1
|
Huang JB, Yin L, Yue TC, Wang LL, Wang DZ. Rational Assembly of Three-component Coordination Polymers as Heterogeneous Catalysts for CO 2 Cycloaddition and Cyanosilylation Reactions. Chemistry 2024; 30:e202403209. [PMID: 39370394 DOI: 10.1002/chem.202403209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Four new coordination polymers based on 5-(((1H-imidazol-2-yl)methyl)amino) isophthalic acid (H3L) and auxiliary ligands (1,10-phenanthroline, 2,2'-bipyridine, and 4,4'-bipyridine), namely, {[Zn(HL)(phen)(H2O)] ⋅ 2H2O}n (CP 1), {[Ni(HL)(phen)(H2O)]}n (CP 2), {[Ni(HL)(2,2'-bpy)(H2O)] ⋅ 2H2O}n (CP 3) and {[Cd(HL)(4,4'-bpy)0.5(H2O)] ⋅ 2H2O}n (CP 4) were rationally assembled. Furthermore, these four CPs were screened as heterogeneous catalysts for CO2 cycloaddition and cyanosilylation reactions under mild conditions. The catalytic experiments showed that CP 1 had the better catalytic performance, excellent substrate tolerance and recyclability for the above two reactions. It is speculated that the excellent activity of CP 1 may be due to the open Lewis base site and the Lewis acidic characteristics of the zinc (II) center. After five cycles, the catalytic activities of CP 1 did not significantly decrease, and the structures remained unchanged. Therefore, the CP 1 was considered efficient and stable heterogeneous catalysts for above the two reactions.
Collapse
Affiliation(s)
- Jian-Bo Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Lin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Tian-Cai Yue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Lu-Lu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Duo-Zhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
2
|
Cardona‐Farreny M, Ishikawa H, Odufejo Ogoe AO, Mallet‐Ladeira S, Coppel Y, Lecante P, Esvan J, Philippot K, Axet MR. Colloidal Bimetallic RuNi Particles and their Behaviour in Catalytic Quinoline Hydrogenation. Chempluschem 2024; 89:e202400516. [PMID: 39268759 PMCID: PMC11639643 DOI: 10.1002/cplu.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Colloidal metal nanoparticles exhibit interesting catalytic properties for the hydrogenation of (hetero)arenes. Catalysts based on precious metals, such as Ru and Rh, promote this reaction efficiently under mild reaction conditions. In contrast, heterogeneous catalysts based on earth-abundant metals can selectively hydrogenate (hetero)arenes but require harsher reaction conditions. Bimetallic catalysts that combine precious and earth-abundant metals are interesting materials to mitigate the drawbacks of each component. To this end, RuNi nanoparticles bearing a phosphine ligand were prepared through the decomposition of [Ru(η4-C8H12)(η6-C8H10)] and [Ni(η4-C8H12)2] by H2 at 85 °C. Wide angle X-ray scattering confirmed a bimetallic segregated structure, with Ni predominantly on the surface. Spectroscopic analyses revealed that the phosphine ligand coordinated to the surface of both metals, suggesting, as well, a partial Ni shell covering the Ru core. The RuNi-based nanomaterials were used as catalysts in the hydrogenation of quinoline to assess the impact of the metallic composition and of the stabilizing agent on their catalytic performance.
Collapse
Affiliation(s)
- Miquel Cardona‐Farreny
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | - Hiroya Ishikawa
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | - Abolanle Olatilewa Odufejo Ogoe
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | - Sonia Mallet‐Ladeira
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
- Institut de Chimie de Toulouse (UAR 2599)31062Toulouse Cedex 09France
| | - Yannick Coppel
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | - Pierre Lecante
- Centre d'élaboration des matériaux et d'études structurales UPR CNRS 801129 Rue Jeanne-MarvigBP 4347, 31055ToulouseFrance
| | - Jerome Esvan
- CIRIMATUniversité de ToulouseCNRS-INPT-UPS4 Allée Emile Monso, BP 4436231030ToulouseFrance
| | - Karine Philippot
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | - M. Rosa Axet
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| |
Collapse
|
3
|
Wang S, Yu X, Wang Y, Zhou B, Shen F, Cao H. N-Heterocyclic carbene-functionalized metal nanoparticles and nanoclusters for nanocatalysis. Dalton Trans 2024; 53:18440-18450. [PMID: 39422710 DOI: 10.1039/d4dt02434f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have recently emerged as a popular ligand for the functionalization of metal nanoparticles and atomically precise metal clusters. The strong electron-donating properties of NHCs and robust NHC-metal covalent bonding endow metal nanostructures with improved stability and enhanced catalytic performances. In this review, we focus on NHC-coordinated metal nanoparticles and nanoclusters for the electrochemical CO2 reduction reaction (eCO2RR), selective hydrogenation of unsaturated compounds, and asymmetrical catalytic reactions. We discuss the underlying factors that may be at play in determining the improved activity of NHC-functionalized metals and address a few promising perspectives of NHC functionalization for new and better catalytic metal nanostructures.
Collapse
Affiliation(s)
- Siyi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Xianli Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Yedong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Bingsong Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Fan Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
4
|
Bani Asadi F, Shirzaei F, Shaterian HR. Fe 3O 4@SiO 2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst for preparation of new dimethyldihydropyrimido[4,5-b]quinolone derivatives. Mol Divers 2024:10.1007/s11030-024-11013-5. [PMID: 39546219 DOI: 10.1007/s11030-024-11013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024]
Abstract
Efficient synthesis of novel dimethyldihydropyrimido[4,5-b]quinolones via three-component condensation of barbituric acid, arylaldehydes, and 3,4-dimethylaniline catalyzed by Fe3O4@SiO2@[Aminoglycol][Formate] as a new superparamagnetic nanocatalyst and [Aminoglycol][Formate] as a novel ionic liquid catalyst was described. The new heterogeneous nanocatalyst was characterized by FE-SEM, XRD, FT-IR, TGA-DTG, and VSM techniques. The new ionic liquid was characterized by 13CNMR, 1HNMR, and FT-IR techniques. The present work has advantages, such as excellent yields, short reaction times, environmentally friendly protocol, easy separation, and purification of products. The catalysts kept its catalytic properties after even five recoverability and reusability.
Collapse
Affiliation(s)
- Fatemeh Bani Asadi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box: 987-98155, Zahedan, 98197-45845, Iran
| | - Farhad Shirzaei
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box: 987-98155, Zahedan, 98197-45845, Iran
| | - Hamid Reza Shaterian
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box: 987-98155, Zahedan, 98197-45845, Iran.
| |
Collapse
|
5
|
Wang M, Dai H, Yang Q. Catalytic applications of organic-inorganic hybrid porous materials. Chem Commun (Camb) 2024; 60:13325-13335. [PMID: 39444317 DOI: 10.1039/d4cc04284k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic-inorganic hybrid porous materials (OIHMs) inherit the unique properties from both organic and inorganic components, and the flexibility in the incorporation of functional groups renders the OIHMs an ideal platform for the construction of catalytic materials with multiple active sites. The preparation of OIHMs with precise locations of organic-inorganic components and tunable structures is one of the important topics for the catalytic application of OIHMs, but it is still very challenging. In this feature article, we describe our work related to the preparation of OIHMs via confining active sites in the nanostructure and a layer-by-layer assembly method and their applications in acid-base catalysis, catalytic hydrogenation and photocatalysis with a focus on the elucidation of the synergistic effects of different active sites and the unique properties of OIHMs in catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
6
|
Wang ZD, Han Y, Wang YY, Zang SQ, Peng P. Pyrolysis-Free Synthesis of Synergistic Single-Atom/Nanocluster Electrocatalysts for Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202416973. [PMID: 39503347 DOI: 10.1002/anie.202416973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/21/2024]
Abstract
Constructing catalysts that simultaneously contain single atom/metal nanocluster active sites is a promising strategy to enhance the original catalytic behavior and accelerate the catalysis involving multi-electron reactions or multi-intermediates. Herein, the pyrolysis-free synthetic method is developed to integrate single atoms and nanoclusters towards highly satisfactory catalytic performances for both acidic and alkaline hydrogen electrocatalysis. The controllable pyrolysis-free strategy allows the precise modulation of the active centers, realizing the optimization of the adsorption energy and the regulation of the synergistic active components. Specially, the as-prepared catalysts with hybrid single-atom/nanocluster sites exhibited superior catalytic activities for hydrogen evolution in both acidic and alkaline media with low over-potentials at -10 mA cm-2 of 25 mV and 8.6 mV, respectively, combining with outstanding durability towards high current density and methanol poisoning. This work developed a universal synthetic strategy for the single atom/nanocluster synergy systems and addressed the superiority of hybrid single-atom/nanocluster sites.
