1
|
Bohl K, Wynia-Smith SL, Lipinski RAJ, Smith BC. Inhibition of Sirtuin Deacylase Activity by Peroxynitrite. Biochemistry 2024; 63:2463-2476. [PMID: 39256054 PMCID: PMC11524680 DOI: 10.1021/acs.biochem.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sirtuins are a class of enzymes that deacylate protein lysine residues using NAD+ as a cosubstrate. Sirtuin deacylase activity has been historically regarded as protective; loss of sirtuin deacylase activity potentially increases susceptibility to aging-related disease development. However, which factors may inhibit sirtuins during aging or disease is largely unknown. Increased oxidant and inflammatory byproduct production damages cellular proteins. Previously, we and others found that sirtuin deacylase activity is inhibited by the nitric oxide (NO)-derived cysteine post-translational modification S-nitrosation. However, the comparative ability of the NO-derived oxidant peroxynitrite (ONOO-) to affect human sirtuin activity had not yet been assessed under uniform conditions. Here, we compare the ability of ONOO- (donated from SIN-1) to post-translationally modify and inhibit SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity. In response to SIN-1 treatment, inhibition of SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity correlated with increased tyrosine nitration. Mass spectrometry identified multiple novel tyrosine nitration sites in SIRT1, SIRT3, SIRT5, and SIRT6. As each sirtuin isoform has at least one tyrosine nitration site within the catalytic core, nitration may result in sirtuin inhibition. ONOO- can also react with cysteine residues, resulting in sulfenylation; however, only SIRT1 showed detectable peroxynitrite-mediated cysteine sulfenylation. While SIRT2, SIRT3, SIRT5, and SIRT6 showed no detectable sulfenylation, SIRT6 likely undergoes transient sulfenylation, quickly resolving into an intermolecular disulfide bond. These results suggest that the aging-related oxidant peroxynitrite can post-translationally modify and inhibit sirtuins, contributing to susceptibility to aging-related disease.
Collapse
Affiliation(s)
- Kelsey Bohl
- Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI, 53097
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Rachel A. Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| |
Collapse
|
2
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
3
|
Wang H, Wen N, Li P, Xiu T, Shang S, Zhang W, Zhang W, Qiao J, Tang B. Treatment evaluation of Rheumatoid arthritis by in situ fluorescence imaging of the Golgi cysteine. Talanta 2024; 270:125532. [PMID: 38086224 DOI: 10.1016/j.talanta.2023.125532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Rheumatoid arthritis (RA) is a long-term systemic inflammatory disease that causes severe joint pain. Golgi stress caused by redox imbalance significantly involves in acute and chronic inflammatory diseases, in which cysteine (Cys), as a representative reducing agent, may be an effective biomarker for RA. Hence, in order to achieve RA early detection and drugs evaluation, based on our previous work about innovative Golgi-targeting group, we established a phenylsulfonamide-modified fluorescence probe, Golgi-Cys, for the selective fluorescence imaging of Cys in Golgi apparatus in vivo. By application of Golgi-Cys, the Cys changes under Golgi stress in cells were elucidated. More importantly, we found that the probe can be effectively utilized for the RA detection and treatment evaluation in situ.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Na Wen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Tiancong Xiu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shuqi Shang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Junnan Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China; Laoshan Laboratory, 168Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Bak DW, Weerapana E. A Chemoproteomic Approach to Monitor Native Iron-Sulfur Cluster Binding. Methods Mol Biol 2024; 2839:261-289. [PMID: 39008260 DOI: 10.1007/978-1-0716-4043-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are essential redox-active metallocofactors participating in electron transfer, radical chemistry, primary metabolism, and gene regulation. Successful trafficking and incorporation of Fe-S clusters into target proteins are critical to proper cellular function. While biophysical studies of isolated Fe-S proteins provide insight into the structure and function of these inorganic cofactors, few strategies currently exist to directly interrogate Fe-S cluster binding within a cellular environment. Here, we describe a chemoproteomic platform to report on Fe-S cluster incorporation and occupancy directly within a native proteome, enabling the characterization of Fe-S biogenesis pathways and the identification of undiscovered Fe-S proteins.
Collapse
Affiliation(s)
- Daniel W Bak
- Boston College, Department of Chemistry, Chestnut Hill, MA, USA
| | | |
Collapse
|
5
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Burton NR, Polasky DA, Shikwana F, Ofori S, Yan T, Geiszler DJ, Veiga Leprevost FD, Nesvizhskii AI, Backus KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. J Am Chem Soc 2023; 145:21303-21318. [PMID: 37738129 DOI: 10.1021/jacs.3c05797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Mass spectrometry-based chemoproteomics has emerged as an enabling technology for functional biology and drug discovery. To address limitations of established chemoproteomics workflows, including cumbersome reagent synthesis and low throughput sample preparation, here, we established the silane-based cleavable isotopically labeled proteomics (sCIP) method. The sCIP method is enabled by a high yielding and scalable route to dialkoxydiphenylsilane fluorenylmethyloxycarbonyl (DADPS-Fmoc)-protected amino acid building blocks, which enable the facile synthesis of customizable, isotopically labeled, and chemically cleavable biotin capture reagents. sCIP is compatible with both MS1- and MS2-based quantitation, and the sCIP-MS2 method is distinguished by its click-assembled isobaric tags in which the reporter group is encoded in the sCIP capture reagent and balancer in the pan cysteine-reactive probe. The sCIP-MS2 workflow streamlines sample preparation with early stage isobaric labeling and sample pooling, allowing for high coverage and increased sample throughput via customized low cost six-plex sample multiplexing. When paired with a custom FragPipe data analysis workflow and applied to cysteine-reactive fragment screens, sCIP proteomics revealed established and unprecedented cysteine-ligand pairs, including the discovery that mitochondrial uncoupling agent FCCP acts as a covalent-reversible cysteine-reactive electrophile.