1
|
Liu L, Liu G, Lv Y, Mu X, Zhao S, Tian J. A colorimetric platform using highly active Prussian blue composite nanocubes for the rapid determination of ascorbic acid and acid phosphatase. Mikrochim Acta 2024; 191:682. [PMID: 39432153 DOI: 10.1007/s00604-024-06700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Cobalt-doped Prussian blue composite nanocubes (Co-PB NCs) were synthesized, which can quickly convert O2 to O2•- and 1O2. Due to the presence of cobalt and iron transition metal redox electron pairs, Co-PB NCs with high oxidase mimetic activity can rapidly oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue products (ox-TMB) without the assistance of unstable H2O2. Using ascorbic acid-2-phosphate trisodium salt (AAP) as a substrate, it can be converted to reduced ascorbic acid (AA) under acid phosphatase (ACP) hydrolysis, resulting in suppression of TMB oxidation. Therefore, an enzyme cascade signal amplification strategy for rapid colorimetric detection of AA/ACP was developed based on the high-efficiency oxidase-like activity of Co-PB NCs combined with the hydrolysis effect of ACP. The color changes at low concentrations of AA and ACP could be observed by the naked eye, and the detection limits of AA and ACP were 1.67 μM and 0.0266 U/L, respectively. The developed colorimetric method was applied to the determination of AA in beverages and ACP in human serum, and the RSDs were less than 3%, showing good reproducibility. This work provides a promising strategy for the use of metal-doped Prussian blue composite material for the construction of rapid colorimetric sensing platforms that avoid the use of unstable hydrogen peroxide.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Guang Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yi Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Fei J, Yang W, Dai Y, Xu W, Fan H, Zheng Y, Hong J, Zhang J, Zhu W, Zhou X. Oxygen-functionalized Fe 3O 4@o-polypyrrole acting as high-efficiency oxidase mimics and their application in glutathione colorimetric sensing. Talanta 2024; 278:126431. [PMID: 38943764 DOI: 10.1016/j.talanta.2024.126431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
The enzyme-like properties of nanozymes may be considerably affected by the structure and surface groups, which thus need to be optimized. Here, through a simple NaOH chemical corrosion method, the chemical structure similar to N-Methylpyrrolidone (NMP), which possessed intrinsic oxidase-like activity, was introduced into polypyrrole (PPy), and then this nanomaterial became oxygen-functionalized PPy (o-PPy) with excellent oxidase-like activity from PPy without this property. Furthermore, after compounding magnetic Fe3O4, the obtained nanocomposites Fe3O4@o-PPy nanoparticles (Fe3O4@o-PPy NPs) showed superiorities in separation during synthesis and real-time control of enzyme catalysis. Studies have found that the enzymatic activity of Fe3O4@o-PPy NPs depended on the amount of functionalized oxygen and the conjugation extent of o-PPy. Fe3O4@o-PPy NPs had efficient oxidase-like activity under a wide range of pH and temperature. Based on the oxidase-like activity of Fe3O4@o-PPy NPs, a colorimetric sensor for glutathione (GSH), which presented rich color changes and satisfactory colorimetric resolution by adding the amaranth, was realized. We believe that the functional modification and structural regulation of PPy can not only realize its wider application but also promote the discovery of novel and efficient nanozymes.
Collapse
Affiliation(s)
- Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yani Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
3
|
Tian J, Dong X, Sabola EE, Wang Y, Chen K, Zhu M, Dai B, Zhang S, Guo F, Shi K, Chi J, Xu P. Sequential Regulation of Local Reactive Oxygen Species by Ir@Cu/Zn-MOF Nanoparticles for Promoting Infected Wound Healing. ACS Biomater Sci Eng 2024; 10:3792-3805. [PMID: 38814749 DOI: 10.1021/acsbiomaterials.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Most antimicrobials treat wound infections by an oxidation effect, which is induced by the generation of reactive oxygen species (ROS). However, the potential harm of the prolonged high level of ROS should not be ignored. In this study, we presented a novel cascade-reaction nanoparticle, Ir@Cu/Zn-MOF, to effectively regulate the ROS level throughout the healing progress of the infected wound. The nanoparticles consisted of a copper/zinc-modified metal-organic framework (Cu/Zn-MOF) serving as the external structure and an inner core composed of Ir-PVP NPs, which were achieved through a process known as "bionic mineralization". The released Cu2+ and Zn2+ from the shell structure contributed to the production of ROS, which acted as antimicrobial agents during the initial stage. With the disintegration of the shell, the Ir-PVP NP core was gradually released, exhibiting the property of multiple antioxidant enzyme activities, thereby playing an important role in clearing excessive ROS and alleviating oxidative stress. In a full-layer infected rat wound model, Ir@Cu/Zn-MOF nanoparticles presented exciting performance in promoting wound healing by clearing the bacteria and accelerating neovascularization as well as collagen deposition. This study provided a promising alternative for the repair of infected wounds.
Collapse
Affiliation(s)
- Jinrong Tian
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xing Dong
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Eluby Esmie Sabola
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqi Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Kai Chen
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325025, China
| | - Meng Zhu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Bichun Dai
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Shanshan Zhang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Feixia Guo
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Pingwei Xu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
4
|
Majumdar S, Gogoi D, Boruah PK, Thakur A, Sarmah P, Gogoi P, Sarkar S, Pachani P, Manna P, Saikia R, Chaturvedi V, Shelke MV, Das MR. Hexagonal Boron Nitride Quantum Dots Embedded on Layer-by-Layer Films for Peroxidase-Assisted Colorimetric Detection of β-Galactosidase Producing Pathogens. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26870-26885. [PMID: 38739846 DOI: 10.1021/acsami.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of β-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The β-galactosidase enzyme partially degrades β-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.
Collapse
Affiliation(s)
- Sristi Majumdar
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Devipriya Gogoi
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Purna K Boruah
- Department of Chemistry, Faculty of Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ashutosh Thakur
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyakhee Sarmah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Parishmita Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyakshi Pachani
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Chaturvedi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, MH 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjusha V Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, MH 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Yang X, Li J, Li Q, Yang D, Yang Y. Colorimetric detection for raloxifene based on Cu-PTs nanozyme with peroxidase-like activity. J Pharm Biomed Anal 2024; 239:115922. [PMID: 38134706 DOI: 10.1016/j.jpba.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The amorphous Cu-containing phosphomolybdate (Cu-PTs) composite with high peroxidase (POD)-like activity at neutral conditions was explored as biosensors for raloxifene (RAF) detection. The strong attraction between negatively charged Cu-PTs and positively charged substrates 3,3',5,5'-tetramethylbenzidine (TMB), as well as the acceleration of the conversion of active Cu+/Cu2+ by the Cu/W bimetallic redox couples were demonstrated to play significant roles in POD-like activity in physiological environment. When RAF is presence, it can bind to the surface of Cu-PTs and changes the chemical signal on the material surface, leading to the decreased POD-like activity. Based on this, a colorimetric method was established for the sensitive assay of RAF with a lower limit of detection (LOD) of 0.025 mg/L and good recovery from 90.13% to 108.9%. This work paves a new way to design a POD-like colorimetric protocol for tracing RAF in pharmaceutical products and environmental samples.
