1
|
Santiago-Arcos J, Salome M, López-Gallego F, Sanchez-Cano C. Unveiling the spatial rearrangements of exhausted immobilised multi-enzyme systems through cryo-X-ray fluorescence nanoprobe imaging. Chem Sci 2024; 15:20515-20522. [PMID: 39600499 PMCID: PMC11586790 DOI: 10.1039/d4sc05136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Enzyme immobilisation is of great importance for the fabrication of heterogeneous biocatalysts, as it allows the stabilisation of proteins using a solid support. Moreover, it permits their reuse in continuous and discontinuous reactors. The behaviour of enzymes at the interface with the materials where they are supported is not well understood during operational conditions. Here, we use X-ray fluorescence (XRF) imaging to study the changes in the overall structure of a heterogeneous biocatalyst formed by two unmodified metalloenzymes (a copper-dependent laccase and a zinc-dependent dehydrogenase) upon incubation, either under drastic (high temperature) or operational conditions. Those two enzymes were co-immobilised reversibly (by electrostatic interactions and His-tag metal coordination) to form a cascade reaction that catalyses the NAD+-dependent oxidation of diols coupled to a laccase-mediator for the in situ regeneration of the redox cofactor. Both the protein scaffolds and the metal cofactors undergo rearrangements during operational use or thermal incubation, but they seem to move as a whole unit within the support. Migration inside the support apparently causes only small alterations to the structure of the protein, yet it leads to the exhaustion of the heterogeneous biocatalyst. As such, we show that the use of advanced X-ray spectroscopy with spatial resolution can help obtain a better understanding of the molecular phenomena that occur during the operation of heterogeneous biocatalysts. Overall, this is fundamental to guide the optimisation for more productive and robust bioprocesses based on immobilised enzyme systems.
Collapse
Affiliation(s)
- Javier Santiago-Arcos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA) Paseo de Miramón, 182 20014 Donostia-San Sebastián Spain
| | - Murielle Salome
- The European Synchrotron, ESRF 71 Avenue des Martyrs 38043 Grenoble Cedex 9 CS40220 France
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA) Paseo de Miramón, 182 20014 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 Bilbao 48009 Spain
| | - Carlos Sanchez-Cano
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 Bilbao 48009 Spain
- Donostia International Physics Center Paseo Manuel de Lardizabal 4 Donostia 20018 Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU Donostia-San Sebastian 20018 Spain
| |
Collapse
|
2
|
Dong T, Shen W, Xia Y, Chen X, Yang H. Systematic Metabolic Engineering for Enhanced Cytidine 5'-Monophosphate Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27346-27354. [PMID: 39621419 DOI: 10.1021/acs.jafc.4c09127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Cytidine 5'-monophosphate (5'-CMP) is a key intermediate in various nucleotide derivatives and is widely used in the food and pharmaceutical industries. In this study, the titer of 5'-CMP in engineered Escherichia coli CM006, which blocks the degradation pathway of 5'-CMP, increased 134.7-fold compared to E. coli MG1655. Integrated expression of the 5'-CMP diphosphate hydrolase gene nudG significantly enhanced the 5'-CMP titer, reduced orotic acid accumulation, and alleviated feedback inhibition in the 5'-CMP synthesis pathway. By blocking cytidine degradation and increasing carbon flux from cytidine to 5'-CMP, the 5'-CMP titer in E. coli CM011 was increased to 338.2 mg/L. Furthermore, by enhancing the supply of the precursor 5-phospho-α-D-ribose 1-diphosphate (PRPP), the 5'-CMP titer in E. coli CM012 reached 417.9 mg/L, the highest value reported to date. The results and methods presented in this study are of great significance for the sustainable industrial production of 5'-CMP.
Collapse
Affiliation(s)
- Tiantian Dong
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Zhao B, Li Y, Zhang Y, Pan M, Zhao G, Guo Y. Low-carbon and overproduction of cordycepin from methanol using engineered Pichia pastoris cell factory. BIORESOURCE TECHNOLOGY 2024; 413:131446. [PMID: 39241814 DOI: 10.1016/j.biortech.2024.131446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Cordycepin, a nucleoside analog, is widely used in medicine and health products. However, the production of cordycepin from Cordyceps militaris faces the challenges of low productivity and high rate of greenhouse gas emissions. In this study, by optimizing the cordycepin biosynthesis pathway through promoter combination, Kozak sequence, and enzyme fusion, enhancing the methanol assimilation capacity in peroxisomes, adjusting the synthesis of NADPH and ATP, and combining the enhanced supply of adenosine and 3'-AMP, the cordycepin high-yield strain Pp29 was constructed, which produced 1551.44 mg/L cordycepin by shake-flask fermentation. In fed-batch fermentation, Pp29 achieved the highest yield (8.11 g/L, 67.64 mg/g DCW, and 1.35 g/L/d) to date in 10 L fermenter, and the CO2-eq emissions were 1.9-17.3 times lower than C. militaris and other yeast systems. This study provide basis for Pichia pastoris to be used as chassis cell for synthesizing cordycepin and other nucleoside analogs by methanol as carbon source.
Collapse
Affiliation(s)
- Bingjie Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yu Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yong Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Meixi Pan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Guishen Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Ma Q, Li H, Huo Z, Wang Z, Zhu T, Hou J, Zhang M, Liu P, Cui J. Precipitated-crosslinked multi-enzyme hybrid nanoflowers for efficient synthesis of α-ketoglutaric acid. Int J Biol Macromol 2024; 285:138244. [PMID: 39626820 DOI: 10.1016/j.ijbiomac.2024.138244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Cascade catalysis of glutamate oxidase (GLOX) and catalase (CAT) to perform one-pot synthetic route for α-ketoglutarate (α-KG) production offers several advantages including simplicity of operation and the generation of few reaction by-products. Nevertheless, the instability of free GLOX and CAT, the high production cost and the difficulty of recycling severely limits its industrial utilisation. Here, catalase-inorganic hybrid nanoflowers were first prepared, and cross-linked with GLOX precipitates by a macromolecular cross-linking agent dextran polyaldehyde to form a novel dual enzyme precipitation-cross-linking hybrid nanoflower (GLOX@CAT-HNFs). The resultant GLOX@CAT-HNFs exhibited higher catalytic activity than conventional combined cross-linked enzyme aggregates (combi-CLEAs) and hybrid nanoflowers (GLOX&CAT-HNFs). The GLOX@CAT-HNFs exhibited 92 % activity recovery whereas combi-CLEAs and GLOX&CAT-HNFs was 87 % and 72 %, respectively. Meanwhile, the GLOX@CAT-HNFs showed better thermal stability, pH and storage stability than free enzymes. After incubation at 60 °C for 100 min, GLOX@CAT-HNFs maintained 70 % of its initial activity while free enzyme was only 18.52 %. Furthermore, after 7 cycles of use, GLOX@CAT-HNFs maintained 68.79 % of its initial activity, indicating excellent reusability. Benefiting from the excellent stability and reusability of GLOX@CAT-HNFs, a nearly 100 % (99.64 %) conversion of L-glutamate to α-KG was achieved, over 1.79 times higher than that of the free GLOX system (55.53 %). This work provides a feasibility for constructing a high-performance cascade catalyst of multiple enzymes.