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Van Stappen C, Dai H, Jose A, Tian S, Solomon EI, Lu Y. Primary and Secondary Coordination Sphere Effects on the Structure and Function of S-Nitrosylating Azurin. J Am Chem Soc 2023; 145:20610-20623. [PMID: 37696009 PMCID: PMC10539042 DOI: 10.1021/jacs.3c07399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Much progress has been made in understanding the roles of the secondary coordination sphere (SCS) in tuning redox potentials of metalloproteins. In contrast, the impact of SCS on reactivity is much less understood. A primary example is how copper proteins can promote S-nitrosylation (SNO), which is one of the most important dynamic post-translational modifications, and is crucial in regulating nitric oxide storage and transportation. Specifically, the factors that instill CuII with S-nitrosylating capabilities and modulate activity are not well understood. To address this issue, we investigated the influence of the primary and secondary coordination sphere on CuII-catalyzed S-nitrosylation by developing a series of azurin variants with varying catalytic capabilities. We have employed a multidimensional approach involving electronic absorption, S and Cu K-edge XAS, EPR, and resonance Raman spectroscopies together with QM/MM computational analysis to examine the relationships between structure and molecular mechanism in this reaction. Our findings have revealed that kinetic competency is correlated with three balancing factors, namely Cu-S bond strength, Cu spin localization, and relative S(ps) vs S(pp) contributions to the ground state. Together, these results support a reaction pathway that proceeds through the attack of the Cu-S bond rather than electrophilic addition to CuII or radical attack of SCys. The insights gained from this work provide not only a deeper understanding of SNO in biology but also a basis for designing artificial and tunable SNO enzymes to regulate NO and prevent diseases due to SNO dysregulation.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
| | - Huiguang Dai
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiliang Tian
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
8
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells. Sci Rep 2023; 13:7254. [PMID: 37142668 PMCID: PMC10160116 DOI: 10.1038/s41598-023-34266-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
N-acetylcysteine (NAC) has been used as an antioxidant drug in tumor cells and preclinical mice tumor xenografts, and it improves adaptive immunotherapy in melanoma. NAC is not readily bioavailable and is used in high concentrations. The effects of NAC have been attributed to its antioxidant and redox signaling role in mitochondria. New thiol-containing molecules targeted to mitochondria are needed. Here, mitochondria-targeted NAC with a 10-carbon alkyl side chain attached to a triphenylphosphonium group (Mito10-NAC) that is functionally similar to NAC was synthesized and studied. Mito10-NAC has a free sulfhydryl group and is more hydrophobic than NAC. Mito10-NAC is nearly 2000-fold more effective than NAC in inhibiting several cancer cells, including pancreatic cancer cells. Methylation of NAC and Mito10-NAC also inhibited cancer cell proliferation. Mito10-NAC inhibits mitochondrial complex I-induced respiration and, in combination with monocarboxylate transporter 1 inhibitor, synergistically decreased pancreatic cancer cell proliferation. Results suggest that the antiproliferative effects of NAC and Mito10-NAC are unlikely to be related to their antioxidant mechanism (i.e., scavenging of reactive oxygen species) or to the sulfhydryl group-dependent redox modulatory effects.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- CNRS, ICR, UMR 7273, Aix Marseille Univ, 13013, Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
10
|
Kisty EA, Saart EC, Weerapana E. Identifying Redox-Sensitive Cysteine Residues in Mitochondria. Antioxidants (Basel) 2023; 12:992. [PMID: 37237858 PMCID: PMC10215197 DOI: 10.3390/antiox12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The mitochondrion is the primary energy generator of a cell and is a central player in cellular redox regulation. Mitochondrial reactive oxygen species (mtROS) are the natural byproducts of cellular respiration that are critical for the redox signaling events that regulate a cell's metabolism. These redox signaling pathways primarily rely on the reversible oxidation of the cysteine residues on mitochondrial proteins. Several key sites of this cysteine oxidation on mitochondrial proteins have been identified and shown to modulate downstream signaling pathways. To further our understanding of mitochondrial cysteine oxidation and to identify uncharacterized redox-sensitive cysteines, we coupled mitochondrial enrichment with redox proteomics. Briefly, differential centrifugation methods were used to enrich for mitochondria. These purified mitochondria were subjected to both exogenous and endogenous ROS treatments and analyzed by two redox proteomics methods. A competitive cysteine-reactive profiling strategy, termed isoTOP-ABPP, enabled the ranking of the cysteines by their redox sensitivity, due to a loss of reactivity induced by cysteine oxidation. A modified OxICAT method enabled a quantification of the percentage of reversible cysteine oxidation. Initially, we assessed the cysteine oxidation upon treatment with a range of exogenous hydrogen peroxide concentrations, which allowed us to differentiate the mitochondrial cysteines by their susceptibility to oxidation. We then analyzed the cysteine oxidation upon inducing reactive oxygen species generation via the inhibition of the electron transport chain. Together, these methods identified the mitochondrial cysteines that were sensitive to endogenous and exogenous ROS, including several previously known redox-regulated cysteines and uncharacterized cysteines on diverse mitochondrial proteins.
Collapse
|
11
|
Kisty EA, Falco JA, Weerapana E. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells. Cell Chem Biol 2023; 30:321-336.e6. [PMID: 36889310 PMCID: PMC10069010 DOI: 10.1016/j.chembiol.2023.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Reactive oxygen species (ROS) can modulate protein function through cysteine oxidation. Identifying protein targets of ROS can provide insight into uncharacterized ROS-regulated pathways. Several redox-proteomic workflows, such as oxidative isotope-coded affinity tags (OxICAT), exist to identify sites of cysteine oxidation. However, determining ROS targets localized within subcellular compartments and ROS hotspots remains challenging with existing workflows. Here, we present a chemoproteomic platform, PL-OxICAT, which combines proximity labeling (PL) with OxICAT to monitor localized cysteine oxidation events. We show that TurboID-based PL-OxICAT can monitor cysteine oxidation events within subcellular compartments such as the mitochondrial matrix and intermembrane space. Furthermore, we use ascorbate peroxidase (APEX)-based PL-OxICAT to monitor oxidation events within ROS hotspots by using endogenous ROS as the source of peroxide for APEX activation. Together, these platforms further hone our ability to monitor cysteine oxidation events within specific subcellular locations and ROS hotspots and provide a deeper understanding of the protein targets of endogenous and exogenous ROS.
Collapse
Affiliation(s)
- Eleni A Kisty
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
12
|
Chen W, Chiang J, Shang Z, Palchik G, Newman C, Zhang Y, Davis AJ, Lee H, Chen BPC. DNA-PKcs and ATM modulate mitochondrial ADP-ATP exchange as an oxidative stress checkpoint mechanism. EMBO J 2023; 42:e112094. [PMID: 36727301 PMCID: PMC10015379 DOI: 10.15252/embj.2022112094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.