Collapse
Affiliation(s)
- Zhao-Di Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying-Ying Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Qin Z, Wang L, Chen L, Li Y, Shen K. Differential Activation of Alkynes between Capped and Naked Ag Nanoclusters Anchored by Highly-Open Mesoporous CeO 2 for Two Coupling Reactions with CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403517. [PMID: 39045902 DOI: 10.1002/smll.202403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.
Collapse
Affiliation(s)
- Ze Qin
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Li Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
8
|
Kong X, Zhu J, Xu Z, Geng Z. Fundamentals and Challenges of Ligand Modification in Heterogeneous Electrocatalysis. Angew Chem Int Ed Engl 2024:e202417562. [PMID: 39446379 DOI: 10.1002/anie.202417562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 11/16/2024]
Abstract
The development of efficient catalytic materials in the energy field could promote the structural transformation from traditional fossil fuels to sustainable energy. In heterogeneous catalytic reactions, ligand modification is an effective way to regulate both electronic and steric structures of catalytic sites, thus paving a prospective avenue to design the interfacial structures of heterogeneous catalysts for energy conversion. Although great achievements have been obtained for the study and applications of heterogeneous ligand-modified catalysts, the systematical refinements of ligand modification strategies are still lacking. Here, we reviewed the ligand modification strategy from both the mechanistic and applicable scenarios by focusing on heterogeneous electrocatalysis. We elucidated the ligand-modified catalysts in detail from the perspectives of basic concepts, preparation, regulation of physicochemical properties of catalytic sites, and applications in different electrocatalysis. Notably, we bridged the electrocatalytic performance with the electronic/steric effects induced by ligand modification to gain intrinsic structure-performance relations. We also discussed the challenges and future perspectives of ligand modification strategies in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiangchen Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Choi J, Kim BH. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1685. [PMID: 39453021 PMCID: PMC11510505 DOI: 10.3390/nano14201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Nanoparticle-based thin films are increasingly being used in various applications. One of the key factors that determines the properties and performances of these films is the type of ligands attached to the nanoparticle surfaces. While long-chain surfactants, such as oleic acid, are commonly employed to stabilize nanoparticles and ensure high monodispersity, these ligands often hinder charge transport due to their insulating nature. Although thermal annealing can remove the long-chain ligands, the removal process often introduces defects such as cracks and voids. In contrast, the use of short-chain organic or inorganic ligands can minimize interparticle distance, improving film conductivity, though challenges such as incomplete ligand exchange and residual barriers remain. Polymeric ligands, especially block copolymers, can also be employed to create films with tailored porosity. This review discusses the effects of various ligand types on the morphology and performance of nanoparticle-based films, highlighting the trade-offs between conductivity, structural integrity, and functionality.
Collapse
Affiliation(s)
- Jungwook Choi
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Byung Hyo Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
10
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
12
|
Mondal I, Samanta D, Shaik MAS, Shaw M, Bhattacharya A, Basu R, Pathak A. Influence of Nitrogen-Doped Carbon Dots on H • Radical-Mediated Au-H Formation in the Hydrogenation of 4-Nitrophenol Using NCDs-Au Nanohybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19228-19238. [PMID: 39186469 DOI: 10.1021/acs.langmuir.4c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The hydrogenation of 4-nitrophenol using carbon dot-stabilized gold (Au) nanoparticles is well-studied, with Au-H species known to catalyze the reaction. However, the impact of specific nitrogen moieties in nitrogen-doped carbon dots on Au-H formation and catalytic activity remains unexplored. These nitrogen species, acting as surface ligands, may influence the catalytic properties through the generation of Au-H species via H• radicals. In this regard, modulation of the catalytic properties of Au nanoparticles has been explored by conjugating their surface with nitrogen-doped carbon dots (NCDs). Three distinct nanohybrid formulations comprising NCDs and Au nanoparticles (i.e., NCDs-Au) have been prepared, where the NCDs were derived from different carbon sources (e.g., citric acid and l-malic acid) and varying mole ratios of the nitrogen source (i.e., urea). The impact of NCDs on Au nanoparticle-mediated catalysis has been investigated using the model reaction of hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. The fractions of different nitrogen species (such as pyrrolic, pyridinic, and amidic) in the different NCDs-Au nanohybrids were quantified through XPS analysis, and their roles in catalytic performance have been studied. Further, the size, shape, crystallinity, defects, and exposed facets of the NCDs-Au nanohybrids have also been assessed (through XRD, HRTEM, and Raman studies), and their structure-activity relationships have been corroborated. The hydrogenation of 4-NP is proposed to happen through the formation of gold-hydride (Au-H) species facilitated by H• radicals, as confirmed by EPR analysis. The NCDs-Au nanohybrid, synthesized from NCDs derived from a 1:3 molar ratio of l-malic acid and urea (MU13-Au), exhibits superior catalytic efficiency with a rate constant of 1.013 min-1, attributed to its abundant defects and a notably high relative content of catalytically favorable pyridinic nitrogen species compared to other tested nanohybrids.
Collapse
Affiliation(s)
- Imran Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W.B., 721302, India
| |
Collapse
|
13
|
Ye J, Jin M, Wan D. Trace Thiol Moieties in the Ligand Layer Induce Superior Catalytic Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17622-17629. [PMID: 39115911 DOI: 10.1021/acs.langmuir.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We here show that the typical poison of thiols, if below a certain level, promotes rather than suppresses the catalytic activity of gold nanoclusters (AuNCs). A few thiol groups functionalized hyperbranched polyethylenimine (PEI, Mn = 2000 Da) patched on a mesoporous polymeric bead aid the direct synthesis of AuNCs. The nucleation efficiency of AuNC is 93-fold favored at a level of 2 thiols per PEI (0.04 equiv of the amino units) than that by neat PEI, and AuNCs (1.3 nm) are obtained up to a gold load of 6.3% on the support. Unexpectedly, the catalytic activity of AuNCs is favored by the thiol up to 2 thiols per PEI, as evaluated from the surface-normalized rate constant of the model reaction of 4-nitrophenol-reduction. The catalytic promotion by thiols probably stems from optimized electron density on AuNC. If the residual NH groups of PEI were further fully treated with glycidyltrimethylammonium chloride, the catalytic activity is again enhanced, where the accelerated mass transfer is responsible for the promotion. Overall, the catalytic activity reaches an unprecedented value (metal-normalized rate constant kc = 29.4 L mmol-1 s-1 and turnover frequency = 1623 h-1, as evaluated with the model reaction of 4-nitrophenol reduction) ever reported for supported AuNCs. Our results suggest that orthogonal ligand optimization is an effective manner of triggering the release of the catalytic potential of AuNCs, among which thiol is unique.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| |
Collapse
|
14
|
Tetenoire A, Omelchuk A, Malytskyi V, Jabin I, Lepeintre V, Bruylants G, Luo Y, Fihey A, Kepenekian M, Lagrost C. Multipodal Au-C grafting of calix[4]arene molecules on gold nanorods. Chem Sci 2024:d4sc02355b. [PMID: 39170717 PMCID: PMC11333938 DOI: 10.1039/d4sc02355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
The interface robustness and spatial arrangement of functional molecules on metallic nanomaterials play a key part in the potential applications of functional nano-objects. The design of mechanically stable and electronically coupled attachments with the underlying metal is essential to bring specific desirable properties to the resulting hybrid materials. In this context, rigid multipodal platforms constitute a unique opportunity for the controllable grafting of functionality. Herein, we provide for the first time an in-depth description of the interface between gold nanorods and a chemically-grafted multipodal platform based on diazonium salts. Thanks to Raman and X-ray photoelectron spectroscopies and theoretical modeling, we deliver insights on the structural and electronic properties of the hybrid material. More importantly, it allows for the accurate assignment of Raman bands. The combination of experimental and theoretical results establishes the formation of four carbon-gold anchors for the calix[4]arene macrocycle leading to the exceptional stability of the functionalized nano-objects. Our results lay the foundations for the future design of robust and versatile platforms.