Collapse
Affiliation(s)
- Qingqing Ma
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Huihui Li
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Zibei Huo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Zhongjie Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Tongyue Zhu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jinchao Hou
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Minsong Zhang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Peng Liu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| |
Collapse
|
5
|
Zhang Z, Han Y, Cao JJ, Yuwen LX, Zhang L, Han XX, Zhang DH. Directionally co-immobilizing glucose oxidase and horseradish peroxidase on three-pronged DNA scaffold and the regulation of cascade activity. Int J Biol Macromol 2024; 282:137072. [PMID: 39481725 DOI: 10.1016/j.ijbiomac.2024.137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
In traditional multienzyme random co-immobilization, it is difficult to precisely locate and regulate the relative positions between two enzyme molecules, resulting in low cascade efficiency between the two enzymes and limiting the application of multienzyme cascade catalysis technology. This study prepared PVAC@Y-dsDNA@GOD/HRP magnetic co-immobilized multienzyme by constructing a three-pronged DNA scaffold for co-coupling glucose oxidase (GOD) and horseradish peroxidase (HRP), which achieved directional co-immobilization of dual enzymes and precise regulation of inter-enzyme distance. Compared with traditional random co-immobilization of multienzyme, PVAC@Y-dsDNA@GOD/HRP could shorten the distance between GOD and HRP to the nanoscale and form substrate channeling, which greatly improved the cascade activity between the two enzymes. The inter-enzyme spacing between GOD and HRP could be precisely regulated by changing the length of DNA strands. When the inter-enzyme spacing was 10.08 nm, PVAC@Y-dsDNA@GOD/HRP exhibited high cascade activity of 707 U/mg. The inter-enzyme spacing that was too large or too small would reduce the cascade activity, indicating a distance-dependence of multienzyme cascade activity. PVAC@Y-dsDNA@GOD/HRP showed good reusability, indicating that the three-pronged DNA scaffold constructed by DNA double strands hybridization could firmly immobilize enzyme on carrier, with less enzyme leakage.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yu Han
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jing-Jing Cao
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Li-Xia Yuwen
- Department of Pharmacy, Xingtai Central Hospital, China
| | - Liu Zhang
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Xiao-Xia Han
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Dong-Hao Zhang
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
7
|
Li S, Zhou Z, Li Y, Hu Y, Huang Z, Hu G, Wang Y, Wang X, Lou Q, Gao L, Shen C, Gao R, Xu Z, Song J, Pu X. Construction of a high-efficiency GjCCD4a mutant and its application for de novo biosynthesis of five crocins in Escherichia coli. Int J Biol Macromol 2024; 277:133985. [PMID: 39033887 DOI: 10.1016/j.ijbiomac.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Crocins are bioactive natural products that rarely exist in plants. High costs and resource shortage severely limit its development and application. Synthetic biology studies on crocins are of considerable global interest. However, the lack of high-efficiency genetic tools and complex cascade biocatalytic systems have substantially hindered progress in crocin biosynthesis-related research. Based on mutagenesis, a high-efficiency GjCCD4a mutant (N212m) was constructed with a catalytic efficiency that was 25.08-fold higher than that of the wild-type. Solubilized GjCCD4a was expressed via fusion with an MBP tag. Moreover, N212m and ten other genes were introduced into Escherichia coli for the de novo biosynthesis of five crocins. The engineered E57 strain produced crocins III and V with a total yield of 11.50 mg/L, and the E579 strain produced crocins I-V with a total output of 8.43 mg/L at shake-flask level. This study identified a marvelous genetic element (N212m) for crocin biosynthesis and achieved its de novo biosynthesis in E. coli using glucose. This study provides a reference for the large-scale production of five crocins using E. coli cell factories.
Collapse
Affiliation(s)
- Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yufang Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziyi Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ge Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Longlong Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
9
|
Retnadhas S, Ducat DC, Hegg EL. Nature-Inspired Strategies for Sustainable Degradation of Synthetic Plastics. JACS AU 2024; 4:3323-3339. [PMID: 39328769 PMCID: PMC11423324 DOI: 10.1021/jacsau.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Synthetic plastics have become integral to our daily lives, yet their escalating production, limited biodegradability, and inadequate waste management contribute to environmental contamination. Biological plastic degradation is one promising strategy to address this pollution. The inherent chemical and physical properties of synthetic plastics, however, pose challenges for microbial enzymes, hindering the effective degradation and the development of a sustainable biological recycling process. This Perspective explores alternative, nature-inspired strategies designed to overcome some key limitations in currently available plastic-degrading enzymes. Nature's refined degradation pathways for natural polymers, such as cellulose, present a compelling framework for the development of efficient technologies for enzymatic plastic degradation. By drawing insights from nature, we propose a general strategy of employing substrate binding domains to improve targeting and multienzyme scaffolds to overcome enzymatic efficiency limitations. As one potential application, we outline a multienzyme pathway to upcycle polyethylene into alkenes. Employing nature-inspired strategies can present a path toward sustainable solution to the environmental impact of synthetic plastics.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Wang YW, Liu HY, Duan ZW, Ning P, Zhang HM, Qian F, Wang P. Carrier-free immobilized enzymatic reactor based on CipA-fused carbonyl reductase for efficient synthesis of chiral alcohol with cofactor self-sufficiency. Int J Biol Macromol 2024; 276:133873. [PMID: 39013505 DOI: 10.1016/j.ijbiomac.2024.133873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.
Collapse
Affiliation(s)
- Yao-Wu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Han-Yu Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Wen Duan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Pan Ning
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hai-Min Zhang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
11
|
Arnon ZA, Piperno S, Redeker DC, Randall E, Tkachenko AV, Shpaisman H, Gang O. Acoustically shaped DNA-programmable materials. Nat Commun 2024; 15:6875. [PMID: 39128914 PMCID: PMC11317520 DOI: 10.1038/s41467-024-51049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Recent advances in DNA nanotechnology allow for the assembly of nanocomponents with nanoscale precision, leading to the emergence of DNA-based material fabrication approaches. Yet, transferring these nano- and micron-scale structural arrangements to the macroscale morphologies remains a challenge, which limits the development of materials and devices based on DNA nanotechnology. Here, we demonstrate a materials fabrication approach that combines DNA-programmable assembly with actively driven processes controlled by acoustic fields. This combination provides a prescribed nanoscale order, as dictated by equilibrium assembly through DNA-encoded interactions, and field-shaped macroscale morphology, as regulated by out-of-equilibrium materials formation through specific acoustic stimulation. Using optical and electron microscopy imaging and x-ray scattering, we further revealed the nucleation processes, domain fusion, and crystal growth under different acoustically stimulated conditions. The developed approach provides a pathway for the fabrication of complexly shaped macroscale morphologies for DNA-programmable nanomaterials by controlling spatiotemporal characteristics of the acoustic fields.