Collapse
Affiliation(s)
- Wei‐Min Chen
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Jui‐Chung Chiang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Zengfu Shang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Guillermo Palchik
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Ciara Newman
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Yuanyuan Zhang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Hsinyu Lee
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Benjamin PC Chen
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| |
Collapse
|
13
|
Bak DW, Weerapana E. Monitoring Fe-S cluster occupancy across the E. coli proteome using chemoproteomics. Nat Chem Biol 2023; 19:356-366. [PMID: 36635565 PMCID: PMC9992348 DOI: 10.1038/s41589-022-01227-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous metallocofactors involved in redox chemistry, radical generation and gene regulation. Common methods to monitor Fe-S clusters include spectroscopic analysis of purified proteins and autoradiographic visualization of radiolabeled iron distribution in proteomes. Here, we report a chemoproteomic strategy that monitors changes in the reactivity of Fe-S cysteine ligands to inform on Fe-S cluster occupancy. We highlight the utility of this platform in Escherichia coli by (1) demonstrating global disruptions in Fe-S incorporation in cells cultured under iron-depleted conditions, (2) determining Fe-S client proteins reliant on five scaffold, carrier and chaperone proteins within the Isc Fe-S biogenesis pathway and (3) identifying two previously unannotated Fe-S proteins, TrhP and DppD. In summary, the chemoproteomic strategy described herein is a powerful tool that reports on Fe-S cluster incorporation directly within a native proteome, enabling the interrogation of Fe-S biogenesis pathways and the identification of previously uncharacterized Fe-S proteins.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| | | |
Collapse
|
14
|
Swenson CS, Pillai KS, Carlos AJ, Moellering RE. Spatial Chemoproteomics for Mapping the Active Proteome. Isr J Chem 2023; 63:e202200104. [PMID: 38046285 PMCID: PMC10688764 DOI: 10.1002/ijch.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 01/06/2023]
Abstract
Functional regulation of cell signaling through dynamic changes in protein activity state as well as spatial organization represent two dynamic, complex, and conserved phenomena in biology. Seemingly separate areas of -omics method development have focused on building tools that can detect and quantify protein activity states, as well as map sub-cellular and intercellular protein organization. Integration of these efforts, through the development of chemical tools and platforms that enable detection and quantification of protein functional states with spatial resolution provide opportunities to better understand heterogeneity in the proteome within cell organelles, multi-cellular tissues, and whole organisms. This review provides an overview of and considerations for major classes of chemical proteomic probes and technologies that enable protein activity mapping from sub-cellular compartments to live animals.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, University of Chicago, 5735 S Ellis Dr. Chicago, IL 60637, USA
| | - Kavya Smitha Pillai
- Department of Chemistry, University of Chicago, 5735 S Ellis Dr. Chicago, IL 60637, USA
| | - Anthony J Carlos
- Department of Chemistry, University of Chicago, 5735 S Ellis Dr. Chicago, IL 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, 5735 S Ellis Dr. Chicago, IL 60637, USA
| |
Collapse
|
15
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525042. [PMID: 36711448 PMCID: PMC9882296 DOI: 10.1101/2023.01.22.525042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Ashley R. Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Andréa B. Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa M. Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Alexandra C. Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Stephanie L. Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heta S. Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M. Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
16
|
Gruenwald H, Kerns RJ. Stability of Phenyl-Modified Triphenylphosphonium Conjugates and Interactions with DTPA. ACS OMEGA 2022; 7:48332-48339. [PMID: 36591157 PMCID: PMC9798776 DOI: 10.1021/acsomega.2c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Triphenylphosphonium (TPP+) conjugates are effective in targeting drugs and probes to the mitochondria due to their lipophilic character that allows them to readily cross membranes and their large cationic radius that enables mitochondrial uptake because of the mitochondria's negative membrane potential. TPP+ conjugates, while effectively sequestered by the mitochondria, are also known to uncouple oxidative phosphorylation (OXPHOS) and depolarize the mitochondrial membrane. xTPP+ conjugates with para-substitutions of functional groups on the phenyl rings of the TPP+ moiety display different levels of dose-mediated cytotoxicity due to differing potencies of uncoupling. xTPP+ conjugates having a para CF3 group substituted on the phenyl rings have been shown to afford significantly reduced uncoupling potency. In the present study, the analysis of a CF3-TPP+ conjugate with a decyl linker for stability revealed instability specific to the presence of DMSO in aqueous alkaline buffer. It is also demonstrated that the metal chelator, DTPA, forms a noncovalent protective complex with TPP+ moieties and prevents degradation of the CF3-TPP+ conjugate in aqueous DMSO. The stability of different xTPP+ conjugates and their interactions with DTPA are reported.
Collapse
|
17
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
18
|
Kovalyova Y, Bak DW, Gordon EM, Fung C, Shuman JHB, Cover TL, Amieva MR, Weerapana E, Hatzios SK. An infection-induced oxidation site regulates legumain processing and tumor growth. Nat Chem Biol 2022; 18:698-705. [PMID: 35332331 PMCID: PMC9246868 DOI: 10.1038/s41589-022-00992-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022]
Abstract
Oxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections1. Reactive oxygen species (ROS) can drive tumor formation2–4, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth. By using chemical proteomics to map cysteine reactivity in human gastric cells, we determined that H. pylori infection induces oxidation of legumain at Cys219. Legumain oxidation dysregulates intracellular legumain processing and decreases the activity of the enzyme in H. pylori-infected cells. We further show that the site-specific loss of Cys219 reactivity increases tumor growth and mortality in a xenograft model. Our findings establish a link between an infection-induced oxidation site and tumorigenesis while underscoring the importance of cysteine reactivity in tumor growth.
Collapse
Affiliation(s)
- Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Chemistry, Yale University, New Haven, CT, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Connie Fung
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer H B Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, USA. .,Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Chemoproteomic interrogation of selenocysteine by low-pH isoTOP-ABPP. Methods Enzymol 2022; 662:187-225. [DOI: 10.1016/bs.mie.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. Int J Mol Sci 2021; 22:ijms222312833. [PMID: 34884639 PMCID: PMC8657666 DOI: 10.3390/ijms222312833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM), where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways. There is increasing consensus about their function as a cellular hub, connecting bioenergetics functions to the rest of the cell. The structural characterization of VDACs presents challenging issues due to their very high hydrophobicity, low solubility, the difficulty to separate them from other mitochondrial proteins of similar hydrophobicity and the practical impossibility to isolate each single isoform. Consequently, it is necessary to analyze them as components of a relatively complex mixture. Due to the experimental difficulties in their structural characterization, post-translational modifications (PTMs) of VDAC proteins represent a little explored field. Only in recent years, the increasing number of tools aimed at identifying and quantifying PTMs has allowed to increase our knowledge in this field and in the mechanisms that regulate functions and interactions of mitochondrial porins. In particular, the development of nano-reversed phase ultra-high performance liquid chromatography (nanoRP-UHPLC) and ultra-sensitive high-resolution mass spectrometry (HRMS) methods has played a key role in this field. The findings obtained on VDAC PTMs using such methodologies, which permitted an in-depth characterization of these very hydrophobic trans-membrane pore proteins, are summarized in this review.
