1
|
Basati M, Moghadam A, Khazaei BA, Hajkarim MC. Chitosan/MgO NPs/CQDs bionanocomposite coating: Fabrication, characterization and determination of antimicrobial efficacy. Int J Biol Macromol 2024; 276:133693. [PMID: 38971277 DOI: 10.1016/j.ijbiomac.2024.133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The development of new polymer nanocomposites or antibacterial coatings is crucial in combating drug-resistant infections, particularly bacterial infections. In this study, a new chitosan polymer based nanocomposite reinforced with magnesium oxide nanopowders and carbon quantum dots was fabricated by sol-gel technique and coated on 316 L stainless steel. In order to gaining the optimal amount of components to achieve the maximum antibacterial properties, the effect of concentration of nanocomposite components on its antibacterial properties was investigated. Crystal structure, microstructure, elemental dispersion, size distribution, chemical composition and morphology of nanocomposite and coating were characterized with various analyses. The obtained results exhibited that the carbon quantum dot and magnesium oxide nanopowders were distributed uniformly and without agglomeration in the chitosan matrix and created a uniform coating. The antibacterial properties of the synthesized samples against Staphylococcus aureus bacteria (gram positive) were evaluated using disk diffusion and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) antibacterial tests. The inhibition growth zone formed around the antibiotic and nanocomposite 25 mg/ml under dark and light was about 32 and 14, 11 mm, respectively. Also, MIC and MBC values for final nanocomposite were 62.5 and 125 μg/ml, respectively.
Collapse
Affiliation(s)
- Mahsa Basati
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran
| | - Ayoub Moghadam
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran.
| | - Bijan Abbasi Khazaei
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran
| | - Maryam Chalabi Hajkarim
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Alkhudhairy F. Canal disinfection using Nd: YAG Laser, synchronized microbubble-photodynamic activation, and carbon quantum dots on microhardness, smear layer removal, and extrusion bond strength of zirconia post to canal dentin. An invitro scanning electron microscopic analysis. Microsc Res Tech 2024; 87:2043-2052. [PMID: 38646819 DOI: 10.1002/jemt.24584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Evaluation of the impact of the latest root canal disinfectant, that is carbon quantum dots (CQDs), synchronized microbubble-photodynamic activation (SYMPA), and Nd: YAG laser along with ethylenediaminetetraacetic acid (EDTA) as a final irrigant on the Marten hardness (MH), smear layer (SL) removal, and extrusion bond strength (EBS) of zirconia post to the canal dentin. Eighty intact single-rooted premolars were obtained and disinfected using 0.5% chloramine-T solution. Root canal preparation was performed using ProTaper files followed by obturation. The post space was prepared for prefabricated zirconia post and all the teeth were randomly divided into four groups based on the disinfection used (n = 20 each) Group 1: 5.25% NaOCl + 17% EDTA (Control), Group 2: Nd: YAG laser + 17% EDTA, Group 3: SYMPA + 17% EDTA, and Group 4: CQDs + 17% EDTA. MH, SL removal, and EBS of zirconia post-bonded to root dentin were performed using a microhardness tester, scanning electron microscope (SEM), and universal testing machine, respectively. Both intragroup and intergroup comparisons were performed using one-way analysis of variance (ANOVA) and posthoc-Tukey test for significant difference (p < .05). Group 2 samples (Nd: YAG laser + 17% EDTA) (0.24 ± 0.06 GPa) exhibited highest values of MH. Samples in group 3 (SYMPA + 17% EDTA) treated teeth unveiled the lowest MH scores (0.13 ± 0.02 GPa). Moreover, the coronal third of Group 3 specimens (SYMPA and 17% EDTA) (1.54 ± 0.31) eliminated SL from the canal with the greatest efficacy as well as presented the highest EBS (10.13 ± 0.69 MPa). However, the apical third of Group 1 samples (5.25% NaOCl + 17% EDTA) (2.95 ± 0.33) exhibited the least efficient elimination of SL from the radicular dentin as well as the lowest bond strength (5.11 ± 0.19 MPa) of zirconia post to the dentin. The SYMPA technique with 17% EDTA proved highly effective in removing the SL from canal dentin and enhancing the EBS of zirconia posts. The least preferable method for SL removal and MH improvement was found to be 5.25% NaOCl + 17% EDTA. CQDs and Nd: YAG laser demonstrated satisfactory smear layer removal properties from the canal, along with achieving appropriate bond strength of zirconia posts. RESEARCH HIGHLIGHTS: Nd: YAG laser and 17% EDTA as canal disinfectant exhibited the highest values of MH. Specimens irrigated with SYMPA and 17% EDTA eliminated SL from the canal with the greatest efficacy. The coronal third of Group 3 (SYMPA + 17% EDTA) samples unveiled the highest zirconia post-bond integrity score to the canal dentin. Cohesive failure was a dominant failure type among different experimental groups.
Collapse
Affiliation(s)
- Fahad Alkhudhairy
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Pôbiš P, Kubalcová J, Milasová T, Kandárová H. Development of Sensitive In Vitro Protocols for the Biocompatibility Testing of Medical Devices and Pharmaceuticals Intended for Contact with the Eyes: Acute Irritation and Phototoxicity Assessment. Altern Lab Anim 2024; 52:261-275. [PMID: 39168512 DOI: 10.1177/02611929241270095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study introduces a novel in vitro methodology that employs the 3-D reconstructed tissue model, EpiOcular, to assess the irritation and phototoxicity potential of medical devices and drugs in contact with the eye. Our study evaluated diverse test materials, including medical devices, ophthalmological solutions and an experimental drug (cemtirestat), for their potential to cause eye irritation and phototoxicity. The protocols used in this study with the EpiOcular tissue model were akin to those used in the ultra-mildness testing of cosmetic formulations, which is challenging to predict with standard in vivo rabbit tests. To design these protocols, we leveraged experience gained from the validation project on the EpiDerm skin irritation test for medical devices (ISO 10993-23:2021) and the OECD TG 498 method for photo-irritation testing. The predictions were based on the tissue viability and inflammatory response, as determined by IL-1α release. By developing and evaluating these protocols for medical devices, we aimed to expand the applicability domain of the tests referred to in ISO 10993-23. This will contribute to the standardisation and cost-effective safety evaluation of ophthalmic products, while reducing reliance on animal testing in this field. The findings obtained from the EpiOcular model in the photo-irritation test could support its implementation in the testing strategies outlined in OECD TG 498.
