applications.
Collapse
Affiliation(s)
- Christina
H. M. van Oversteeg
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Freddy E. Oropeza
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Jan P. Hofmann
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Petra E. de Jongh
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- (Celso de Mello Donega) E-mail:
| |
Collapse
|
33
|
Perner V, Rath T, Pirolt F, Glatter O, Wewerka K, Letofsky-Papst I, Zach P, Hobisch M, Kunert B, Trimmel G. Hot injection synthesis of CuInS2 nanocrystals using metal xanthates and their application in hybrid solar cells. NEW J CHEM 2019. [DOI: 10.1039/c8nj04823a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Copper indium sulfide nanocrystals with sizes of 3–4 nm were synthesized from metal xanthates in a hot injection reaction. After ligand exchange, their performance as acceptors in polymer/nanocrystal hybrid solar cells was evaluated.
Collapse
Affiliation(s)
- Verena Perner
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology
- 8010 Graz
- Austria
| | - Thomas Rath
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology
- 8010 Graz
- Austria
| | - Franz Pirolt
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology
- 8010 Graz
- Austria
| | - Otto Glatter
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology
- 8010 Graz
- Austria
| | - Karin Wewerka
- Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI Graz
- 8010 Graz
- Austria
| | - Ilse Letofsky-Papst
- Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI Graz
- 8010 Graz
- Austria
| | - Peter Zach
- Institute of Analytical Chemistry and Food Chemistry, NAWI Graz, Graz University of Technology
- 8010 Graz
- Austria
| | - Mathias Hobisch
- Institute of Paper, Pulp and Fibre Technology, Graz University of Technology
- 8010 Graz
- Austria
| | - Birgit Kunert
- Institute of Solid State Physics, Graz University of Technology
- 8010 Graz
- Austria
| | - Gregor Trimmel
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology
- 8010 Graz
- Austria
| |
Collapse
|
34
|
Wu PT, Lin CL, Lin CW, Chang NC, Tsai WB, Yu J. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 9:E14. [PMID: 30583581 PMCID: PMC6359461 DOI: 10.3390/nano9010014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023]
Abstract
Methylene blue (MB) is a widely used dye and photodynamic therapy (PDT) agent that can produce reactive oxygen species (ROS) after light exposure, triggering apoptosis. However, it is hard for the dye to penetrate through the cell membrane, leading to poor cellular uptake; thus, drug carriers, which could enhance the cellular uptake, are a suitable solution. In addition, the defective vessels resulting from fast vessel outgrowth leads to an enhanced permeability and retention (EPR) effect, which gives nanoscale drug carriers a promising potential. In this study, we applied poly(12-(methacryloyloxy)dodecyl phosphorylcholine), a zwitterionic polymer-lipid, to self-assemble into liposomes and encapsulate MB (MB-liposome). Its properties of high stability and fast intracellular uptake were confirmed, and the higher in vitro ROS generation ability of MB-liposomes than that of free MB was also verified. For in vivo tests, we examined the toxicity in mice via tail vein injection. With the features found, MB-liposome has the potential of being an effective PDT nano agent for cancer therapy.
Collapse
Affiliation(s)
- Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Chih-Ling Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Che-Wei Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Ning-Chu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 103, Taiwan.
| |
Collapse
|
35
|
Stroyuk O, Raevskaya A, Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 2018; 47:5354-5422. [PMID: 29799031 DOI: 10.1039/c8cs00029h] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine.