Collapse
|
21
|
Giese J, Eirich J, Post F, Schwarzländer M, Finkemeier I. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling. Methods Mol Biol 2021; 2363:215-234. [PMID: 34545496 DOI: 10.1007/978-1-0716-1653-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria are central hubs of redox biochemistry in the cell. An important role of mitochondrial carbon metabolism is to oxidize respiratory substrates and to pass the electrons down the mitochondrial electron transport chain to reduce oxygen and to drive oxidative phosphorylation. During respiration, reactive oxygen species are produced as a side reaction, some of which in turn oxidize cysteine thiols in proteins. Hence, the redox status of cysteine-containing mitochondrial proteins has to be controlled by the mitochondrial glutathione and thioredoxin systems, which draw electrons from metabolically derived NADPH. The redox status of mitochondrial cysteines can undergo fast transitions depending on the metabolic status of the cell, as for instance at early seed germination. Here, we describe a state-of-the-art method to quantify redox state of protein cysteines in isolated Arabidopsis seedling mitochondria of controlled metabolic and respiratory state by MS2-based redox proteomics using the isobaric thiol labeling reagent Iodoacetyl Tandem Mass Tag™ (iodoTMT). The procedure is also applicable to isolated mitochondria of other plant and nonplant systems.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Frederik Post
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
22
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
23
|
Mühlenhoff U, Braymer JJ, Christ S, Rietzschel N, Uzarska MA, Weiler BD, Lill R. Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biol Chem 2021; 401:1407-1428. [PMID: 33031050 DOI: 10.1515/hsz-2020-0237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
The physiological roles of the intracellular iron and redox regulatory systems are intimately linked. Iron is an essential trace element for most organisms, yet elevated cellular iron levels are a potent generator and amplifier of reactive oxygen species and redox stress. Proteins binding iron or iron-sulfur (Fe/S) clusters, are particularly sensitive to oxidative damage and require protection from the cellular oxidative stress protection systems. In addition, key components of these systems, most prominently glutathione and monothiol glutaredoxins are involved in the biogenesis of cellular Fe/S proteins. In this review, we address the biochemical role of glutathione and glutaredoxins in cellular Fe/S protein assembly in eukaryotic cells. We also summarize the recent developments in the role of cytosolic glutaredoxins in iron metabolism, in particular the regulation of fungal iron homeostasis. Finally, we discuss recent insights into the interplay of the cellular thiol redox balance and oxygen with that of Fe/S protein biogenesis in eukaryotes.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Stefan Christ
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Nicole Rietzschel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307Gdansk, Poland
| | - Benjamin D Weiler
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| |
Collapse
|
24
|
Willems P, Van Breusegem F, Huang J. Contemporary proteomic strategies for cysteine redoxome profiling. PLANT PHYSIOLOGY 2021; 186:110-124. [PMID: 33793888 PMCID: PMC8154054 DOI: 10.1093/plphys/kiaa074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Protein cysteine residues are susceptible to oxidative modifications that can affect protein functions. Proteomic techniques that comprehensively profile the cysteine redoxome, the repertoire of oxidized cysteine residues, are pivotal towards a better understanding of the protein redox signaling. Recent technical advances in chemical tools and redox proteomic strategies have greatly improved selectivity, in vivo applicability, and quantification of the cysteine redoxome. Despite this substantial progress, still many challenges remain. Here, we provide an update on the recent advances in proteomic strategies for cysteine redoxome profiling, compare the advantages and disadvantages of current methods and discuss the outstanding challenges and future perspectives for plant redoxome research.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
25
|
Wort JL, Ackermann K, Norman DG, Bode BE. A general model to optimise Cu II labelling efficiency of double-histidine motifs for pulse dipolar EPR applications. Phys Chem Chem Phys 2021; 23:3810-3819. [PMID: 33533341 DOI: 10.1039/d0cp06196d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the dH motif for EPR applications at sub-μM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, depending upon pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - David G Norman
- School of Life Sciences, University of Dundee, Medical Sciences Institute, Dundee, DD1 5EH, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
26
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
27
|
Yan T, Desai HS, Boatner LM, Yen SL, Cao J, Palafox MF, Jami-Alahmadi Y, Backus KM. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*. Chembiochem 2021; 22:1841-1851. [PMID: 33442901 DOI: 10.1002/cbic.202000870] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Chemoproteomics has enabled the rapid and proteome-wide discovery of functional, redox-sensitive, and ligandable cysteine residues. Despite widespread adoption and considerable advances in both sample-preparation workflows and MS instrumentation, chemoproteomics experiments still typically only identify a small fraction of all cysteines encoded by the human genome. Here, we develop an optimized sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample-preparation (SP3) to improve the recovery of biotinylated peptides, even from small sample sizes. By combining this improved workflow with on-line high-field asymmetric waveform ion mobility spectrometry (FAIMS) separation of labeled peptides, we achieve unprecedented coverage of >14000 unique cysteines in a single-shot 70 min experiment. Showcasing the wide utility of the SP3-FAIMS chemoproteomic method, we find that it is also compatible with competitive small-molecule screening by isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). In aggregate, our analysis of 18 samples from seven cell lines identified 34225 unique cysteines using only ∼28 h of instrument time. The comprehensive spectral library and improved coverage provided by the SP3-FAIMS chemoproteomics method will provide the technical foundation for future studies aimed at deciphering the functions and druggability of the human cysteineome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lisa M Boatner
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie L Yen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jian Cao
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Maria F Palafox
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Keriann M Backus
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Zhang Y, Deng Y, Yang X, Xue H, Lang Y. The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review. Neurochem Res 2020; 45:2815-2827. [PMID: 32984933 DOI: 10.1007/s11064-020-03136-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 09/19/2020] [Indexed: 01/12/2023]
Abstract
S-nitrosylation (SNO) is a covalent post-translational oxidative modification. The reaction is the nitroso group (-NO) to a reactive cysteine thiol within a protein to form the SNO. In recent years, a variety of proteins in human body have been found to undergo thiol nitrosylation under specific conditions. Protein SNO, which is closely related to cardiovascular disease, Parkinson's syndrome, Alzheimer's disease and tumors, plays an important role in regulatory mechanism of protein function in both physiological and pathological pathways, such as in cellular homeostasis and metabolism. This review discusses possible molecular mechanisms protein SNO modification, such as the role of NO in vivo and the formation mechanism of SNO, with particular emphasis on mechanisms utilized by SNO to cause certain diseases of human. Importantly, the effect of SNO on diseases is multifaceted and multi-channel, and its critical value in vivo is not well defined. Intracellular redox environment is also a key factor affecting its level. Therefore, we should pay more attention to the equilibrium relationship between SNO and denitrosylation pathway in the future researches. These findings provide theoretical support for the improvement or treatment of diseases from the point of view of SNO.