Collapse
Affiliation(s)
- Auguste Tetenoire
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Anna Omelchuk
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Volodymyr Malytskyi
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
| | - Victor Lepeintre
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques F-75006 Paris France
| | - Arnaud Fihey
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Mikaël Kepenekian
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Corinne Lagrost
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| |
Collapse
|
15
|
Fonseka C, Ryu S, Choo Y, Kandasamy J, Foseid L, Ratnaweera H, Vigneswaran S. Selective recovery of europium from real acid mine drainage using modified Cr-MIL and SBA15 adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51540-51550. [PMID: 39115731 PMCID: PMC11374818 DOI: 10.1007/s11356-024-34566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
The successful adoption and widespread implementation of innovative acid mine drainage treatment and resource recovery methods hinge on their capacity to demonstrate enhanced performance, economic viability, and environmental sustainability compared to conventional approaches. Here, an evaluation of the efficacy of chromium-based metal-organic frameworks and amine-grafted SBA15 materials in adsorbing europium (Eu) from actual mining wastewater was conducted. The adsorbents underwent comprehensive characterization and examination for their affinity for Eu. Cr-MIL-PMIDA and SBA15-NH-PMIDA had a highest Langmuir adsorption capacity of 69 mg/g and 86 mg/g, respectively, for an optimum level of pH 4.8. Preferential adsorption tests followed using real AMD collected at a disused mine in the north of Norway. A comparative study utilizing pH-adjusted real AMD revealed that Cr-MIL-PMIDA (88%) exhibited slightly higher selectivity towards Eu compared to SBA15-NH-PMIDA (81%) in real mining wastewater. While Cr-MIL-PMIDA displays excellent properties for the selective recovery of REEs, practical challenges related to production costs and potential susceptibility to chromium leaching make it less appealing for widespread applications. A cost-benefit analysis was then undertaken to quantify the advantages of employing SBA15-NH-PMIDA material. The study disclosed that 193.2 g of EuCl3 with 99% purity can be recovered by treating 1000 m3 of AMD.
Collapse
Affiliation(s)
- Charith Fonseka
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Seongchul Ryu
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Youngwoo Choo
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Jaya Kandasamy
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Lena Foseid
- Department of Building and Environmental Technology, Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Oslo, Norway
| | - Harsha Ratnaweera
- Department of Building and Environmental Technology, Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Oslo, Norway
| | - Saravanamuthu Vigneswaran
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia.
- Department of Building and Environmental Technology, Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Oslo, Norway.
| |
Collapse
|
16
|
Xia K, Yatabe T, Yamaguchi K, Suzuki K. Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states. Dalton Trans 2024; 53:11088-11093. [PMID: 38885120 DOI: 10.1039/d4dt01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
17
|
Adwin Jose P, Sankarganesh M, Dhaveethu Raja J, Arumugam S. DNA/BSA interaction, anticancer, antimicrobial and catalytic applications of synthesis of nitro substituted pyrimidine-based Schiff base ligand capped nickel nanoparticles. J Biomol Struct Dyn 2024; 42:5931-5945. [PMID: 37394819 DOI: 10.1080/07391102.2023.2230283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The objective of this research was to create stable nickel nanoparticles using nickel chloride salt and a Schiff base ligand called DPMN. The synthesis process involved a two-step phase transfer procedure. Spectroscopic techniques such as UV-Visible and FT-IR were used to confirm the formation of ligand-stabilized nickel nanoparticles (DPMN-NiNPs). To analyze the size, surface morphology, and quality of DPMN-NiNPs, SEM and TEM techniques were utilized. In vitro studies were performed to investigate the potential anticancer activity of the synthesized compounds against three different cancer cell lines and one normal cell line, and the results were compared to those of cis-platin. The researchers also conducted tests to determine the ability of DPMN-NiNPs to bind to CT-DNA using various techniques such as electronic absorption, fluorescence, viscometric, and cyclic voltammetric. The results showed that the synthesized DPMN-NiNPs exhibited good DNA binding ability, which was further validated by denaturation of DNA using thermal and sonochemical methods. The researchers also investigated the antimicrobial and antioxidant activities of DPMN-NiNPs, which demonstrated better biological activities than DPMN alone. Furthermore, the synthesized nano compounds were found to selectively damage cancer cell lines without harming normal cell lines. Finally, the researchers examined the potential of DPMN-NiNPs as a catalyst in dye degradation by testing its ability to decompose methyl red dye using UV-Visible spectroscopy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Paulraj Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Sakthivel Arumugam
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| |
Collapse
|
18
|
Mallick L, Annadata HV, Chakraborty B. Vacancy-Rich SnO 2 Quantum Dot Stabilized by Polyoxomolybdate as Electrocatalyst for Selective NH 3 Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32385-32393. [PMID: 38873812 DOI: 10.1021/acsami.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The pronounced conductivity of tin dioxide (SnO2) nanoparticles makes it an ideal multifunctional electrode material, while the challenge is to stabilize the quantum dot (QD) SnO2 nanocore in water. An Anderson-type polyoxomolybdate, (NH4)6[Mo7O24], is employed as an inorganic ligand to stabilize a ca. 6 nm SnO2 QD (Mox@SnO2). X-ray scattering and diffraction studies confirm the tetragonal SnO2 nanocore in Mox@SnO2. Elemental analyses are in good agreement with the mass spectrometric detection of the [Mo7O24]6- cluster present in Mox@SnO2. The ionic POMs attached to the SnO2 surface through [Mo-O-Sn] covalent linkages have been established by surface zeta potential, shift of the [Mo = O]t Raman vibration, and extended X-ray absorption fine structure (EXAFS) analyses. The presence of the [Mo7O24]6- cluster in the Mox@SnO2 is responsible for the remarkable aqueous stability of Mox@SnO2 in the pH range of 3-9. Dominant oxygen vacancy in the SnO2 core, identified by EXAFS data and the anisotropic electron paramagnetic resonance (EPR) signals (g ∼ 2.4 and 1.9), results in facile electronic conduction in Mox@SnO2 while being deposited on the electrode surface. Mox@SnO2 acts as an active catalyst for the electrocatalytic nitrate reduction (eNOR) to ammonia with 94% faradaic efficiency (FE) at -0.2 V vs RHE and a yield rate of 28.9 mg h-1 cm-2. The stability of Mox@SnO2 in acidic pH provides scope to reuse the Mox@SnO2 electrode at least four times with notable NH3 selectivity and a superior production rate (239.06 mmol g-1(cat) h-1). This study demonstrates the essential role of POM in stabilizing SnO2 QD, harnessing its electrochemical activity toward electrocatalytic ammonia production.
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| | - Harshini V Annadata
- Beamline Development and Application Section, Bhabha Atomic Research Center, Trombay Mumbai 400085, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| |
Collapse
|
19
|
Gao X, Liu L, Hou H, Jia W, Zhang A, Zhang B, Bu Y, Gong Y, Yan L, Du B. Construct a Magnetic Pt/Ru Alloy Peroxidase Mimic As a Reusable and Cost-Effective "Signal-Off" Sensing Platform for Sensitive and Wide-Linear-Range Assay. Anal Chem 2024; 96:10467-10475. [PMID: 38863336 DOI: 10.1021/acs.analchem.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.