| | | | | |
Collapse
|
36
|
Gromova M, Lefrançois A, Vaure L, Agnese F, Aldakov D, Maurice A, Djurado D, Lebrun C, de Geyer A, Schülli TU, Pouget S, Reiss P. Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol. J Am Chem Soc 2017; 139:15748-15759. [DOI: 10.1021/jacs.7b07401] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Gromova
- Université Grenoble Alpes, CEA, INAC, MEM, Grenoble 38000, France
| | - Aurélie Lefrançois
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| | - Louis Vaure
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| | - Fabio Agnese
- Université Grenoble Alpes, CEA, INAC, MEM, Grenoble 38000, France
| | - Dmitry Aldakov
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| | - Axel Maurice
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| | - David Djurado
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| | - Colette Lebrun
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| | - Arnaud de Geyer
- Université Grenoble Alpes, CEA, INAC, MEM, Grenoble 38000, France
| | - Tobias U. Schülli
- The European Synchrotron ESRF, BP 220, Grenoble 38043 Cedex 9, France
| | - Stéphanie Pouget
- Université Grenoble Alpes, CEA, INAC, MEM, Grenoble 38000, France
| | - Peter Reiss
- Université Grenoble Alpes, CEA, CNRS, INAC, UMR5819 SyMMES, Grenoble 38000, France
| |
Collapse
|
37
|
Kim Y, Jang HS, Kim H, Kim S, Jeon DY. Controlled Synthesis of CuInS 2/ZnS Nanocubes and Their Sensitive Photoluminescence Response toward Hydrogen Peroxide. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32097-32105. [PMID: 28846371 DOI: 10.1021/acsami.7b09388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We synthesized uniform CuInS2/ZnS nanocubes by adjusting reaction parameters at the ZnS growth stage. Higher temperature and zinc concentration were shown to drive resultant crystals to have cubic morphology, which could be ascribed to the facet-dependent ligand dynamics on the crystal surface and concomitantly preferred directions of crystal growth. It was found that these nanocubes exhibit sensitive responses, as of photoluminescence quenching, toward hydrogen peroxide, compared to pyramid-shaped nanocrystals. The origin of quenching was further analyzed to be the oxidation of thiolate ligands that leaves the quenching center on the surface. It was noted that the quenched photoluminescence could be fully recovered by introducing additional ligand molecules into the system. Being adopted in the shape-controlled crystal growth, the ligand-to-crystal interaction was shown to still govern the interfacial reaction, the oxidation by hydrogen peroxide, of faceted crystals in our system. It turns out that the reactivity at the crystal surface depends on the exposed facets, especially induced by shape control, and the weak ligand-binding nature of the nanocube renders it vulnerable to the surface reaction.
Collapse
Affiliation(s)
- Youngsun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | | | - Hyunki Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | | | - Duk Young Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| |
Collapse
|
38
|
An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017; 7:3667-3689. [PMID: 29109768 PMCID: PMC5667340 DOI: 10.7150/thno.19365] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
Biosafety is the primary concern in clinical translation of nanomedicine. As an intrinsic ingredient of human blood without immunogenicity and encouraged by its successful clinical application in Abraxane, albumin has been regarded as a promising material to produce nanoparticles for bioimaging and drug delivery. The strategies for synthesizing albumin-based nanoparticles could be generally categorized into five classes: template, nanocarrier, scaffold, stabilizer and albumin-polymer conjugate. This review introduces approaches utilizing albumin in the preparation of nanoparticles and thereby provides scientists with knowledge of goal-driven design on albumin-based nanomedicine.
Collapse
Affiliation(s)
- Fei-Fei An
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 E 69th St, New York, NY, 10065
| | - Xiao-Hong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
39
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
40
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|
41
|
Calzada R, Thompson CM, Westmoreland DE, Edme K, Weiss EA. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2016; 28:6716-6723. [PMID: 28260836 PMCID: PMC5333977 DOI: 10.1021/acs.chemmater.6b03106] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper describes a procedure for transferring colloidal CdS and CdSe quantum dots (QDs) from organic solvents to water by exchanging their native hydrophobic ligands for phosphonopropionic acid (PPA) ligands, which bind to the QD surface through the phosphonate group. This method, which uses dimethylformamide as an intermediate transfer solvent, was developed in order to produce high-quality water soluble QDs with neither a sulfur-containing ligand nor a polymer encapsulation layer, both of which have disadvantages in applications of QDs to photocatalysis and biological imaging. CdS (CdSe) QDs were transferred to water with a 43% (48%) yield using PPA. The photoluminescence (PL) quantum yield for PPA-capped CdSe QDs is larger than that for QDs capped with the analogous sulfur-containing ligand, mercaptopropionic acid (MPA), by a factor of four at pH 7, and by up to a factor of 100 under basic conditions. The MPA ligands within MPA-capped QDs oxidize at Eox ~ +1.7 V vs. SCE, whereas cyclic voltammograms of PPA-capped QDs show no discerible oxidation peaks at applied potentials up to +2.5 V vs. SCE. The PPA-capped QDs are chemically and colloidally stable for at least five days in the dark, even in the presence of O2, and are stable when continuously illuminated for five days, when oxygen is excluded and a sacrificial reductant is present to capture photogenerated holes.