Collapse
Affiliation(s)
- Xiaolan Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicina Endophytes, Yunnan Minzu University, Kunming 650500, China
| | - Jitao Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicina Endophytes, Yunnan Minzu University, Kunming 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
6
|
Li R, Qi X, Wu F, Liu C, Huang X, Bai T, Xing S. Development of a fluorometric and colorimetric dual-mode sensing platform for acid phosphatase assay based on Fe 3+ functionalized CuInS 2/ZnS quantum dots. Anal Chim Acta 2024; 1287:342121. [PMID: 38182392 DOI: 10.1016/j.aca.2023.342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The spectral dual-mode response towards analyte has been attracted much attention, benefiting from the higher detection accuracy of such strategy in comparison to single signal readout. However, the currently reported dual-mode sensors for acid phosphatase (ACP) activity are still limited, and most of them more or less exist some deficiencies, such as complicated construction procedure, high-cost, poor biocompatibility, aggregation-caused quenching and limited emission capacity. RESULTS Herein, we employed Fe3+ functionalized CuInS2/ZnS quantum dots (CIS/ZnS QDs) as nanosensor to develop a novel fluorometric and colorimetric dual-mode assay for ACP activity, combing with ACP-triggered hydrolysis of ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA). The Fe3+ binding to CIS/ZnS QDs can be reduced into Fe2+ during the determination, resulting in the dramatically weakened photoinduced electron transfer (PET) effect and the disappearance of competition absorption. Thus, a highly sensitive ACP assay in the range of 0.22-12.5 U L-1 through fluorescence "turn-on" mode has been achieved with a detection of limit (LOD) of 0.064 U L-1. Meanwhile, the ACP activity can also be quantified by spectrophotometry based on the chromogenic reaction of the formed Fe2+ with 1,10-phenanthroline (Phen). Moreover, the designed nanosensor with good biocompatibility was successfully applied to image and monitor the ACP levels in living cells. SIGNIFICANCE We believe that the proposed method has remarkable advantages and potential application for ACP assay in terms of the high accuracy, simplicity, low cost, as well as its adequate sensitivity.
Collapse
Affiliation(s)
- Ruyi Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofei Qi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Fengyao Wu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Cong Liu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China.
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
7
|
Sehrish A, Manzoor R, Lu Y. Ultrathin porous PdCu metallenezymes as oxidase mimics for colorimetric analysis. Mikrochim Acta 2023; 191:13. [PMID: 38081983 DOI: 10.1007/s00604-023-06102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Ultrathin porous and highly curved two-dimensional PdCu alloy metallene are shown to be highly efficient oxidase mimics. Serving as intrinsic oxidase mimic, the ultrathin porous structure of the PdCu metallenezymes could effectively utilize all the Pd atoms of the metallenezymes during catalytic reactions. By using the oxidation capability of 3,3'5,5'-tetramethylbenzidine as distinctive chromogenic substrate, the PdCu metallenezymes was used as oxidase-like mimics for determination of total antioxidant capacity (TAC) of vitamin C containing real products including fresh orange juice, commercial beverages, Vitamin C tablets and dermo-cosmetic products. AAP was hydrolyzed using ALP to generate AA and the corresponding ALP activity was successfully detected in the 0-100 U/L range with a lowest detection limit of 0.9 U/L. This study demonstrates the significant catalytic performance and oxidase-like activity of PdCu metallene nanozyme providing a strategy to develop a TAC assay for the assessment of antioxidant food quality as well as oxidative stress in skin and health care products.
Collapse
Affiliation(s)
- Aniqa Sehrish
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Romana Manzoor
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
8
|
Sehrish A, Manzoor R, Wu S, Lu Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for the colorimetric detection of chromium (VI). Anal Bioanal Chem 2023; 415:6063-6075. [PMID: 37522919 DOI: 10.1007/s00216-023-04879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Palladium (Pd)-based nanomaterials are the emerging class of catalysts with individual physiochemical properties. Unlike traditional catalysts, metallenes showed abundant active sites, large surface area, and high atomic utilization. Based on these benefits, we demonstrate a highly active 2D graphene-like Pd metallene with abundant accessible active sites serving as a highly efficient oxidase mimic. The structure and morphology of Pd metallenezymes were controlled to enhance the catalytic performance and to efficiently utilize all the Pd atoms. Pd metallenezymes with excellent oxidase-like activity were successfully applied for colorimetric-based chromium (VI) (Cr(VI)) detection in a real environment. 3,3',5,5'-Tetramethylbenzidine (TMB) was used as a typical chromogenic substrate catalyzed by Pd metallene to show that blue oxidized TMB (ox TMB) was significantly reduced to colorless TMB by the reducing agent 8-hydroxyquinoline (8-HQ). The reaction process was impressively reversed by the addition of Cr(VI), which interacted with 8-HQ to restore the blue color of TMB. Based on the above results, a facile and effective colorimetric sensing system for the detection of Cr(VI) with a low detection limit of 2.8 nM was developed and could be successfully applied to the detection of Cr(VI) in a real environment.
Collapse
Affiliation(s)
- Aniqa Sehrish
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Romana Manzoor
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuzhi Wu
- Shandong Academy of Preventive Medicine, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
9
|
Mazzotta E, Di Giulio T, Mastronardi V, Brescia R, Pompa PP, Moglianetti M, Malitesta C. Nanozymes based on octahedral platinum nanocrystals with {111} surface facets: glucose oxidase mimicking activity in electrochemical sensors. Mikrochim Acta 2023; 190:425. [PMID: 37776360 PMCID: PMC10543470 DOI: 10.1007/s00604-023-05992-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
The ability of shape-controlled octahedral Pt nanoparticles to act as nanozyme mimicking glucose oxidase enzyme is reported. Extended {111} particle surface facets coupled with a size comparable to natural enzymes and easy-to-remove citrate coating give high affinity for glucose, comparable to the enzyme as proven by the steady-state kinetics of glucose electrooxidation. The easy and thorough removal of the citrate coating, demonstrated by X-ray photoelectron spectroscopy analysis, allows a highly stable deposition of the nanozymes on the electrode. The glucose electrochemical detection (at -0.2 V vs SCE) shows a linear response between 0.36 and 17 mM with a limit of detection of 110 μM. A good reproducibility has been achieved, with an average relative standard deviation (RSD) value of 9.1% (n = 3). Similarly, a low intra-sensor variability has been observed, with a RSD of 6.6% (n = 3). Moreover, the sensor shows a long-term stability with reproducible performances for at least 2 months (RSD: 7.8%). Tests in saliva samples show the applicability of Pt nanozymes to commercial systems for non-invasive monitoring of hyperglycemia in saliva, with recoveries ranging from 92 to 98%.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100, Lecce, Italy
| | - Valentina Mastronardi
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163, Genova, Italy
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Pier Paolo Pompa
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163, Genova, Italy
| | - Mauro Moglianetti
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163, Genova, Italy.