Collapse
Affiliation(s)
- Z A Arnon
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - S Piperno
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - D C Redeker
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - E Randall
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - A V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - H Shpaisman
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - O Gang
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Liu F, Qu P, Weiss J, Guo K, Weck M. Substrate Channeling in Compartmentalized Nanoreactors. Macromolecules 2024; 57:6805-6815. [PMID: 39071043 PMCID: PMC11270995 DOI: 10.1021/acs.macromol.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Thermo- and photoresponsive nanoreactors based on shell cross-linked micelles (SCMs) for the rhodium-catalyzed asymmetric transfer hydrogenation (ATH) of ketones have been developed from poly(2-oxazoline) triblock terpolymers. The nanoreactors incorporate thermoresponsive poly(2-isopropyl-2-oxazoline) as the hydrophilic corona and are covalently cross-linked with a photoswitchable spiropyran molecule. UV irradiation or changes in temperature trigger morphology switching of the polymer-based nanoreactors that alters the hydrophobicity in separate layers of the SCMs, resulting in dynamic substrate selectivity of the ATH in water. Control experiments and kinetic studies show that the thermoresponsive outer layer induces the gated behavior for more hydrophobic substrates, whereas the photoresponsive cross-linking layer induces the gated behavior for less hydrophobic substrates. The nanoreactors mimic the multichannels in Nature, transporting substrates and reagents into the catalytic core which can be controlled through external triggers such as temperature and light wavelengths. Additionally, the nanoreactors can be easily recovered and reused with continued high activity and selectivities.
Collapse
Affiliation(s)
- Fangbei Liu
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| | | | - Jeremy Weiss
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| | - Kunhao Guo
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| | - Marcus Weck
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United
States
| |
Collapse
|
13
|
Koball A, Obst F, Gaitzsch J, Voit B, Appelhans D. Boosting Microfluidic Enzymatic Cascade Reactions with pH-Responsive Polymersomes by Spatio-Chemical Activity Control. SMALL METHODS 2024:e2400282. [PMID: 38989686 DOI: 10.1002/smtd.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Microfluidic flow reactors permit the implementation of sensitive biocatalysts in polymeric environments (e.g., hydrogel dots), mimicking nature through the use of diverse microstructures within defined confinements. However, establishing complex hybrid structures to mimic biological processes and functions under continuous flow with optimal utilization of all components involved in the reaction process represents a significant scientific challenge. To achieve spatial, chemical, and temporal control for any microfluidic application, compartmentalization is required, as well as the unification of different sensitive compartments in the reaction chamber for the microfluidic flow design. This study presents a self-regulating microfluidic system fabricated by a sequential photostructuring process with an intermediate chemical process step to realize pH-sensitive hybrid structures for the fabrication of a microfluidic double chamber reactor for controlled enzymatic cascade reaction (ECR). The key point is the adaptation and retention of the function of pH-responsive horseradish peroxidase-loaded polymersomes in a microfluidic chip under continuous flow. ECR is successfully triggered and controlled by an interplay between glucose oxidase-converted glucose, the membrane state of pH-responsive polymersomes, and other parameters (e.g., flow rate and fluid composition). This study establishes a promising noninvasive regulatory platform for extended spatio-chemical control of current and future ECR and other cascade reaction systems.
Collapse
Affiliation(s)
- Andrea Koball
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, Organische Chemie der Polymere, D-01062, Dresden, Germany
| | - Franziska Obst
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Technische Universität Dresden, Institut für Halbleiter- und Mikrosystemtechnik, Nöthnitzer Straße 64, D-01187, Dresden, Germany
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, Organische Chemie der Polymere, D-01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| |
Collapse
|
14
|
Sudar M, Milčić N, Česnik Katulić M, Szekrenyi A, Hernández K, Fekete M, Wardenga R, Majerić Elenkov M, Qi Y, Charnock S, Vasić-Rački Đ, Fessner WD, Clapés P, Findrik Blažević Z. Cascade enzymatic synthesis of a statin side chain precursor - the role of reaction engineering in process optimization. RSC Adv 2024; 14:21158-21173. [PMID: 38966813 PMCID: PMC11223575 DOI: 10.1039/d4ra01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Statins are an important class of drugs used to lower blood cholesterol levels and are often used to combat cardiovascular disease. In view of the importance of safe and reliable supply and production of statins in modern medicine and the global need for sustainable processes, various biocatalytic strategies for their synthesis have been investigated. In this work, a novel biocatalytic route to a statin side chain precursor was investigated in a one-pot cascade reaction starting from the protected alcohol N-(3-hydroxypropyl)-2-phenylacetamide, which is oxidized to the corresponding aldehyde in the first reaction step, and then reacts with two equivalents of acetaldehyde to form the final product N-(2-((2S,4S,6S)-4,6-dihydroxytetrahydro-2H-pyran-2-yl)ethyl)-2-phenylacetamide (phenylacetamide-lactol). To study this complex reaction, an enzyme reaction engineering approach was used, i.e. the kinetics of all reactions occurring in the cascade (including side reactions) were determined. The obtained kinetic model together with the simulations gave an insight into the system and indicated the best reactor mode for the studied reaction, which was fed-batch with acetaldehyde feed to minimize its negative effect on the enzyme activity during the reaction. The mathematical model of the process was developed and used to simulate different scenarios and to find the reaction conditions (enzyme and coenzyme concentration, substrate feed concentration and flow rate) at which the highest yield of phenylacetamide-lactol (75%) can be obtained. In the end, our goal was to show that this novel cascade route is an interesting alternative for the synthesis of the statin side chain precursor and that is why we also calculated an initial estimate of the potential value addition.
Collapse
Affiliation(s)
- Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Morana Česnik Katulić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Anna Szekrenyi
- Technische Universität Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Karel Hernández
- Institute of Advanced Chemistry of Catalonia, Biotransformation and Bioactive Molecules Group, IQAC-CSIC Jordi Girona 18-26 08034 Barcelona Spain
| | - Melinda Fekete
- Enzymicals AG Walther-Rathenau-Straße 49b 17489 Greifswald Germany
- piCHEM Forschungs-und Entwicklungs GmbH Parkring 3 8074 Raaba-Grambach Austria
| | - Rainer Wardenga
- Enzymicals AG Walther-Rathenau-Straße 49b 17489 Greifswald Germany
| | | | - Yuyin Qi
- Prozomix Ltd Haltwhistle Northumberland NE49 9HA UK
| | | | - Đurđa Vasić-Rački
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Wolf-Dieter Fessner
- Technische Universität Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Pere Clapés
- Institute of Advanced Chemistry of Catalonia, Biotransformation and Bioactive Molecules Group, IQAC-CSIC Jordi Girona 18-26 08034 Barcelona Spain
| | - Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| |
Collapse
|
15
|
Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Commun Chem 2024; 7:132. [PMID: 38858478 PMCID: PMC11165005 DOI: 10.1038/s42004-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
An emerging concept and platform, the electrochemical Leaf (e-Leaf), offers a radical change in the way tandem (multi-step) catalysis by enzyme cascades is studied and exploited. The various enzymes are loaded into an electronically conducting porous material composed of metallic oxide nanoparticles, where they achieve high concentration and crowding - in the latter respect the environment resembles that found in living cells. By exploiting efficient electron tunneling between the nanoparticles and one of the enzymes, the e-Leaf enables the user to interact directly with complex networks, rendering simultaneous the abilities to energise, control and observe catalysis. Because dispersion of intermediates is physically suppressed, the output of the cascade - the rate of flow of chemical steps and information - is delivered in real time as electrical current. Myriad enzymes of all major classes now become effectively electroactive in a technology that offers scalability between micro-(analytical, multiplex) and macro-(synthesis) levels. This Perspective describes how the e-Leaf was discovered, the steps in its development so far, and the outlook for future research and applications.
