1
|
Gogoi J, Pawar KI, Sivakumar K, Bhatnagar A, Suma K, Ann KJ, Pottabathini S, Kruparani SP, Sankaranarayanan R. A metal ion mediated functional dichotomy encodes plasticity during translation quality control. Nat Commun 2025; 16:3625. [PMID: 40240361 PMCID: PMC12003907 DOI: 10.1038/s41467-025-58787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn2+ binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn2+ in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed's activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).
Collapse
Affiliation(s)
- Jotin Gogoi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Komal Ishwar Pawar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Koushick Sivakumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Kezia J Ann
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | | | - Shobha P Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Wang Y, Lee BH, Yang Z, Ho TJ, Ci H, Jackson B, Punshon T, Wang B, Levy J, Ho SP. Chewing-Activated TRPV4/PIEZO1- HIF-1α-Zn Axes in a Rat Periodontal Complex. J Dent Res 2025; 104:398-407. [PMID: 39876056 PMCID: PMC11909774 DOI: 10.1177/00220345241294001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (MFN2), cell senescence indicator (p16), and oxygen status marker hypoxia-inducible factor-1α (HIF-1α) in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo. Four-week-old male Sprague-Dawley rats were fed hard (n = 3) or soft (n = 3) foods for 4 wk (in vivo). Significant changes in alveolar socket and root shapes with decreased periodontal ligament space and increased cementum volume fraction were observed in maxillae on reduced loads (soft food). Reduced loads impaired distally localized compression-stimulated PIEZO1 and mesially localized tension-stimulated TRPV4, decreased mitochondrial function (MFN2), and increased cell senescence in mesial and distal periodontal regions. The switch in HIF-1α from hard food-distal to soft food-mesial indicated a plausible effect of shear-regulated blood and oxygen flows in the periodontal complex. Blunting or activating TRPV4 or PIEZO1 MS-ion channels by channel-specific antagonists or agonists in human periodontal ligament fibroblast cultures (in vitro) indicated a positive correlation between zinc levels and zinc transporters but not with MS-ion channel expressions. The effects of reduced chewing loads in vivo were analogous to TRPV4 and PIEZO1 antagonists in vitro. Study results collectively illustrated that tension-induced TRPV4 and compression-induced PIEZO1 activations are necessary for cell metabolism. An increased hypoxic state with reduced functional loads can be a conducive environment for cementum growth. From a practical standpoint, dose rate-controlled loads can modulate tension and compression-specific MS-ion channel activation, cellular zinc, and HIF-1α transcription. These mechanobiochemical events indicate the plausible catalytic role of biometal zinc in mineralization, periodontal maintenance, and dentoalveolar joint function.
Collapse
Affiliation(s)
- Y Wang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - B H Lee
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Z Yang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - T J Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - H Ci
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - B Jackson
- Deparment of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - T Punshon
- Deparment of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - B Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - J Levy
- Department of Pathology and Computational Biomedicine, Cedars Sinai, Los Angeles, CA, USA
| | - S P Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
- Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Ilderbayeva G, Rakhyzhanova S, Utegenova A, Salkhozhayeva G, Ilderbayev O. Combined Effect of Gamma Radiation and Heavy Metals on Some Living Organisms. Biol Trace Elem Res 2025; 203:1764-1775. [PMID: 38907828 DOI: 10.1007/s12011-024-04272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The purpose of this study was to systematise scientific publications on the combined effect of gamma radiation and heavy metals on living organisms. For this purpose, the method of analysis was applied, by means of which scientific papers in PubMed, Google Scholar, and other related databases were analysed for compliance with the inclusion criteria, where the objects of research were toxic effects of radiation and heavy metals on cells and adaptation processes. The results revealed that the study of the problem was carried out on organisms such as microalgae, fungi, weed and agricultural plants, fish, laboratory rats, and human cell cultures. In most studies, an antagonistic effect between low doses of gamma radiation and heavy metal salts was reported, which was manifested by a reduction in the cytotoxicity of isolated exposure to each agent separately. However, there are studies showing additive effects, especially in heavy metals. At the molecular level, heavy metal accumulation in combination with low doses of radiation (typically defined as less than 0.1 Gy or sievert) induces the expression of metallothionein proteins, which can bind free radicals. At the metabolic level, this is manifested by a decrease in lipid peroxidation products, activation of antioxidant enzymes, and a decrease in apoptosis. The study proved both a direct relationship between zinc and cadmium accumulation in cells and inhibition of caspases and an indirect one, by maintaining mitochondrial membrane integrity through metallothionein.