Collapse
Affiliation(s)
- Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lan Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Haiwei Hou
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weijuan Jia
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aoxue Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
20
|
Li Z, Lu J, Zhang T, Liu Y, Pan R, Fu Q, Liu X, Mao S, Xu B. Pyrazine-based iron metal organic frameworks (Fe-MOFs) with modulated O-Fe-N coordination for enhanced hydroxyl radical generation in Fenton-like process. J Colloid Interface Sci 2024; 674:279-288. [PMID: 38936084 DOI: 10.1016/j.jcis.2024.06.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Rational design of coordination environment of Fe-based metal-organic frameworks (Fe-MOFs) is still a challenge in achieving enhanced catalytic activity for Fenten-like advanced oxidation process. Here in, novel porous Fe-MOFs with modulated O-Fe-N coordination was developed by configurating amino terephthalic acid (H2ATA) and pyrazine-dicarboxylic acid (PzDC) (Fe-ATA/PzDC-7:3). PzDC ligands introduce pyridine-N sites to form O-Fe-N coordination with lower binding energy, which affect the local electronic environment of Fe-clusters in Fe-ATA, thus decreased its interfacial H2O2 activation barrier. O-Fe-N coordination also accelerate Fe(II)/Fe(III) cycling of Fe-clusters by triggering the reactive oxidant species mediated Fe(III) reduction. As such, Fe-ATA/PzDC-7:3/H2O2 system exhibited excellent degradation performance for typical antibiotic sulfamethoxazole (SMX), in which the steady-state concentration of hydroxyl radical (OH) was 1.6 times higher than that of unregulated Fe-ATA. Overall, this study highlights the role of O-Fe-N coordination and the electronic environment of Fe-clusters on regulating Fenton-like catalytic performance, and provides a platform for precise engineering of Fe-MOFs.
Collapse
Affiliation(s)
- Zongchen Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Jian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Renjie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Qi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Xinru Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
21
|
Bi L, Jamnuch S, Chen A, Do A, Balto KP, Wang Z, Zhu Q, Wang Y, Zhang Y, Tao AR, Pascal TA, Figueroa JS, Li S. Molecular-Scale Visualization of Steric Effects of Ligand Binding to Reconstructed Au(111) Surfaces. J Am Chem Soc 2024; 146:11764-11772. [PMID: 38625675 PMCID: PMC11066864 DOI: 10.1021/jacs.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.
Collapse
Affiliation(s)
- Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Sasawat Jamnuch
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Amanda Chen
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Alexandria Do
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Krista P. Balto
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Zhe Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Yufei Wang
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Yanning Zhang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Andrea R. Tao
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Tod A. Pascal
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| |
Collapse
|
22
|
Khalil A, Khan A, Kamal T, Khan AAP, Khan SB, Chani MTS, Alzahrani KA, Ali N. Zn/Al layered double hydroxide and carboxymethyl cellulose composite beads as support for the catalytic gold nanoparticles and their applications in the reduction of nitroarenes. Int J Biol Macromol 2024; 262:129986. [PMID: 38360231 DOI: 10.1016/j.ijbiomac.2024.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.
Collapse
Affiliation(s)
- Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alzahrani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry department, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Pakistan.
| |
Collapse
|
23
|
Xia K, Yatabe T, Yonesato K, Kikkawa S, Yamazoe S, Nakata A, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters. Nat Commun 2024; 15:851. [PMID: 38321026 PMCID: PMC10847421 DOI: 10.1038/s41467-024-45066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayako Nakata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Li G, Zakharov DN, Sikder S, Xu Y, Tong X, Dimitrakellis P, Boscoboinik JA. In Situ Monitoring of Non-Thermal Plasma Cleaning of Surfactant Encapsulated Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:290. [PMID: 38334560 PMCID: PMC10856489 DOI: 10.3390/nano14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Surfactants are widely used in the synthesis of nanoparticles, as they have a remarkable ability to direct their growth to obtain well-defined shapes and sizes. However, their post-synthesis removal is a challenge, and the methods used often result in morphological changes that defeat the purpose of the initial controlled growth. Moreover, after the removal of surfactants, the highly active surfaces of nanomaterials may undergo structural reconstruction by exposure to a different environment. Thus, ex situ characterization after air exposure may not reflect the effect of the cleaning methods. Here, combining X-ray photoelectron spectroscopy, in situ infrared reflection absorption spectroscopy, and environmental transmission electron microscopy measurements with CO probe experiments, we investigated different surfactant-removal methods to produce clean metallic Pt nanoparticles from surfactant-encapsulated ones. It was demonstrated that both ultraviolet-ozone (UV-ozone) treatment and room temperature O2 plasma treatment led to the formation of Pt oxides on the surface after the removal of the surfactant. On the other hand, when H2 was used for plasma treatment, both the Pt0 oxidation state and nanoparticle size distribution were preserved. In addition, H2 plasma treatment can reduce Pt oxides after O2-based treatments, resulting in metallic nanoparticles with clean surfaces. These findings provide a better understanding of the various options for surfactant removal from metal nanoparticles and point toward non-thermal plasmas as the best route if the integrity of the nanoparticle needs to be preserved.
Collapse
Affiliation(s)
- Gengnan Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| | - Dmitri N. Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| | - Sayantani Sikder
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Yixin Xu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| | - Panagiotis Dimitrakellis
- Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Jorge Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (D.N.Z.); (S.S.); (Y.X.); (X.T.)
| |
Collapse
|
25
|
Zou X, Meng Y, Liu J, Cao Y, Cui L, Shen Z, Xia Q, Li X, Zhang S, Ge Z, Pan Y, Wang Y. Niobium Modification of CeO 2 Tuning Electron Density of Nickel-Ceria Interfacial Sites for Enhanced CO 2 Methanation. Inorg Chem 2024; 63:881-890. [PMID: 38130105 DOI: 10.1021/acs.inorgchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
CO2 methanation has attracted considerable attention as a promising strategy for recycling CO2 and generating valuable methane. This study presents a niobium-doped CeO2-supported Ni catalyst (Ni/NbCe), which demonstrates remarkable performance in terms of CO2 conversion and CH4 selectivity, even when operating at a low temperature of 250 °C. Structural analysis reveals the incorporation of Nb species into the CeO2 lattice, resulting in the formation of a Nb-Ce-O solid solution. Compared with the Ni/CeO2 catalyst, this solid solution demonstrates an improved spatial distribution. To comprehend the impact of the Nb-Ce-O solid solution on refining the electronic properties of the Ni-Ce interfacial sites, facilitating H2 activation, and accelerating the hydrogenation of CO2* into HCOO*, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and density functional theory (DFT) calculations were conducted. These investigations shed light on the mechanism through which the activity of CO2 methanation is enhanced, which differs from the commonly observed CO* pathway triggered by oxygen vacancies (OV). Consequently, this study provides a comprehensive understanding of the intricate interplay between the electronic properties of the catalyst's active sites and the reaction pathway in CO2 methanation over Ni-based catalysts.
Collapse
Affiliation(s)
- Xuhui Zou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxiao Meng
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianqiao Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Siqian Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yunxiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
26
|
Kalidhasan S, Lim YS, Chu EA, Choi J, Lee HY. Phospholipid-derived Au and Au-Cu suspensions as efficient peroxide and borohydride activators for organic molecules degradation: Performance and sustainable catalytic mechanism. CHEMOSPHERE 2024; 346:140567. [PMID: 38303386 DOI: 10.1016/j.chemosphere.2023.140567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
In the contemporary context, executing light-oxidant- and reductant-driven reactions in solution-phase processes remains challenging mainly due to the lack of general tools for understanding the reactive potential of nano-functional catalysts. In this study, dual-active nanometals (Au and Cu doped with Au) capped within soy lecithin (SL), were developed and characterized, combining flexibility with the catalytic advantages and stability of liquid-phase catalysts. The as-synthesized SL-Au (LG) and SL-Au-Cu (LGC) catalysts were efficiently degraded rhodamine B (RB, 100%) in the presence of H2O2 under light irradiation (350 W lamp) at wide pH range (3-7) within 4.5 h and p-nitrophenol (p-NP, >90% degradation at pH 7) in the presence of NaBH4 under normal stirring with slower kinetics (∼72 h). RB degradation followed a pseudo-second-order kinetic model with a higher r2, and p-NP degradation followed first-order kinetics. The active sites embedded within the structural order of SL arrangement displayed elevated catalytic activity, which was further enhanced by the movement of intermediate/excited states and charged elements within the metal suspended in the phospholipid (LG and LGC). The self-regulating tunability of the physicochemical characteristics of these catalysts provides a convenient and generalizable platform for the transformation of modern dual-active (redox) catalysts into dynamic homogeneous equivalents.