Collapse
Affiliation(s)
- Yadi Zhang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yuzhen Deng
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Xiaoxi Yang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Hongmei Xue
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yumiao Lang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
29
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Montagna C, Cirotti C, Rizza S, Filomeni G. When S-Nitrosylation Gets to Mitochondria: From Signaling to Age-Related Diseases. Antioxid Redox Signal 2020; 32:884-905. [PMID: 31931592 DOI: 10.1089/ars.2019.7872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Cysteines have an essential role in redox signaling, transforming an oxidant signal into a biological response. Among reversible cysteine post-translational modifications, S-nitrosylation acts as a redox-switch in several pathophysiological states, such as ischemia/reperfusion, synaptic transmission, cancer, and muscular dysfunctions. Recent Advances: Growing pieces of in vitro and in vivo evidence argue for S-nitrosylation being deeply involved in development and aging, and playing a role in the onset of different pathological states. New findings suggest it being an enzymatically regulated cellular process, with deep impact on mitochondrial structure and function, and in cellular metabolism. In light of this, the recent discovery of the denitrosylase S-nitrosoCoA (coenzyme A) reductase takes on even greater importance and opens new perspectives on S-nitrosylation as a general mechanism of cellular homeostasis. Critical Issues: Based on these recent findings, we aim at summarizing and elaborating on the established and emerging crucial roles of S-nitrosylation in mitochondrial metabolism and mitophagy, and provide an overview of the pathophysiological effects induced by its deregulation. Future Directions: The identification of new S-nitrosylation targets, and the comprehension of the mechanisms through which S-nitrosylation modulates specific classes of proteins, that is, those impinging on diverse mitochondrial functions, may help to better understand the pathophysiology of aging, and propose lines of intervention to slow down or extend the onset of aging-related diseases.
Collapse
Affiliation(s)
- Costanza Montagna
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Claudia Cirotti
- Laboratory of Signal Transduction, Fondazione Santa Lucia, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
31
|
Nakamura T, Lipton SA. Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxid Redox Signal 2020; 32:817-833. [PMID: 31657228 PMCID: PMC7074890 DOI: 10.1089/ars.2019.7916] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Significance: Most brains affected by neurodegenerative diseases manifest mitochondrial dysfunction as well as elevated production of reactive oxygen species and reactive nitrogen species (RNS), contributing to synapse loss and neuronal injury. Recent Advances: Excessive production of RNS triggers nitric oxide (NO)-mediated post-translational modifications of proteins, such as S-nitrosylation of cysteine residues and nitration of tyrosine residues. Proteins thus affected impair mitochondrial metabolism, mitochondrial dynamics, and mitophagy in the nervous system. Critical Issues: Identification and better characterization of underlying molecular mechanisms for NO-mediated mitochondrial dysfunction will provide important insights into the pathogenesis of neurodegenerative disorders. In this review, we highlight recent discoveries concerning S-nitrosylation of the tricarboxylic acid cycle enzymes, mitochondrial fission GTPase dynamin-related protein 1, and mitophagy-related proteins Parkin and phosphatase and tensin homolog-induced putative kinase protein 1. We delineate signaling cascades affected by pathologically S-nitrosylated proteins that diminish mitochondrial function in neurodegenerative diseases. Future Directions: Further elucidation of the pathological events resulting from aberrant S-nitrosothiol or nitrotyrosine formation may lead to new therapeutic approaches to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California
- Address correspondence to: Dr. Tomohiro Nakamura, Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Stuart A. Lipton
- Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California
- Dr. Stuart A. Lipton, Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
32
|
Wolf C, López del Amo V, Arndt S, Bueno D, Tenzer S, Hanschmann EM, Berndt C, Methner A. Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells 2020; 9:cells9040815. [PMID: 32230997 PMCID: PMC7226787 DOI: 10.3390/cells9040815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications.
Collapse
Affiliation(s)
- Christina Wolf
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sabine Arndt
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Diones Bueno
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
- Correspondence:
| |
Collapse
|
33
|
Bechtel TJ, Li C, Kisty EA, Maurais AJ, Weerapana E. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum. ACS Chem Biol 2020; 15:543-553. [PMID: 31899610 DOI: 10.1021/acschembio.9b01014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family. Here, we establish chemoproteomic platforms to identify oxidized and reduced cysteine residues within the ER. Subcellular fractionation methods were utilized to enrich for the ER and significantly enhance the coverage of ER-localized cysteine residues. Reactive-cysteine profiling ranked ∼900 secretory pathway cysteines by reactivity with an iodoacetamide-alkyne probe, revealing functional cysteines annotated to participate in disulfide bonds, or S-palmitoylation sites within proteins. Through application of a variation of the OxICAT protocol for quantifying cysteine oxidation, the percentages of oxidation for each of ∼700 ER-localized cysteines were calculated. Lastly, perturbation of ER function, through chemical induction of ER stress, was used to investigate the effect of initiation of the unfolded protein response (UPR) on ER-localized cysteine oxidation. Together, these studies establish a platform for identifying reactive and functional cysteine residues on proteins within the secretory pathway as well as for interrogating the effects of diverse cellular stresses on ER-localized cysteine oxidation.