Collapse
Affiliation(s)
| | - Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
16
|
Liu W, Deng Y, Li Y, Yang L, Zhu L, Jiang L. Coupling protein scaffold and biosilicification: A sustainable and recyclable approach for d-mannitol production via one-step purification and immobilization of multienzymes. Int J Biol Macromol 2024; 269:132196. [PMID: 38723818 DOI: 10.1016/j.ijbiomac.2024.132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yuanping Deng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ying Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Li Yang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
17
|
Cao N, Wang S, Li F, Mao X, Zuo X, Zhang Y, Li M. Construction of Double-enzyme Complexes with DNA Framework Nanorulers for Improving Enzyme Cascade Catalytic Efficiency. Chempluschem 2024; 89:e202300781. [PMID: 38355897 DOI: 10.1002/cplu.202300781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024]
Abstract
Efficient biocatalytic cascade reactions play a crucial role in guiding intricate, specific and selective intracellular transformation processes. However, the catalytic activity of the enzyme cascade reaction in bulk solution was greatly impacted by the spatial morphology and inter-enzyme distance. The programmability and addressability nature of framework nucleic acid (FNA) allows to be used as scaffold for immobilization and to direct the spatial arrangement of enzyme cascade molecules. Here, we used tetrahedral DNA framework (TDF) as nanorulers to assemble two enzymes for constructing a double-enzyme complex, which significantly enhance the catalytic efficiency of sarcosine oxidase (SOx)/horseradish peroxidase (HRP) cascade system. We synthesized four types of TDF nanorulers capable of programming the lateral distance between enzymes from 5.67 nm to 12.33 nm. Enzymes were chemical modified by ssDNA while preserving most catalytic activity. Polyacrylamide gel electrophoresis (PAGE), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to verify the formation of double-enzyme complex. Four types of double-enzyme complexes with different enzyme distance were constructed, in which TDF26(SOx+HRP) exhibited the highest relative enzyme cascade catalytic activity, ~3.11-fold of free-state enzyme. Importantly, all the double-enzyme complexes demonstrate a substantial improvement in enzyme cascade catalytic activity compared to free enzymes.
Collapse
Affiliation(s)
- Nan Cao
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Fan Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Xiuhai Mao
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Yueyue Zhang
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Min Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| |
Collapse
|
18
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
19
|
Hooe SL, Green CM, Susumu K, Stewart MH, Breger JC, Medintz IL. Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display. CELL REPORTS METHODS 2024; 4:100764. [PMID: 38714198 PMCID: PMC11133815 DOI: 10.1016/j.crmeth.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Michael H Stewart
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
20
|
Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J. An In Vitro Hybrid Biocatalytic System Enabled by a Combination of Surface-Displayed, Purified, and Cell-Free Expressed Enzymes. ACS Synth Biol 2024; 13:1434-1441. [PMID: 38695987 DOI: 10.1021/acssynbio.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 μM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Collapse
Affiliation(s)
- Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
21
|
Ledesma‐Fernandez A, Velasco‐Lozano S, Campos‐Muelas P, Madrid R, López‐Gallego F, Cortajarena AL. Engineering bio-brick protein scaffolds for organizing enzyme assemblies. Protein Sci 2024; 33:e4984. [PMID: 38607190 PMCID: PMC11010954 DOI: 10.1002/pro.4984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Enzyme scaffolding is an emerging approach for enhancing the catalytic efficiency of multi-enzymatic cascades by controlling their spatial organization and stoichiometry. This study introduces a novel family of engineered SCAffolding Bricks, named SCABs, utilizing the consensus tetratricopeptide repeat (CTPR) domain for organized multi-enzyme systems. Two SCAB systems are developed, one employing head-to-tail interactions with reversible covalent disulfide bonds, the other relying on non-covalent metal-driven assembly via engineered metal coordinating interfaces. Enzymes are directly fused to SCAB modules, triggering assembly in a non-reducing environment or by metal presence. A proof-of-concept with formate dehydrogenase (FDH) and L-alanine dehydrogenase (AlaDH) shows enhanced specific productivity by 3.6-fold compared to free enzymes, with the covalent stapling outperforming the metal-driven assembly. This enhancement likely stems from higher-order supramolecular assembly and improved NADH cofactor regeneration, resulting in more efficient cascades. This study underscores the potential of protein engineering to tailor scaffolds, leveraging supramolecular spatial-organizing tools, for more efficient enzymatic cascade reactions.
Collapse
Affiliation(s)
- Alba Ledesma‐Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- University of the Basque Country (UPV/EHU)LeioaSpain
| | - Susana Velasco‐Lozano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH‐CSIC)University of ZaragozaZaragozaSpain
- Aragonese Foundation for Research and Development (ARAID)ZaragozaSpain
| | | | - Ricardo Madrid
- BioAssays S.L.MadridSpain
- Complutense University of MadridMadridSpain
| | - Fernando López‐Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Aitziber L. Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
22
|
Lim S, Clark DS. Phase-separated biomolecular condensates for biocatalysis. Trends Biotechnol 2024; 42:496-509. [PMID: 37925283 DOI: 10.1016/j.tibtech.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Nature often uses dynamically assembling multienzymatic complexes called metabolons to achieve spatiotemporal control of complex metabolic reactions. Researchers are aiming to mimic this strategy of organizing enzymes to enhance the performance of artificial biocatalytic systems. Biomolecular condensates formed through liquid-liquid phase separation (LLPS) can serve as a powerful tool to drive controlled assembly of enzymes. Diverse enzymatic pathways have been reconstituted within catalytic condensates in vitro as well as synthetic membraneless organelles in living cells. Furthermore, in vivo condensates have been engineered to regulate metabolic pathways by selectively sequestering enzymes. Thus, harnessing LLPS for controlled organization of enzymes provides an opportunity to dynamically regulate biocatalytic processes.
Collapse
Affiliation(s)
- Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA..
| |
Collapse
|
23
|
Xu X, Fu J, Jiao X, Wang Y, Yao C. DNA-induced assembly of biocatalytic nanocompartments for sensitive and selective aptasensing of aflatoxin B1. Anal Chim Acta 2024; 1295:342328. [PMID: 38355226 DOI: 10.1016/j.aca.2024.342328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.
