1
|
Naftaly S, Pery T, Mhajne R, Ashkar A, Davidovich-Pinhas M, Zinger A. Harnessing the Potential of Human Breast Milk to Boost Intestinal Permeability for Nanoparticles and Macromolecules. J Control Release 2025; 379:768-785. [PMID: 39842727 DOI: 10.1016/j.jconrel.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport. Mechanistically, human breast milk reduces Zonula occludens-1 levels, suggesting a regulatory role in intestinal barrier function. Through in vitro and ex vivo evaluations, we aim to understand better the mechanisms behind enhanced permeability and how human breast milk affects nanoparticle physicochemical properties, potentially modulating their behavior. Specifically, human breast milk improves the intestinal permeability of liposomes in a porcine intestinal model, with associated changes in the composition of milk proteins corona related to liposome charge. These findings underscore the unexploited potential of human breast milk in facilitating transport across the intestinal barrier, offering novel avenues for human nutritional delivery and therapeutic interventions.
Collapse
Affiliation(s)
- Si Naftaly
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Topaz Pery
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Mhajne
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Areen Ashkar
- Faculty of Biotechnology and Food Engineering, Technion, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2025; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
3
|
Yan J, Siwakoti P, Shaw S, Bose S, Kokil G, Kumeria T. Porous silicon and silica carriers for delivery of peptide therapeutics. Drug Deliv Transl Res 2024; 14:3549-3567. [PMID: 38819767 PMCID: PMC11499345 DOI: 10.1007/s13346-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Peptides have gained tremendous popularity as biological therapeutic agents in recent years due to their favourable specificity, diversity of targets, well-established screening methods, ease of production, and lower cost. However, their poor physiological and storage stability, pharmacokinetics, and fast clearance have limited their clinical translation. Novel nanocarrier-based strategies have shown promise in overcoming these issues. In this direction, porous silicon (pSi) and mesoporous silica nanoparticles (MSNs) have been widely explored as potential carriers for the delivery of peptide therapeutics. These materials possess several advantages, including large surface areas, tunable pore sizes, and adjustable pore architectures, which make them attractive carriers for peptide delivery systems. In this review, we cover pSi and MSNs as drug carriers focusing on their use in peptide delivery. The review provides a brief overview of their fabrication, surface modification, and interesting properties that make them ideal peptide drug carriers. The review provides a systematic account of various studies that have utilised these unique porous carriers for peptide delivery describing significant in vitro and in vivo results. We have also provided a critical comparison of the two carriers in terms of their physicochemical properties and short-term and long-term biocompatibility. Lastly, we have concluded the review with our opinion of this field and identified key areas for future research for clinical translation of pSi and MSN-based peptide therapeutic formulations.
Collapse
Affiliation(s)
- Jiachen Yan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prakriti Siwakoti
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Ganesh Kokil
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
4
|
Pinto S, Viegas J, Cristelo C, Pacheco C, Barros S, Buckley ST, Garousi J, Gräslund T, Santos HA, Sarmento B. Bioengineered Nanomedicines Targeting the Intestinal Fc Receptor Achieve the Improved Glucoregulatory Effect of Semaglutide in a Type 2 Diabetic Mice Model. ACS NANO 2024; 18:28406-28424. [PMID: 39356547 DOI: 10.1021/acsnano.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The oral administration of the glucagon-like peptide-1 analogue, semaglutide, remains a hurdle due to its limited bioavailability. Herein, neonatal Fc receptor (FcRn)-targeted nanoparticles (NPs) were designed to enhance the oral delivery of semaglutide. The nanocarriers were covalently linked to the FcRn-binding peptide FcBP or the affibody molecule ZFcRn that specifically binds to the human FcRn (hFcRn) in a pH-dependent manner. These FcRn-targeted ligands were selected over the endogenous ligands of the receptor (albumin and IgG) due to their smaller size and simpler structure, which could facilitate the transport of functionalized NPs through the tissues. The capacity of FcRn-targeted semaglutide-NPs in controlling the blood glucose levels was evaluated in an hFcRn transgenic mice model, where type 2 diabetes mellitus (T2DM) was induced via intraperitoneal injection of nicotinamide followed by streptozotocin. The encapsulation of semaglutide into FcRn-targeted NPs was translated in an improved glucoregulatory effect in T2DM-induced mice when compared to the oral free semaglutide or nontargeted NP groups, after daily oral administrations for 7 days. Notably, a similar glucose-lowering response was observed between both FcRn-targeted NPs and the subcutaneous semaglutide groups. An increase in insulin pancreatic content and a recovery in β cell mass were visualized in the mice treated with FcRn-targeted semaglutide-NPs. The biodistribution of fluorescently labeled NPs through the gastrointestinal tract demonstrated that the nanosystems targeting the hFcRn are retained longer in the ileum and colorectum, where the expression of FcRn is more prevalent, than nontargeted NPs. Therefore, FcRn-targeted nanocarriers proved to be an effective platform for improving the pharmacological effect of semaglutide in a T2DM-induced mice model.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Juliana Viegas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Cecília Cristelo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Catarina Pacheco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| | - Sofia Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, Måløv 2760, Denmark
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV Groningen 9713, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| |
Collapse
|
5
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
7
|
Ji W, Zhang P, Zhou Y, Zhou X, Ma X, Tan T, Cao H. Hydrogel-encapsulated medium chain lipid-modified zeolite imidazole framework-90 as a promising platform for oral delivery of proteins. J Control Release 2024; 367:93-106. [PMID: 38237690 DOI: 10.1016/j.jconrel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