Collapse
Affiliation(s)
- Tyler J. Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chun Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eleni A. Kisty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Aaron J. Maurais
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
34
|
Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci U S A 2019; 117:741-751. [PMID: 31871212 DOI: 10.1073/pnas.1910501117] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.
Collapse
|
35
|
Abstract
Selenoproteins are the family of proteins that contain the amino acid selenocysteine. Many selenoproteins, including glutathione peroxidases and thioredoxin reductases, play a role in maintaining cellular redox homeostasis. There are a number of examples of homologues of selenoproteins that utilize cysteine residues, raising the question of why selenocysteines are utilized. One hypothesis is that incorporation of selenocysteine protects against irreversible overoxidation, typical of cysteine-containing homologues under high oxidative stress. Studies of selenocysteine function are hampered by challenges both in detection and in recombinant expression of selenoproteins. In fact, about half of the 25 known human selenoproteins remain uncharacterized. Historically, selenoproteins were first detected via labeling with radioactive 75Se or by use of inductively coupled plasma-mass spectrometry to monitor nonradioactive selenium. More recently, tandem mass-spectrometry techniques have been developed to detect selenocysteine-containing peptides. For example, the isotopic distribution of selenium has been used as a unique signature to identify selenium-containing peptides from unenriched proteome samples. Additionally, selenocysteine-containing proteins and peptides were selectively enriched using thiol-reactive electrophiles by exploiting the increased reactivity of selenols relative to thiols, especially under low pH conditions. Importantly, the reactivity-based enrichment of selenoproteins can differentiate between oxidized and reduced selenoproteins, providing insight into the activity state. These mass spectrometry-based selenoprotein detection approaches have enabled (1) production of selenoproteome expression atlases, (2) identification of aging-associated changes in selenoprotein expression, (3) characterization of selenocysteine reactivity across the selenoprotein family, and (4) interrogation of selenoprotein targets of small-molecule drugs. Further investigations of selenoprotein function would benefit from recombinant expression of selenoproteins. However, the endogenous mechanism of selenoprotein production makes recombinant expression challenging. Primarily, selenocysteine is biosynthesized on its own tRNA, is dependent on multiple enzymatic steps, and is highly sensitive to selenium concentrations. Furthermore, selenocysteine is encoded by the stop codon UGA, and suppression of that stop codon requires a selenocysteine insertion sequence element in the selenoprotein mRNA. In order to circumvent the low efficiency of the endogenous machinery, selenoproteins have been produced in vitro through native chemical ligation and expressed protein ligation. Attempts have also been made to engineer the endogenous machinery for increased efficiency, including recoding the selenocysteine codon, and engineering the tRNA and the selenocysteine insertion sequence element. Alternatively, genetic code expansion can be used to generate selenoproteins. This approach allows for selenoprotein production directly within its native cellular environment, while bypassing the endogenous selenocysteine incorporation machinery. Furthermore, by incorporating a caged selenocysteine by genetic code expansion, selenoprotein activity can be spatially and temporally controlled. Genetic code expansion has allowed for the expression and uncaging of human selenoproteins in E. coli and more recently in mammalian cells. Together, advances in selenoprotein detection and expression should enable a better understanding of selenoprotein function and provide insight into the necessity for selenocysteine production.
Collapse
Affiliation(s)
- Jennifer C. Peeler
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
36
|
Rabalski AJ, Bogdan AR, Baranczak A. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity. ACS Chem Biol 2019; 14:1940-1950. [PMID: 31430117 DOI: 10.1021/acschembio.9b00424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous reagents have been developed to enable chemical proteomic analysis of small molecule-protein interactomes. However, the performance of these reagents has not been systematically evaluated and compared. Herein, we report our efforts to conduct a parallel assessment of two widely used chemically cleavable linkers equipped with dialkoxydiphenylsilane (DADPS linker) and azobenzene (AZO linker) moieties. Profiling a cellular cysteinome using the iodoacetamide alkyne probe demonstrated a significant discrepancy between the experimental results obtained through the application of each of the reagents. To better understand the source of observed discrepancy, we evaluated the key sample preparation steps. We also performed a mass tolerant database search strategy using MSFragger software. This resulted in identifying a previously unreported artifactual modification on the residual mass of the azobenzene linker. Furthermore, we conducted a comparative analysis of enrichment modes using both cleavable linkers. This effort determined that enrichment of proteolytic digests yielded a far greater number of identified cysteine residues than the enrichment conducted prior to protein digest. Inspired by recent studies where multiplexed quantitative labeling strategies were applied to cleavable biotin linkers, we combined this further optimized protocol using the DADPS cleavable linker with tandem mass tag (TMT) labeling to profile the FDA-approved covalent EGFR kinase inhibitor dacomitinib against the cysteinome of an epidermoid cancer cell line. Our analysis resulted in the detection and quantification of over 10,000 unique cysteine residues, a nearly 3-fold increase over previous studies that used cleavable biotin linkers for enrichment. Critically, cysteine residues corresponding to proteins directly as well as indirectly modulated by dacomitinib treatment were identified. Overall, our study suggests that the dialkoxydiphenylsilane linker could be broadly applied wherever chemically cleavable linkers are required for chemical proteomic characterization of cellular proteomes.
Collapse
Affiliation(s)
- Adam J. Rabalski
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Andrew R. Bogdan
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Aleksandra Baranczak
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| |
Collapse
|
37
|
Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R. Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 2019; 294:12077-12090. [PMID: 31213529 PMCID: PMC6690701 DOI: 10.1074/jbc.ra119.009442] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/17/2019] [Indexed: 01/15/2023] Open
Abstract
Unlike most other tissues, the colon epithelium is exposed to high levels of H2S derived from gut microbial metabolism. H2S is a signaling molecule that modulates various physiological effects. It is also a respiratory toxin that inhibits complex IV in the electron transfer chain (ETC). Colon epithelial cells are adapted to high environmental H2S exposure as they harbor an efficient mitochondrial H2S oxidation pathway, which is dedicated to its disposal. Herein, we report that the sulfide oxidation pathway enzymes are apically localized in human colonic crypts at the host-microbiome interface, but that the normal apical-to-crypt gradient is lost in colorectal cancer epithelium. We found that sulfide quinone oxidoreductase (SQR), which catalyzes the committing step in the mitochondrial sulfide oxidation pathway and couples to complex III, is a critical respiratory shield against H2S poisoning. H2S at concentrations ≤20 μm stimulated the oxygen consumption rate in colon epithelial cells, but, when SQR expression was ablated, H2S concentrations as low as 5 μm poisoned cells. Mitochondrial H2S oxidation altered cellular bioenergetics, inducing a reductive shift in the NAD+/NADH redox couple. The consequent electron acceptor insufficiency caused uridine and aspartate deficiency and enhanced glutamine-dependent reductive carboxylation. The metabolomic signature of this H2S-induced stress response mapped, in part, to redox-sensitive nodes in central carbon metabolism. Colorectal cancer tissues and cell lines appeared to counter the growth-restricting effects of H2S by overexpressing sulfide oxidation pathway enzymes. Our findings reveal an alternative mechanism for H2S signaling, arising from alterations in mitochondrial bioenergetics that drive metabolic reprogramming.