Collapse
Affiliation(s)
- Xuan Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Junfeng Fu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Xiaotong Jiao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yuqin Wang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
24
|
Wang Z, Dai Y, Azi F, Wang Z, Xu W, Wang D, Dong M, Xia X. Constructing Protein-Scaffolded Multienzyme Assembly Enhances the Coupling Efficiency of the P450 System for Efficient Daidzein Biosynthesis from (2 S)-Naringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5849-5859. [PMID: 38468401 DOI: 10.1021/acs.jafc.3c09854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Daidzein is a major isoflavone compound with an immense pharmaceutical value. This study applied a novel P450 CYP82D26 which can biosynthesize daidzein from (2S)-naringenin. However, the recombinant P450 systems often suffer from low coupling efficiency, leading to an electron transfer efficiency decrease and harmful reactive oxygen species release, thereby compromising their stability and catalytic efficiency. To address these challenges, the SH3-GBD-PDZ (SGP) protein scaffold was applied to assemble a multienzyme system comprising CYP82D26, P450 reductase, and NADP+-dependent aldehyde reductase in desired stoichiometric ratios. Results showed that the coupling efficiency of the P450 system was significantly increased, primarily attributed to the channeling effect of NADPH resulting from the proximity of tethered enzymes and the electrostatic interactions between NADPH and SGP. Assembling this SGP-scaffolded assembly system in Escherichia coli yielded a titer of 240.5 mg/L daidzein with an 86% (2S)-naringenin conversion rate, which showed a 9-fold increase over the free enzymes of the P450 system. These results underscore the potential application of the SGP-scaffolded multienzyme system in enhancing the coupling and catalytic efficiency of the P450 system.
Collapse
Affiliation(s)
- Zhe Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Daoying Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiudong Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Cheah LC, Sainsbury F, Vickers CE. Translational fusion of terpene synthases for metabolic engineering: Lessons learned and practical considerations. Methods Enzymol 2024; 699:121-161. [PMID: 38942501 DOI: 10.1016/bs.mie.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The step catalyzed by terpene synthases is a well-recognized and significant bottleneck in engineered terpenoid bioproduction. Consequently, substantial efforts have been devoted towards increasing metabolic flux catalyzed by terpene synthases, employing strategies such as gene overexpression and protein engineering. Notably, numerous studies have demonstrated remarkable titer improvements by applying translational fusion, typically by fusing the terpene synthase with a prenyl diphosphate synthase that catalyzes the preceding step in the pathway. The main appeal of the translational fusion approach lies in its simplicity and orthogonality to other metabolic engineering tools. However, there is currently limited understanding of the underlying mechanism of flux enhancement, owing to the unpredictable and often protein-specific effects of translational fusion. In this chapter, we discuss practical considerations when engineering translationally fused terpene synthases, drawing insights from our experience and existing literature. We also provide detailed experimental workflows and protocols based on our previous work in budding yeast (Saccharomyces cerevisiae). Our intention is to encourage further research into the translational fusion of terpene synthases, anticipating that this will contribute mechanistic insights not only into the activity, behavior, and regulation of terpene synthases, but also of other enzymes.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Centre for Disease Preparedness, East Geelong, VIC, Australia.
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia; BioBuilt Solutions, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
27
|
Kröll S, Niemeyer CM. Nucleic Acid-based Enzyme Cascades-Current Trends and Future Perspectives. Angew Chem Int Ed Engl 2024; 63:e202314452. [PMID: 37870888 DOI: 10.1002/anie.202314452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The natural micro- and nanoscale organization of biomacromolecules is a remarkable principle within living cells, allowing for the control of cellular functions by compartmentalization, dimensional diffusion and substrate channeling. In order to explore these biological mechanisms and harness their potential for applications such as sensing and catalysis, molecular scaffolding has emerged as a promising approach. In the case of synthetic enzyme cascades, developments in DNA nanotechnology have produced particularly powerful scaffolds whose addressability can be programmed with nanometer precision. In this minireview, we summarize recent developments in the field of biomimetic multicatalytic cascade reactions organized on DNA nanostructures. We emphasize the impact of the underlying design principles like DNA origami, efficient strategies for enzyme immobilization, as well as the importance of experimental design parameters and theoretical modeling. We show how DNA nanostructures have enabled a better understanding of diffusion and compartmentalization effects at the nanometer length scale, and discuss the challenges and future potential for commercial applications.
Collapse
Affiliation(s)
- Sandra Kröll
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1, Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1, Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| |
Collapse
|
28
|
Hooe S, Thakur M, Lasarte-Aragonés G, Breger JC, Walper SA, Medintz IL, Ellis GA. Exploration of the In Vitro Violacein Synthetic Pathway with Substrate Analogues. ACS OMEGA 2024; 9:3894-3904. [PMID: 38284012 PMCID: PMC10809250 DOI: 10.1021/acsomega.3c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.
Collapse
Affiliation(s)
- Shelby
L. Hooe
- National
Research Council, Washington, D.C. 20001, United States
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Meghna Thakur
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Guillermo Lasarte-Aragonés
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joyce C. Breger
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory A. Ellis
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
29
|
Kröll S, Burgahn T, Rabe KS, Franzreb M, Niemeyer CM. Nano- and Microscale Confinements in DNA-Scaffolded Enzyme Cascade Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304578. [PMID: 37732702 DOI: 10.1002/smll.202304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Artificial reconstruction of naturally evolved principles, such as compartmentalization and cascading of multienzyme complexes, offers enormous potential for the development of biocatalytic materials and processes. Due to their unique addressability at the nanoscale, DNA origami nanostructures (DON) have proven to be an exceptionally powerful tool for studying the fundamental processes in biocatalytic cascades. To systematically investigate the diffusion-reaction network of (co)substrate transfer in enzyme cascades, a model system of stereoselective ketoreductase (KRED) with cofactor regenerating enzyme is assembled in different spatial arrangements on DNA nanostructures and is located in the sphere of microbeads (MB) as a spatially confining nano- and microenvironment, respectively. The results, obtained through the use of highly sensitive analytical methods, Western blot-based quantification of the enzymes, and mass spectrometric (MS) product detection, along with theoretical modeling, provide strong evidence for the presence of two interacting compartments, the diffusion layers around the microbead and the DNA scaffold, which influence the catalytic efficiency of the cascade. It is shown that the microscale compartment exerts a strong influence on the productivity of the cascade, whereas the nanoscale arrangement of enzymes has no influence but can be modulated by the insertion of a diffusion barrier.