Collapse
Affiliation(s)
- Sethu Kalidhasan
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea.
| | - Yeon-Su Lim
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Eun-Ae Chu
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea; Nanomedicine Corp., Seoul, 06974, Republic of Korea.
| | - Hee-Young Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61, Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea.
| |
Collapse
|
27
|
Colliere V, Verelst M, Lecante P, Axet MR. Colloidal ruthenium catalysts for selective quinaldine hydrogenation: Ligand and solvent effects. Chemistry 2023:e202302131. [PMID: 38133951 DOI: 10.1002/chem.202302131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Colloidal Ru nanoparticles (NP) display interesting catalytic properties for the hydrogenation of (hetero)arenes as they proceed efficiently in mild reaction conditions. In this work, a series of Ru based materials was used in order to selectively hydrogenate quinaldine and assess the impact of the stabilizing agent on their catalytic performances. Ru nanoparticles stabilized with polyvinylpyrrolidone (PVP) and 1-adamantanecarboxylic acid (AdCOOH) allowed to obtain 5,6,7,8-tetrahydroquinaldine with a remarkable selectivity in mild reaction conditions by choosing the suitable solvent. The presence of a carboxylate ligand on the surface of the Ru NP led to an increase in the activity when compared to Ru/PVP catalyst. The stabilizing agent had also an impact on the selectivity, as carboxylate ligand modified catalysts promoted the selectivity towards 1,2,3,4-tetrahydroquinaldine, with bulky carboxylate displaying the highest ones.
Collapse
Affiliation(s)
- Vincent Colliere
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| | - Marc Verelst
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, Université de Toulouse-UPS, 29 rue Jeanne Marvig, Cedex 4, 31055, Toulouse, BP 94347, France
| | - Pierre Lecante
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, Université de Toulouse-UPS, 29 rue Jeanne Marvig, Cedex 4, 31055, Toulouse, BP 94347, France
| | - M Rosa Axet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| |
Collapse
|
28
|
Ye J, Li C, Yao X, Jin M, Wan D. Customizing a Hyperbranched Ligand Confers Supported Platinum Nanoclusters with Unexpected Catalytic Activity toward the Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38038684 DOI: 10.1021/acs.langmuir.3c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We here show that a dendritic molecule combined with ligand merit confers supported platinum nanoclusters (PtNCs) with unprecedented catalytic performance. Branched polyethylenimine (PEI, Mn = 2000 D) patched on a porous bead is modified with 2-(diphenylphosphino)benzaldehyde (dppb) before being used to mediate a platinum nanoparticle/nanocluster (Pt0). The catalytic activity of Pt0 toward the reduction of 4-nitrophenol (4-NP) is evaluated from the parameter of Pt-normalized rate constant (kc). Optimization of the dppb level along with transformation of the PEI hydrogens into diol or trimethylammonium groups imparts supported Pt0 unprecedented activity (kc = 19.2 L mmol-1 s-1 and turnover frequency (TOF) = 1041 h-1). The supported Pt0 at an extremely low dosage of 0.1 ppm promotes 98% conversion of 4-NP within minutes and is well recyclable. The striking catalytic activity is attributed to the combination of orthogonal ligand properties such as weak ligand nature, catalyst-activating ability, excellent substrate affinity, and effect on PtNC-size mediation of the ligand.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Chenhui Li
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Xiaoqiu Yao
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| |
Collapse
|
29
|
Acharya A, Mete TB, Kumari N, Yoon Y, Jeong H, Jang T, Song B, Choi HC, Han JW, Pang Y, Yun Y, Kumar A, Lee IS. Ultrathin covalent organic overlayers on metal nanocrystals for highly selective plasmonic photocatalysis. Nat Commun 2023; 14:7667. [PMID: 37996475 PMCID: PMC10667221 DOI: 10.1038/s41467-023-43482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption. Conformal organic overlayers are synthesised through the plasmonic oxidative activation and intermolecular covalent crosslinking of molecular units. We develop a light-operated multicomponent interfaced plasmonic catalytic platform comprising Pd-modified gold nanoparticles inside hollow silica to achieve the highly efficient and selective semihydrogenation of alkynes. This approach demonstrates a way to control molecular adsorption behaviours on metal surfaces, breaking the linear scaling relationship and simultaneously enhancing activity and selectivity.
Collapse
Affiliation(s)
- Anubhab Acharya
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Trimbak Baliram Mete
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Youngkwan Yoon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hayoung Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Byeongju Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Yongju Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
30
|
Nguyen DK, Vargheese V, Liao V, Dimitrakellis P, Sourav S, Zheng W, Vlachos DG. Plasma-Enabled Ligand Removal for Improved Catalysis: Furfural Conversion on Pd/SiO 2. ACS NANO 2023; 17:21480-21492. [PMID: 37906709 DOI: 10.1021/acsnano.3c06310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A nonthermal, atmospheric He/O2 plasma (NTAP) successfully removed polyvinylpyrrolidone (PVP) from Pd cubic nanoparticles supported on SiO2 quickly and controllably. Transmission electron microscopy (TEM) revealed that the shape and size of Pd nanoparticles remain intact during plasma treatment, unlike mild calcination, which causes sintering and polycrystallinity. Using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), we demonstrate the quantitative estimation of the PVP plasma removal rate and control of the nanoparticle synthesis. First-principles calculations of the XPS and CO FTIR spectra elucidate electron transfer from the ligand to the metal and allow for estimates of ligand coverages. Reactivity testing indicated that PVP surface crowding inhibits furfural conversion but does not alter furfural selectivity. Overall, the data demonstrate NTAP as a more efficient method than traditional calcination for organic ligand removal in nanoparticle synthesis.
Collapse
Affiliation(s)
- Darien K Nguyen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Vibin Vargheese
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Vinson Liao
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Sagar Sourav
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| |
Collapse
|
31
|
Li Y, Stec GJ, Thorarinsdottir AE, McGillicuddy RD, Zheng SL, Mason JA. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chem Sci 2023; 14:12283-12291. [PMID: 37969596 PMCID: PMC10631301 DOI: 10.1039/d3sc04085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Grant J Stec
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Agnes E Thorarinsdottir
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
32
|
Ropp A, André RF, Carenco S. Phosphine-Enhanced Semi-Hydrogenation of Phenylacetylene by Cobalt Phosphide Nano-Urchins. Chempluschem 2023; 88:e202300469. [PMID: 37694531 DOI: 10.1002/cplu.202300469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Transition metal phosphides are promising, selective, and air-stable nanocatalysts for hydrogenation reactions. However, they often require fairly high temperatures and H2 pressures to provide quantitative conversions. This work reports the positive effect of phosphine additives on the activity of cobalt phosphide nano-urchins for the semi-hydrogenation of phenylacetylene. While the nanocatalyst's activity was low under mild conditions (7 bar of H2 , 100 °C), the addition of a catalytic amount of phosphine remarkably increased the conversion, e. g., from 13 % to 98 % in the case of Pn Bu3 . The heterogeneous nature of the catalyst was confirmed by negative supernatant activity tests. The catalyst integrity was carefully verified by post-mortem analyses (TEM, XPS, and liquid 31 P NMR). A stereo-electronic map was proposed to rationalize the activity enhancement provided over a selection of nine phosphines: the strongest effect was observed for low to moderately hindered phosphines, associated with strong electron donor abilities. A threshold in phosphine stoichiometry was revealed for the enhancement of activity to occur, which was related to the ratio of phosphine to surface cobalt atoms.
Collapse
Affiliation(s)
- Anthony Ropp
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Rémi F André
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
33
|
Nyabadza A, McCarthy É, Makhesana M, Heidarinassab S, Plouze A, Vazquez M, Brabazon D. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv Colloid Interface Sci 2023; 321:103010. [PMID: 37804661 DOI: 10.1016/j.cis.2023.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
This article provides an in-depth analysis of various fabrication methods of bimetallic nanoparticles (BNP), including chemical, biological, and physical techniques. The review explores BNP's diverse uses, from well-known applications such as sensing water treatment and biomedical uses to less-studied areas like breath sensing for diabetes monitoring and hydrogen storage. It cites results from over 1000 researchers worldwide and >300 peer-reviewed articles. Additionally, the article discusses current trends, actionable recommendations, and the importance of synthetic analysis for industry players looking to optimize manufacturing techniques for specific applications. The article also evaluates the pros and cons of various fabrication methods, highlighting the potential of plant extract synthesis for mass production of capped BNPs. However, it warns that this method may not be suitable for certain applications requiring ligand-free surfaces. In contrast, physical methods like laser ablation offer better control and reactivity, especially for applications where ligand-free surfaces are critical. The report underscores the environmental benefits of plant extract synthesis compared to chemical methods that use hazardous chemicals and pose risks to extraction, production, and disposal. The article emphasizes the need for life cycle assessment (LCA) articles in the literature, given the growing volume of research on nanotechnology materials. This article caters to researchers at all stages and applies to various fields applying nanomaterials.