- Istituto Italiano di Tecnologia, Centre for Cultural Heritage Technology (CCHT@Ca' Foscari), Via Torino 155, 30172, Venice, Italy.
- HiQ-Nano srl, Via Barsanti, 1, 73010, Arnesano (LE), Italy.
| | - Cosimino Malitesta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100, Lecce, Italy
| |
Collapse
|
10
|
Liu L, Deng J, Wang Y, He X, He H, Chen X, Liao D, Tong Z. N-Rich and Sulfur-Doped Nano Hollow Carbons with High Oxidase-like Activity Prepared Using a Green Template of CaCO 3 for Bacteriostasis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13279-13286. [PMID: 37672643 DOI: 10.1021/acs.langmuir.3c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Nanozymes, enzyme-mimicking nanomaterials, have attracted increasing attention due to their low cost, high stability, and catalytic ability compared with natural enzymes. However, the catalytic efficiency of the nanozymes is still relatively low, and catalytic reaction mechanisms remain unclear. To address these issues, herein we prepared nitrogen-riched and sulfur-codoped nano hollow carbons (N/S-HCS) using a green and useful template of CaCO3. N/S-HCS exhibits enhanced oxidase-like activity and catalytic kinetic performance. It could directly oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the heavy blue colored ox-TMB without H2O2. The maximum reaction rate (Vmax) is 186.7 × 10-8 M·s-1, and Michaelis-Menten constant (Km) is 0.162 mM. DFT results show that N and S codoping could work synergistically to provide more active sites, resulting in the superior ability to adsorb oxygen and enhanced catalytic activity. Meantime, we develop a multispectral characterization strategy to unravel catalytic reaction mechanisms about N/S-HCS. It successfully induces the generation of superoxide (•O2-) and hydroxyl (•OH) during the colorimetric reaction which are the key intermediate products of the catalytic reaction. Furthermore, N/S-HCS increased the cellular reactive oxygen species level significantly and induced bacteriostasis to more than 95% of Escherichia coli.
Collapse
Affiliation(s)
- Liangqin Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Engineering Academy of Calcium Carbonate Industrialization, Nanning 530004, China
| | - Jun Deng
- Department of Renal Rheumatology, The Fourth Hospital of Changsha, Changsha 410006, China
| | - Yinlong Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Engineering Academy of Calcium Carbonate Industrialization, Nanning 530004, China
| | - Xin He
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huibing He
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaopeng Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Engineering Academy of Calcium Carbonate Industrialization, Nanning 530004, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Engineering Academy of Calcium Carbonate Industrialization, Nanning 530004, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Engineering Academy of Calcium Carbonate Industrialization, Nanning 530004, China
| |
Collapse
|
11
|
Zhu H, Liu B, Liu J, Pan J, Hu P, Xu L, Niu X. MnO x In Situ Growth-Induced Luminescence and Oxidase-Like Feature Bimodulation of CePO 4:Tb Nanorods: Toward Ascorbic Acid-Related Bioanalysis in a "One-Stone-Two-Birds" Manner. Inorg Chem 2023; 62:15215-15225. [PMID: 37656616 DOI: 10.1021/acs.inorgchem.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Nanozyme-based multimode detection is a useful means to improve the accuracy and stability of analytical methods. However, both multifunctional nanozymes and related multimodal sensing strategies are still very scarce. Besides, they require complex processes to fabricate and operate. To fill this gap, here we propose a spontaneous interfacial in situ growth strategy to prepare a new bifunctional material (CePO4:Tb@MnOx) featuring good oxidase-like activity and green photoluminescence for the dual-mode colorimetric/luminescence determination of ascorbic acid (AA)-related biomarkers specifically. CePO4:Tb@MnOx was gained through the controllable redox reaction between KMnO4 and CePO4:Tb nanorods. It was interestingly found that MnOx in situ growth not only significantly enhanced the enzyme-like activity but also could reversibly regulate the luminescence of CePO4:Tb via a dual quenching mechanism. More interestingly, CePO4:Tb@MnOx exhibited a distinctive response toward AA against other reducing species. A double-coordination regulation mechanism was further verified to clarify the catalytic activity and luminescence switching behaviors in CePO4:Tb@MnOx. Based on these findings, a dual-mode colorimetric/luminescence approach was established for AA sensing in a "one-stone-two-birds" manner, providing excellent selectivity, sensitivity, and practicability. Furthermore, the determination of AA-related biomarkers, including acid phosphatase activity and organophosphorus residue, was also validated by the sensing principle. Our work not only deepens the understanding of the coordinated regulation of the luminescence and enzyme-like features in lanthanide-based materials but also offers a novel way to design and develop multifunctional nanozymes for advanced bioanalytical applications.
Collapse
Affiliation(s)
- Hengjia Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lizhang Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiangheng Niu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| |
Collapse
|
12
|
Kang G, Zhao D, Wang H, Liu F, Wang T, Chen C, Lu Y. Malathion detection based on polydopamine enhanced oxidase-mimetic activity of palladium nanocubes. Talanta 2023; 262:124730. [PMID: 37245431 DOI: 10.1016/j.talanta.2023.124730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Nowadays, fabricating simple and efficient pesticide detection methods become a research focus due to the great threat pesticide residues posed to human health and environment. Herein, we constructed a high-efficiency and sensitive colorimetric detection platform for malathion detection based on polydopamine-dressed Pd nanocubes (PDA-Pd/NCs). The Pd/NCs coated with PDA exhibited excellent oxidase-like activity, which was attributed to the substrates accumulation and accelerated electron transfer induced by PDA. What's more, we successfully achieved sensitive detection of acid phosphatase (ACP) using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate, relying on the satisfactory oxidase activity from PDA-Pd/NCs. However, the addition of malathion could inhibit the activity of ACP and limit the production of medium AA. Therefore, we constructed a colorimetric assay for malathion based on PDA-Pd/NCs + TMB + ACP system. The wide linear range (0-8 μM) and low detection limit (0.023 μM) indicate excellent analytical performance, which is superior to most malathion analysis methods previously reported. This work not only provides a new idea for dopamine coated nano-enzyme to improve its catalytic activity, but also creates a new tactics for the detection of pesticides such as malathion.