Collapse
Affiliation(s)
- Gulzhan Ilderbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, 010008, Republic of Kazakhstan.
| | - Saule Rakhyzhanova
- Department of Physiological Disciplines named after Honored Scientist of the Republic of Kazakhstan T.A. Nazarova, Semey Medical University, Semey, 071400, Republic of Kazakhstan
| | - Aigul Utegenova
- Department of Microbiology and Virology, Astana Medical University, Astana, 010000, Republic of Kazakhstan
| | - Gaukhar Salkhozhayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, 010008, Republic of Kazakhstan
| | - Oralbek Ilderbayev
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, 010008, Republic of Kazakhstan
| |
Collapse
|
4
|
Marlin A, Le Pape F, Troadec T, Le Goff J, Tripier R, Berthou C, Patinec V. Zn 2+ triazamacrocyclic chelators with methylpyridine pendant arms for B-cell apoptosis: a structure-activity study. Dalton Trans 2025; 54:3939-3951. [PMID: 39895421 DOI: 10.1039/d4dt02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Three macrocyclic tacn (1,4,7-triazacyclononane) derivatives containing one, two and three 2-methylpyridine pendant arms (no1py, no2py and no3py), compared to the linear diamine analogue tpen (N,N,N',N'-tetrakis(2-methylpyridinyl)-ethylenediamine) known for its capacity to induce cell apoptosis by Zn2+ chelation and/or ROS production, have shown cytotoxic activity on the Daudi B-cell line and CLL (chronic lymphoid leukemia) primary B cell model. These properties have been evidenced using an Incucyte® Live-Cell Analysis System. Evaluation of caspase 3/7 activation by incubation with the four studied chelators has exhibited caspase-dependent apoptotic death. Investigation of the chelator action mechanism has shown no ROS (reactive oxygen species) production for the macrocyclic chelators no1py, no2py and no3py, unlike the linear counterpart tpen for which ROS production was revealed. A significant inhibition effect of macrocyclic chelator cytotoxicity has been established by extracellular addition of cationic salts (Zn2+ and Cu2+) and the Zinquin emission fluorescence method has evidenced intracellular labile zinc chelation for no2py and no3py, while no1py acts differently. The acid-base properties of the chelators and their Zn2+ complexation constants have been obtained, discussed and correlated with the demonstrated biological properties.
Collapse
Affiliation(s)
- Axia Marlin
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Fiona Le Pape
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Thibault Troadec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Jocelyn Le Goff
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| | - Christian Berthou
- Univ Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France.
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France.
| |
Collapse
|
5
|
Sankova M, Nikolenko V, Oganesyan M, Vinnik Y, Gavryushova L, Redina S, Rizaeva N, Sankov A, Bulygin K, Vovkogon A, Pontes-Silva A, Zharikov Y. Zinc pathogenic importance in correcting immunity and restoring public health in the post-COVID period: An overview. Cytokine 2024; 184:156761. [PMID: 39307118 DOI: 10.1016/j.cyto.2024.156761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
CONTEXT The problem of correcting immune system function and compensating for co-morbidities becomes particularly clinically significant in the post-COVID period. There is evidence that certain trace elements in the human body, particularly zinc ions, play a critical role in restoring the function of the immune system and internal organs. OBJECTIVE To analyze the mechanisms of zinc action maintaining the body homeostasis in order to justify pathogenetically the inclusion of zinc drugs in the therapy of patients in the post-COVID period. METHODS Data from Elsevier, Global Health, PubMed-NCBI, Embase, MEDLINE, Scopus, Research gate, RSCI Scopus, Cochrane Library, Google Academy, e-LIBRARY.RU and CyberLeninka were used. RESULTS This review showed that the importance of zinc in maintaining body homeostasis in the post-COVID period is determined by its multifaceted effect on all parts of the immune system, its anti-inflammatory activity, antimicrobial properties and participation in the restoration of internal organ function. Elimination of zinc deficiency in the post-COVID period is essential to support immunity, compensate for comorbidities and reduce the risk of complications. The impossibility of synthesizing zinc in the body requires its constant intake in sufficient quantities. Zinc levels are significantly reduced after infectious diseases, as this element is specifically distributed to organs and tissues to maintain immunological and metabolic functions. The degree of zinc deficiency is associated with the severity of COVID-19 and the post-COVID period. It is pathogenetically justified to prescribe zinc drugs in the post-COVID period, the choice of which should take into account comorbidities and severity of hypozincemia. CONCLUSION Regularly administered therapy with zinc drugs in the post-COVID period will help correct the population immunity and restore public health.