The administration of protein therapeutics through oral means is seen as a convenient and painless experience for patients, making it a significant consideration in the field of drug delivery. Nevertheless, the challenging conditions within the gastrointestinal tract, along with the obstacles to absorption, impede the efficient transportation of proteins. Here, we successfully implemented post-synthetic modifications to attach medium-chain lipids (C10) onto the surface of zeolitic imidazole framework-90 (ZIF-90), then encapsulated the nanoparticles with sodium alginate, resulting in a potential platform for the oral administration of proteins. By means of biomimetic mineralization, ZIF-90 achieves a simple and efficient encapsulation of proteins of varying sizes, while shielding them against degradation by digestive enzymes. Sodium alginate hydrogel protects proteins against gastric acid and helps the cargo to rapidly penetrate the mucus layer. Through a mixed mechanism dominated by micropinocytosis, the C10-conjugated ZIF-90 (ZIF-90-C10) can be uptake by Caco-2 cells with a 200-400% increase and transported through the Golgi apparatus after escaping from lysosomes, exhibiting enhanced uptake in the overall gastrointestinal tract. Furthermore, ZIF-90-C10 retains its adenosine triphosphate-responsive release, which drastically lowers the likelihood of accumulation in vivo and allows targeted delivery for disease cells. Our work highlights mid-chain lipid conjugation as a potent approach to enhancing nanoparticle delivery efficiency and a potential strategy for oral delivery of biomacromolecules when combined with pH-responsive gels.
Collapse
Affiliation(s)
- Wei Ji
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peng Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yegui Zhou
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiqin Zhou
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiufan Ma
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hui Cao
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
8
|
Pinto S, Hosseini M, Buckley ST, Yin W, Garousi J, Gräslund T, van Ijzendoorn S, Santos HA, Sarmento B. Nanoparticles targeting the intestinal Fc receptor enhance intestinal cellular trafficking of semaglutide. J Control Release 2024; 366:621-636. [PMID: 38215986 DOI: 10.1016/j.jconrel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mahya Hosseini
- Department of Biomedical Sciences of Cell and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Wen Yin
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sven van Ijzendoorn
- Department of Biomedical Sciences of Cell and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
9
|
Parida P, Prusty AK, Patro SK, Jena BR. Current Advancements on Oral Protein and Peptide Drug Delivery Approaches to Bioavailability: Extensive Review on Patents. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:227-246. [PMID: 39356096 DOI: 10.2174/0126673878299775240719061653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 10/03/2024]
Abstract
Protein and peptide-based drugs have greater therapeutic efficacy and potential application and lower toxicity compared to chemical entities in long-term use within optimum concentration as they are easily biodegradable due to biological origin. While oral administration is preferable, most of these substances are currently administered intravenously or subcutaneously. This is primarily due to the breakdown and poor absorption in the GI tract. Hence, ongoing research is focused on investigating absorption enhancers, enzyme inhibitors, carrier systems, and stability enhancers as potential strategies to facilitate the oral administration of proteins and peptides. Investigations have been directed towards advancing novel technologies to address gastrointestinal (GI) barriers associated with protein and peptide medications. The current review intensifies formulation and stability approaches for oral protein & peptide drug delivery systems with all significant parameters intended for patient safety. Notably, certain innovative technologies have been patented and are currently undergoing clinical trials or have already been introduced into the market. All the approaches stated for the administration of protein and peptide drugs are critically discussed, having their current status, future directions, and recent patents published in the last decades.
Collapse
Affiliation(s)
- Prasanna Parida
- Department of Pharmacy, Biju Patnaik University of Technology, Rourkela, Odisha, India
- School of Pharmacy & Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Amiya Kumar Prusty
- Faculty of Pharmacy, C.V Raman Global University, Bhubaneswar, Odisha, India
| | - Saroj Kumar Patro
- Institute of Pharmacy and Technology, Salipur, Cuttack (Affiliated to Biju Patnaik University of Technology, Rourkela), Odisha, India
| | - Bikash Ranjan Jena
- School of Pharmacy & Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Jain A, Dawre S. A Comprehensive Review on Prospects of Polymeric Nanoparticles for Treatment of Diabetes Mellitus: Receptors-Ligands, In vitro & In vivo Studies. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:457-478. [PMID: 37534486 DOI: 10.2174/1872210517666230803091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
As per International Diabetes Federation Report 2022, worldwide diabetes mellitus (DM) caused 6.7M moralities and ~537M adults suffering from diabetes mellitus. It is a chronic condition due to β-cell destruction or insulin resistance that leads to insulin deficiency. This review discusses Type-1 DM and Type-2 DM pathophysiology in detail, with challenges in management and treatment. The toxicity issues of conventional drugs and insulin injections are complex to manage. Thus, there is a need for technological intervention. In recent years, nanotechnology has found a fruitful advancement of novel drug delivery systems that might potentially increase the efficacy of anti-diabetic drugs. Amongst nano-formulations, polymeric nanoparticles have been studied to enhance the bioavailability and efficacy of anti-diabetic drugs and insulin. In the present review, we summarized polymeric nanoparticles with different polymers utilized to deliver anti-diabetic drugs with in vitro and in vivo studies. Furthermore, this review also includes the role of receptors and ligands in diabetes mellitus and the utilization of receptor-ligand interaction to develop targeted nanoparticles. Additionally, we discussed the utility of nanoparticles for the delivery of phytoconstituents which aids in protecting the oxidative stress generated during diabetes mellitus. Atlast, this article also comprises of numerous patents that have been filed or granted for the delivery of antidiabetic and anticancer molecules for the treatment of diabetes mellitus and pancreatic cancer.