Collapse
Affiliation(s)
- Anesu Nyabadza
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Éanna McCarthy
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mayur Makhesana
- Mechanical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Saeid Heidarinassab
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Anouk Plouze
- Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland; Conservatoire National des arts et Métiers (CNAM), 61 Rue du Landy, 93210 Saint-Denis, France
| | - Mercedes Vazquez
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dermot Brabazon
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
34
|
Zeng L, Zhao Z, Huang Q, Zhou C, Chen W, Wang K, Li M, Lin F, Luo H, Gu Y, Li L, Zhang S, Lv F, Lu G, Luo M, Guo S. Single-Atom Cr-N 4 Sites with High Oxophilicity Interfaced with Pt Atomic Clusters for Practical Alkaline Hydrogen Evolution Catalysis. J Am Chem Soc 2023; 145:21432-21441. [PMID: 37728051 DOI: 10.1021/jacs.3c06863] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Although dispersing Pt atomic clusters (ACs) on a conducting support is a promising way to minimize the Pt amount required in hydrogen evolution reaction (HER), the catalytic mass activity and durability of Pt ACs are often unsatisfactory for alkaline HER due to their unfavorable water dissociation and challenges in stabilizing them against agglomeration and detachment. Herein, we report a class of single-atom Cr-N4 sites with high oxophilicity interfaced with Pt ACs on mesoporous carbon for achieving a highly active and stable alkaline HER in an anion-exchange-membrane water electrolyzer (AEMWE). The as-made catalyst achieves the highest reported Pt mass activity (37.6 times higher than commercial Pt/C) and outstanding operational stability. Experimental and theoretical studies elucidate that the formation of a unique Pt-Cr quasi-covalent bonding interaction at the interface of Cr-N4 sites and Pt ACs effectively suppresses the migration and thermal vibration of Pt atoms to stabilize Pt ACs and contributes to the greatly enhanced catalytic stability. Moreover, oxophilic Cr-N4 sites adjacent to Pt ACs with favorable adsorption of hydroxyl species facilitate nearly barrierless water dissociation and thus enhance the HER activity. An AEMWE using this catalyst (with only 50 μgPt cm-2) can operate stably at an industrial-level current density of 500 mA cm-2 at 1.8 V for >100 h with a small degradation rate of 90 μV h-1.
Collapse
Affiliation(s)
- Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qizheng Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Gu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Luo Q, Duan H, McLaughlin MC, Wei K, Tapia J, Adewuyi JA, Shuster S, Liaqat M, Suib SL, Ung G, Bai P, Sun S, He J. Why surface hydrophobicity promotes CO 2 electroreduction: a case study of hydrophobic polymer N-heterocyclic carbenes. Chem Sci 2023; 14:9664-9677. [PMID: 37736633 PMCID: PMC10510627 DOI: 10.1039/d3sc02658b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
We report the use of polymer N-heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO-b-PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO-b-PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut Storrs CT 06269 USA
| | | | - Kecheng Wei
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Joseph Tapia
- Department of Chemical Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Seth Shuster
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Steven L Suib
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Shouheng Sun
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Jie He
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
- Polymer Program, Institute of Materials Science, University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
36
|
Schulz F, Hühn J, Werner M, Hühn D, Kvelstad J, Koert U, Wutke N, Klapper M, Fröba M, Baulin V, Parak WJ. Local Environments Created by the Ligand Coating of Nanoparticles and Their Implications for Sensing and Surface Reactions. Acc Chem Res 2023; 56:2278-2285. [PMID: 37607332 PMCID: PMC10552541 DOI: 10.1021/acs.accounts.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 08/24/2023]
Abstract
ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concentrations close to the ligand shell, which are the ones that are measured, may be very different from the analyte concentrations in bulk. Based on previous work describing this effect, it will be discussed herein how such local environments, created by the choice of used ligands, may allow for tailoring the NPs' sensing properties. In general, the ligand shell around NPs can be attractive/repulsive for molecules with distinct properties and thus forms an environment that can modulate the specific response. Such local environments can also be optimized to modulate chemical reactions close to the NP surface (for example, by size filtering within pores) or to attract specific low abundance proteins. The importance hereby is that this is based on interaction with low selectivity between the ligands and the target molecules.
Collapse
Affiliation(s)
- Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Jonas Hühn
- Fachbereich
Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Marco Werner
- Leibniz-Institut
fur Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Dominik Hühn
- Fachbereich
Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Julia Kvelstad
- Fachbereich
Chemie, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Ulrich Koert
- Fachbereich
Chemie, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Nicole Wutke
- Max Planck
Institute für Polymerforschung, 55128 Mainz, Germany
| | - Markus Klapper
- Max Planck
Institute für Polymerforschung, 55128 Mainz, Germany
| | - Michael Fröba
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Vladimir Baulin
- Departament
Quimica Fisica i Inorganica, Universitat
Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
37
|
Rudel HE, Zimmerman JB. Elucidating the Role of Capping Agents in Facet-Dependent Adsorption Performance of Hematite Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34829-34837. [PMID: 37441746 PMCID: PMC10502695 DOI: 10.1021/acsami.3c05104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Organic capping agents are a ubiquitous and crucial part of preparing reproducible and homogeneous batches of nanomaterials, particularly nanocrystals with well-defined facets. Despite studies reporting surface ligands (e.g., capping agents) having a non-negligible role in catalytic behavior, their impact is less understood in contaminant adsorption, an important consideration given their potential to obfuscate facet-dependent trends in performance. To ascribe observed behaviors to the facet or the ligand, this report evaluates the impact of poly(N-vinyl-2-pyrrolidone) (PVP), a commonly utilized capping agent, on the adsorption performance of nanohematite particles of varying prevailing facet in the removal of selenite (Se(IV)) as a model system. The PVP capping agent reduces the available surface area for contaminant binding, thus resulting in a reduction in overall Se(IV) adsorbed. However, accounting for the effects of surface area, {012}-faceted nanohematite demonstrates a significantly higher sorption capacity for Se(IV) compared with that of {001}-faceted nanohematite. Notably, chemical treatment is minimally effective in removing strongly bound PVP, indicating that complete removal of surface ligands remains challenging.
Collapse
Affiliation(s)
- Holly E. Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
| | - Julie B. Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
- School of the Environment, Yale University, New Haven, CT 06511
| |
Collapse
|
38
|
Rikanati L, Shema H, Ben-Tzvi T, Gross E. Nanoimaging of Facet-Dependent Adsorption, Diffusion, and Reactivity of Surface Ligands on Au Nanocrystals. NANO LETTERS 2023; 23:5437-5444. [PMID: 37327381 PMCID: PMC10311598 DOI: 10.1021/acs.nanolett.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Analysis of the influence of dissimilar facets on the adsorption, stability, mobility, and reactivity of surface ligands is essential for designing ligand-coated nanocrystals with optimal functionality. Herein, para-nitrothiophenol and nitronaphthalene were chemisorbed and physisorbed, respectively, on Au nanocrystals, and the influence of different facets within a single Au nanocrystal on ligands properties were identified by IR nanospectroscopy measurements. Preferred adsorption was probed on (001) facets for both ligands, with a lower density on (111) facets. Exposure to reducing conditions led to nitro reduction and diffusion of both ligands toward the top (111) facet. Nitrothiophenol was characterized with a diffusivity higher than that of nitronaphthalene. Moreover, the strong thiol-Au interaction led to the diffusion of Au atoms and the formation of thiol-coated Au nanoparticles on the silicon surface. It is identified that the adsorption and reactivity of surface ligands were mainly influenced by the atomic properties of each facet, while diffusion was controlled by ligand-metal interactions.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Tzipora Ben-Tzvi
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
39
|
Mahmood AU, Rizvi MH, Tracy JB, Yingling YG. Solvent Effects in Ligand Stripping Behavior of Colloidal Nanoparticles. ACS NANO 2023. [PMID: 37311219 DOI: 10.1021/acsnano.3c01313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic colloidal nanoparticle (NP) properties can be tuned by stripping stabilizing ligands using a poor solvent. However, the mechanism behind ligand stripping is poorly understood, in part because in situ measurements of ligand stripping are challenging at the nanoscale. Here, we investigate ethanol solvent-mediated oleylamine ligand stripping from magnetite (Fe3O4) NPs in different compositions of ethanol/hexane mixtures using atomistic molecular dynamics (MD) simulations and thermogravimetric analysis (TGA). Our study elucidates a complex interplay of ethanol interactions with system components and indicates the existence of a threshold concentration of ∼34 vol % ethanol, above which ligand stripping saturates. Moreover, hydrogen bonding between ethanol and stripped ligands inhibits subsequent readsorption of the ligands on the NP surface. A proposed modification of the Langmuir isotherm explains the role of the enthalpy of mixing of the ligands and solvents on the ligand stripping mechanism. A good agreement between the MD predictions and TGA measurements of ligand stripping from Fe3O4 NPs validates the simulation observations. Our findings demonstrate that the ligand coverage of NPs can be controlled by using a poor solvent below the threshold concentration and highlight the importance of ligand-solvent interactions that modulate the properties of colloidal NPs. The study also provides an approach for a detailed in silico study of ligand stripping and exchange from colloidal NPs that are crucial for applications of NPs spanning self-assembly, optoelectronics, nanomedicine, and catalysis.