Collapse
Affiliation(s)
- Maria Sankova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Vladimir Nikolenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Marine Oganesyan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Yurii Vinnik
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.
| | - Liliya Gavryushova
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia.
| | - Sofya Redina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Negorya Rizaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Aleksey Sankov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Kirill Bulygin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Andzhela Vovkogon
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| | - Yury Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
6
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
7
|
Rajagopalan K, Selvan Christyraj JD, Chelladurai KS, Kalimuthu K, Das P, Chandrasekar M, Balamurugan N, Murugan K. Understanding the molecular mechanism of regeneration through apoptosis-induced compensatory proliferation studies - updates and future aspects. Apoptosis 2024:10.1007/s10495-024-01958-1. [PMID: 38581530 DOI: 10.1007/s10495-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
AICP is a crucial process that maintaining tissue homeostasis and regeneration. In the past, cell death was perceived merely as a means to discard cells without functional consequences. However, during regeneration, effector caspases orchestrate apoptosis, releasing signals that activate stem cells, thereby compensating for tissue loss across various animal models. Despite significant progress, the activation of Wnt3a by caspase-3 remains a focal point of research gaps in AICP mechanisms, spanning from lower to higher regenerative animals. This inquiry into the molecular intricacies of caspase-3-induced Wnt3a activation contributes to a deeper understanding of the links between regeneration and cancer mechanisms. Our report provides current updates on AICP pathways, delineating research gaps and highlighting the potential for future investigations aimed at enhancing our comprehension of this intricate process.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | | | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Karthikeyan Murugan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| |
Collapse
|
8
|
Görg R, Büttgenbach A, Jakobs J, Kurtoğlu Babayev FH, Rolles B, Rink L, Wessels I. Leukemia cells accumulate zinc for oncofusion protein stabilization. J Nutr Biochem 2024; 123:109482. [PMID: 37839758 DOI: 10.1016/j.jnutbio.2023.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Acute promyelocytic leukemia (APL) and chronic myeloid leukemia (CML) are both hematological malignancies characterized by genetic alterations leading to the formation of oncofusion proteins. The classical chromosomal aberrations in APL and CML result in the PML-RARα and BCR-ABL1 oncofusion proteins, respectively. Interestingly, our flow cytometric analyses revealed elevated free intracellular zinc levels in various leukemia cells, which may play a role in stabilizing oncofusion proteins in leukemia and thus support cell proliferation and malignancy. Long-term zinc deficiency resulted in the degradation of PML-RARα in NB4 cells (APL cell line) and of BCR-ABL1 in K562 cells (CML cell line). This degradation may be explained by increased caspase 3 activity observed in zinc deficient cells, whereas zinc reconstitution normalized the caspase 3 activity and abolished zinc deficiency-induced oncofusion protein degradation. In NB4 cells, fluorescence microscopic images further indicated enlarged and enriched lysosomes during zinc deficiency, suggesting increased rates of autophagy. Moreover, NB4 cells exhibited increased expression of the zinc transporters ZIP2, ZIP10 and ZnT3 during zinc deficiency and revealed excessive accumulation of zinc in contrast to healthy peripheral blood mononuclear cells (PBMCs), when zinc was abundantly available extracellularly. Our results highlight the importance of altered zinc homeostasis for some characteristics in leukemia cells, uncover potential pathways underlying the effects of zinc deficiency in leukemia cells, and provide potential alternative strategies by which oncofusion proteins can be degraded.