Collapse
Affiliation(s)
- Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Dan Zhao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China.
| | - Hao Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| |
Collapse
|
13
|
Qiao X, Li H, Ma H, Zhang H, Jin L. Sensitive acid phosphatase assay based on light-activated specific oxidase mimic activity. Talanta 2023; 255:124236. [PMID: 36587430 DOI: 10.1016/j.talanta.2022.124236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Acid phosphatase (ACP) is a key marker in the diagnosis of many diseases. However, exploiting a simple and sensitive sensor for the real-time quantitative analysis of ACP is still challenging. Herein, we attempted to develop a sensitive colorimetric sensing strategy for the detection of ACP based on light-activated oxidase mimic property of carbon dots (CDs). The synthesized CDs were proved to be capable of intrinsic light-activated oxidase mimic activity, which could generate reactive oxygen species to oxidize chromogenic substrate under ultraviolet light stimulation. Interestingly, this light-activated oxidase mimic behavior would be effectively suppressed by the antioxidant ascorbic acid (AA), a product from the hydrolysis of 2-phospho-L-ascorbic acid trisodium (AAP) mediated by ACP. Based on the above property, a facile and sensitive colorimetric sensing method for ACP was developed. Under the optimal conditions, the linear range for ACP 0.1-5.5 U/L, and the detection limit was 0.056 U/L. Compared with conventional nanozyme based ACP assay systems, the catalytic activity of light-activated nanozyme could be conveniently regulated by switching the light on and off, which made it easier to precisely control the extent of the reaction and ensured the accuracy of the assay. In addition, the proposed sensing system would be readout directly by the naked eye or smartphone-based RGB analysis system, and have been successfully applied to analyze diluted in diluted fetal bovine serum and urine samples spiked with ACP. All these results indicated that this approach holds good promise for future applications in clinical analysis and point-of-care (POC) biosensor platforms.
Collapse
Affiliation(s)
- Xiaohong Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Hanmei Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Han Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
14
|
Ma D, Ge J, Wang A, Li J, Yang H, Zhai W, Cai R. Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening. J Mater Chem B 2023; 11:2727-2732. [PMID: 36880155 DOI: 10.1039/d2tb02580a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of H2O2. L-Ascorbic acid-2-O-α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs. Thus, a colorimetric α-glucosidase activity detection method was designed with a limit of detection of 0.0048 U mL-1. Furthermore, the designed sensing platform exhibits favorable applicability for the α-glucosidase (α-Glu) activity assay in real samples. Meanwhile, this method can be expanded to study the inhibitors of α-Glu. Finally, the as-proposed method combined with a smartphone would be a color recognizer, which was successfully applied for the determination of α-Glu activity in human serum samples.
Collapse
Affiliation(s)
- Demiao Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Jia Ge
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Ang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
15
|
Liu S, Zhang H, Yu H, Deng K, Wang Z, Xu Y, Wang L, Wang H. Defect-Rich PdIr Bimetallene Nanoribbons with Interatomic Charge Localization for Isopropanol-Assisted Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300388. [PMID: 36932943 DOI: 10.1002/smll.202300388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Metallene with outstanding physicochemical properties is an efficient two-dimensional electrocatalysts for sustainable hydrogen (H2 ) production applications. However, the controllable fabrication of extended atomically thin metallene nanoribbons remains a formidable challenge. Herein, this work proposes a controllable preparation strategy for atomically thin defect-rich PdIr bimetallene nanoribbons (PdIr BNRs) with a thickness of only 1.5 nm for the efficient and stable isopropanol-assisted seawater electrolytic H2 production. When using PdIr BNRs as catalyst to build an isopropanol-assisted seawater electrolysis system, a voltage of only 0.38 V is required at @10 mA cm-2 to achieve energy-saving H2 production, while producing high value-added acetone at the anode. The aberration-corrected high-resolution transmission electron microscopy (HRTEM) clearly reveals that the PdIr BNRs possess abundant structural defects, which can additionally serve as highly catalytically active sites. Density functional theory (DFT) calculations combined with X-ray absorption spectroscopy studies reveal that the introduction of Ir atoms can induce the formation of a localized charge region and shift the d-band center of Pd down, thereby reducing the adsorption energy on the catalyst in favor of the rapid desorption of H2 . This work opens the way for the controllable design and construction of defect-rich atomically thin metallene nanoribbons for efficient electrocatalytic applications.
Collapse
Affiliation(s)
- Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
Liu W, Zhang D, Zhang F, Hao Z, Li Y, Shao M, Zhang R, Li X, Zhang L. Self-enhanced peroxidase-like activity in a wide pH range enabled by heterostructured Au/MOF nanozymes for multiple ascorbic acid-related bioenzyme analyses. Analyst 2023; 148:1579-1586. [PMID: 36892478 DOI: 10.1039/d3an00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Nanozymes, a class of catalytic nanomaterials, have shown great potential to substitute natural enzymes in various applications. Nevertheless, the pursuit of high-efficiency peroxidase-like activity in a wide pH range is one of the major challenges existing in designing nanozymes. A feasible strategy is to construct an artificial active center by using porous materials as stable supporting structures, which can actively modulate biocatalytic activities via their porous atomic structures and more active sites. Herein, a gold nanoparticles/metal-organic framework (MOF) heterostructure was prepared using UiO-66 as a stable support structure (Au NPs/UiO-66), which demonstrates enhanced peroxidase-like activity, ∼8.95 times higher than that of pure Au NPs. Strikingly, Au NPs/UiO-66 exhibits excellent stability (maintains above 80% activity at 40-70 °C and retains 93% activity after 3 months of storage) and sustained high relative activity (above 90%) over a pH range of 5.0-9.0 due to the homogeneous dispersibility of free-ligand Au NPs and the strong chemical interaction between the Au NPs and the UiO-66 host. Moreover, a colorimetric assay of ascorbic acid (AA) and three AA-related biological enzymes was developed based on Au NPs/UiO-66 nanozyme, which has a good linear detection range and excellent anti-interference ability. This work provides important guidance for the expansion of metal NPs/MOF heterostructure nanozymes and their application prospects in the development of biosensors.
Collapse
Affiliation(s)
- Wendong Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Dingding Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Fanghua Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuyan Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Mingzheng Shao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China.
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
17
|
BSA-stabilized silver nanoclusters for efficient photoresponsive colorimetric detection of chromium(VI). Anal Bioanal Chem 2023; 415:1477-1485. [PMID: 36680590 DOI: 10.1007/s00216-023-04535-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Hexavalent chromium is a highly toxic substance, which will pose a serious threat to human life and health and the entire ecosystem. Therefore, it is crucial to establish a simple and rapid detection method for hexavalent chromium. In this work, we fabricated bovine serum albumin-stabilized silver nanocluster (BSA-Ag13 NC) which exhibited photoresponsive oxidase-like activity, catalyzing the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the blue oxidized state TMB (oxTMB) in a short time. Interestingly, 8-hydroxyquinoline (8-HQ) can significantly inhibit the color reaction of TMB oxidation while Cr(VI) can interact specifically with 8-HQ to restore this chromogenic reaction. Based on the above facts, a colorimetric sensing system for detecting Cr(VI) was developed. The sensing system shows a wide linear range, and good selectivity, with a low detection limit of 2.32 nM. Moreover, this sensing system could be successfully applied to the detection of Cr(VI) in lake water, tap water, and sewage with satisfactory results.