Collapse
Affiliation(s)
- Marouane Libiad
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Trever Bostelaar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Daniel W Bak
- Chemistry Department, Boston College, Chestnut Hill, Massachusetts 02467
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Naoya Sakamoto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Eric Fearon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Eranthie Weerapana
- Chemistry Department, Boston College, Chestnut Hill, Massachusetts 02467
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
38
|
Rao S, Gurbani D, Du G, Everley RA, Browne CM, Chaikuad A, Tan L, Schröder M, Gondi S, Ficarro SB, Sim T, Kim ND, Berberich MJ, Knapp S, Marto JA, Westover KD, Sorger PK, Gray NS. Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Cell Chem Biol 2019; 26:818-829.e9. [PMID: 30982749 PMCID: PMC6634314 DOI: 10.1016/j.chembiol.2019.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/18/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Covalent kinase inhibitors, which typically target cysteine residues, represent an important class of clinically relevant compounds. Approximately 215 kinases are known to have potentially targetable cysteines distributed across 18 spatially distinct locations proximal to the ATP-binding pocket. However, only 40 kinases have been covalently targeted, with certain cysteine sites being the primary focus. To address this disparity, we have developed a strategy that combines the use of a multi-targeted acrylamide-modified inhibitor, SM1-71, with a suite of complementary chemoproteomic and cellular approaches to identify additional targetable cysteines. Using this single multi-targeted compound, we successfully identified 23 kinases that are amenable to covalent inhibition including MKNK2, MAP2K1/2/3/4/6/7, GAK, AAK1, BMP2K, MAP3K7, MAPKAPK5, GSK3A/B, MAPK1/3, SRC, YES1, FGFR1, ZAK (MLTK), MAP3K1, LIMK1, and RSK2. The identification of nine of these kinases previously not targeted by a covalent inhibitor increases the number of targetable kinases and highlights opportunities for covalent kinase inhibitor development.
Collapse
Affiliation(s)
- Suman Rao
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Everley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Life Sciences (BMLS) and Structural Genomics Consortium Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Schröder
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Life Sciences (BMLS) and Structural Genomics Consortium Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc., Incheon 21984, Republic of Korea
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Life Sciences (BMLS) and Structural Genomics Consortium Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; German Cancer Network (DKTK), Frankfurt Site, 60438 Frankfurt am Main, Germany
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019; 10:2195. [PMID: 31097712 PMCID: PMC6522481 DOI: 10.1038/s41467-019-10182-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination. Reversible cysteine modifications play important roles in cellular redox signaling. Here, the authors develop a chemical proteomics strategy that enables the quantitative analysis of endogenous cysteine nitrosylation sites and their dynamic regulation under nitrosative stress conditions.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stavroula Markoutsa
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kim Walbrunn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany. .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, Quebec, H4A 3T2, Canada. .,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
40
|
Dong J, Hong D, Lang W, Huang J, Qian L, Zhu Q, Li L, Ge J. Differently Tagged Probes for Protein Profiling of Mitochondria. Chembiochem 2019; 20:1155-1160. [PMID: 30600897 DOI: 10.1002/cbic.201800735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/10/2022]
Abstract
The mitochondrion is one of the most important organelles in the eukaryotic cell. Characterization of the mitochondrial proteome is a prerequisite for understanding its cellular functions at the molecular level. Here we report a proteomics method based on mitochondrion-targeting groups and click chemistry. In our strategy, three different mitochondrion-targeting moieties were each augmented with a clickable handle and a cysteine-reactive group. Fluorescence-based bioimaging and fractionation experiments clearly showed that most signals arising from the labels were localized in the mitochondria of cells, as a result of covalent attachment between probe and target proteins. The three probes had distinct profiling characteristics. Furthermore, we successfully identified more than two hundred mitochondrial proteins. The results showed that different mitochondrion-targeting groups targeted distinct proteins with partial overlap. Most of the labeled proteins were localized in the mitochondrial matrix and inner mitochondrial membrane. Our results provide a tool for chemoproteomic analysis of mitochondrion-related proteins.
Collapse
Affiliation(s)
- Jia Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Danqi Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Jintao Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
41
|
Abstract
SIGNIFICANCE Cellular reactive oxygen species (ROS) mediate redox signaling cascades that are critical to numerous physiological and pathological processes. Analytical methods to monitor cellular ROS levels and proteomic platforms to identify oxidative post-translational modifications (PTMs) of proteins are critical to understanding the triggers and consequences of redox signaling. Recent Advances: The prevalence and significance of redox signaling has recently been illuminated through the use of chemical probes that allow for sensitive detection of cellular ROS levels and proteomic dissection of oxidative PTMs directly in living cells. CRITICAL ISSUES In this review, we provide a comprehensive overview of chemical probes that are available for monitoring ROS and oxidative PTMs, and we highlight the advantages and limitations of these methods. FUTURE DIRECTIONS Despite significant advances in chemical probes, the low levels of cellular ROS and low stoichiometry of oxidative PTMs present challenges for accurately measuring the extent and dynamics of ROS generation and redox signaling. Further improvements in sensitivity and ability to spatially and temporally control readouts are essential to fully illuminate cellular redox signaling.
Collapse
Affiliation(s)
- Masahiro Abo
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | | |
Collapse
|
42
|
Long MJ, Liu X, Aye Y. Genie in a bottle: controlled release helps tame natural polypharmacology? Curr Opin Chem Biol 2019; 51:48-56. [PMID: 30913473 DOI: 10.1016/j.cbpa.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
Ability to faithfully report drug-target interactions constitutes a major critical parameter in preclinical/clinical settings. Yet the assessment of target engagement remains challenging, particularly for promiscuous and/or polypharmacologic ligands. Drawing from our improved insights into native electrophile signaling and emerging technologies that profile and interrogate these non-enzyme-assisted signaling subsystems, we posit that 'trained' polypharmocologic covalent inhibitors can be designed. Accumulating evidence indicates that electrophile-modified states at fractional occupancy can alter cell fate. Thus, by understanding sensing preferences and ligandable regions favored by the natural electrophilic signals at individual protein-ligand resolution, we can better evaluate target engagement and develop a function-guided understanding of polypharmacology.