Collapse
Affiliation(s)
- Richard Görg
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Büttgenbach
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jana Jakobs
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Benjamin Rolles
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center of Allergy & Environment (ZAUM), Technical University and Helmholtzzentrum Munich, Munich, Germany.
| |
Collapse
|
9
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:156-171. [PMID: 37676925 DOI: 10.1002/tox.23966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Heavy metals (HM) are believed to be injurious to humans. Man is exposed to them on daily basis unknowingly, with no acceptable protocol to manage its deleterious effects. These metals occur as mixture of chemicals with varying concentrations in our atmosphere. There are growing calls for the use of essential metals in mitigating the injurious effects induced by heavy metals exposure to man; therefore, the aim of this study was to evaluate the protective effects of essential metals (Zinc and Selenium) in a mixture of heavy metal toxicity. In this study, except for negative controls, all other groups were treated with lead (PbCl2 , 20 mg kg-1 ); cadmium (CdCl2 , 1.61 mg kg-1 ); mercury (HgCl2 , 0.40 mg kg-1 ), and arsenic (NaAsO3, 10 mg kg-1 ) that were formed in distilled water. Pb, Cd, As, and Hg were administered as mixtures to 35, 6 weeks old rats weighing between 80 to 100 g for 60 days. Group I served as normal control without treatment, group II positive control received HM mixture, while groups III to V received HMM with Zn, Se, and Zn + Se respectively. Animal and liver weights, HM accumulation in the liver, food intake (FI), water intake (WI), liver function test, malondialdehyde (MDA), and inflammatory/transcription factor/apoptosis markers were checked. Also, antioxidant enzymes, and histological studies were carried out. Metal mixture accumulated in the liver and caused toxicities which were ameliorated by Zn and Se administration. HM caused significant decrease in FI, WI and distorted the level of liver enzymes, lipid peroxidation, inflammatory markers, antioxidants and architecture of the liver. Co administration with Zn or Se or both reversed the distortions. This study lays credence to the evolving research on the public health implications of low dose metal mixtures and the possible ameliorative properties of Zn and Se.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Toxicology Division, Provictoire Research Institute, Port Harcourt, Nigeria
| |
Collapse
|
10
|
Jahankhani K, Taghipour N, Mashhadi Rafiee M, Nikoonezhad M, Mehdizadeh M, Mosaffa N. Therapeutic effect of trace elements on multiple myeloma and mechanisms of cancer process. Food Chem Toxicol 2023; 179:113983. [PMID: 37567355 DOI: 10.1016/j.fct.2023.113983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In the human body, trace elements and other micronutrients play a vital role in growth, health and immune system function. The trace elements are Iron, Manganese, Copper, Iodine, Zinc, Cobalt, Fluoride, and Selenium. Estimating the serum levels of trace elements in hematologic malignancy patients can determine the severity of the tumor. Multiple myeloma (MM) is a hematopoietic malignancy and is characterized by plasma cell clonal expansion in bone marrow. Despite the advances in treatment methods, myeloma remains largely incurable. In addition to conventional medicine, treatment is moving toward less expensive noninvasive alternatives. One of the alternative treatments is the use of dietary supplements. In this review, we focused on the effect of three trace elements including iron, zinc and selenium on important mechanisms such as the immune system, oxidative and antioxidant factors and cell cycle. Using some trace minerals in combination with approved drugs can increase patients' recovery speed. Trace elements can be used as not only a preventive but also a therapeutic tool, especially in reducing inflammation in hematological cancers such as multiple myeloma. We hope that the prospect of the correct use of trace element supplements in the future could be promising for the treatment of diseases.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nikoonezhad
- Department of Immunology, School of Medicine, Tarbiat Modarres University, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Minckley TF, Salvagio LA, Fudge DH, Verhey K, Markus SM, Qin Y. Zn2+ decoration of microtubules arrests axonal transport and displaces tau, doublecortin, and MAP2C. J Cell Biol 2023; 222:e202208121. [PMID: 37326602 PMCID: PMC10276529 DOI: 10.1083/jcb.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Intracellular Zn2+ concentrations increase via depolarization-mediated influx or intracellular release, but the immediate effects of Zn2+ signals on neuron function are not fully understood. By simultaneous recording of cytosolic Zn2+ and organelle motility, we find that elevated Zn2+ (IC50 ≈ 5-10 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. Using live-cell confocal microscopy and in vitro single-molecule TIRF imaging, we reveal that Zn2+ inhibits activity of motor proteins (kinesin and dynein) without disrupting their microtubule binding. Instead, Zn2+ directly binds to microtubules and selectively promotes detachment of tau, DCX, and MAP2C, but not MAP1B, MAP4, MAP7, MAP9, or p150glued. Bioinformatic predictions and structural modeling show that the Zn2+ binding sites on microtubules partially overlap with the microtubule binding sites of tau, DCX, dynein, and kinesin. Our results reveal that intraneuronal Zn2+ regulates axonal transport and microtubule-based processes by interacting with microtubules.