Collapse
Affiliation(s)
- Peter Pôbiš
- Institute of Experimental Pharmacology and Toxicology (IEPT), Centre of Experimental Medicine (CEM), Slovak Academy of Sciences (SAS), Bratislava, Slovakia
| | - Júlia Kubalcová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Tatiana Milasová
- Institute of Experimental Pharmacology and Toxicology (IEPT), Centre of Experimental Medicine (CEM), Slovak Academy of Sciences (SAS), Bratislava, Slovakia
| | - Helena Kandárová
- Institute of Experimental Pharmacology and Toxicology (IEPT), Centre of Experimental Medicine (CEM), Slovak Academy of Sciences (SAS), Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Ni ZJ, Xue Y, Wang W, Du J, Thakur K, Ma WP, Wei ZJ. Carbon Dots-Mediated Photodynamic Treatment Reduces Postharvest Senescence and Decay of Grapes by Regulating the Antioxidant System. Foods 2024; 13:2717. [PMID: 39272482 PMCID: PMC11394370 DOI: 10.3390/foods13172717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Grapes are susceptible to mold and decay during postharvest storage, and developing new technologies to extend their storage period has important application value. Photodynamic technology (PDT) in concurrence with carbon dots (CDs) proposes an innovative and eco-friendly preservation strategy. We examined the effects of carbon dots combined with photodynamic treatment on postharvest senescence and antioxidant system of table grape. The compounding of photodynamic technology with a 0.06 g L-1 CDs solution could possibly extend the postharvest storage period of grape berries. Through this strategy, we achieved a decreased rate of fruit rotting and weight loss alongside the delayed deterioration of fruit firmness, soluble solids, and titratable acid. As paired with photodynamic technology, CDs considerably decreased the postharvest storage loss of phenols, flavonoids, and reducing sugars as compared to the control group. Concurrently, it remarkably postponed the build-up of hydrogen peroxide (H2O2), superoxide anion (O2∙-), and malondialdehyde (MDA); elevated the levels of reduced ascorbic acid (AsA) and reduced glutathione (GSH); lowered the levels of dehydroascorbic acid (DHA) and oxidized glutathione (GSSG); raised the ratios of AsA/DHA and GSSH/GSSG; encouraged the activities of superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL); and inhibited the activities of polyphenol oxidase (PPO) and lipoxygenase (LOX). Furthermore, it enhanced the iron reduction antioxidant capacity (FRAP) and DPPH radical scavenging capacity of grape berries. CDs combined with photodynamic treatment could efficiently lessen postharvest senescence and decay of grape berry while extending the storage time.
Collapse
Affiliation(s)
- Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Ying Xue
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Wei Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Juan Du
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Kiran Thakur
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wen-Ping Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Xu Y, Hao Y, Arif M, Xing X, Deng X, Wang D, Meng Y, Wang S, Hasanin MS, Wang W, Zhou Q. Poly(Lysine)-Derived Carbon Quantum Dots Conquer Enterococcus faecalis Biofilm-Induced Persistent Endodontic Infections. Int J Nanomedicine 2024; 19:5879-5893. [PMID: 38895145 PMCID: PMC11184170 DOI: 10.2147/ijn.s453385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Persistent endodontic infections (PEIs) mediated by bacterial biofilm mainly cause persistent periapical inflammation, resulting in recurrent periapical abscesses and progressive bone destruction. However, conventional root canal disinfectants are highly damaging to the tooth and periodontal tissue and ineffective in treating persistent root canal infections. Antimicrobial materials that are biocompatible with apical tissues and can eliminate PEIs-associated bacteria are urgently needed. Methods Here, ε-poly (L-lysine) derived carbon quantum dots (PL-CQDs) are fabricated using pyrolysis to remove PEIs-associated bacterial biofilms. Results Due to their ultra-small size, high positive charge, and active reactive oxygen species (ROS) generation capacity, PL-CQDs exhibit highly effective antibacterial activity against Enterococcus faecalis (E. faecalis), which is greatly dependent on PL-CQDs concentrations. 100 µg/mL PL-CQDs could kill E. faecalis in 5 min. Importantly, PL-CQDs effectively achieved a reduction of biofilms in the isolated teeth model, disrupting the dense structure of biofilms. PL-CQDs have acceptable cytocompatibility and hemocompatibility in vitro and good biosafety in vivo. Discussion Thus, PL-CQDs provide a new strategy for treating E. faecalis-associated PEIs.
Collapse
Affiliation(s)
- Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Yuanping Hao
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Muhammad Arif
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| | - Xiaodong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, People’s Republic of China
| | - Xuyang Deng
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Danyang Wang
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Meng
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Shuai Wang
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | | | - Wanchun Wang
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Marković ZM, Milivojević DD, Kovač J, Todorović Marković BM. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers (Basel) 2024; 16:1646. [PMID: 38931997 PMCID: PMC11207477 DOI: 10.3390/polym16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swell-encapsulation-shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Janez Kovač
- Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
7
|
Emam HE, Hamouda T, Emam EAM, Darwesh OM, Ahmed HB. Nano-scaled polyacrylonitrile for industrialization of nanofibers with photoluminescence and microbicide performance. Sci Rep 2024; 14:7926. [PMID: 38575619 PMCID: PMC10995123 DOI: 10.1038/s41598-024-58035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5-15% wt/vol, honey like solution, 678-834 mPa s), thermal treatment for 2-4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300-400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Tamer Hamouda
- Spinning and Weaving Engineering Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - El-Amir M Emam
- Faculty of Applied Arts, Textile Printing, Dyeing and Finishing Department, Helwan University, Cairo, 11795, Egypt
| | - Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Giza, 12622, Egypt
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
8
|
Radha R, Makhlouf Z, Diab R, Al-Sayah MH. Modifying cellulose fibres with carbon dots: a promising approach for the development of antimicrobial fibres. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231755. [PMID: 38633350 PMCID: PMC11022000 DOI: 10.1098/rsos.231755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
This study focuses on the development of antimicrobial fibres for use in medical and healthcare textile industries. Carbon dots (CDs) were designed with boronic acid groups for the attachment to cellulose fibres found in cotton textiles and to enhance their attachment to glycogens on bacterial surfaces. Boronic acid-based and curcumin-based CDs were prepared and characterized using various techniques, showing a nanoscale size and zeta potential values. The CDs inhibited the growth of both Staphylococcus epidermidis and Escherichia coli bacteria, with UV-activated CDs demonstrating improved antibacterial activity. The antimicrobial activity of the CDs was then tested, revealing strong adherence to cellulose paper fibres with no CD diffusion and potent inhibition of bacterial growth. Cytotoxicity assays on human cell lines showed no toxicity towards cells at concentrations of up to 100 µg ml-1 but exhibited increased toxicity at concentrations exceeding 1000 µg ml-1. However, CD-modified cellulose paper fibres showed no toxicity against human cell lines, highlighting the antimicrobial properties of the CD-modified cellulose fibres are safe for human use. These findings show promising potential for applications in both industrial and clinical settings.