Collapse
Affiliation(s)
- Arinjay Jain
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
11
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS NANO 2023. [PMID: 37410891 DOI: 10.1021/acsnano.3c02403] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Oral drug administration has been a popular choice due to patient compliance and limited clinical resources. Orally delivered drugs must circumvent the harsh gastrointestinal (GI) environment to effectively enter the systemic circulation. The GI tract has a number of structural and physiological barriers that limit drug bioavailability including mucus, the tightly regulated epithelial layer, immune cells, and associated vasculature. Nanoparticles have been used to enhance oral bioavailability of drugs, as they can act as a shield to the harsh GI environment and prevent early degradation while also increasing uptake and transport of drugs across the intestinal epithelium. Evidence suggests that different nanoparticle formulations may be transported via different intracellular mechanisms to cross the intestinal epithelium. Despite the existence of a significant body of work on intestinal transport of nanoparticles, many key questions remain: What causes the poor bioavailability of the oral drugs? What factors contribute to the ability of a nanoparticle to cross different intestinal barriers? Do nanoparticle properties such as size and charge influence the type of endocytic pathways taken? In this Review, we summarize the different components of intestinal barriers and the types of nanoparticles developed for oral delivery. In particular, we focus on the various intracellular pathways used in nanoparticle internalization and nanoparticle or cargo translocation across the epithelium. Understanding the gut barrier, nanoparticle characteristics, and transport pathways may lead to the development of more therapeutically useful nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Rebecca Louisthelmy
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
Pareja Tello R, Wang S, Fontana F, Correia A, Molinaro G, López Cerdà S, Hietala S, Hirvonen J, Barreto G, Santos HA. Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applications. Biomater Sci 2023. [PMID: 37334482 DOI: 10.1039/d3bm00292f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 μm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sandra López Cerdà
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00014, Helsinki, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280, Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Pathak K, Saikia R, Sarma H, Pathak MP, Das RJ, Gogoi U, Ahmad MZ, Das A, Wahab BAA. Nanotheranostics: application of nanosensors in diabetes management. J Diabetes Metab Disord 2023; 22:119-133. [PMID: 37255773 PMCID: PMC10225368 DOI: 10.1007/s40200-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Objectives The objective of the present study is to discuss the use of nanomaterials like nanosensors for diagnosing Diabetes and highlight their applications in the treatment of Diabetes. Methods Diabetes mellitus (D.M.) is a group of metabolic diseases characterized by hyperglycemia. Orally administered antidiabetic drugs like glibenclamide, glipalamide, and metformin can partially lower blood sugar levels, but long-term use causes kidney and liver damage. Recent breakthroughs in nanotheranostics have emerged as a powerful tool for diabetes treatment and diagnosis. Results Nanotheranostics is a rapidly developing area that can revolutionize diabetes diagnosis and treatment by combining therapy and imaging in a single probe, allowing for pancreas-specific drug and insulin delivery. Nanotheranostic in Diabetes research has facilitated the development of improved glucose monitoring and insulin administration modalities, which promise to improve the quality of life for people with Diabetes drastically. Further, nanomaterials like nanocarriers and unique functional nanomaterials used as nano theranostics tools for treating Diabetes will also be highlighted. Conclusion The nanosensors discussed in this review article will encourage researchers to develop innovative nanomaterials with novel functionalities and properties for diabetes detection and treatment.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Himangshu Sarma
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
- Sophisticated Analytical Instrument Facility (SAIF), Girijananda Chowdhury Institute of Pharmaceutical Science (GIPS), Girijananda ChowdhuryUniversity, Guwahati, Assam India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, Assam India
| | - Ratna Jyoti Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Basel A. Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Hameedat F, Pinto S, Marques J, Dias S, Sarmento B. Functionalized zein nanoparticles targeting neonatal Fc receptor to enhance lung absorption of peptides. Drug Deliv Transl Res 2023; 13:1699-1715. [PMID: 36587110 PMCID: PMC10126044 DOI: 10.1007/s13346-022-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/02/2023]
Abstract