Collapse
Affiliation(s)
- Akhlak U Mahmood
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
40
|
Langer N, LeGrand M, Kedem O. Cationic Polymer Coating Increases the Catalytic Activity of Gold Nanoparticles toward Anionic Substrates. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37289992 DOI: 10.1021/acsami.3c04087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic coatings on catalytic metal nanoparticles (NPs) typically hinder their activity due to the blocking of active sites. Therefore, considerable effort is made to remove organic ligands when preparing supported NP catalytic materials. Here, cationic polyelectrolyte coatings are shown to increase the catalytic activity of partially embedded gold nanoislands (Au NIs) toward transfer hydrogenation and oxidation reactions with anionic substrates compared to the activity of identical but uncoated Au NIs. Any potential steric hindrance caused by the coating is countered by a decrease in the activation energy of the reaction by half, resulting in overall enhancement. The direct comparison to identical but uncoated NPs isolates the role of the coating and provides conclusive evidence of enhancement. Our findings show that engineering the microenvironment of heterogeneous catalysts, creating hybrid materials that cooperatively interact with the reactants involved, is a viable and exciting path to improving their performance.
Collapse
Affiliation(s)
- Nicholas Langer
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Mason LeGrand
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Ofer Kedem
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
41
|
Guan H, Harris C, Sun S. Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions. Acc Chem Res 2023. [PMID: 37205747 DOI: 10.1021/acs.accounts.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ConspectusFunctional nanoparticles (NPs) have been studied extensively in the past decades for their unique nanoscale properties and their promising applications in advanced nanosciences and nanotechnologies. One critical component of studying these NPs is to prepare monodisperse NPs so that their physical and chemical properties can be tuned and optimized. Solution phase reactions have provided the most reliable processes for fabricating such monodisperse NPs in which metal-ligand interactions play essential roles in the synthetic controls. These interactions are also key to stabilizing the preformed NPs for them to show the desired electronic, magnetic, photonic, and catalytic properties. In this Account, we summarize some representative organic bipolar ligands that have recently been explored to control NP formation and NP functions. These include aliphatic acids, alkylphosphonic acids, alkylamines, alkylphosphines, and alkylthiols. This ligand group covers metal-ligand interactions via covalent, coordination, and electrostatic bonds that are most commonly employed to control NP sizes, compositions, shapes, and properties. The metal-ligand bonding effects on NP nucleation rate and growth can now be more thoroughly investigated by in situ spectroscopic and theoretical studies. In general, to obtain the desired NP size and monodispersity requires rational control of the metal/ligand ratios, concentrations, and reaction temperatures in the synthetic solutions. In addition, for multicomponent NPs, the binding strength of ligands to various metal surfaces needs to be considered in order to prepare these NPs with predesigned compositions. The selective ligand binding onto certain facets of NPs is also key to anisotropic growth of NPs, as demonstrated in the synthesis of one-dimensional nanorods and nanowires. The effects of metal-ligand interactions on NP functions are discussed in two aspects, electrochemical catalysis for CO2 reduction and electronic transport across NP assemblies. We first highlight recent advances in using surface ligands to promote the electrochemical reduction of CO2. Several mechanisms are discussed, including the modification of the catalyst surface environment, electron transfer through the metal-organic interface, and stabilization of the CO2 reduction intermediates, all of which facilitate selective CO2 reduction. These strategies lead to better understanding of molecular level control of catalysis for further catalyst optimization. Metal-ligand interaction in magnetic NPs can also be used to control tunneling magnetoresistance properties across NPs in NP assemblies by tuning NP interparticle spacing and surface spin polarization. In all, metal-ligand interactions have yielded particularly promising directions for tuning CO2 reduction selectivity and for optimizing nanoelectronics, and the concepts can certainly be extended to rationalize NP engineering at atomic/molecular precision for the fabrication of sensitive functional devices that will be critical for many nanotechnological applications.
Collapse
Affiliation(s)
- Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
42
|
Ma C, Yang C, Zhuo H, Chen C, Lu K, Wang F, Shi Z, Xiao H, Song M, Jiang G. Tailored Cl - Ligation on Supported Pt Catalysts for Selective Primary C-H Bond Oxidation. J Am Chem Soc 2023; 145:10890-10898. [PMID: 37155826 DOI: 10.1021/jacs.3c03257] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
It is challenging to achieve high selectivity over Pt-metal-oxide catalysts widely used in many selective oxidation reactions because Pt is prone to over-oxidize substrates. Herein, our sound strategy for enhancing the selectivity is to saturate the under-coordinated single Pt atoms with Cl- ligands. In this system, the weak electronic metal-support interactions between Pt atoms and reduced TiO2 cause electron extraction from Pt to Cl- ligands, resulting in strong Pt-Cl bonds. Therefore, the two-coordinate single Pt atoms adopt a four-coordinate configuration and thus inactivated, thereby inhibiting the over-oxidation of toluene over Pt sites. The selectivity for the primary C-H bond oxidation products of toluene was increased from 50.1 to 100%. Meanwhile, the abundant active Ti3+ sites were stabilized in reduced TiO2 by Pt atoms, leading to a rising yield of the primary C-H oxidation products of 249.8 mmol gcat-1. The reported strategy holds great promise for selective oxidation with enhanced selectivity.
Collapse
Affiliation(s)
- Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggong Yang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongying Zhuo
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifu Shi
- Chinainstru & Quantumtech (Hefei) Co., Ltd, Hefei 230031, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Lenne Q, Mattiuzzi A, Jabin I, Troian-Gautier L, Hamon J, Leroux YR, Lagrost C. Chemical Surface Grafting of Pt Nanocatalysts for Reconciling Methanol Tolerance with Methanol Oxidation Activity. CHEMSUSCHEM 2023; 16:e202201990. [PMID: 36752278 DOI: 10.1002/cssc.202201990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A conceptual challenge toward more versatile direct methanol fuel cells (DMFCs) is the design of a single material electrocatalyst with high activity and durability for both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). This requires to conciliate methanol tolerance not to hinder ORR at the cathode with a good MOR activity at the anode. This is especially incompatible with Pt materials. We tackled this challenge by deriving a supramolecular concept where surface-grafted molecular ligands regulate the Pt-catalyst reactivity. ORR and MOR activities of newly reported Pt-calix[4]arenes nanocatalysts (Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C) are compared to commercial benchmark PtNPs/C. Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C exhibit a remarkable methanol tolerance without losing the MOR reactivity along with outstanding durability and chemical stability. Beyond designing single-catalyst material, operable in DMFC cathodic and anodic compartments, the results highlight a promising strategy for tuning interfacial properties.