Collapse
Affiliation(s)
- Remya Radha
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| | - Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| | - Rasha Diab
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah26666, United Arab Emirates
| |
Collapse
|
9
|
Al-Anazi M. Gold versus platinum for chemical modification of carbon quantum dots from carboxymethyl cellulose: Tunable biomedical performance. Int J Biol Macromol 2024; 261:129830. [PMID: 38296138 DOI: 10.1016/j.ijbiomac.2024.129830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Urgent requirements for medication from chronic inflammation and cancer are considerably interested, while, the recent reports were considered with investigating simple methods for synthesis. Metal-modified carbon quantum dots ("M-CQDs") were successfully ingrained from carboxymethyl cellulose under the assistance of infra-red irradiation. The current approach demonstrates a study for the effect of structural tuning for biomedical performance of CQDs via modifying of CQDs with either gold (Au-CQDs) or platinum (Pt-CQDs). Successive nucleation of Au-CQDs and Pt-CQDs was confirmed via different instrumental analyses like, TEM micrographs, Zeta potential, XRD, FTIR, 1HNMR& 13CNMR spectra. The data reveal that, modification of CQDs (8.7 nm) with gold was reflected in insignificant effect on the mean size of CQDs (8.9 nm), whereas, doping of platinum resulted in slight enlargement of the size (12.4 nm). However, Pt-CQDs were exhibited with the highest anti-inflammatory (cell viability percent 78 %) and antimicrobial action. On the other hand, Au-CQDs were shown with the highest anticancer affinity (reduction of cell viability 83 %) compared to the others. The current study approved the superiority of CQDs modified with either gold or platinum to be successfully applicable as potential therapeutic reagents for the treatment of either cancer or inflammation diseases.
Collapse
Affiliation(s)
- Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
10
|
Dong X, Liu Y, Adcock AF, Sheriff K, Liang W, Yang L, Sun YP. Carbon-TiO 2 Hybrid Quantum Dots for Photocatalytic Inactivation of Gram-Positive and Gram-Negative Bacteria. Int J Mol Sci 2024; 25:2196. [PMID: 38396872 PMCID: PMC10889188 DOI: 10.3390/ijms25042196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon-semiconductor hybrid quantum dots are classical carbon dots with core carbon nanoparticles doped with a selected nanoscale semiconductor. Specifically, on those with the nanoscale TiO2 doping, denoted as CTiO2-Dots, their synthesis and thorough characterization were reported previously. In this work, the CTiO2-Dots were evaluated for their visible light-activated antibacterial function, with the results showing the effective killing of not only Gram-positive but also the generally more resistant Gram-negative bacteria. The hybrid dots are clearly more potent antibacterial agents than their neat carbon dot counterparts. Mechanistically, the higher antibacterial performance of the CTiO2-Dots is attributed to their superior photoexcited state properties, which are reflected by the observed much brighter fluorescence emissions. Also considered and discussed is the possibility of additional contributions to the antibacterial activities due to the photosensitization of the nanoscale TiO2 by its doped core carbon nanoparticles.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (X.D.); (L.Y.)
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
| | - Yamin Liu
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Audrey F. Adcock
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (X.D.); (L.Y.)
| | - Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Weixiong Liang
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (X.D.); (L.Y.)
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Zhao WB, Liu KK, Wang Y, Li FK, Guo R, Song SY, Shan CX. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Adv Healthc Mater 2023; 12:e2300324. [PMID: 37178318 DOI: 10.1002/adhm.202300324] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties. The abundant surface states, tunable photoexcited states, and excellent photo-electron transfer properties make sterilization of CDs feasible and are gradually emerging in the antibacterial field. This review provides comprehensive insights into the recent development of CDs in the antibacterial field. The topics include mechanisms, design, and optimization processes, and their potential practical applications are also highlighted, such as treatment of bacterial infections, against bacterial biofilms, antibacterial surfaces, food preservation, and bacteria imaging and detection. Meanwhile, the challenges and outlook of CDs in the antibacterial field are discussed and proposed.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Marković ZM, Mišović AS, Zmejkoski DZ, Zdravković NM, Kovač J, Bajuk-Bogdanović DV, Milivojević DD, Mojsin MM, Stevanović MJ, Pavlović VB, Marković BMT. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12050919. [PMID: 37237822 DOI: 10.3390/antibiotics12050919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.
Collapse
Affiliation(s)
- Zoran M Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Aleksandra S Mišović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Danica Z Zmejkoski
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Nemanja M Zdravković
- Scientific Veterinary Institute of Serbia, Janisa Janulisa 14, 11107 Belgrade, Serbia
| | - Janez Kovač
- Jozef Stefan Institute, Department of Surface Engineering-F4, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | | | - Dušan D Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| | - Marija M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena J Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Vladimir B Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Biljana M Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
13
|
Almahri A, Al-bonayan AM, Attar RMS, Karkashan A, Abbas B, Al-Qahtani SD, El-Metwaly NM. Multifunctional Lipophobic Polymer Dots from Cyclodextrin: Antimicrobial/Anticancer Laborers and Silver Ions Chemo-Sensor. ACS OMEGA 2023; 8:16956-16965. [PMID: 37214711 PMCID: PMC10193544 DOI: 10.1021/acsomega.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
β-Cyclodextrin (CD) is currently exploited for the implantation of lipophobic polymer dots (PDs) for antimicrobial and anticancer laborers. Moreover, the PDs were investigated to act as a chemo-sensor for metal detection. The data revealed that under basic conditions, photoluminescent PDs (5.1 nm) were successively clustered with a controllable size at 190 °C, whereas under acidic conditions, smaller-sized non-photoluminescent carbon nanoparticles (2.9 nm) were obtained. The fluorescence intensity of synthesized PDs under basic conditions was affected by pH, and such an intensity was significantly higher compared to that prepared under acidic conditions. The PDs were exploited as florescent detectors in estimation of Ag+ ions in aquatic streams. Treatment of Ag+ ion colloids with PDs resulted in fluorescence quenching attributing to the production of AgNPs that approved by spectral studies. The cell viability percent was estimated for Escherichia coli, Staphylococcus aureus, and Candida albicans after incubation with PDs implanted under basic conditions for 24 h. The cell mortality percent was estimated for breast cancer (MCF-7) after incubation with different concentrations of PDs that were implanted under acidic versus basic conditions to show that treatment of the tested cells with 1000 μg/mL PDs prepared under basic (IC50 232.5 μg/mL) and acidic (IC50 88.6 μg/mL) conditions resulted in cell mortality percentages of 70 and 90%, respectively.
Collapse
Affiliation(s)
- Albandary Almahri
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ameena M. Al-bonayan
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Roba M. S. Attar
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa Karkashan
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basma Abbas
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street Mansoura 35516, Egypt
| |
Collapse
|
14
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
16
|
Wang Y, Ding C, Ge Z, Li Z, Chen L, Guo X, Dong G, Zhou P. A novel antibacterial and fluorescent coating composed of polydopamine and carbon dots on the surface of orthodontic brackets. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:10. [PMID: 36802301 PMCID: PMC9943946 DOI: 10.1007/s10856-023-06712-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
Many kinds of antibacterial coatings have been designed to prevent the adherence of bacteria onto the surface of a fixed orthodontic device of brackets. However, the problems such as weak binding force, undetectable, drug resistance, cytotoxicity and short duration needed to be solved. Thus, it has great value in developing novel coating methods with long-term antibacterial and fluorescence properties according to the clinical application of brackets. In this study, we synthesized blue fluorescent carbon dots (HCDs) using the traditional Chinese medicinal honokiol, which could cause irreversible killing effects on both gram-positive and gram-negative bacteria through positive charges on the surface and inducing reactive oxygen species (ROS) production. Based on this, the surface of brackets was serially modified with polydopamine and HCDs, taking advantage of the strong adhesive properties as well as the negative surface charge of polydopamine particles. It is found that this coating exhibits stable antibacterial properties in 14 days with good biocompatibility, which can provide a new solution and strategy to solve the series of hazards caused by bacterial adhesion on the surface of orthodontic brackets.