Peptides have a distinguished therapeutic potential for several chronic conditions, and more than 80 peptides exist in the global market. However, most of these marketed peptide drugs are currently delivered intravenously or subcutaneously due to their fast degradation and limited absorption through non-invasive routes. The pulmonary route is favored as a non-invasive route. Neonatal Fc receptor (FcRn) is expressed in adult human lungs and has a role in enhancing the pulmonary absorption of monoclonal antibodies. In this work, we developed and characterized candidate protein delivery systems for the pulmonary administration of peptides. The prepared bare and loaded zein nanoparticles (ZNPs), targeted, physically, and covalently PEGylated ZNPs showed hydrodynamic diameters between 137 and 155 nm and a narrow distribution index. Insulin, which was used as a protein model, showed an association efficiency of 72%, while the FcRn-targeted peptide conjugation efficiency was approximately 68%. The physically adsorbed poloxamer 407 on insulin-loaded ZNPs showed slower and controlled insulin release. The in vitro cell culture model consists of the NCI-H441 epithelial cell line, which confirmed its expression of the targeted receptor, FcRn. The safety of ZNPs was verified after incubation with both cell lines of the in vitro pulmonary model, namely NCI-H441 and HPMEC-ST1.6R, for 24 h. It was observed that targeted ZNPs enhanced insulin permeability by showing a higher apparent permeation coefficient than non-targeted ZNPs. Overall, both targeted PEGylated ZNPs showed to be suitable peptide carriers and adequately fit the demands of delivery systems designed for pulmonary administration.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, Angers, France
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Marques
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IUCS - CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
16
|
Molinaro G, Fontana F, Pareja Tello R, Wang S, López Cérda S, Torrieri G, Correia A, Waris E, Hirvonen JT, Barreto G, A Santos H. In Vitro Study of the Anti-inflammatory and Antifibrotic Activity of Tannic Acid-Coated Curcumin-Loaded Nanoparticles in Human Tenocytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23012-23023. [PMID: 37129860 DOI: 10.1021/acsami.3c05322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tendinitis is a tendon disorder related to inflammation and pain, due to an injury or overuse of the tissue, which is hypocellular and hypovascular, leading to limited repair which occurs in a disorganized deposition of extracellular matrix that leads to scar formation and fibrosis, ultimately resulting in impaired tendon integrity. Current conventional treatments are limited and often ineffective, highlighting the need for new therapeutic strategies. In this work, acetalated-dextran nanoparticles (AcDEX NPs) loaded with curcumin and coated with tannic acid (TA) are developed to exploit the anti-inflammatory and anti-fibrotic properties of the two compounds. For this purpose, a microfluidic technique was used in order to obtain particles with a precise size distribution, aiming to decrease the batch-to-batch variability for possible future clinical translation. Coating with TA increased not only the stability of the nanosystem in different media but also enhanced the interaction and the cell-uptake in primary human tenocytes and KG-1 macrophages. The nanosystem exhibited good biocompatibility toward these cell types and a good release profile in an inflammatory environment. The efficacy was demonstrated by real-time quantitative polymerase chain reaction, in which the curcumin loaded in the particles showed good anti-inflammatory properties by decreasing the expression of NF-κb and TA-coated NPs showing anti-fibrotic effect, decreasing the gene expression of TGF-β. Overall, due to the loading of curcumin and TA in the AcDEX NPs, and their synergistic activity, this nanosystem has promising properties for future application in tendinitis.
Collapse
Affiliation(s)
- Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Sandra López Cérda
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Eero Waris
- Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
18
|
Tramontano C, Martins JP, De Stefano L, Kemell M, Correia A, Terracciano M, Borbone N, Rea I, Santos HA. Microfluidic-Assisted Production of Gastro-Resistant Active-Targeted Diatomite Nanoparticles for the Local Release of Galunisertib in Metastatic Colorectal Cancer Cells. Adv Healthc Mater 2023; 12:e2202672. [PMID: 36459471 PMCID: PMC11468342 DOI: 10.1002/adhm.202202672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The oral route is highly desirable for colorectal cancer (CRC) treatment because it allows concentrating the drug in the colon and achieving a localized effect. However, orally administered drugs are often metabolized in the liver, resulting in reduced efficacy and the need for higher doses. Nanoparticle-based drug delivery systems can be engineered to prevent the diffusion of the drug in the stomach, addressing the release at the target site, and enhancing the efficacy of the delivered drug. Here, an orally administrable galunisertib delivery system is developed with gelatin-covered diatomite nanoparticles targeting the ligand 1-cell adhesion molecule (L1-CAM) on metastatic cells, and further encapsulated in an enteric matrix by microfluidics. The gastro-resistant polymer protects the nanoparticles from the action of the digestive enzymes and allows for a sustained release of galunisertib at the intestinal pH. The efficacy of antibody-antigen interactions to drive the internalization of nanoparticles in the targeted cells is investigated in CRC cells expressing abnormal (SW620) or basal levels (Caco-2, HT29-MTX) of L1-CAM. The combination of local drug release and active targeting enhances the effect of the delivered galunisertib, which inhibits the migration of the SW620 cells with greater efficiency compared to the free drug.