Collapse
|
18
|
Li Z, Liu F, Chen C, Jiang Y, Ni P, Song N, Hu Y, Xi S, Liang M, Lu Y. Regulating the N Coordination Environment of Co Single-Atom Nanozymes for Highly Efficient Oxidase Mimics. NANO LETTERS 2023; 23:1505-1513. [PMID: 36734468 DOI: 10.1021/acs.nanolett.2c04944] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-atom catalysts with well-defined atomic structures and precisely regulated coordination environments have been recognized as potential substitutes for natural metalloenzymes. Inspired by the metal coordination structure of natural enzymes, we show here that the oxidase-like activity of single-atom Co catalysts greatly depends on their local N coordination around the Co catalytic sites. We synthesized a series of Co single-atom catalysts with different nitrogen coordination numbers (Co-Nx(C), x = 2, 3, and 4) and demonstrated that the oxidase-like activity of single-atom Co catalysts could be effectively tailored by fine-tuning the N coordination. Among the studied single-atom Co catalysts, the Co-N3(C) with three-coordinate N atoms shows the optimum oxygen adsorption structure and robust reactive oxygen species (ROS) generation, thus presenting the preferable oxidase-like catalytic activity. This work facilitates the future development of rational nanozyme designs for targeting reactions at the atomic level.
Collapse
Affiliation(s)
- Zhe Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Hu
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
19
|
Xia S, Wu F, Cheng L, Bao H, Gao W, Duan J, Niu W, Xu G. Maneuvering the Peroxidase-Like Activity of Palladium-Based Nanozymes by Alloying with Oxophilic Bismuth for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205997. [PMID: 36461731 DOI: 10.1002/smll.202205997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Engineering the catalytic performance of nanozymes is of vital importance for their broad applications in biological analysis, cancer treatment, and environmental management. Herein, a strategy to boost the peroxidase-like activity of Pd-based nanozymes with oxophilic metallic bismuth (Bi) is demonstrated, which is based on the incorporation of oxophilic Bi in the Pd-based alloy nanocrystals (NCs). To synthesize PdBi alloy NCs, a seed-mediated method is employed with the assistance of underpotential deposition (UPD) of Bi on Pd. The strong interaction of Bi atoms with Pd surfaces favors the formation of alloy structures with controllable shapes and excellent monodispersity. More importantly, the PdBi NCs show excellent peroxidase-like activities compared with pristine Pd NCs. The structure-function correlations for the PdBi nanozymes are elucidated, and an indirect colorimetric method based on cascade reactions to determine alkaline phosphatase (ALP) is established. This method has good linear range, low detection limit, excellent selectivity, and anti-interference. Collectively, this work not only provides new insights for the design of high-efficiency nanozymes, expands the colorimetric sensing platform based on enzyme cascade reactions, but also represents a new example for UPD-directed synthesis of alloy NCs.
Collapse
Affiliation(s)
- Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lu Cheng
- National Engineering Research Center for New Material Synthesis of Rubber and Plastics, Yanshan Branch of Beijing Chemical Research Institute, Sinopec, Beijing, 102500, China
| | - Haibo Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenping Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Duan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
20
|
Ren D, Cheng X, Chen Q, Xu G, Wei F, Yang J, Xu J, Wang L, Hu Q, Cen Y. MXene-derived Ti3C2 quantum dots-based ratiometric fluorescence probe for ascorbic acid and acid phosphatase determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Gao X, Liu Y, Zhang K, Weng J, Chen R, Zhang X, Wang Z, Yang S, Liu J. Light-Responsive Carbon Nitride Based Atomic Cu(I) Oxidase Mimics for Dual-Mode Total Antioxidant Capacity Assay. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Xiaoying Gao
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Ke Zhang
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan 250000, China
| | - Jinlan Weng
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Rongqing Chen
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoyi Zhang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
22
|
Liu F, Li Z, Kang G, Liu Z, Zhu S, He R, Zhang C, Chen C, Lu Y. Ratiometric sensing of α-glucosidase and its inhibitor based on MnO2 nanosheets promoted in-situ fluorescent reactions. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Atomically-precise Au24Ag1 Clusterzymes with Enhanced Peroxidase-like Activity for Bioanalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Pt nanoparticle/N-doped graphene nanozymes for colorimetric detection of acetylcholinesterase activity and inhibition. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhao X, Li Z, Ding Z, Wang S, Lu Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J Colloid Interface Sci 2022; 626:296-304. [DOI: 10.1016/j.jcis.2022.06.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 10/31/2022]
|
26
|
Ye Z, Fan Y, Zhu T, Cao D, Hu X, Xiang S, Li J, Guo Z, Chen X, Tan K, Zheng N. Preparation of Two-Dimensional Pd@Ir Nanosheets and Application in Bacterial Infection Treatment by the Generation of Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23194-23205. [PMID: 35576507 DOI: 10.1021/acsami.2c03952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared two-dimensional (2D) Pd@Ir bimetal nanosheets (NSs) with well-defined size and composition by a facile seed-mediated growth strategy. Enzyme-mimicked investigations find that the Pd@Ir NSs possess oxidase (OXD)-, peroxidase (POD)-, and catalase (CAT)-like multienzyme-mimetic activities. Especially, they exhibited much higher OXD- and POD-like activities than individual Pd NSs and Ir nanoparticles (NPs). The density functional theory (DFT) calculations reveal that the adsorption energy of O2 on Pd@Ir NSs is lower than that on the pure Pd NSs, which is more favorable for the conversion of O2 molecules from the triplet state (3O2) into the singlet state (1O2). Finally, based on the outstanding nanozyme activities to yield highly active singlet oxygen (1O2) and hydroxyl radicals (•OH) as well as excellent biosafety, the as-prepared Pd@Ir NSs were applied to treat bacteria-infected wounds, and satisfactory therapeutic outcomes were achieved. We believe that the highly efficient 2D Pd@Ir nanozyme will be an effective therapeutic reagent for various biomedical applications.
Collapse
Affiliation(s)
- Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiyang Fan
- Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianbao Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxu Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
27
|
Enhanced oxidase-like activity of g-C3N4 nanosheets supported Pd nanosheets for ratiometric fluorescence detection of acetylcholinesterase activity and its inhibitor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Yang W, Weng C, Li X, Xu W, Fei J, Hong J, Zhang J, Zhu W, Zhou X. An "on-off" ratio photoluminescence sensor based on catalytically induced PET effect by Fe 3O 4 NPs for the determination of coumarin. Food Chem 2022; 368:130838. [PMID: 34425336 DOI: 10.1016/j.foodchem.2021.130838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Herein, using Fe3O4 nanoparticles (Fe3O4 NPs) as a magnetic artificial peroxidase, an "on-off" ratiometric photoluminescence sensor with high-sensitivity and high-selectivity for coumarin was constructed based on photoinduced electron transfer (PET) between 7-hydroxycoumarin and rhodamine B (RB). The results showed that Fe3O4 NPs catalyzed H2O2 to generate nucleophilic group ·OH, which attacked the active site of coumarin and produced strong fluorescent 7-hydroxycoumarin molecules. Then, the fluorescence of RB was quenched with 7-hydroxycoumarin through the PET effect. The ratio signal generated in the above process was used for the quantitative detection of coumarin. Under optimized conditions, the linear range 0.5-25 mg/L was acquired for coumarin with the detection limit of 0.016 mg/L. This method had excellent selectivity and the recovery rate was 81.8%-106.8% with the relative standard deviation less than 5.6%, so it can be used for the quantitative analysis of coumarin in complex matrix samples.