Collapse
Affiliation(s)
- Yixi Wang
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Chuanyang Ding
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Zhangjie Ge
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Zhipeng Li
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Lixin Chen
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Xiaolong Guo
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Genxi Dong
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
| | - Ping Zhou
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
17
|
Marković ZM, Budimir MD, Danko M, Milivojević DD, Kubat P, Zmejkoski DZ, Pavlović VB, Mojsin MM, Stevanović MJ, Todorović Marković BM. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:165-174. [PMID: 36761674 PMCID: PMC9907016 DOI: 10.3762/bjnano.14.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 06/01/2023]
Abstract
Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling-encapsulation-shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.
Collapse
Affiliation(s)
- Zoran M Marković
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Milica D Budimir
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84 541 Bratislava, Slovakia
| | - Dušan D Milivojević
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Pavel Kubat
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23, Praha 8, Czech Republic
| | - Danica Z Zmejkoski
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| | - Vladimir B Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade-Zemun, Serbia
| | - Marija M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milena J Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Biljana M Todorović Marković
- Institute of Nuclear Sciences „Vinča“-National Institute of the Republic of Serbia, P.O.B. 522, 11001 Belgrade, Serbia
| |
Collapse
|
18
|
Wu W, Qin Y, Fang Y, Zhang Y, Shao S, Meng F, Zhang M. Based on multi-omics technology study the antibacterial mechanisms of pH-dependent N-GQDs beyond ROS. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129954. [PMID: 36116315 DOI: 10.1016/j.jhazmat.2022.129954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Currently, graphene quantum dots (GQDs) are widely used as antibacterial agents, and their effects are dependent on the reactive oxygen species (ROS) generated by photodynamic and peroxidase activities. Nevertheless, the supply of substrates or light greatly limits GQDs application. Besides, due to compensatory mechanisms in bacteria, comprehensive analysis of the molecular mechanism underlying the effects of GQDs based on cellular-level experiments is insufficient. Therefore, N-GQDs with inherent excellent, broad-spectrum antibacterial efficacy under acidic conditions were successfully synthesized. Then, via multi-omics analyses, the antibacterial mechanisms of the N-GQDs were found to not only involve generation ROS but also be associated with changes in osmotic pressure, interference with nucleic acid synthesis and inhibition of energy metabolism. More surprisingly, the N-GQDs could destroy intracellular acid-base homeostasis, causing bacterial cell death. In conclusion, this study provides important insights into the antibacterial mechanism of GQDs, offering a basis for the engineering design of antibacterial nanomaterials.
Collapse
Affiliation(s)
- Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yukun Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China.
| |
Collapse
|
19
|
Wang Z, Zhang L, Lei Z, Zheng L, Huang L, Liu S, Lu Y. Carbon dots and polyurethane composite for photo-induced elimination of uranium under air atmosphere. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Taleb K, Saidi-Besbes S, Pillin I, Grohens Y. Biodegradable Poly(Butylene Succinate) Nanocomposites Based on Dimeric Surfactant Organomodified Clays with Enhanced Water Vapor Barrier and Mechanical Properties. ACS OMEGA 2022; 7:43254-43264. [PMID: 36467964 PMCID: PMC9713783 DOI: 10.1021/acsomega.2c05964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Biocomposites based on biodegradable polybutylene succinate (PBS) and organomodified clays (OMt) were prepared by melt blending process. The OMt nanofillers were obtained by ion exchange reaction between sodium montmorillonite (Mt) and gemini surfactants bearing 4-decyloxyphenylacetamide hydrophobic chains and ethylene or hexylene spacer. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and rheological measurement results showed that the investigated hybrids present a uniform dispersion with an exfoliation of clay into the PBS matrix, particularly for short spacer surfactant based composites. The effect of organoclay loading and composition on the thermal, mechanical, and barrier properties was also investigated. High clay loading and long gemini surfactant spacer lead to substantial improvement of Young modulus values by 21%, while low clay content induces a reduction of the hybrid's crystallinity due to strong OMt-PBS interactions. Compared to that of the neat PBS film, a significant reduction of the water vapor permeability (WVP) by 28% was obtained by adding only 3 wt % of PBS/OMt (2) which opens up prospects for this material in the field of food packaging. This study shows that gemini surfactant-modified organoclays can be used as effective nanofillers in a PBS matrix to access to value-added nanocomposites.
Collapse
Affiliation(s)
- Khadidja Taleb
- Université
Oran 1 Ahmed Ben Bella, Laboratoire de
Synthèse Organique Appliquée (LSOA), Département
de chimie, Faculté des sciences exactes et appliquées, BP 1524 EL Mnaouer, 31000Oran, Algeria
- Université
Oran 1 Ahmed Ben Bella, Faculté
de Médecine, BP 1524 EL Mnaouer, 31000Oran, Algeria
| | - Salima Saidi-Besbes
- Université
Oran 1 Ahmed Ben Bella, Laboratoire de
Synthèse Organique Appliquée (LSOA), Département
de chimie, Faculté des sciences exactes et appliquées, BP 1524 EL Mnaouer, 31000Oran, Algeria
| | - Isabelle Pillin
- IRDL-FRE
CNRS 3744, Université de Bretagne
Sud, Lorient56100, France
| | - Yves Grohens
- IRDL-FRE
CNRS 3744, Université de Bretagne
Sud, Lorient56100, France
| |
Collapse
|
21
|
Marković ZM, Kováčová M, Jeremić SR, Nagy Š, Milivojević DD, Kubat P, Kleinová A, Budimir MD, Mojsin MM, Stevanović MJ, Annušová A, Špitalský Z, Todorović Marković BM. Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4070. [PMID: 36432356 PMCID: PMC9699046 DOI: 10.3390/nano12224070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Mária Kováčová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sanja R. Jeremić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cestá 9/6319, 84513 Bratislava, Slovakia
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavel Kubat
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Praha, Czech Republic
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
| | - Milica D. Budimir
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija M. Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena J. Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Adriana Annušová
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia
| | - Zdeno Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Anticancer and Microbicide Action of Carbon Quantum Dots Derived from Microcrystalline Cellulose: Hydrothermal versus Infrared Assisted Techniques. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Tahir N, Zahid M, Jillani A, Yaseen M, Abbas Q, Abdul shakoor R, shahid I. Ternary silver tungstate-MoS2/graphene oxide heterostructure nanocomposite for enhanced photocatalysis under visible light and antibacterial activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Li H, Liu Y, Gao X, Niu X, Fan H, Wang K. Synthesis, characterization and antibacterial properties of chitosan/Ag2S/CQDs hydrogel. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Bashir S, Jamil A, Amin R, Ul-hasan I, Alazmi A, Shahid M. Hydrothermally synthesized Gd-doped BiSbO4 nanoparticles and their graphene-based composite: A novel photocatalytic material. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Du T, Cao J, Xiao Z, Liu J, Wei L, Li C, Jiao J, Song Z, Liu J, Du X, Wang S. Van-mediated self-aggregating photothermal agents combined with multifunctional magnetic nickel oxide nanoparticles for precise elimination of bacterial infections. J Nanobiotechnology 2022; 20:325. [PMID: 35836225 PMCID: PMC9281033 DOI: 10.1186/s12951-022-01535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Building a novel and efficient photothermal antibacterial nanoplatform is a promising strategy for precise bacterial elimination. Herein, a nanocomposite NiO NPs@AuNPs@Van (NAV) for selective MRSA removal was constructed by electrostatic self-assembly of highly photothermal magnetic NiO NPs and vancomycin (Van)-modified gold nanoparticles (AuNPs). In the presence of MRSA and under NIR irradiation, Van-mediated AuNPs can self-aggregate on MRSA surface, generating photothermal effect in situ and killing 99.6% MRSA in conjunction with magnetic NiO NPs. Additionally, the photothermal efficiency can be improved by magnetic enrichment due to the excellent magnetism of NAV, thereby enhancing the bactericidal effect at a lower experimental dose. In vitro antibacterial experiments and full-thickness skin wound healing test demonstrated that this combination therapy could effectively accelerate wound healing in MRSA-infected mice, increase collagen coverage, reduce IL-6 and TNF-α content, and upregulate VEGF expression. Biological safety experiments confirmed that NAV has good biocompatibility in vivo and in vitro. Overall, this work reveals a new type of nanocomposite with enhanced photothermal antibacterial activity as a potential nano-antibacterial agent for treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiangli Cao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zehui Xiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lifei Wei
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chunqiao Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
27
|
|
28
|
Somaraj G, Mathew S, Abraham T, Ambady KG, Mohan C, Mathew B. Nitrogen and Sulfur Co‐Doped Carbon Quantum Dots for Sensing Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gayathri Somaraj
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Sneha Mathew
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Thomas Abraham
- Department of Chemistry Catholicate College Pathanamthitta Kerala India
| | - K. G. Ambady
- Department of Special Education National Institute for the Empowerment of Persons with Intellectual Disabilities Telangana India
| | - Chitra Mohan
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| | - Beena Mathew
- School of chemical Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
29
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
30
|
Kaur N, Tiwari P, Mate N, Sharma V, Mobin SM. Photoactivatable carbon dots as a label-free fluorescent probe for picric acid detection and light-induced bacterial inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112412. [PMID: 35227941 DOI: 10.1016/j.jphotobiol.2022.112412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The zero-dimensional carbon nanostructure known as carbon dots showed attractive attributes such as multicolour emission, very high quantum yield, up-conversion, very good aqueous solubility, eco-friendliness, and excellent biocompatibility. These outstanding features of the carbon dots have raised significant interest among the research community worldwide. In the current work, water-soluble nitrogen, silver, and gold co-doped bimetallic carbon dots (BCDs) were prepared using the one-pot hydrothermal method with citric acid as a sole carbon source. As prepared BCDs showed size in the range of 4-8 nm and excitation-independent emission behaviour with maximum emission observed at 427 nm. Additionally, these BCDs showed a very high quantum yield value of 50% and fluorescence lifetime value of 10.1 ns respectively. Interestingly, as prepared BCDs selectively sense picric acid (PA) by exhibiting "selective fluorescence turn-off" behaviour in the presence of PA with a limit of detection value (LOD) of 46 nM. Further, as prepared BCDs were explored for photodynamic therapy to inactivate bacterial growth in the presence of light (400-700 nm) by generating singlet oxygen. Thus as prepared BCDs offer lots of potentials to use a nanoprobe to detect picric acid in an aqueous medium and to design next-generation antibacterial materials.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biosciences and Bio-Medical Engineering, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Jammu 181221, Jammu & Kashmir, India
| | - Shaikh M Mobin
- Department of Biosciences and Bio-Medical Engineering, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India; Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
31
|
Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. J Fluoresc 2022; 32:1039-1049. [PMID: 35262854 DOI: 10.1007/s10895-022-02923-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
An eco-friendly, cost-effective, and convenient approach for synthesizing biocompatible fluorescent carbon quantum dots (CQDs) from the leaf extract of the medicinal plant Calotropis gigantea, commonly known as crown flower, has been demonstrated in this work. Fluorescence quantum yields of up to 4.24 percent were observed in as-synthesized CQDs. The size distribution of the as-synthesized CQDs varied from 2.7 to 10.4 nm, with a significant proportion of sp2 and sp3 carbon groups verified by nuclear magnetic resonance analysis. The zeta potential of as-synthesized CQDs was measured to be -13.8 mV, indicating the existence of a negatively charged surface with incipient instability in aqueous suspension. Furthermore, as an alternative to organic or synthetic dyes, the development of simple, inexpensive, and non-destructive fluorescence-based staining agents are highly desired. In this regard, as-synthesized CQDs have shown remarkable fluorescent staining capabilities in this work and might be utilised as a suitable probe for optical and bio-imaging of bacteria, fungi, and plant cells.
Collapse
|
32
|
Zhang Y, Cheng S, Wang X, Wang Y, Zhang Y. Fluorescence "off-on" probe for lead (II) detection based on Atractylodes III CQDs and bioimaging. LUMINESCENCE 2022; 37:766-776. [PMID: 35218588 DOI: 10.1002/bio.4219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/08/2022]
Abstract
In this work, a type of carbon quantum dots (CQDs) with bright blue emission were readily fabricated through one-step hydrothermal treatment from Atractylodes III. We explored the surface morphology and optical properties of CQDs by Transmission electron microscope (TEM), X-ray diffraction patterns (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and UV-vis spectrophotometer. The obtained CQDs possessed good photoluminescence properties, water solubility and biocompatibility. The fluorescence quantum yield of them was 3.72%. It was found that the fluorescence intensity of CQDs will be quenched by picric acid (PA). After adding lead (II), the fluorescence can be effectively recovered. Hence, an "off-on" fluorescence probe was designed to detect lead (II) in the range of 0-580 μM and the limit of detection (LOD) was 0.068 μM. In the meanwhile, the experiments showed that the CQDs can be successfully used in bioimaging and as a hidden fluorescent ink.