Collapse
Affiliation(s)
- Chiara Tramontano
- Institute of Applied Sciences and Intelligent SystemsUnit of NaplesNational Research CouncilNaples80131Italy
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - João Pedro Martins
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent SystemsUnit of NaplesNational Research CouncilNaples80131Italy
| | - Marianna Kemell
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | | | - Nicola Borbone
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent SystemsUnit of NaplesNational Research CouncilNaples80131Italy
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenGroningen9713 AVThe Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center GroningenUniversity of GroningenGroningen9713 AVThe Netherlands
| |
Collapse
|
19
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
20
|
Hameedat F, Pizarroso NA, Teixeira N, Pinto S, Sarmento B. Functionalized FcRn-targeted nanosystems for oral drug delivery: A new approach to colorectal cancer treatment. Eur J Pharm Sci 2022; 176:106259. [PMID: 35842140 DOI: 10.1016/j.ejps.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is the second type of cancer with the highest lethality rate. The current chemotherapy to treat CRC causes systemic toxicity, unsatisfying response rate, and low tumor-specific selectivity, which is mainly administered by invasive routes. The chronic and aggressive nature of cancers may require long-term regimens. Thus, the oral route is preferred. However, the orally administered drugs still need to surpass the harsh environment of the gastrointestinal tract and the biological barriers. Nanotechnology is a promising strategy to overcome the oral route limitations. Targeted nanoparticle systems decorated with functional groups can enhance the delivery of anticancer agents to tumor sites. It is described in the literature that the neonatal Fc receptor (FcRn) is expressed in cancer tissue and overexpressed in CRC epithelial cells. However, the impact of FcRn-targeted nanosystems in the treatment of CRC has been poorly investigated. This review article discusses the current knowledge on the involvement of the FcRn in CRC, as well as to critically assess its relevance as a target for further localization of oral nanocarriers in CRC tumor cells. Finally, a brief overview of cancer therapeutics, strategies to design the nanoparticles of anticancer drugs and a review of decorated nanoparticles with FcRn moieties are explored.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, France; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Nuria A Pizarroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Natália Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4150-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; CESPU - IUCS, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| |
Collapse
|
21
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
22
|
ROS-responsive thioketal-linked alginate/chitosan carriers for irritable bowel syndrome with diarrhea therapy. Int J Biol Macromol 2022; 209:70-82. [PMID: 35351547 DOI: 10.1016/j.ijbiomac.2022.03.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
A colon-specific carrier that can protect drugs from the destruction in the gastrointestinal tract is critical for treating irritable bowel syndrome with diarrhea (IBS-D). In this study, chitosan was cross-linked by the thioketal (TK) bond to serve as a ROS-sensitive core of microspheres. Then the chitosan core was coated with an alginate shell. The alginate/chitosan microspheres can protect puerarin against the destruction and elimination in the gastrointestinal tract and release puerarin at the lesion sites in large quantities. The microspheres were characterized using differential scanning calorimetry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The swelling study showed that microspheres would shrink in an acidic environment. The in vitro release analysis indicated that little puerarin was released at gastric pH but burst release was observed in simulated colonic fluid containing H2O2. Fluorescent tracer revealed that the fluorescence of microspheres lasted up to 30 h in the colon, which was beneficial to prolong the action time between puerarin and colon. The in vivo studies indicated that puerarin-loaded microspheres are more effective in the treatment of IBS-D than free puerarin. Altogether, the ROS-responsive alginate/chitosan microspheres may be a promising strategy for IBS-D.
Collapse
|
23
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
24
|
Martins JP, Figueiredo P, Wang S, Espo E, Celi E, Martins B, Kemell M, Moslova K, Mäkilä E, Salonen J, Kostiainen MA, Celia C, Cerullo V, Viitala T, Sarmento B, Hirvonen J, Santos HA. Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioact Mater 2021; 9:299-315. [PMID: 34820572 PMCID: PMC8586719 DOI: 10.1016/j.bioactmat.2021.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Oral insulin delivery could change the life of millions of diabetic patients as an effective, safe, easy-to-use, and affordable alternative to insulin injections, known by an inherently thwarted patient compliance. Here, we designed a multistage nanoparticle (NP) system capable of circumventing the biological barriers that lead to poor drug absorption and bioavailability after oral administration. The nanosystem consists of an insulin-loaded porous silicon NP encapsulated into a pH-responsive lignin matrix, and surface-functionalized with the Fc fragment of immunoglobulin G, which acts as a targeting ligand for the neonatal Fc receptor (FcRn). The developed NPs presented small size (211 ± 1 nm) and narrow size distribution. The NPs remained intact in stomach and intestinal pH conditions, releasing the drug exclusively at pH 7.4, which mimics blood circulation. This formulation showed to be highly cytocompatible, and surface plasmon resonance studies demonstrated that FcRn-targeted NPs present higher capacity to interact and being internalized by the Caco-2 cells, which express FcRn, as demonstrated by Western blot. Ultimately, in vitro permeability studies showed that Fc-functionalized NPs induced an increase in the amount of insulin that permeated across a Caco-2/HT29-MTX co-culture model, showing apparent permeability coefficients (Papp) of 2.37 × 10−6 cm/s, over the 1.66 × 10−6 cm/s observed for their non-functionalized counterparts. Overall, these results demonstrate the potential of these NPs for oral delivery of anti-diabetic drugs. Multistage nanoparticle (NP) system targeted for the neonatal Fc receptor (FcRn) aimed at oral insulin delivery. NPs released insulin under precisely controlled pH conditions. FcRn expression in the cell culture model used was demonstrated by Western blot. FcRn-targeted NPs presented higher capacity to interact with the intestinal cells. Increased insulin permeation was obtained when using Fc-functionalized NPs.