Collapse
|
42
|
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem Rev 2016; 116:12234-12327. [DOI: 10.1021/acs.chemrev.6b00290] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaixia Xu
- Key
Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Shuwen Zeng
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Butian Zhang
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Ken-Tye Yong
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | |
Collapse
|
43
|
Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22442-50. [PMID: 27463610 DOI: 10.1021/acsami.6b04933] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we reported a ZnO quantum dots-based pH-responsive drug delivery platform for intracellular controlled release of drugs. Acid-decomposable, luminescent aminated ZnO quantum dots (QDs) were synthesized as nanocarriers with ultrasmall size (∼3 nm). The dicarboxyl-terminated poly(ethylene glycol) (PEG) had been introduced to NH2-ZnO QDs, which rendered it stable under physiological fluid. Moreover, a targeting ligand, hyaluronic acid (HA), was conjugated to ZnO QDs for specifically binding to the overexpressed glycoprotein CD44 by cancer cells. Doxorubicin (DOX) molecules were successfully loaded to PEG functionalized ZnO QDs via formation of metal-DOX complex and covalent interactions. The pH-sensitive ZnO QDs dissolved to Zn(2+) in acidic endosome/lysosome after uptake by cancer cells, which triggered dissociation of the metal-drug complex and a controlled DOX release. As result, a synergistic therapy was achieved due to incorporation of the antitumor effect of Zn(2+) and DOX.
Collapse
Affiliation(s)
- Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P.R. China
| | - Yanan Luo
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P.R. China
- School of Mechanical and Materials Engineering, Washington State University , P.O. Box 642920, Pullman, Washington 99164, United States
| | - Weiying Zhang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University , Wuhan 430056, P.R. China
| | - Dan Du
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P.R. China
- School of Mechanical and Materials Engineering, Washington State University , P.O. Box 642920, Pullman, Washington 99164, United States
- Paul G. Allen School for Global Animal Health, Washington State University , P.O. Box 647090, Pullman, Washington 99164, United States
| | - Yuehe Lin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P.R. China
- School of Mechanical and Materials Engineering, Washington State University , P.O. Box 642920, Pullman, Washington 99164, United States
- Paul G. Allen School for Global Animal Health, Washington State University , P.O. Box 647090, Pullman, Washington 99164, United States
| |
Collapse
|
44
|
Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos. Sci Rep 2016; 6:26078. [PMID: 27188464 PMCID: PMC4870560 DOI: 10.1038/srep26078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).
Collapse
|
45
|
Jara DH, Stamplecoskie KG, Kamat PV. Two Distinct Transitions in Cu(x)InS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. J Phys Chem Lett 2016; 7:1452-9. [PMID: 27043435 DOI: 10.1021/acs.jpclett.6b00571] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cu-deficient CuInS2 quantum dots (QDs) synthesized by varying the [Cu]:[In] ratio allow modulation of optical properties as well as identification of the radiative emission pathways. Absorption and emission spectral features showed a strong dependence on the [Cu]:[In] ratio of CuxInS2 QDs, indicating two independent optical transitions. These effects are pronounced in transient absorption spectra. The bleaching of band edge absorption and broad tail absorption bands in the subpicosecond-nanosecond time scale provide further evidence for the dual optical transitions. The recombination process as monitored by photoemission decay indicated the involvement of surface traps in addition to the bandgap and sub-bandgap transitions. Better understanding of the origin of the optical transitions and their influence on the photodynamics will enable utilization of ternary semiconductor quantum dots in display and photovoltaic devices.