Collapse
Affiliation(s)
- Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
29
|
Yan B, Wang F, He S, Liu W, Zhang C, Chen C, Lu Y. Peroxidase-like activity of Ru-N-C nanozymes in colorimetric assay of acetylcholinesterase activity. Anal Chim Acta 2022; 1191:339362. [PMID: 35033267 DOI: 10.1016/j.aca.2021.339362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Herein, the Ru-N-C nanozymes with abundant active Ru-Nx sites have been successfully prepared by pyrolyzing Ru(acac)3 trapped zeolitic-imidazolate-frameworks (Ru(acac)3@ZIF-8). Taking advantages of the remarkable peroxidase-mimicking activity, outstanding stability and reusability of Ru-N-C nanozymes, a novel biosensing system with explicit mechanism is strategically fabricated for sensitively determining acetylcholinesterase (AChE) and tacrine. The limit of detection for AChE activity can achieve as low as 0.0433 mU mL-1, and the IC50 value of tacrine for AChE is about 0.190 μmol L-1. The robust analytical performance in serums test verifies the great application potential of this assay in real matrix. Furthermore, "INH" and "IMPLICATION-AND" logic gates are rationally constructed based on the proposed colorimetric sensor. This work not only provides one sustainable and effective avenue to fabricate Ru-N-C-based peroxidase mimic with high catalytic performance, and also gives new impetuses for developing novel biosensors by applying Ru-N-C-based enzyme mimics as substitutes for the natural enzyme.
Collapse
Affiliation(s)
- Bingsong Yan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Fengtian Wang
- Blood Center of Shandong Province, Jinan, 250014, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
30
|
Zhang C, Zhang X, Ye Y, Ni P, Chen C, Liu W, Wang B, Jiang Y, Lu Y. Manganese-doped iron coordination polymer nanoparticles with enhanced peroxidase-like activity for colorimetric detection of antioxidants. Analyst 2021; 147:238-246. [PMID: 34913935 DOI: 10.1039/d1an01953h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient and sensitive antioxidant assay with high performance is essential for assessing food quality and monitoring the oxidative stress level of biological matrices. Although coordination polymer nanoparticles (CPNs)-based nanozymes have emerged as candidates in the analytical field, strategies to improve the catalytic activity of CPNs have been scarcely revealed and studied. Herein, we demonstrate a manganese (Mn) doping strategy to enhance the peroxidase-mimetic activity of Fe-based CPNs. By tuning the Mn doping amounts and selecting 2,5-dihydroxyterephthalic acid (H4DHTP) as ligands, the produced nanozymes in amorphous state followed the catalytic activity order of Fe5Mn-DHTP > Fe8Mn-DHTP > Fe2Mn-DHTP > Fe-DHTP > Mn-DHTP. Ulteriorly, benefitting from the best catalytic performance and definite catalytic mechanism of Fe5Mn-DHTP, versatile colorimetric assays for ultrasensitive detection of one exogenous antioxidant (ascorbic acid, AA) and two endogenous antioxidants (glutathione, GSH; cysteine, Cys) have been deftly devised based on the inhibition of the 3,3',5,5'-tetramethylbenzidine chromogenic reaction in presence of H2O2. It was found that mercaptan (GSH and Cys) and AA exhibited different inhibition mechanisms. Practically, such a colorimetric assay was viable to determine the total antioxidant capacity of drugs and foods with desirable results. This work proposes a feasible strategy for embellishing CPN nanozymes used for designing sensitive and convenient assays for various antioxidants based on an explicit detection mechanism.
Collapse
Affiliation(s)
- Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xingfeng Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wendong Liu
- School of Science Tianjin University, Tianjin University, Tianjin 300350, China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
31
|
Wan Y, Zhao J, Deng X, Chen J, Xi F, Wang X. Colorimetric and Fluorescent Dual-Modality Sensing Platform Based on Fluorescent Nanozyme. Front Chem 2021; 9:774486. [PMID: 34869222 PMCID: PMC8635524 DOI: 10.3389/fchem.2021.774486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Compared with natural enzymes, nanozymes based on carbonaceous nanomaterials are advantages due to high stability, good biocompatibility, and the possibility of multifunctionalities through materials engineering at an atomic level. Herein, we present a sensing platform using a nitrogen-doped graphene quantum dot (NGQD) as a highly efficient fluorescent peroxidase mimic, which enables a colorimetric/fluorescent dual-modality platform for detection of hydrogen peroxide (H2O2) and biomolecules (ascorbic acid-AA, acid phosphatase-ACP) with high sensitivity. NGQD is synthesized using a simple hydrothermal process, which has advantages of high production yield and potential for large-scale preparation. NGQD with uniform size (3.0 ± 0.6 nm) and a single-layer graphene structure exhibits bright and stable fluorescence. N-doping and ultrasmall size endow NGQD with high peroxidase-mimicking activity with an obviously reduced Michaelis–Menten constant (Km) in comparison with natural horseradish peroxidase. Taking advantages of both high nanozyme activity and unique fluorescence property of NGQD, a colorimetric and fluorescent dual-modality platform capable of detecting H2O2 and biomolecules (AA, ACP) with high sensitivity is developed as the proof-of-concept demonstration. Furthermore, the mechanisms underlying the nanozyme activity and biosensing are investigated.
Collapse
Affiliation(s)
- Yejian Wan
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Jingwen Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaochun Deng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Chen
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaobo Wang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
32
|
Li S, Wang Y, Mu S, Zhang J, Liu X, Rizvi SFA, Zhang H, Ding N, Wu L. A feasible self-assembled near-infrared fluorescence sensor for acid phosphatase detection and cell imaging. Analyst 2021; 146:5558-5566. [PMID: 34515720 DOI: 10.1039/d1an01218e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The single signal amplification strategy is significant for detecting various disease biomarkers but is restricted by its limited accuracy. The multi-signal and multi-mode methods have overcome this deficiency. Acid phosphatase (ACP) is an important intracellular enzyme but one-step cell imaging material-based probes are scarce for ACP. Herein, we designed a one-step self-assembled polymer probe using neutral red (NR), modified-(pyridoxal-5'-phosphate (PLP)) and Eu3+. The polymer exhibited non-emission and excellent stability. Upon the catalytic hydrolysis reaction of ACP, the polymer exhibited two strong fluorescence signals at 373 nm and 613 nm and an appreciable decline of absorbance at 395 nm. The probe has excellent selectivity and higher sensitivity with a limit of detection as low as 0.02 mU mL-1. It possesses favorable biocompatibility and has been successfully used to detect and image intracellular ACP in several living cells.