Collapse
Affiliation(s)
- João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Erika Espo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Elena Celi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.,Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio", I-66100, Chieti, Italy
| | - Beatriz Martins
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G d'Annunzio", I-66100, Chieti, Italy
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, 4200-135, Porto, Portugal.,CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116, Gandra, Portugal
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
25
|
Cao Y, Rewatkar P, Wang R, Hasnain SZ, Popat A, Kumeria T. Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends Pharmacol Sci 2021; 42:957-972. [PMID: 34593258 DOI: 10.1016/j.tips.2021.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Macromolecular therapeutics of biological origin, also known as biologics, have become one of the fastest-growing classes of drugs for management of a range of chronic and acute conditions. The majority of approved biologics are administered via the parenteral route and are thus expensive, have low patient compliance, and have high systemic toxicity. Therefore, tremendous efforts have been devoted to the development of carriers for oral delivery of biologics. This review evaluates key chemical (e.g. pH and enzymes) and physiological challenges to oral biologics delivery. We review the conventional formulation strategies and their limitations, followed by a detailed account of the progress on the use of nanocarriers used for oral biologics delivery, covering organic and inorganic nanocarriers. Lastly, we discuss limitations and opportunities presented by these emerging nanomaterials in oral biologics delivery.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ran Wang
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
27
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
28
|
Gao Y, Ma Q, Cao J, Wang Y, Yang X, Xu Q, Liang Q, Sun Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int J Pharm 2021; 600:120465. [PMID: 33711469 DOI: 10.1016/j.ijpharm.2021.120465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Chitosan-based biomaterials has shown great advantages in a broad range of applications, including drug delivery, clinical diagnosis, cell culture and tissue engineering. However, due to the lack of control over the fabrication processes by conventional techniques, the wide application of chitosan-based biomaterials has been hampered. Recently, microfluidics has been demonstrated as one of the most promising platforms to fabricate high-performance chitosan-based multifunctional materials with monodisperse size distribution and accurately controlled morphology and microstructures, which show great promising for biomedical applications. Here, we review recent progress of the fabrication of chitosan-based biomaterials with different structures and integrated functions by microfluidic technology. A comprehensive and in-depth depiction of critical microfluidic formation mechanism and process of various chitosan-based materials are first interpreted, with particular descriptions about the microfluidic-mediated control over the morphology and microstructures. Afterwards, recently emerging representative applications of chitosan-based multifunctional materials in various fields, are systematically summarized. Finally, the conclusions and perspectives on further advancing the microfluidic-aided chitosan-based multifunctional materials toward potential and versatile development for fundamental researches and biomedicine are proposed.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yiwen Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Yang
- Hangzhou Huadong Medicine Group Biotechnology Institute Company, Hangzhou, China
| | - Qiulong Xu
- Jiangsu Seven Continent Institute of Green Technology, Suzhou, China
| | - Qing Liang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Influence of FcRn binding properties on the gastrointestinal absorption and exposure profile of Fc molecules. Bioorg Med Chem 2021; 32:115942. [PMID: 33461147 DOI: 10.1016/j.bmc.2020.115942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023]
Abstract
The neonatal Fc receptor (FcRn) represents a transport system with the potential to facilitate absorption of biologics across the gastrointestinal barrier. How biologics interact with FcRn to enable their gastrointestinal absorption, and how these interactions might be optimized in a biological therapeutic are not well understood. Thus, we studied the absorption of Fc molecules from the intestine using three IgG4-derived Fc variants with different, pH-dependent FcRn binding and release profiles. Using several different intestinal models, we consistently observed that FcRn binding affinity correlated with transcytosis. Our findings support targeting FcRn to enable intestinal absorption of biologics and highlight additional strategic considerations for future work.
Collapse
|
30
|
Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021; 597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are being increasingly exploited in clinical practice for management of type 2 diabetes mellitus due to their ability to lower blood glucose levels and reduce off-target effects of current therapeutics. Nanomaterials had viewed myriad breakthroughs in protecting peptides against degradation and carrying therapeutics to targeted sites for maximizing their pharmacological activity and overcoming limitations associated with their application. This review highlights the latest advances in designing smart multifunctional nanoconstructs and engineering targeted and stimuli-responsive nanoassemblies for delivery of GLP-1 receptor agonists. Furthermore, advanced nanoconstructs of sophisticated supramolecular assembly yet efficient delivery of GLP-1/GLP-1 analogs, nanodevices that mediate intrinsic GLP-1 secretion per se, and nanomaterials with capabilities to load additional moieties for synergistic antidiabetic effects, are demonstrated.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| |
Collapse
|
31
|
Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020; 8:5804-5823. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, peptide/protein drugs have attracted considerable attention owing to their superior targeting and therapeutic effect and fewer side effects compared with chemical drugs. Oral administration modality with enhanced patient compliance is increasingly being recognized as an ideal route for peptide/protein delivery. However, the limited permeation efficiency and low oral bioavailability of peptide/protein drugs significantly hinder therapeutic advances. To address these problems, various nano and microscale delivery platforms have been developed, which offer significant advantages in oral peptide/protein delivery. In this review, we briefly introduce the transport mechanisms of oral peptide/protein delivery and the primary barriers to this delivery process. We also highlight the recent advances in various nano and microscale delivery platforms designed for oral peptide/protein delivery. We then summarize the existing strategies used in these delivery platforms to improve the oral bioavailability and permeation efficiency of peptide/protein therapeutics. Finally, we discuss the major challenges faced when nano and microscale systems are used for oral peptide/protein delivery. This review is expected to provide critical insight into the design and development of oral peptide/protein delivery systems with significant therapeutic advances.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | |
Collapse
|
32
|
Xu Y, De Keersmaecker H, Braeckmans K, De Smedt S, Cani PD, Préat V, Beloqui A. Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment. Biomaterials 2020; 255:120209. [PMID: 32580098 PMCID: PMC7116363 DOI: 10.1016/j.biomaterials.2020.120209] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The delivery of therapeutic peptides via the oral route remains one of biggest challenges in the pharmaceutical industry. Recently, we have described an alternative improved drug delivery system for peptide delivery via the oral route, consisting of a lipidic nanocapsule. Despite the striking effects observed, it is still essential to develop strategies to strengthen the nanocarriers' glucagon-like peptide-1 (GLP-1) secretory effect of the nanocarrier and/or prolong its antidiabetic effect in vivo to facilitate its translation into the clinic. For this purpose, we developed and compared different fatty acid-targeted lipid and polymeric nanoparticles and evaluated the L cell stimulation induced by the nanocarriers in murine L cells in vitro and in normal healthy mice in vivo. We further examined the antidiabetic effect in vivo in an obese/diabetic mouse model induced by high-fat diet feeding and examined the effect of the oral administration frequency. Among the tested nanocarriers, only lipid-based nanocarriers that were surface-modified with DSPE-PEG2000 on the surface were able to significantly strengthen the biological effect of the nanocarriers. They increased endogenous GLP-1 levels up to 8-fold in vivo in normoglycemic mice. Moreover, they effectively prolonged the in vivo antidiabetic effect by normalizing the plasma glucose levels in obese/diabetic mice following long-term treatment (one month). Ultimately, the targeted nanocarriers were as effective when the administration frequency was reduced from once daily to once every other day.
Collapse
Affiliation(s)
- Yining Xu
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Herlinde De Keersmaecker
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory for General Biochemistry and Physical Pharmacy, 9000 Ghent, Belgium; Ghent University, Center for Advanced Light Microscopy, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory for General Biochemistry and Physical Pharmacy, 9000 Ghent, Belgium; Ghent University, Center for Advanced Light Microscopy, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory for General Biochemistry and Physical Pharmacy, 9000 Ghent, Belgium; Ghent University, Center for Advanced Light Microscopy, 9000 Ghent, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), 1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| |
Collapse
|
33
|
Fontana F, Lindstedt H, Correia A, Chiaro J, Kari OK, Ndika J, Alenius H, Buck J, Sieber S, Mäkilä E, Salonen J, Urtti A, Cerullo V, Hirvonen JT, Santos HA. Influence of Cell Membrane Wrapping on the Cell-Porous Silicon Nanoparticle Interactions. Adv Healthc Mater 2020; 9:e2000529. [PMID: 32729247 DOI: 10.1002/adhm.202000529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/06/2020] [Indexed: 12/30/2022]
Abstract
Biohybrid nanosystems represent the cutting-edge research in biofunctionalization of micro- and nano-systems. Their physicochemical properties bring along advantages in the circulation time, camouflaging from the phagocytes, and novel antigens. This is partially a result of the qualitative differences in the protein corona, and the preferential targeting and uptake in homologous cells. However, the effect of the cell membrane on the cellular endocytosis mechanisms and time has not been fully evaluated yet. Here, the effect is assessed by quantitative flow cytometry analysis on the endocytosis of hydrophilic, negatively charged porous silicon nanoparticles and on their membrane-coated counterparts, in the presence of chemical inhibitors of different uptake pathways. Principal component analysis is used to analyze all the data and extrapolate patterns to highlight the cell-specific differences in the endocytosis mechanisms. Furthermore, the differences in the composition of static protein corona between naked and coated particles are investigated together with how these differences affect the interaction with human macrophages. Overall, the presence of the cell membrane only influences the speed and the entity of nanoparticles association with the cells, while there is no direct effect on the endocytosis pathways, composition of protein corona, or any reduction in macrophage-mediated uptake.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Hanna Lindstedt
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Alexandra Correia
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Jacopo Chiaro
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Otto K. Kari
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Joseph Ndika
- Human Microbiome Research Faculty of Medicine University of Helsinki Helsinki FI‐00014 Finland
| | - Harri Alenius
- Human Microbiome Research Faculty of Medicine University of Helsinki Helsinki FI‐00014 Finland
- Institute of Environmental Medicine Karolinska Institutet Stockholm SE‐17177 Sweden
| | - Jonas Buck
- Department of Pharmaceutical Sciences University of Basel Basel 4056 Switzerland
| | - Sandro Sieber
- Department of Pharmaceutical Sciences University of Basel Basel 4056 Switzerland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics Department of Physics and Astronomy University of Turku Turku FI‐20014 Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics Department of Physics and Astronomy University of Turku Turku FI‐20014 Finland
| | - Arto Urtti
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Vincenzo Cerullo
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Translational Immunology Program (TRIMM) Digital Precision Cancer Flagship (iCAN) University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Jouni T. Hirvonen
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| |
Collapse
|
34
|
Ding F, Fu J, Tao C, Yu Y, He X, Gao Y, Zhang Y. Recent Advances of Chitosan and its Derivatives in Biomedical Applications. Curr Med Chem 2020; 27:3023-3045. [DOI: 10.2174/0929867326666190405151538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Chitosan is the second-most abundant natural polysaccharide. It has unique characteristics,
such as biodegradability, biocompatibility, and non-toxicity. Due to the existence of its free amine
group and hydroxyl groups on its backbone chain, chitosan can undergo further chemical modifications
to generate Chitosan Derivatives (CDs) that permit additional biomedical functionality. Chitosan
and CDs can be fabricated into various forms, including Nanoparticles (NPs), micelles, hydrogels,
nanocomposites and nano-chelates. For these reasons, chitosan and CDs have found a tremendous
variety of biomedical applications in recent years. This paper mainly presents the prominent
applications of chitosan and CDs for cancer therapy/diagnosis, molecule biosensing, viral infection,
and tissue engineering over the past five years. Moreover, future research directions on chitosan are
also considered.