Collapse
Affiliation(s)
- Yaqing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| |
Collapse
|
33
|
Zhao L, Zhang M, Mujumdar AS, Wang H. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Crit Rev Food Sci Nutr 2022; 63:6738-6756. [PMID: 35174744 DOI: 10.1080/10408398.2022.2039896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have two unique advantages: one is ease of synthesis at low price, the other is desirable physical and chemical properties, such as ultra-small size, abundant surface functional groups, nontoxic/low-toxicity, good biocompatibility, excellent antibacterial and antioxidant activities etc. These advantages provide opportunities for the development of new food packaging enhancers and food preservatives. This paper systematically reviews the studies of CDs used to strengthen the physical properties of food packaging, including strengthen mechanical strength, ultraviolet (UV) barrier properties and water barrier properties. It also reviews the researches of CDs used to fabricate active packaging with antioxidant and/or antibacterial properties and intelligent packaging with the capacity of sensing the freshness of food. In addition, it analyzes the antioxidant and antibacterial properties of CDs as preservatives, and discusses the effect of CDs applied as coating agents and nano-level food additives for extension the shelf life of food samples. It also provides a brief review on the security and the release behavior of CDs.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
34
|
Wang L, Liu X, Qi P, Sun J, Jiang S, Li H, Gu X, Zhang S. Enhancing the thermostability, UV shielding and antimicrobial activity of transparent chitosan film by carbon quantum dots containing N/P. Carbohydr Polym 2022; 278:118957. [PMID: 34973773 DOI: 10.1016/j.carbpol.2021.118957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022]
Abstract
The chitosan (CS) transparent film has attracted much attention in food and medicine packaging areas due to their biodegradability and good availability. A novel carbon quantum dots compound containing nitrogen and phosphorus (NP-CQDs) was obtained by reacting citric acids, with urea and phytic acids. The density of the film was increased, and the water vapor permeation was reduced by the presence of NP-CQDs. The introduction of 4 wt% NP-CQDs increased the water contact angle of the CS film from 79.2° to 105.8°. The shielding on UV-A and UV-B transmittance was increased with the NP-CQDs loading. The film containing 4 wt% NP-CQDs blocked more than 90.2% UV-A and 96.5% UV-B; however, it only blocked 26.8% visible light. It also exhibited better antibacterial activity to both E. coli and S. aureus than the control CS film. This work provided a feasible way to prepare multifunctional bio-safe film.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengling Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
35
|
Kasi G, Gnanasekar S, Zhang K, Kang ET, Xu LQ. Polyurethane‐based
composites with promising antibacterial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gopinath Kasi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Sathishkumar Gnanasekar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
| | - En Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Department of Chemical and Biomolecular Engineering National University of Singapore Kent Ridge Singapore
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| |
Collapse
|
36
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Liu X, Wang K. A PPy/MoS 2 core–shell heterojunction modified by carbon dots exhibits high photocatalytic antibacterial performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj04388b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CQDs and PPy facilitate the separation of MoS2 electron–hole pairs and enhance their photocatalytic antibacterial performance.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Sha Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Xiaoyu Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
37
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
38
|
Jiao H, Guo J, Cui Y, Yu X, Liao Y, Ying Y, Li Z, Yao K, Huang H. Plasmon‐Enhanced Photocatalytic Activity of Organic Heterostructure for Indoor‐Light Antibacterial Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hui‐Feng Jiao
- School of Basic Medicine Nanchang University Nanchang 330031 China
| | - Jiaxu Guo
- School of Basic Medicine Nanchang University Nanchang 330031 China
| | - Yuying Cui
- Institute of Photovoltaics/Department of Materials Science and Engineering Nanchang University Nanchang 330031 China
| | - Xin Yu
- Institute of Photovoltaics/Department of Materials Science and Engineering Nanchang University Nanchang 330031 China
| | - Yunfei Liao
- School of Basic Medicine Nanchang University Nanchang 330031 China
| | - Yiran Ying
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Zhongan Li
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Kai Yao
- Institute of Photovoltaics/Department of Materials Science and Engineering Nanchang University Nanchang 330031 China
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Haitao Huang
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| |
Collapse
|
39
|
Cheng Y, Wei Y, Fang C, Chen J, Zhao W. Facile synthesis of CQDs/Ag NPs composites with photoluminescence and their potential application in antibacterial materials. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Zhang M, Wang G, Zhang X, Zheng Y, Lee S, Wang D, Yang Y. Polyvinyl Alcohol/Chitosan and Polyvinyl Alcohol/Ag@MOF Bilayer Hydrogel for Tissue Engineering Applications. Polymers (Basel) 2021; 13:3151. [PMID: 34578053 PMCID: PMC8468989 DOI: 10.3390/polym13183151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/28/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, polyvinyl alcohol/Ag-Metal-organic framework (PVA/Ag@MOF) and polyvinyl alcohol/chitosan (PVA/CS) were used as the inner and outer layers to successfully prepare a bilayer composite hydrogel for tissue engineering scaffold. The performance of bilayer hydrogels was evaluated. The outer layer (PVA/CS) has a uniform pore size distribution, good water retention, biocompatibility and cell adhesion ability. The inner layer (PVA/Ag@MOF) has good antibacterial activity and poor biocompatibility. PVA, PVA/0.1%Ag@MOF, PVA/0.5%Ag@MOF, and PVA/1.0%Ag@MOF show anti-microbial activity in ascending order. However, its use as an inner layer avoids direct contact with cells and prevents infection. The cell viability of all samples was above 90%, indicating that the bilayer hydrogel was non-toxic to A549 cells. The bilayer hydrogel scaffold combines the advantages of the inner and outer layers. In summary, this new bilayer composite is an ideal lung scaffold for tissue engineering.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (G.W.); (X.Z.); (Y.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (G.W.); (X.Z.); (Y.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (G.W.); (X.Z.); (Y.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuqi Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (G.W.); (X.Z.); (Y.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (G.W.); (X.Z.); (Y.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (G.W.); (X.Z.); (Y.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Yang
- National Marine Data and Information Service, Tianjin 300171, China;
| |
Collapse
|
41
|
Cheng S, Zhang J, Liu Y, Wang Y, Xiao Y, Zhang Y. One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging. Mikrochim Acta 2021; 188:325. [PMID: 34490491 DOI: 10.1007/s00604-021-04969-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023]
Abstract