Collapse
Affiliation(s)
- Taylor F. Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | | - Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kristen Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
12
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Chen H, Chen J, Wu Y, Xie W, Jin L. A study on the mechanism of Indium phosphide/zinc sulfide core/shell quantum dots influencing embryo incubation of rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106593. [PMID: 37327537 DOI: 10.1016/j.aquatox.2023.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Quantum dots (QDs) inhibit fish hatching, but the mechanism is still unclear. In this study, the effect of Indium phosphide/zinc sulfide quantum dots (InP/ZnS QDs) on the embryo incubation of rare minnow was investigated. Five experimental concentration groups were set up according to the preliminary experimental results, which were 0, 50, 100, 200 and 400 nM. A direct exposure method was adopted to expose embryos to InP/ZnS QDs solution. The results showed that InP/ZnS QDs significantly inhibited the embryo hatching rate, delayed embryo emergence, affected the expression of genes associated with hatching gland cells and hatching enzymes. InP/ZnS QDs also destroy the structure of the embryo chorion. In addition, QDs can cause oxidative stress in embryos. Transcriptional sequencing analysis showed that InP/ZnS QDs InP/ZnS QDs may have induced the production of a hypoxic environment and triggered induce abnormal cardiac muscle contraction, inflammatory response and apoptosis process in embryos. In conclusion, QDs influences embryo hatchability largely through egg chorion mediation.
Collapse
Affiliation(s)
- Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Weiwei Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China.
| |
Collapse
|
14
|
Albrecht EA, Carter JD, Garbar V, Choudhary A, Tomlins SA. Intracellular Zinc Trafficking during Crotalus atrox Venom Wound Development. Int J Mol Sci 2023; 24:ijms24076763. [PMID: 37047742 PMCID: PMC10094922 DOI: 10.3390/ijms24076763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, we examined zinc trafficking in human umbilical vein endothelial cells (HUVEC) stimulated with Crotalus atrox (CA venom) snake venom. We utilized MTS cytotoxicity assays to monitor the cytotoxic range of CA venom. HUVEC monolayers stimulated with 10 µg/mL CA venom for 3 h displayed cellular retraction, which coincided with 53.0 ± 6.5 percent viability. In contrast, venom concentrations of 100 µg/mL produced a complete disruption of cellular adherence and viability decreased to 36.6 ± 1.0. The zinc probe Fluozin-3AM was used to detect intracellular zinc in non-stimulated controls, HUVEC stimulated with 10 µg/mL CA venom or HUVEC preincubated with TPEN for 2 h then stimulated with 10 µg/mL CA venom. Fluorescent intensity analysis returned values of 1434.3 ± 197.4 for CA venom demonstrating an increase of about two orders of magnitude in labile zinc compared to non-stimulated controls. Endothelial response to CA venom induced a 96.1 ± 3.0- and 4.4 ± 0.41-fold increase in metallothionein 1X (MT1X) and metallothionein 2A (MT2A) gene expression. Zinc chelation during CA venom stimulation significantly increased cell viability, suggesting that the maintenance of zinc homeostasis during envenomation injury improves cell survival.
Collapse
Affiliation(s)
- Eric A Albrecht
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jasmine D Carter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Veronica Garbar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Abeeha Choudhary
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Scott A Tomlins
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: From Biological Functions to Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24054822. [PMID: 36902254 PMCID: PMC10003636 DOI: 10.3390/ijms24054822] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses. Efficient homeostatic systems carefully regulate intracellular Zn concentrations. However, perturbed Zn homeostasis has been implicated in the pathogenesis of several chronic human diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases. This review focuses on Zn's roles in cell proliferation, survival/death, and DNA repair mechanisms, outlines some biological Zn targets, and addresses the therapeutic potential of Zn supplementation in some human diseases.