Collapse
Affiliation(s)
- Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yaya Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Nana Ding
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China.
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China.
| |
Collapse
|
33
|
Ye K, Zhang M, Liu P, Liu B, Xu X, Li X, Zhu H, Wang L, Wang M, Niu X. Target-induced synergetic modulation of electrochemical tag concentration and electrode surface passivation for one-step sampling filtration-free detection of acid phosphatase activity. Talanta 2021; 233:122500. [PMID: 34215117 DOI: 10.1016/j.talanta.2021.122500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
As a biomarker of several diseases, the activity of acid phosphatase (ACP) is generally used to assistantly diagnose these diseases. Thus, developing reliable ACP activity analytical methods becomes quite significant. Herein, we recommend a one-step sampling filtration-free electrochemical method for ACP activity determination based on the target-induced synergetic modulation of tag concentration and surface passivation. Mn3O4 microspheres with favorable oxidase-mimicking activity are synthesized to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its product TMBox, resulting in a remarkable re-reduction signal of TMBox to TMB recorded by an integrated electrochemical system consisting of screen-printed electrode (SPE) and 3D-printed holder. When hexametaphosphate ions (HMPi) with rich negative charges are employed to interact positively charged TMBox, the formed flocculent precipitate TMBox-HMPi automatically sedimentates onto SPE surface, and both the decreased concentration of free TMBox in solution and the increased electrode surface passivation triggered by TMBox-HMPi sedimentation synergistically reduce the re-reduction signal of TMBox. When ACP is present, it hydrolyzes the HMPi substrate, greatly relieving the formation of the TMBox-HMPi precipitate and its sedimentation onto SPE surface. As a result, the electrochemical re-reduction signal of TMBox becomes remarkable again. With the strategy of using one stimulus to generate two-fold signal change, highly sensitive ACP activity detection was realized, with a wide linear range from 0.05 to 50 U/L and a limit of detection down to 0.024 U/L. Reliable monitoring of ACP activity in clinical serum was also demonstrated.
Collapse
Affiliation(s)
- Kun Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mingliang Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuechao Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Linjie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
34
|
Chen CX, Zhang CH, Ni PJ, Jiang YY, Wang B, Lu YZ. "Light-on" Colorimetric Assay for Ascorbic Acid Detection via Boosting the Peroxidase-like Activity of Fe-MIL-88. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00177-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Yan B, Liu W, Duan G, Ni P, Jiang Y, Zhang C, Wang B, Lu Y, Chen C. Colorimetric detection of acetylcholinesterase and its inhibitor based on thiol-regulated oxidase-like activity of 2D palladium square nanoplates on reduced graphene oxide. Mikrochim Acta 2021; 188:162. [PMID: 33839958 DOI: 10.1007/s00604-021-04817-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/27/2021] [Indexed: 01/11/2023]
Abstract
A convenient and sensitive colorimetric assay for acetylcholinesterase (AChE) and its inhibitor has been designed based on the oxidase-like activity of {100}-faceted Pd square nanoplates which are grown in situ on reduced graphene oxide (PdSP@rGO). PdSP@rGO can effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) without the assistance of H2O2 to generate blue oxidized TMB (oxTMB) with a characteristic absorption peak at 652 nm. In the presence of AChE, acetylthiocholine (ATCh), a typical AChE substrate, is hydrolyzed to thiocholine (TCh). The generated TCh can effectively inhibit the PdSP@rGO-triggered chromogenic reaction of TMB via cheating with Pd, resulting in color fading and decrease in absorbance. Thus, a sensitive probe for AChE activity is constructed with a working range of 0.25-5 mU mL-1 and a limit of detection (LOD) of 0.0625 mU mL-1. Furthermore, because of the inhibition effect of tacrine on AChE, tacrine is also detected through the colorimetric AChE assay system within the concentrations range 0.025-0.4 μM with a LOD of 0.00229 μM. Hence, a rapid and facile colorimetric procedure to sensitively detect AChE and its inhibitor can be anticipated through modulating the oxidase-like activity of PdSP@rGO. Colorimetric method for detection of AChE and its inhibitor is established by modulating the oxidase mimetic activity of {100}-faceted Pd square nanoplates on reduced graphene oxide (PdSP@rGO).
Collapse
Affiliation(s)
- Bingsong Yan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Guangbin Duan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
36
|
Song C, Zhao W, Liu H, Ding W, Zhang L, Wang J, Yao Y, Yao C. Two-dimensional FeP@C nanosheets as a robust oxidase mimic for fluorescence detection of cysteine and Cu 2. J Mater Chem B 2021; 8:7494-7500. [PMID: 32667961 DOI: 10.1039/d0tb00215a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past few years, the development of novel nanozymes with excellent performance has attracted increasing attention in biosensing. However, most of those nanozymes were found to possess peroxidase activity with the prerequisite of the presence of H2O2. In contrast, oxidase mimics can catalyze the oxidation of substrates without H2O2, delivering a higher signal-to-noise ratio than that of peroxidase mimics in practical applications. Herein, for the first time, two-dimensional (2D) nanosheets composed of iron phosphide embedded in a carbon matrix (FeP@C nanosheets) were found to demonstrate a robust oxidase-like property, different from those previously reported peroxidase mimics based on transition metal phosphides (TMPs). Based on this intriguing observation, the fluorescent substrate Amplex Red (AR) of peroxidase can be effectively oxidized by FeP@C nanosheets in the absence of H2O2. Benefiting from the oxidase-like enzymatic activity of the FeP@C nanosheets, a novel fluorescence sensing platform was developed for the detection of cysteine (Cys) and Cu2+. The outstanding performance of the 2D FeP@C nanosheets endows the proposed platform with superior sensitivity and selectivity compared to many previously reported approaches. Besides, the inherent features of simplicity, being label free, and low cost also allow this methodology to stand out among many other strategies, revealing its huge potential in practical analysis and detection applications.
Collapse
Affiliation(s)
- Chan Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B 2021; 8:10065-10086. [PMID: 33078176 DOI: 10.1039/d0tb02051f] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological enzymes play important roles in mediating the biological reactions in vitro and in vivo due to their high catalytic activity, strong bioactivity, and high specificity; however, they have also some disadvantages such as high cost, low environmental stability, weak reusability, and difficult production. To overcome these shortcomings, functional nanomaterials including metallic nanoparticles, single atoms, metal oxides, alloys, and others have been utilized as nanozymes to mimic the properties and functions of natural enzymes. Due to the development of the synthesis and applications of two-dimensional (2D) materials, 2D nanomaterials have shown high potential to be used as novel nanozymes in biosensing, bioimaging, therapy, logic gates, and environmental remediation due to their unique physical, chemical, biological, and electronic properties. In this work, we summarize recent advances in the preparation and functionalization, as well as biosensor and immunoassay applications of various 2D material-based nanozymes. To achieve this aim, first we demonstrate the preparation strategies of 2D nanozymes such as chemical reduction, templated synthesis, chemical exfoliation, calcination, electrochemical deposition, hydrothermal synthesis, and many others. Meanwhile, the structure and properties of the 2D nanozymes prepared by conjugating 2D materials with nanoparticles, metal oxides, biomolecules, polymers, ions, and 2D heteromaterials are introduced and discussed in detail. Then, the applications of the prepared 2D nanozymes in colorimetric, electrochemical, fluorescent, and electrochemiluminescent sensors are demonstrated.