Water soluble N, S-doped carbon dots (N, S-CDs) with orange emission were synthesized from basic fuchsin and sulfosalicylic acid by the typical hydrothermal route. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for sensitive determination of tetracycline antibiotics (for example, chlortetracycline (CTC)) and quercetin. The proposed sensor was utilized to realize the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm) with satisfactory recoveries and relative standard deviations (RSD). The linear range and detection limit (LOD) of CTC is 1.24-165 μM and 32.36 nM, respectively. For quercetin, the linear ranges are 0.98-34 μM and 34-165 μΜ, and the LOD is 6.87 nM (3σ/m). By virtue of the good biocompatibility and long-wavelength emission, N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bio-imaging and sensing. In this paper, N, S-doped carbon dots (N, S-CDs) with orange emission (λem = 605 nm) were synthesized from basic fuchsin and sulfosalicylic acid. Based on the inner filter effect (IFE), the prepared N, S-CDs can be innovatively developed as an effective "signal-off" multifunctional sensing platform for the sensing of tetracycline antibiotics (for example: chlortetracycline (CTC)) and quercetin. The sensor has been successfully applied to the determination of CTC in water and milk samples and quercetin in beer sample (λex = 375 nm, λem = 605 nm). The linear range and detection limit (LOD) of CTC is 1.24-165 μM and 32.36 nM respectively. For quercetin, the linear ranges are 0.98-34 μM and 34-165 μΜ, and the LOD is 6.87 nM (3σ/m). In addition, due to the characteristics of good biocompatibility and long-wavelength emission, the N, S-CDs were also used in the imaging of oocystis cells and yeast cells, which demonstrated promising applicability for bioimaging and sensing.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Junqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yaoming Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
42
|
Budimir M, Marković Z, Vajdak J, Jovanović S, Kubat P, Humpoliček P, Mičušik M, Danko M, Barras A, Milivojević D, Špitalsky Z, Boukherroub R, Marković BT. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ghosal K, Kováčová M, Humpolíček P, Vajďák J, Bodík M, Špitalský Z. Antibacterial photodynamic activity of hydrophobic carbon quantum dots and polycaprolactone based nanocomposite processed via both electrospinning and solvent casting method. Photodiagnosis Photodyn Ther 2021; 35:102455. [PMID: 34311091 DOI: 10.1016/j.pdpdt.2021.102455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Inhabitation of various types of bacteria on different surfaces causes vital health problems worldwide. In this work, a wound dressing defeating bacterial infection had been fabricated. The antibacterial effect of polycaprolactone and hydrophobic carbon quantum dots (hCQDs) based nanocomposite has been presented. The nanocomposite was fabricated both via solvent casting and electrospinning method. Nanocomposites with and without hCQDs had been investigated. A detailed study on their morphology and surface properties were performed by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. Prepared nanocomposites had been evaluated by the contact angle, UV-Vis spectroscopy, electron paramagnetic resonance spectroscopy, and antibacterial activity. It was found that nanocomposites were able to produce singlet oxygen upon blue light irradiation at 470 nm, and they were effective in the eradication of Gram positive (Staphylococcus aureus, Listeria monocytogenes) and Gram negative (Escherichia coli, Klebsiella pneumoniae) bacteria.
Collapse
Affiliation(s)
- Kajal Ghosal
- Division of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Mária Kováčová
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 41, Slovakia
| | - Petr Humpolíček
- Centre for Polymer System and Faculty of Technology, Tomas Bata University in Zlín, Trida Tomase Bati, Zlin 5678, Czech Republic
| | - Jan Vajďák
- Centre for Polymer System and Faculty of Technology, Tomas Bata University in Zlín, Trida Tomase Bati, Zlin 5678, Czech Republic
| | - Michal Bodík
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 11, Slovakia
| | - Zdenko Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 41, Slovakia.
| |
Collapse
|
44
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
45
|
Ahmed HB, Abualnaja KM, Ghareeb RY, Ibrahim AA, Abdelsalam NR, Emam HE. Technical textiles modified with immobilized carbon dots synthesized with infrared assistance. J Colloid Interface Sci 2021; 604:15-29. [PMID: 34261016 DOI: 10.1016/j.jcis.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Carbon quantum dots "CQDs" were investigated as photo-luminescent nanomaterials as it advantageous with nontoxicity to be alternative for metallic-nanomaterials in different purposes. Therefore, the presented report demonstrates an innovative strategy for industrialization of antimicrobial/fluorescent cotton textiles via exploitation of "CQDs". Unique/novel infrared-assisted technique was currently investigated for clustering "CQDs" form carboxymethyl cellulose. The successive nucleation of "CQDs" (8.0 nm) was affirmed via infra-red, Raman spectroscopy, NMR, TEM and Zeta-potential analysis. The clustered "CQDs" showed antimicrobial and fluorescent characters. The minimal inhibition concentration for "CQDs" (100 mg/mL) against E. coli and C. albicans showed pathogenic reduction of 96% and 82%, respectively. Fluorescent emission spectra for "CQDs" showed two intense peaks at 415-445 nm. "CQDs" were loaded upon pristine and cationized cotton to prepare CQDs@cotton and CQDs@cationized cotton. While, their physical/mechanical properties (air and water vapor permeabilities, tensile strength and elongation %) and thermal stability (TGA & DTG analysis) were studied. The CQDs@cationized cotton exhibited excellent antimicrobial activity with good durability as after ten repretitive washings, inhibition zone diameter against E. coli, was diminished from 21.0 mm to 14.0 mm. The fluorescent emmision intensity was diminished from 741 to 287 after 10 washing cycles. The produced cotton fabrics could be safely used in the medical and military textiles.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Air Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Amira A Ibrahim
- Plant Protection and Biomolecular Diagnosis Department, Air Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Nader R Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, 21531, Egypt
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
46
|
Evgin T, Turgut A, Hamaoui G, Špitalský Z, Horny N, Altay L, Chirtoc M, Omastová M. Size effect of hybrid carbon nanofillers on the synergetic enhancement of the properties of HDPE-based nanocomposites. NANOTECHNOLOGY 2021; 32:315704. [PMID: 33873163 DOI: 10.1088/1361-6528/abf968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
High-density polyethylene (HDPE)-based hybrid nanocomposites containing graphene nanoplatelets (GnPs) and multiwall carbon nanotubes (MWCNTs) were fabricated using melt mixing followed by compression molding. The influences of size and weight ratio of both carbon-based nanofillers on the electrical, thermal, and mechanical properties of hybrid nanocomposites were evaluated. This study proves that the size and weight ratio of carbon-based nanofillers play a critical role in determining these properties. The optimum size and weight ratio of GnPs and MWCNTs are determined at the maximum achieved enhancement for each property. The HDPE-based nanocomposites containing GnPs with larger surface area and MWCNTs with higher aspect ratio display the highest electrical conductivity at GnPs/MWCNTs weight ratio of 2/3. The combination of GnPs with larger surface area and MWCNTs with lower aspect ratio provides the maximum Young's modulus enhancement of hybrid nanocomposites at 1/4 weight ratio of GnPs and MWCNTs. The nanocomposite containing GnPs with the largest lateral size and MWCNTs with a higher aspect ratio at a 3/2 weight ratio exhibits the highest thermal conductivity. Also, at around the percolation threshold of GnPs, the incorporation of MWCNTs with larger aspect ratio into the HDPE-based nanocomposites containing GnPs with the largest lateral size shows a distinct synergic effect on the thermal conductivity and Young's modulus, while an additive effect on the electrical conductivity and thermal stability.