Collapse
Affiliation(s)
- Danilo H Jara
- Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Kevin G Stamplecoskie
- Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
46
|
Xuan TT, Liu JQ, Yu CY, Xie RJ, Li HL. Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging. Sci Rep 2016; 6:24459. [PMID: 27074820 PMCID: PMC4830992 DOI: 10.1038/srep24459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/29/2016] [Indexed: 12/23/2022] Open
Abstract
High quality cadmium-free Zn-In-S:Ag doped-nanocrystals (d-NCs) were synthesized via a simple one-step noninjection route using silver nitrate, indium acetate, zinc acetate, oleylamine, S powder and 1-dodecanethiol as starting materials in an organic phase. The size and optical properties can be effectively tailored by controlling the reaction time, reaction temperature, Ag(+) dopant concentration, and the molar ratio of In to Zn. The photoluminescence wavelength of as-prepared Zn-In-S:Ag NCs covered a broad visible range from 458 nm to 603 nm. After being passivated by protective ZnS shell, the photoluminescence quantum yield (PLQY) of Zn-In-S:Ag(+) /ZnS was greatly improved to 43.5%. More importantly, the initial high PLQY of the obtained core/shell d-NCs in organic media can be preserved when being transferred into the aqueous media via ligand exchange. Finally, high quality Zn-In-S:Ag(+) /ZnS d-NCs in aqueous phase were applied as bio-imaging agents for identifying living KB cells.
Collapse
Affiliation(s)
- Tong-Tong Xuan
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jia-Qing Liu
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Cai-Yan Yu
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Rong-Jun Xie
- Sialon Group, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Hui-Li Li
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
47
|
Kameyama T, Ishigami Y, Yukawa H, Shimada T, Baba Y, Ishikawa T, Kuwabata S, Torimoto T. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region. NANOSCALE 2016; 8:5435-5440. [PMID: 26899620 DOI: 10.1039/c5nr07532g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.
Collapse
Affiliation(s)
- Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yujiro Ishigami
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroshi Yukawa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taisuke Shimada
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yoshinobu Baba
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tetsuya Ishikawa
- Department of Medical Laboratory Sciences, Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
48
|
Leach ADP, Macdonald JE. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. J Phys Chem Lett 2016; 7:572-83. [PMID: 26758860 DOI: 10.1021/acs.jpclett.5b02211] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The capacity of fluorescent colloidal semiconductor nanocrystals for commercial application has led to the development of nanocrystals with nontoxic constituent elements as replacements for the currently available Cd- and Pb-containing systems. CuInS2 is a good candidate material because of its direct band gap in the near-infrared spectral region and large optical absorption coefficient. The ternary nature, flexible stoichiometry, and different crystal structures of CuInS2 lead to a range of optoelectronic properties, which have been challenging to elucidate. In this Perspective, the optoelectronic properties of CuInS2 nanocrystals are described and what is known of their origin is discussed. We begin with an overview of their synthesis, structure, and mechanism of formation. A complete discussion of the tunable luminescence properties and the radiative decay mechanism of this system is then presented. Finally, progress toward application of these "green" nanocrystals is summarized.
Collapse
Affiliation(s)
- Alice D P Leach
- Department of Chemistry and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Janet E Macdonald
- Department of Chemistry and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
49
|
Buchmaier C, Rath T, Pirolt F, Knall AC, Kaschnitz P, Glatter O, Wewerka K, Hofer F, Kunert B, Krenn K, Trimmel G. Room temperature synthesis of CuInS2 nanocrystals. RSC Adv 2016. [DOI: 10.1039/c6ra22813e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herein, we investigate a synthetic approach to prepare copper indium sulfide nanocrystals at room temperature.
Collapse
|