Collapse
Affiliation(s)
- Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | |
Collapse
|
38
|
Ultrathin PdCu alloy nanosheet-assembled 3D nanoflowers with high peroxidase-like activity toward colorimetric glucose detection. Mikrochim Acta 2021; 188:114. [PMID: 33677782 DOI: 10.1007/s00604-021-04776-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023]
Abstract
Enzyme-mimetic properties of nanomaterials can be efficiently tuned by controlling their size, composition, and structure. Here, ultrathin PdCu alloy nanosheet-assembled three-dimensional (3D) nanoflowers (Pd1Cux NAFs) with tunable surface composition are obtained via a generalized strategy. In presence of H2O2, the as-synthesized Pd1Cux NAFs can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to the oxidized form of TMB (oxTMB) with a characteristic absorption peak at 652 nm. Interestingly, Pd1Cux NAFs show obviously composition-dependent peroxidase-like catalytic activities because of the synergistic interaction of nanoalloy. Additionally, different from 2D Pd nanosheets, the distinctive 3D superstructures are featured with rich approachable sites and proper layer spacing, which are in favor of fast mass transport and electron transfers during the catalytic process. Among the studied Pd1Cux NAFs, the Pd1Cu1.7 NAFs show the highest enzyme-like activities and can be successfully applied for the colorimetric detection of glucose with a low detection limit of 2.93 ± 0.53 μM. This work provides an efficient avenue to fabricate PdCu NAF nanozymes in biosensing toward glucose detection. Two-dimensional (2D) PdCu ultrathin nanosheet-assembled 3D nanoflowers (Pd1Cux NAFs) with tunable surface composition exhibit substantially enhanced intrinsic peroxidase-like catalytic activities. The Pd1Cu1.7 NAFs are successfully used as peroxidase mimic catalyst for the colorimetric detection of glucose with low detection limit of 2.93 μM.
Collapse
|
39
|
Kang G, Jing Y, Liu W, Zhang C, Lu L, Chen C, Lu Y. Inhibited oxidase mimetic activity of palladium nanoplates by poisoning the active sites for thiocyanate detection. Analyst 2021; 146:1650-1655. [PMID: 33522553 DOI: 10.1039/d1an00002k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel convenient colorimetric method for sensitive detection of thiocyanate (SCN-) has been developed based on its suppression of the oxidase-like activity of palladium square nanoplates on reduced graphene oxide (Pd SP@rGO). SCN- can be adsorbed onto the surface of Pd SP@rGO via binding with Pd atoms and blocks the active sites that mimic oxidase, thus inhibiting the corresponding chromogenic reaction of 3,3',5,5'-tetramethylbenzidine, which has been comprehensively revealed by the UV-vis spectra and X-ray photoelectron spectra. The color fading exhibits SCN- concentration-dependent behavior and can be easily recorded by either UV-vis spectroscopy or naked-eye observation. Therefore, both quantitative detection via measurement of the decrease in absorbance and visual detection of SCN- can be achieved. Owing to the intrinsic amplification of signals by the oxidase-like activity of Pd SP@rGO without resorting to unstable and destructive H2O2, this assay is straightforward, robust and sensitive enough for the detection of SCN- in real samples. Furthermore, an "INH" logic gate is rationally constructed based on the proposed colorimetric SCN- sensor.
Collapse
Affiliation(s)
- Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yijia Jing
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
40
|
Li R, Sun Y, Jin L, Qiao X, Li C, Shen Y. Smartphone based highly sensitive visualized detection of acid phosphatase enzyme activity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:809-816. [PMID: 33502402 DOI: 10.1039/d0ay02128h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the rapid development of point-of-care (POC) technologies, development of sensitive method featured with fast analysis and affordable devices has become an emerging requirement for practical applications. In this study, we introduced a smartphone-based RGB analysis system for the sensitive detection of acid phosphatase (ACP) enzyme activity. In the presence of ACP, l-ascorbic acid 2-phosphate (AAP) can be converted into ascorbic acid (AA), which can reduce Ag+ to Ag0 and format the Au@Ag core-shell nanostructure. This morphology change of the Au@Ag core-shell would trigger a significant color variation (pink to yellow). A good linear relationship between the RGB model parameter and the concentration of ACP could be obtained with a detection limit of 0.1 U L-1. Moreover, this sensing strategy is suitable for the detection of ACP in practical serum samples. Thus, this simple but powerful protocol has great potential application for on-site detection of ACP in future complex biological samples.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Pan MM, Wang YF, Wang L, Yu X, Xu L. Recent advances in visual detection for cancer biomarkers and infectious pathogens. J Mater Chem B 2021; 9:35-52. [PMID: 33225338 DOI: 10.1039/d0tb01883j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is an urgency to detect infectious pathogens or cancer biomarkers using rapid, simple, convenient and cost-effective methods in complex biological samples. Many existing approaches (traditional virus culture, ELISA or PCR) for the pathogen and biomarker assays face several challenges in the clinical applications that require lengthy time, sophisticated sample pre-treatment and expensive instruments. Due to the simple and rapid detection manner as well as no requirement of expensive equipment, many visual detection methods have been considered to resolve the aforementioned problems. Meanwhile, various new materials and colorimetric/fluorescent methods have been tried to construct new biosensors for infectious pathogens and biomarkers. However, the recent progress of these aspects is rarely reviewed, especially in terms of integration of new materials, microdevice and detection mechanism into the visual detection systems. Herein, we provide a broad field of view to discuss the recent progress in the visual detection of infectious pathogens and cancer biomarkers along with the detection mechanism, new materials, novel detection methods, special targets as well as multi-functional microdevices and systems. The novel visual approaches for the infectious pathogens and biomarkers, such as bioluminescence resonance energy transfer (BRET), metal-induced metallization and clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors, are discussed. Additionally, recent advancements in visual assays utilizing various new materials for proteins, nucleic acids, viruses, exosomes and small molecules are comprehensively reviewed. Future perspectives on the visual sensing systems for infectious pathogens and cancers are also proposed.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|
43
|
Han Y, Quan K, Chen J, Qiu H. Advances and prospects on acid phosphatase biosensor. Biosens Bioelectron 2020; 170:112671. [DOI: 10.1016/j.bios.2020.112671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 02/01/2023]
|
44
|
A MALDI-MS sensing chip prepared by non-covalent assembly for quantitation of acid phosphatase. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9850-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|