Collapse
Affiliation(s)
- Tuba Evgin
- Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Mechanical Engineering Department, Tinaztepe Campus, 35397, Buca, Izmir, Turkey
- Dokuz Eylul University, Engineering Faculty, Mechanical Engineering Department, Tinaztepe Campus, 35397, Buca, Izmir, Turkey
| | - Alpaslan Turgut
- Dokuz Eylul University, Engineering Faculty, Mechanical Engineering Department, Tinaztepe Campus, 35397, Buca, Izmir, Turkey
| | - Georges Hamaoui
- ESYCOM Laboratory, Université Gustave Eiffel, CNRS, F-77454, Marne-la-Vallée, France
| | - Zdeno Špitalský
- Polymer Institute, SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Nicolas Horny
- ITheMM, Université de Reims Champagne-Ardenne URCA, F-51687, Reims, France
| | - Lütfiye Altay
- Department of Mechanical Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Mihai Chirtoc
- ITheMM, Université de Reims Champagne-Ardenne URCA, F-51687, Reims, France
| | - Mária Omastová
- Polymer Institute, SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
47
|
Sousa HBA, Martins CSM, Prior JAV. You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:611. [PMID: 33804394 PMCID: PMC7998311 DOI: 10.3390/nano11030611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Carbon quantum dots (CQDs) have started to emerge as candidates for application in cell imaging, biosensing, and targeted drug delivery, amongst other research fields, due to their unique properties. Those applications are possible as the CQDs exhibit tunable fluorescence, biocompatibility, and a versatile surface. This review aims to summarize the recent development in the field of CQDs research, namely the latest synthesis progress concerning materials/methods, surface modifications, characterization methods, and purification techniques. Furthermore, this work will systematically explore the several applications CQDs have been subjected to, such as bioimaging, fluorescence sensing, and cancer/gene therapy. Finally, we will briefly discuss in the concluding section the present and future challenges, as well as future perspectives and views regarding the emerging paradigm that is the CQDs research field.
Collapse
Affiliation(s)
| | | | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (H.B.A.S.); (C.S.M.M.)
| |
Collapse
|
48
|
Feng Z, Li M, Jin X, Zheng Y, Liu J, Zhao L, Wang Y, Li H, Zuo D. Design and characterization of plasticized bacterial cellulose/waterborne polyurethane composite with antibacterial function for nasal stenting. Regen Biomater 2020; 7:597-608. [PMID: 33365145 PMCID: PMC7748449 DOI: 10.1093/rb/rbaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
A nasal stent capable of preventing adhesions and inflammation is of great value in treating nasal diseases. In order to solve the problems of tissue adhesion and inflammation response, we prepared plasticized bacterial cellulose (BCG) and waterborne polyurethane (WPU) composite with antibacterial function used as a novel nasal stent. The gelation behavior of BCG could contribute to protecting the paranasal sinus mucosa; meanwhile, the WPU with improved mechanical property was aimed at supporting the narrow nasal cavity. The thickness, size and the supporting force of the nasal stent could be adjusted according to the specific conditions of the nasal. Thermogravimetric analysis, contact angle and water absorption test were applied to investigate the thermal, hydrophilic and water absorption properties of the composite materials. The composite materials loaded with poly(hexamethylene biguanide) hydrochloride maintained well antibacterial activity over 12 days. Animal experiments further revealed that the mucosal epithelium mucosae damage of BCG-WPU composite was minor compared with that of WPU. This new type of drug-loaded nasal stent can effectively address the postoperative adhesions and infections while ensuring the health of nasal mucosal, and thus has an immense clinical application prospects in treating nasal diseases.
Collapse
Affiliation(s)
- Zhaoxuan Feng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Minglu Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Jin
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Junxiu Liu
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing, China
| | - Liang Zhao
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yansen Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hao Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Danlin Zuo
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
49
|
Ahmed HB, Emam HE. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 2020; 10:42916-42929. [PMID: 35514886 PMCID: PMC9058413 DOI: 10.1039/d0ra06383e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots are currently investigated to act as safe/potent alternatives for metal-based nanostructures to play the role of probes for environmental applications owing to their low toxicity, low cost, chemical inertness, biocompatibility and outstanding optical properties. The synthesis of biocide/fluorescent metal marker carbon quantum dots with hydrophilic character was performed via a quite simple and green technique. The natural biopolymer that was used in this study for the synthesis of carbon quantum dots is fragmented under strong alkaline conditions. Afterwards, under hydrothermal conditions, re-polymerization, aromatization and subsequent oxidation, the carbonic nanostructures were grown and clustered. Dialysis of the so-produced carbonic nanostructures was carried out to obtain highly purified/mono-dispersed carbon quantum dots with a size distribution of 1.5-6.5 nm. The fluorescence intensity of the synthesized carbon quantum dots under hydrothermal conditions for 3 h was affected by dialysis, however, the fluorescence intensity was significantly increased ca. 20 times. The synthesized carbon quantum dots were exploited as fluorescent markers in the detection of Zn2+ and Hg2+. The prepared carbon quantum dots also exhibited excellent antimicrobial potency against Bacillus cereus, Escherichia coli and Candida albicans. The detected minimal inhibitory concentration for the dialyzed CQDs towards the tested pathogens was 350-450 μL mL-1. The presented approach is a simple and green technique for the scaled-up synthesis of biocide/fluorescent marker carbon quantum dots instead of metal-based nanostructures for environmental applications, without using toxic chemicals or organic solvents.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University Ain-Helwan Cairo 11795 Egypt +201097411189
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Scopus Affiliation ID 60014618 33 EL Buhouth St., Dokki Giza 12622 Egypt +201008002487
| |
Collapse
|
50
|
Li X, Wang B, Liang T, Wang R, Song P, He Y. Synthesis of cationic acrylate copolyvidone-iodine nanoparticles with double active centers and their antibacterial application. NANOSCALE 2020; 12:21940-21950. [PMID: 33112328 DOI: 10.1039/d0nr05462c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial materials are rapidly emerging as a primary component in the mitigation of bacterial pathogens, and functional polymers play a vital role in the preparation of antibacterial coatings. In this study, a novel antibacterial polymer with double active centers was synthesized. Firstly, using one-pot soap-free emulsion polymerization technology, the cationic acrylate copolymeric polyvidone (CACPV) was synthesized by copolymerization of four monomers with different functions, which were methyl methacrylate (MMA), N-vinyl-2-pyrrolidone (NVP), γ-methacryloxypropyltrimethoxysilane (MAPTS) and [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC). Secondly, using iodine complexation, the cationic acrylate copolyvidone-iodine (CACPVI) nanoparticles were prepared. After being characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS) and contact angle test, the antibacterial activity of CACPVI was evaluated against the typical human pathogens Escherichia coli (E. coli, Gram-negative) and Staphylococcus aureus (S. aureus, Gram-positive). Additionally, CACPVI was used to improve the antibacterial activities of some materials, such as ink, dye and coatings. It was found that CACPVI presented an excellent antibacterial synergy. When the antibacterial activities were more than 99% at a concentration of 40.00 μg mL-1, CACPVI exhibited long-term antibacterial performance as expected. The antibacterial mechanism of this synergy was also investigated. In summary, a novel antibacterial polymer material with double active centers was successfully synthesized and was widely applied in coating, dye and ink materials for minimizing bacterial infection.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | | | | | | | | | | |
Collapse
|