Collapse
Affiliation(s)
- Sandra Kröll
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Teresa Burgahn
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Kim H, Yang I, Lim SI. Streamlined construction of robust heteroprotein complexes by self-induced in-cell disulfide pairing. Int J Biol Macromol 2024; 254:127965. [PMID: 37944724 DOI: 10.1016/j.ijbiomac.2023.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Biomolecules and their functional subdomains are essential building blocks in the creation of multifunctional nanocomplexes. Methyl-binding domain protein 2 (MBD2) and p66α stand out as small α-helical motifs with an ability to self-assemble into a heterodimeric coiled-coil, making them promising building units. Yet, their practical use is hindered by rapid dissociation upon dilution. In this study, novel fusion tags, MBD2 and p66α variants, were developed to covalently link during co-expression in E. coli SHuffle. Through strategic placement of cysteine at each α-helix's terminus, intracellular crosslinking occurred with high specificity and yield, facilitated by preserved α-helical interactions. This instant disulfide bonding in the oxidative cytoplasm of E. coli SHuffle efficiently overcame the need for inefficient in vitro oxidation and protein extraction prone to creating non-specific adducts and suboptimal bioprocesses. In contrast to their wild-type counterparts, the GFP-mCherry protein complex cross-linked by the fusion tags maintained the heterodimeric state even under extensive dilution. The fusion tags, when combined with the E. coli SHuffle system, allowed for the streamlined co-expression of a stable protein complex through self-induced intracellular cysteine coupling. The approach demonstrated herein holds great promise for producing multifunctional and robust heteroprotein complexes.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Iji Yang
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
31
|
Aghaali Z, Naghavi MR. Engineering of CYP82Y1, a cytochrome P450 monooxygenase: a key enzyme in noscapine biosynthesis in opium poppy. Biochem J 2023; 480:2009-2022. [PMID: 38063234 DOI: 10.1042/bcj20230243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Protein engineering provides a powerful base for the circumvention of challenges tied with characteristics accountable for enzyme functions. CYP82Y1 introduces a hydroxyl group (-OH) into C1 of N-methylcanadine as the substrate to yield 1-hydroxy-N-methylcanadine. This chemical process has been found to be the gateway to noscapine biosynthesis. Owning to the importance of CYP82Y1 in this biosynthetic pathway, it has been selected as a target for enzyme engineering. The insertion of tags to the N- and C-terminal of CYP82Y1 was assessed for their efficiencies for improvement of the physiological performances of CYP82Y1. Although these attempts achieved some positive results, further strategies are required to dramatically enhance the CYP82Y1 activity. Here methods that have been adopted to achieve a functionally improved CYP82Y1 will be reviewed. In addition, the possibility of recruitment of other techniques having not yet been implemented in CYP82Y1 engineering, including the substitution of the residues located in the substrate recognition site, formation of the synthetic fusion proteins, and construction of the artificial lipid-based scaffold will be discussed. Given the fact that the pace of noscapine synthesis is constrained by the CYP82Y1-catalyzing step, the methods proposed here are capable of accelerating the rate of reaction performed by CYP82Y1 through improving its properties, resulting in the enhancement of noscapine accumulation.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| |
Collapse
|
32
|
Olavarria K, Becker MV, Sousa DZ, van Loosdrecht MC, Wahl SA. Design and thermodynamic analysis of a pathway enabling anaerobic production of poly-3-hydroxybutyrate in Escherichia coli. Synth Syst Biotechnol 2023; 8:629-639. [PMID: 37823039 PMCID: PMC10562921 DOI: 10.1016/j.synbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Utilizing anaerobic metabolisms for the production of biotechnologically relevant products presents potential advantages, such as increased yields and reduced energy dissipation. However, lower energy dissipation may indicate that certain reactions are operating closer to their thermodynamic equilibrium. While stoichiometric analyses and genetic modifications are frequently employed in metabolic engineering, the use of thermodynamic tools to evaluate the feasibility of planned interventions is less documented. In this study, we propose a novel metabolic engineering strategy to achieve an efficient anaerobic production of poly-(R)-3-hydroxybutyrate (PHB) in the model organism Escherichia coli. Our approach involves re-routing of two-thirds of the glycolytic flux through non-oxidative glycolysis and coupling PHB synthesis with NADH re-oxidation. We complemented our stoichiometric analysis with various thermodynamic approaches to assess the feasibility and the bottlenecks in the proposed engineered pathway. According to our calculations, the main thermodynamic bottleneck are the reactions catalyzed by the acetoacetyl-CoA β-ketothiolase (EC 2.3.1.9) and the acetoacetyl-CoA reductase (EC 1.1.1.36). Furthermore, we calculated thermodynamically consistent sets of kinetic parameters to determine the enzyme amounts required for sustaining the conversion fluxes. In the case of the engineered conversion route, the protein pool necessary to sustain the desired fluxes could account for 20% of the whole cell dry weight.
Collapse
Affiliation(s)
- Karel Olavarria
- Laboratory of Microbiology, Wageningen University and Research, Stippenenweg 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Marco V. Becker
- Department of Biotechnology, Applied Sciences Faculty, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippenenweg 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Mark C.M. van Loosdrecht
- Department of Biotechnology, Applied Sciences Faculty, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - S. Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander-Universität, Paul-Gordan-Strasse 3, 91052, Erlangen, Germany
| |
Collapse
|
33
|
Hu H, Chang Y, Wang Z, Cui J, Jia S, Du Y. A chemo-biocatalyst based on glutamate oxidase-integrated biomimetic trimanganese tetraoxide as cascade composite nano-catalyst for synthesis of α‑Ketoglutaric acid. J Colloid Interface Sci 2023; 650:1833-1841. [PMID: 37515973 DOI: 10.1016/j.jcis.2023.07.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The combination of chemo- and biocatalysts to perform one-pot synthetic route has presented great challenges for decades. Herein, glutamate oxidase (GLOX) and trimanganese tetraoxide (Mn3O4) nanocrystals were combined for the first time by one-step biomineralization to construct a mimic multi-enzyme system (GLOX@Mn3O4) for chemoenzymatic synthesis of α‑ketoglutaric acid (α‑KG). Mn3O4 not only served as a support for the enzyme immobilization, but also contributed its catalytic activity to co-operate with natural enzymes for the cascade reactions. The as-synthesized chemo-enzyme catalysts with directly contacted catalytic sites of the enzyme and inorganic catalyst maximizes the substrate channeling effffects for in situ rapid decomposition of the oxidative intermediate, H2O2, during the enzymatic oxidation of sodium glutamate, thus relieving the inhibition of H2O2 accumulation for GLOX. Benefiting from the excellent stability and reusability of GLOX@Mn3O4, a nearly 100% conversion (99.7%) of l-glutamate to α-KG was achieved, over 4.7 times higher than that of the free GLOX system (21.2%). This work provides a feasibility for constructing a high-performance chemo-enzyme catalyst for cascade catalysis, especially for those reactions with toxic intermediates.
Collapse
Affiliation(s)
- Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Yuyan Chang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Zhongjie Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China.
| |
Collapse
|
34
|
Zhang W, Dong H, Wang X, Zhang L, Chen C, Wang P. Engineered Escherichia coli Consortia Function in a Programmable Pattern for Multiple Enzymatic Biosynthesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45886-45894. [PMID: 37738613 DOI: 10.1021/acsami.3c09123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Coordinating microbial consortia to realize complex synthetic pathways is an area of great interest in the rapidly growing field of biomanufacturing. This work presents a programmable method for assembling living cells based on the surface display of affinity groups, enabling whole-cell catalysis with optimized catalytic efficiency through the rational arrangement of cell assemblies and enzymes. In the context of d-phenyllactic acid (d-PLA) synthesis, four enzymes were rationally arranged considering substrate channeling and protein expression levels. The production efficiencies of d-PLA catalyzed by engineered microbial consortia were 1.31- and 2.55-fold higher than those of biofilm and whole-cell catalysts, respectively. Notably, substrate channeling was identified between the coimmobilized rate-limiting enzymes, resulting in a 3.67-fold improvement in catalytic efficiency compared with hybrid catalysts (free enzymes coupled with whole-cell catalysts). The highest yield of d-PLA catalyzed by microbial consortia was 102.85 ± 3.39 mM with 140 mM benzaldehyde as the substrate. This study proposes a novel approach to cell enzyme assembly for coordinating microbial consortia in multiple enzymatic biosynthesis processes.