Collapse
Affiliation(s)
- Marcus Jc Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| | - Xuyu Liu
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland.
| |
Collapse
|
43
|
Kulkarni RA, Bak DW, Wei D, Bergholtz SE, Briney CA, Shrimp JH, Alpsoy A, Thorpe AL, Bavari AE, Crooks DR, Levy M, Florens L, Washburn MP, Frizzell N, Dykhuizen EC, Weerapana E, Linehan WM, Meier JL. A chemoproteomic portrait of the oncometabolite fumarate. Nat Chem Biol 2019; 15:391-400. [PMID: 30718813 PMCID: PMC6430658 DOI: 10.1038/s41589-018-0217-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
Abstract
Hereditary cancer disorders often provide an important window into novel mechanisms supporting tumor growth. Understanding these mechanisms thus represents a vital goal. Toward this goal, here we report a chemoproteomic map of fumarate, a covalent oncometabolite whose accumulation marks the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC). We applied a fumarate-competitive chemoproteomic probe in concert with LC-MS/MS to discover new cysteines sensitive to fumarate hydratase (FH) mutation in HLRCC cell models. Analysis of this dataset revealed an unexpected influence of local environment and pH on fumarate reactivity, and enabled the characterization of a novel FH-regulated cysteine residue that lies at a key protein-protein interface in the SWI-SNF tumor-suppressor complex. Our studies provide a powerful resource for understanding the covalent imprint of fumarate on the proteome and lay the foundation for future efforts to exploit this distinct aspect of oncometabolism for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Sarah E Bergholtz
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Chloe A Briney
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Abigail L Thorpe
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Arissa E Bavari
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KA, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA.
| |
Collapse
|
44
|
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:240-251. [DOI: 10.1016/j.bbamcr.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
|
45
|
Du Z, Zhang R, Song B, Zhang W, Wang Y, Liu J, Liu C, Xu ZP, Yuan J. Iridium(III) Complex‐Based Activatable Probe for Phosphorescent/Time‐Gated Luminescent Sensing and Imaging of Cysteine in Mitochondria of Live Cells and Animals. Chemistry 2019; 25:1498-1506. [DOI: 10.1002/chem.201805079] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhongbo Du
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Yong‐Lei Wang
- Department of Chemistry Stanford University Stanford California 94305 USA
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry Dalian University of Technology Dalian 116024 P.R. China
| |
Collapse
|
46
|
Bak DW, Weerapana E. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry. Methods Mol Biol 2019; 1967:211-227. [PMID: 31069773 PMCID: PMC6953394 DOI: 10.1007/978-1-4939-9187-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are cellular sites of diverse redox biology, including ROS production, iron-sulfur biogenesis, and secondary metabolism, which all rely on proteogenic reactive cysteine residues. Mass spectrometry-based proteomic methods to monitor the reactivity and functionality of cysteine residues across complex proteomes have greatly expanded over the past decade. Here we describe a mitochondrial isolation procedure coupled with cysteine-reactive IA labeling that affords identification and characterization of functional mitochondrial cysteine residues that were heretofore inaccessible to whole-cell proteomic analysis.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
47
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
48
|
Browne CM, Jiang B, Ficarro SB, Doctor ZM, Johnson JL, Card JD, Sivakumaren SC, Alexander WM, Yaron TM, Murphy CJ, Kwiatkowski NP, Zhang T, Cantley LC, Gray NS, Marto JA. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J Am Chem Soc 2018; 141:191-203. [PMID: 30518210 DOI: 10.1021/jacs.8b07911] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.
Collapse
Affiliation(s)
- Christopher M Browne
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Baishan Jiang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Scott B Ficarro
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Zainab M Doctor
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jared L Johnson
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Joseph D Card
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - William M Alexander
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Tomer M Yaron
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Charles J Murphy
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States
| | - Tinghu Zhang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lewis C Cantley
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jarrod A Marto
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Pathology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
49
|
Bak DW, Bechtel TJ, Falco JA, Weerapana E. Cysteine reactivity across the subcellular universe. Curr Opin Chem Biol 2018; 48:96-105. [PMID: 30508703 DOI: 10.1016/j.cbpa.2018.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/25/2018] [Accepted: 11/02/2018] [Indexed: 01/01/2023]
Abstract
Cysteine residues are concentrated at key functional sites within proteins, performing diverse roles in metal binding, catalysis, and redox chemistry. Chemoproteomic platforms to interrogate the reactive cysteinome have developed significantly over the past 10 years, resulting in a greater understanding of cysteine functionality, modification, and druggability. Recently, chemoproteomic methods to examine reactive cysteine residues from specific subcellular organelles have provided significantly improved proteome coverage and highlights the unique functionalities of cysteine residues mediated by cellular localization. Here, the diverse physicochemical properties of the mammalian subcellular organelles are explored in the context of their effects on cysteine reactivity. The unique functions of cysteine residues found in the mitochondria and endoplasmic reticulum are highlighted, together with an overview into chemoproteomic platforms employed to investigate cysteine reactivity in subcellular organelles.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, United States.
| | - Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, United States
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, United States.
| |
Collapse
|
50
|
Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles. Trends Biochem Sci 2018; 44:75-89. [PMID: 30327250 DOI: 10.1016/j.tibs.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Revolutionary proteomic strategies have enabled rapid profiling of the cellular targets of electrophilic small molecules. However, precise means to directly interrogate how these individual electrophilic modifications at low occupancy functionally reshape signaling networks have until recently been largely limited. We highlight here new methods that transcend proteomic platforms to forge a quantitative link between protein target-selective engagement and downstream signaling. We focus on recent progress in the study of non-enzyme-assisted signaling mechanisms and crosstalk choreographed by native reactive electrophilic species (RES). Using this as a model, we offer a long-term vision of how these toolsets together with fundamental biochemical knowledge of precision electrophile signaling may be harnessed to assist covalent ligand-target matching and ultimately amend disease-specific signaling dysfunction.
Collapse
|