Collapse
Affiliation(s)
- Fei Ding
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Jiawei Fu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Chuang Tao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
35
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
36
|
Brayden D, Hill T, Fairlie D, Maher S, Mrsny R. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
In its 33 years, ADDR has published regularly on the po5tential of oral delivery of biologics especially peptides and proteins. In the intervening period, analysis of the preclinical and clinical trial failures of many purported platform technologies has led to reflection on the true status of the field and reigning in of expectations. Oral formulations of semaglutide, octreotide, and salmon calcitonin have completed Phase III trials, with oral semaglutide being approved by the FDA in 2019. The progress made with oral peptide formulations based on traditional permeation enhancers is against a background of low and variable oral bioavailability values of ~1%, leading to a current perception that only potent peptides with a viable cost of synthesis can be realistically considered. Desirable features of candidates should include a large therapeutic index, some stability in the GI tract, a long elimination half-life, and a relatively low clearance rate. Administration in nanoparticle formats have largely disappointed, with few prototypes reaching clinical trials: insufficient particle loading, lack of controlled release, low epithelial particle uptake, and lack of scalable synthesis being the main reasons for discontinuation. Disruptive technologies based on engineered devices promise improvements, but scale-up and toxicology aspects are issues to address. In parallel, medicinal chemists are synthesizing stable hydrophobic macrocyclic candidate peptides of lower molecular weight and with potential for greater oral bioavailability than linear peptides, but perhaps without the same requirement for elaborate drug delivery systems. In summary, while there have been advances in understanding the limitations of peptides for oral delivery, low membrane permeability, metabolism, and high clearance rates continue to hamper progress.
Collapse
|
37
|
Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904673. [PMID: 31702878 DOI: 10.1002/smll.201904673] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
In the past two decades, microfluidics-based particle production is widely applied for multiple biological usages. Compared to conventional bulk methods, microfluidic-assisted particle production shows significant advantages, such as narrower particle size distribution, higher reproducibility, improved encapsulation efficiency, and enhanced scaling-up potency. Herein, an overview of the recent progress of the microfluidics technology for nano-, microparticles or droplet fabrication, and their biological applications is provided. For both nano-, microparticles/droplets, the previously established mechanisms behind particle production via microfluidics and some typical examples during the past five years are discussed. The emerging interdisciplinary technologies based on microfluidics that have produced microparticles or droplets for cellular analysis and artificial cells fabrication are summarized. The potential drawbacks and future perspectives are also briefly discussed.
Collapse
Affiliation(s)
- Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andre Python
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, OX3 7LF, Oxford, UK
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
38
|
Costa C, Liu Z, Martins JP, Correia A, Figueiredo P, Rahikkala A, Li W, Seitsonen J, Ruokolainen J, Hirvonen SP, Aguiar-Ricardo A, Corvo ML, Santos HA. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci 2020; 8:3270-3277. [DOI: 10.1039/d0bm00743a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, a continuous two-step glass-capillary microfluidic technique to produce a multistage oral insulin delivery system is reported. This system represents a promising alternative for the common protein/peptide-loaded liposome formulations.
Collapse
|
39
|
Zhang L, Chen Q, Ma Y, Sun J. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2019; 3:107-120. [DOI: 10.1021/acsabm.9b00853] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qinghua Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Yao Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
40
|
Yellepeddi VK, Ghandehari H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin Drug Deliv 2019; 16:1051-1061. [DOI: 10.1080/17425247.2019.1656607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Venkata K. Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
41
|
Park Y, Yoo J, Kang MH, Kwon W, Joo J. Photoluminescent and biodegradable porous silicon nanoparticles for biomedical imaging. J Mater Chem B 2019; 7:6271-6292. [DOI: 10.1039/c9tb01042d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of unique properties including biodegradability, intrinsic photoluminescence, and mesoporous structure allows porous silicon nanoparticles to address current challenges of translational nanomedicine, especially in biomedical imaging.
Collapse
Affiliation(s)
- Yoonsang Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jounghyun Yoo
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Myoung-Hee Kang
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering
- Sookmyung Women's University
- Seoul 04310
- Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|