Collapse
Affiliation(s)
- Quentin Lenne
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles, CP 160/06, avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles, CP 160/06, avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
- Institut de la Matière Condensée et des Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Jonathan Hamon
- Institut des Matériaux de Nantes_UMR 6502, Université de Nantes, 2 rue de la Houssinière, 44000, Nantes, France
| | - Yann R Leroux
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| | - Corinne Lagrost
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| |
Collapse
|
44
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
45
|
Gu Y, Guo W, Bao J, Li Y, Lu L. Au-modified PtCu nanodendrites as a highly stable and active electrocatalyst. Chem Commun (Camb) 2023; 59:3582-3585. [PMID: 36883349 DOI: 10.1039/d3cc00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Direct galvanic replacement of surface Cu with Au3+ in PtCu3 nanodendrites is applied to synthesize an Au-modified PtCu3 nanodendrite catalyst (PtCu3-Au), which shows both superior stability and excellent activity for the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The PtCu3-Au catalyst only lost 7% of its MOR activity and its ORR half-wave potential decreased 8 mV after 10 000 potential cycles.
Collapse
Affiliation(s)
- Yuelin Gu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Weiyi Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Jingqi Bao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Yunxia Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
46
|
Li S, Du X, Liu Z, Li Y, Shao Y, Jin R. Size Effects of Atomically Precise Gold Nanoclusters in Catalysis. PRECISION CHEMISTRY 2023; 1:14-28. [PMID: 37025974 PMCID: PMC10069034 DOI: 10.1021/prechem.3c00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
The emergence of ligand-protected, atomically precise gold nanoclusters (NCs) in recent years has attracted broad interest in catalysis due to their well-defined atomic structures and intriguing properties. Especially, the precise formulas of NCs provide an opportunity to study the size effects at the atomic level without complications by the polydispersity in conventional nanoparticles that obscures the relationship between the size/structure and properties. Herein, we summarize the catalytic size effects of atomically precise, thioate-protected gold NCs in the range of tens to hundreds of metal atoms. The catalytic reactions include electrochemical catalysis, photocatalysis, and thermocatalysis. With the precise sizes and structures, the fundamentals underlying the size effects are analyzed, such as the surface area, electronic properties, and active sites. In the catalytic reactions, one or more factors may exert catalytic effects simultaneously, hence leading to different catalytic-activity trends with the size change of NCs. The summary of literature work disentangles the underlying fundamental mechanisms and provides insights into the size effects. Future studies will lead to further understanding of the size effects and shed light on the catalytic active sites and ultimately promote catalyst design at the atomic level.
Collapse
Affiliation(s)
- Site Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yucai Shao
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
47
|
Avello MG, Golling S, Truong-Phuoc L, Vidal L, Romero T, Papaefthimiou V, Gruber N, Chetcuti MJ, Leroux FR, Donnard M, Ritleng V, Pham-Huu C, Michon C. (NHC-olefin)-nickel(0) nanoparticles as catalysts for the ( Z)-selective semi-hydrogenation of alkynes and ynamides. Chem Commun (Camb) 2023; 59:1537-1540. [PMID: 36661282 DOI: 10.1039/d2cc05302k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nickel(0) nanoparticles coordinated to NHC ligands bearing N-coordinated cinnamyl moieties were readily prepared by reduction of a [NiCpBr(NHC-cinnamyl)] complex with methyl magnesium bromide. The combination of a strong σ-donor NHC ligand with a π-coordinating appended cinnamyl moiety likely prevents nickel(0) nanoparticle aggregation to larger inactive species, and allows the effective and (Z)-selective semi-hydrogenation of alkynes and ynamides.
Collapse
Affiliation(s)
- Marta G Avello
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Stéphane Golling
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Lai Truong-Phuoc
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR UMR 7361, 15, rue Jean Starcky - BP 2488, 68057, Mulhouse, France
| | - Thierry Romero
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Vasiliki Papaefthimiou
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Nathalie Gruber
- Université de Strasbourg, Fédération de chimie Le Bel - FR2010, BP 296R8 1, rue Blaise Pascal, 67008, Strasbourg, France
| | - Michael J Chetcuti
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Morgan Donnard
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Vincent Ritleng
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Cuong Pham-Huu
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Christophe Michon
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| |
Collapse
|
48
|
Centane S, Nyokong T. Co phthalocyanine mediated electrochemical detection of the HER2 in the presence of Au and CeO2 nanoparticles and graphene quantum dots. Bioelectrochemistry 2023; 149:108301. [DOI: 10.1016/j.bioelechem.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
49
|
Robert F, Lecante P, Girardon JS, Wojcieszak R, Marceau É, Briois V, Amiens C, Philippot K. In situ study of the evolution of NiFe nanocatalysts in reductive and oxidative environments upon thermal treatments. Faraday Discuss 2023; 242:353-373. [PMID: 36193838 DOI: 10.1039/d2fd00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The conversion of biomass as a sustainable path to access valuable chemicals and fuels is very attractive for the chemical industry, but catalytic conversions still often rely on the use of noble metals. Sustainability constraints require developing alternative catalysts from abundant and low-cost metals. In this context, NiFe nanoparticles are interesting candidates. In their reduced and supported form, they have been reported to be more active and selective than monometallic Ni in the hydrogenation of the polar functions of organic molecules, and the two metals are very abundant. However, unlike noble metals, Ni and Fe are easily oxidized in ambient conditions, and understanding their transformation in both oxidative and reductive atmospheres is an important though seldom investigated issue to be addressed before their application in catalysis. Three types of NiFe nanoparticles were prepared by an organometallic approach to ensure the formation of ultrasmall nanoparticles (<3.5 nm) with a narrow size distribution, controlled composition and chemical order, while working in mild conditions: Ni2Fe1 and Ni1Fe1, both with a Ni rich core and Fe rich surface, and an alloy with a Ni1Fe9 composition. Supported systems were obtained by the impregnation of silica with a colloidal solution of the preformed nanoparticles. Using advanced characterization techniques, such as wide-angle X-ray scattering (WAXS) and X-ray absorption spectroscopy (XAS) in in situ conditions, this study reports on the evolution of the chemical order and of the oxidation state of the metals upon exposure to air, hydrogen, and/or increasing temperature, all factors that may affect their degree of reduction and subsequent performance in catalysis. We show that if oxidation readily occurs upon exposure to air, the metals can revert to their initial state upon heating in the presence of H2 but with a change in structure and chemical ordering.
Collapse
Affiliation(s)
- François Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F- 31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Pierre Lecante
- CNRS, CEMES (Centre d'Elaboration des Matériaux et d'Etudes Structurales), 29 Rue Jeanne Marvig, BP 4347, F-31055 Toulouse Cedex 4, France
| | - Jean-Sébastien Girardon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Éric Marceau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Valérie Briois
- Synchrotron SOLEIL, CNRS-UR1, L'Orme des Merisiers, BP48, Saint-Aubin, F-91192 Gif-sur Yvette, France
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F- 31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F- 31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
50
|
Surfactant- and Ligand-Free Synthesis of Platinum Nanoparticles in Aqueous Solution for Catalytic Applications. Catalysts 2023. [DOI: 10.3390/catal13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The synthesis of surfactant-free and organic ligand-free metallic nanoparticles in solution remains challenging due to the nanoparticles’ tendency to aggregate. Surfactant- and ligand-free nanoparticles are particularly desirable in catalytic applications as surfactants, and ligands can block access to the nanoparticles’ surfaces. In this contribution, platinum nanoparticles are synthesized in aqueous solution without surfactants or bound organic ligands. Pt is reduced by sodium borohydride, and the borohydride has a dual role of reducing agent and weakly interacting stabilizer. The 5.3 nm Pt nanoparticles are characterized using UV-visible spectroscopy and transmission electron microscopy. The Pt nanoparticles are then applied as catalysts in two different reactions: the redox reaction of hexacyanoferrate(III) and thiosulfate ions, and H2O2 decomposition. Catalytic activity is observed for both reactions, and the Pt nanoparticles show up to an order of magnitude greater activity over the most active catalysts reported in the literature for hexacyanoferrate(III)/thiosulfate redox reactions. It is hypothesized that this enhanced catalytic activity is due to the increased electron density that the surrounding borohydride ions give to the Pt nanoparticle surface, as well as the absence of surfactants or organic ligands blocking surface sites.
Collapse
|