Collapse
Affiliation(s)
- Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Liting Zhang
- Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| |
Collapse
|
35
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
36
|
Thakur M, Dean SN, Caruana JC, Walper SA, Ellis GA. Bacterial Membrane Vesicles for In Vitro Catalysis. Bioengineering (Basel) 2023; 10:1099. [PMID: 37760201 PMCID: PMC10525882 DOI: 10.3390/bioengineering10091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The use of biological systems in manufacturing and medical applications has seen a dramatic rise in recent years as scientists and engineers have gained a greater understanding of both the strengths and limitations of biological systems. Biomanufacturing, or the use of biology for the production of biomolecules, chemical precursors, and others, is one particular area on the rise as enzymatic systems have been shown to be highly advantageous in limiting the need for harsh chemical processes and the formation of toxic products. Unfortunately, biological production of some products can be limited due to their toxic nature or reduced reaction efficiency due to competing metabolic pathways. In nature, microbes often secrete enzymes directly into the environment or encapsulate them within membrane vesicles to allow catalysis to occur outside the cell for the purpose of environmental conditioning, nutrient acquisition, or community interactions. Of particular interest to biotechnology applications, researchers have shown that membrane vesicle encapsulation often confers improved stability, solvent tolerance, and other benefits that are highly conducive to industrial manufacturing practices. While still an emerging field, this review will provide an introduction to biocatalysis and bacterial membrane vesicles, highlight the use of vesicles in catalytic processes in nature, describe successes of engineering vesicle/enzyme systems for biocatalysis, and end with a perspective on future directions, using selected examples to illustrate these systems' potential as an enabling tool for biotechnology and biomanufacturing.
Collapse
Affiliation(s)
- Meghna Thakur
- College of Science, George Mason University, Fairfax, VA 22030, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Scott N. Dean
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Julie C. Caruana
- American Society for Engineering Education, Washington, DC 20036, USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
37
|
Svirelis J, Adali Z, Emilsson G, Medin J, Andersson J, Vattikunta R, Hulander M, Järlebark J, Kolman K, Olsson O, Sakiyama Y, Lim RYH, Dahlin A. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat Commun 2023; 14:5131. [PMID: 37612271 PMCID: PMC10447545 DOI: 10.1038/s41467-023-40889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.
Collapse
Affiliation(s)
- Justas Svirelis
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zeynep Adali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Radhika Vattikunta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Mats Hulander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Krzysztof Kolman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Yusuke Sakiyama
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
38
|
Li Z, Wang J, O’Hagan MP, Huang F, Xia F, Willner I. Dynamic Fusion of Nucleic Acid Functionalized Nano-/Micro-Cell-Like Containments: From Basic Concepts to Applications. ACS NANO 2023; 17:15308-15327. [PMID: 37549398 PMCID: PMC10448756 DOI: 10.1021/acsnano.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.
Collapse
Affiliation(s)
- Zhenzhen Li
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael P. O’Hagan
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
39
|
Krüsemann JL, Rainaldi V, Cotton CA, Claassens NJ, Lindner SN. The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications. Curr Opin Biotechnol 2023; 82:102953. [PMID: 37320962 DOI: 10.1016/j.copbio.2023.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Methanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD+, O2 or pyrroloquinoline quinone (PQQ) as an electron acceptor. While NAD-dependent MDH are simple to express and have the highest energetic efficiency, they exhibit mediocre kinetics and poor thermodynamics at ambient temperatures. O2-dependent methanol oxidases require high oxygen concentrations, do not conserve energy and thus produce excessive heat as well as toxic H2O2. PQQ-dependent MDH provide a good compromise between energy efficiency and good kinetics that support fast growth rates without any drawbacks for process engineering. Therefore, we argue that this enzyme class represents a promising solution for industry and outline engineering strategies for the implementation of these complex systems in heterologous hosts.
Collapse
Affiliation(s)
- Jan L Krüsemann
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Vittorio Rainaldi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steffen N Lindner
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
40
|
Ledesma-Fernandez A, Velasco-Lozano S, Santiago-Arcos J, López-Gallego F, Cortajarena AL. Engineered repeat proteins as scaffolds to assemble multi-enzyme systems for efficient cell-free biosynthesis. Nat Commun 2023; 14:2587. [PMID: 37142589 PMCID: PMC10160029 DOI: 10.1038/s41467-023-38304-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Multi-enzymatic cascades with enzymes arranged in close-proximity through a protein scaffold can trigger a substrate channeling effect, allowing for efficient cofactor reuse with industrial potential. However, precise nanometric organization of enzymes challenges the design of scaffolds. In this study, we create a nanometrically organized multi-enzymatic system exploiting engineered Tetrapeptide Repeat Affinity Proteins (TRAPs) as scaffolding for biocatalysis. We genetically fuse TRAP domains and program them to selectively and orthogonally recognize peptide-tags fused to enzymes, which upon binding form spatially organized metabolomes. In addition, the scaffold encodes binding sites to selectively and reversibly sequester reaction intermediates like cofactors via electrostatic interactions, increasing their local concentration and, consequently, the catalytic efficiency. This concept is demonstrated for the biosynthesis of amino acids and amines using up to three enzymes. Scaffolded multi-enzyme systems present up to 5-fold higher specific productivity than the non-scaffolded ones. In-depth analysis suggests that channeling of NADH cofactor between the assembled enzymes enhances the overall cascade throughput and the product yield. Moreover, we immobilize this biomolecular scaffold on solid supports, creating reusable heterogeneous multi-functional biocatalysts for consecutive operational batch cycles. Our results demonstrate the potential of TRAP-scaffolding systems as spatial-organizing tools to increase the efficiency of cell-free biosynthetic pathways.
Collapse
Affiliation(s)
- Alba Ledesma-Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Susana Velasco-Lozano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain
- Aragonese Foundation for Research and Development (ARAID), Zaragoza, Spain
| | - Javier Santiago-Arcos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
41
|
Perez Rojo F, Pillow JJ, Kaur P. Bioprospecting microbes and enzymes for the production of pterocarpans and coumestans. Front Bioeng Biotechnol 2023; 11:1154779. [PMID: 37187887 PMCID: PMC10175578 DOI: 10.3389/fbioe.2023.1154779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.
Collapse
Affiliation(s)
- Fernando Perez Rojo
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - J. Jane Pillow
- UWA School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
42
|
Dong M, Gao Z, Zhang Y, Cai J, Li J, Xu P, Jiang H, Gu J, Wang J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Adv 2023; 13:12966-12972. [PMID: 37124001 PMCID: PMC10130820 DOI: 10.1039/d3ra01160g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
There has been great interest in the enzymatic cascade amplification strategy for the electrochemical detection of circulating tumor cells (CTCs). In this work, we designed a highly efficient enzymatic cascade reaction based on a multiwalled carbon nanotubes-chitosan (MWCNTs-CS) composite for detection of CTCs. A high electrochemical effective surface area was obtained for a MWCNTs-CS-modified glassy carbon electrode (GCE) for loading glucose oxidase (GOD), as well as a high loading rate and high electrical activity of the enzyme. As a 'power source', the MWCNTs-CS composites provided a strong driving power for horseradish peroxidase (HRP) on the surface of polystyrene (PS) microspheres, which acted as probes for capturing CTCs and allowed the reaction to proceed with further facilitation of electron transfer. Aptamer, CTCs, and PS microspheres with HRP and anti-epithelial cell adhesion molecule (anti-EpCAM) antibody were assembled on the MWCNTs-CS/GCE to allow for the modulation of enzyme distance at the micrometer level, and thus ultra-long-range signal transmission was made possible. An ultrasensitive response to CTCs was obtained via this proposed sensing strategy, with a linear range from 10 cell mL-1 to 6 × 106 cell mL-1 and a detection limit of 3 cell mL-1. Moreover, this electrochemical sensor possessed the capability to detect CTCs in serum samples with satisfactory accuracy, which indicated great potential for early diagnosis and clinical analysis of cancer.
Collapse
Affiliation(s)
- Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yating Zhang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jiahui Cai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Panpan Xu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
43
|
Chu GB, Li WY, Han XX, Sun HH, Han Y, Zhi GY, Zhang DH. Co-Immobilization of GOD & HRP on Y-Shaped DNA Scaffold and the Regulation of Inter-Enzyme Distance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301413. [PMID: 36929203 DOI: 10.1002/smll.202301413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In multienzymes cascade reaction, the inter-enzyme spacing is supposed to be a factor affecting the cascade activity. Here, a simple and efficient Y-shaped DNA scaffold is assembled using two partially complementary DNA single strands on magnetic microspheres, which is used to coimmobilize glucose oxidase (GOD) and horseradish peroxidase (HRP). As a result, on poly(vinyl acetate) magnetic microspheres (PVAC), GOD/HRP-DNA@PVAC multienzyme system is obtained, which can locate GOD and HRP accurately and control the inter-enzyme distance precisely. The distance between GOD and HRP is regulated by changing the length of DNA strand. It showed that the cascade activity is significantly distance-dependent. Moreover, the inter-enzyme spacing is not the closer the better, and too short distance would generate steric hindrance between enzymes. The cascade activity reached the maximum value of 967 U mg-1 at 13.6 nm, which is 3.5 times higher than that of free enzymes. This is ascribed to the formation of substrate channeling.
Collapse
Affiliation(s)
- Guan-Bo Chu
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Wen-Yu Li
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Xiao-Xia Han
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Hui-Huang Sun
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Yu Han
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Gao-Ying Zhi
- Department of Computer Teaching, Hebei University, Baoding, 071002, P. R. China
| | - Dong-Hao Zhang
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
44
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
45
|
Cheah LC, Liu L, Stark T, Plan MR, Peng B, Lu Z, Schenk G, Sainsbury F, Vickers CE. Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation. Metab Eng 2023; 77:143-151. [PMID: 36990382 DOI: 10.1016/j.ymben.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Terra Stark
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Manuel R Plan
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
46
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
47
|
He X, Wu Q, Hou C, Hu M, Wang Q, Wang X. A Compartmentalized Nanoreactor Formed by Interfacial Hydrogelation for Cascade Enzyme Catalytic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218766. [PMID: 36780198 DOI: 10.1002/anie.202218766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Some cellular enzymatic pathways are located within a single organelle, while most others involve enzymes that are located within multiple compartmentalized cellular organelles to realize the efficient multi-step enzymatic process. Herein, bioinspired by enzyme-mediated biosynthesis and biochemical defense, a compartmented nanoreactor (Burr-NCs@GlSOD ) was constructed through a self-confined catalysis strategy with burr defect-engineered molybdenum disulfide/Prussian blue analogues (MoS2 /PBA) and an interfacial diffusion-controlled hydrogel network. The specific catalytic mechanism of the laccase-like superactivity induced hydrogelation and cascade enzyme catalytic therapy were explored. The confined hydrogelation strategy introduces a versatile means for nanointerface functionalization and provides insight into biological construction of simulated enzymes with comparable activity and also the specificity to natural enzymes.
Collapse
Affiliation(s)
- Xingyue He
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qing Wu
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chen Hou
- Shanghai Synchrotron Radiation Facility (SSRF) from Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Min Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qigang Wang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xia Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
48
|
Herman RA, Zhu X, Ayepa E, You S, Wang J. Advances in the One-Step Approach of Polymeric Materials Using Enzymatic Techniques. Polymers (Basel) 2023; 15:703. [PMID: 36772002 PMCID: PMC9922006 DOI: 10.3390/polym15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The formulation in which biochemical enzymes are administered in polymer science plays a key role in retaining their catalytic activity. The one-step synthesis of polymers with highly sequence-controlled enzymes is a strategy employed to provide enzymes with higher catalytic activity and thermostability in material sustainability. Enzyme-catalyzed chain growth polymerization reactions using activated monomers, protein-polymer complexation techniques, covalent and non-covalent interaction, and electrostatic interactions can provide means to develop formulations that maintain the stability of the enzyme during complex material processes. Multifarious applications of catalytic enzymes are usually attributed to their efficiency, pH, and temperature, thus, progressing with a critical structure-controlled synthesis of polymer materials. Due to the obvious economics of manufacturing and environmental sustainability, the green synthesis of enzyme-catalyzed materials has attracted significant interest. Several enzymes from microorganisms and plants via enzyme-mediated material synthesis have provided a viable alternative for the appropriate synthesis of polymers, effectively utilizing the one-step approach. This review analyzes more and deeper strategies and material technologies widely used in multi-enzyme cascade platforms for engineering polymer materials, as well as their potential industrial applications, to provide an update on current trends and gaps in the one-step synthesis of materials using catalytic enzymes.
Collapse
Affiliation(s)
- Richard Ansah Herman
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade P.O. Box 74, Ghana
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
49
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
50
|
Lee HD, Yoo SK, Yoo HS, Yun CH, Kim GJ. Expression and Characterization of Monomeric Recombinant Isocitrate Dehydrogenases from Corynebacterium glutamicum and Azotobacter vinelandii for NADPH Regeneration. Int J Mol Sci 2022; 23:15318. [PMID: 36499645 PMCID: PMC9736777 DOI: 10.3390/ijms232315318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The enzymatic transformation of various chemicals, especially using NADPH-dependent hydroxylase, into more soluble and/or high value-added products has steadily garnered increasing attention. However, the industrial application of these NADPH-dependent hydroxylases has been limited due to the high cost of the cofactor NADPH. As an alternative, enzymatic NADPH-regeneration systems have been developed and are frequently used in various fields. Here, we expressed and compared two recombinant isocitrate dehydrogenases (IDHs) from Corynebacterium glutamicum and Azotobacter vinelandii in Escherichia coli. Both enzymes were hyper-expressed in the soluble fraction of E. coli and were single-step purified to apparent homogeneity with yields of more than 850 mg/L. These enzymes also functioned well when paired with NADPH consumption systems. Specifically, NADPH was regenerated from NADP+ when an NADPH-consuming cytochrome P450 BM3 from Bacillus megaterium was incorporated. Therefore, both enzymes could be used as alternatives to the commonly used regeneration system for NADPH. These enzymes also have promising potential as genetic fusion partners with NADPH-dependent enzymes due to the monomeric nature of their quaternary structure, thereby resulting in self-sufficient biocatalysts via NADPH regeneration in a single polypeptide with NADPH-dependent activity.
Collapse
Affiliation(s)
- Hun-Dong Lee
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Seok Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|