Collapse
Affiliation(s)
- Maria Inês Costa
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-023
| |
Collapse
|
16
|
Kim B, Kim G, Jeon S, Cho WS, Jeon HP, Jung J. Zinc oxide nanoparticles trigger autophagy-mediated cell death through activating lysosomal TRPML1 in normal kidney cells. Toxicol Rep 2023; 10:529-536. [PMID: 37152410 PMCID: PMC10160241 DOI: 10.1016/j.toxrep.2023.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in various materials including sunscreens, cosmetics, over-the-counter topical skin products, and pigments. As traces of the used ZnO NPs have been found in the kidney, it is crucial to uncover their potential risks. The aim of this study is to elucidate detrimental effects of ZnO NPs and the molecular mechanism behind their renal toxicity. Cytotoxic effects were measured by MTT assay after HK2 cells were exposed to ZnO NPs for 24 h and IC50 value was determined. ROS and intracellular Zn2+ levels were detected by flow cytometry, and localization of Zn2+ and lysosome was determined by confocal microscopy. Occurrence of autophagy and detection of autophagic flux were determined by Western blot and confocal microscopy, respectively. We performed unpaired student t test for two groups, and one-way ANOVA with Tukey's post hoc for over three groups. ZnO NPs induced cell death in human renal proximal tubule epithelial cells, HK2. Cytosolic Zn2+ caused autophagy-mediated cell death rather than apoptosis. Cytosolic Zn2+ processed in lysosome was released by TRPML1, and inhibition of TRPML1 significantly decreased autophagic flux and cell death. The findings of this study suggest that ZnO NPs strongly induce autophagy-mediated cell death in human kidney cells. Controlling TRPML1 can be potentially used to prevent the kidney from ZnO NPs-induced toxicity.
Collapse
Affiliation(s)
- Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
| | - Gaeun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
- Graduate School of Chemical Safety Management, Kyungsung University, Busan, the Republic of Korea
| | - Soyeon Jeon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, the Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, the Republic of Korea
| | - Hyun Pyo Jeon
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
- Graduate School of Chemical Safety Management, Kyungsung University, Busan, the Republic of Korea
- Correspondence to: Department of SmartBio, College of Life and Health Science, Kyungsung University, 309 Suyeong-ro Room 507-2, Nam-gu, Busan 48434, the Republic of Korea.
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan, the Republic of Korea
- Graduate School of Chemical Safety Management, Kyungsung University, Busan, the Republic of Korea
- Correspondence to: Department of SmartBio, College of Life and Health Science, Kyungsung University, 309 Suyeong-ro Room 507-2, Nam-gu, Busan 48434, the Republic of Korea.
| |
Collapse
|
17
|
Martyniuk V, Khoma V, Matskiv T, Baranovsky V, Orlova-Hudim K, Gylytė B, Symchak R, Matciuk O, Gnatyshyna L, Manusadžianas L, Stoliar O. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109425. [PMID: 35914710 DOI: 10.1016/j.cbpc.2022.109425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
The vulnerability of bivalve mollusks to micropollutants is estimated mainly in single model exposures. However, chronic environmental stress and complex exposures can modulate their responses. To evaluate the impact of population-dependent adaptations on the ability to react to common micropollutants, we compared freshwater bivalves Unio tumidus from two distinct populations, pure (Pr) and contaminated (Ct), in their exposures to microplastics (MP, 1 mg L-1, size 0.1-0.5 mm), pharmaceutical ibuprofen (IBU, 0.8 μg L-1), or their combination (Mix) for 14 days. Control groups from both sites showed remarkable differences, with lower levels of total antioxidant capacity (TAC), metallothionein protein (MTSH), NADH and NAD+, cytochrome P450-related EROD, glutathione-S transferase (GST), and citrate synthase (CS) but higher levels of GSH, GSSG, caspase-3 and cathepsin D (CTD) in the Ct-control group. These data indicate a chronic stress impact in the Ct population. Under exposures, we found an almost common strategy in both populations for NAD+/NADH and MTSH suppression and CTD induction. Additionally, Mix exposure caused an increase in CS, and IBU did not change GSH in both populations. However, the expected response to IBU - the suppression of caspase-3 - was indicated only in PrIBU- and PrMix-mollusks. CTD efflux increased dramatically only in PrMP- and PrMix- groups, and suppression of EROD and GST was detected in the PrMix-group. According to discriminant analysis, exposed Pr-groups were highly differentiated from control, whereas Ct-control and exposed groups had common localization demonstrating high resistance to environmental stress. Thus, the same exposures resulted in different adverse outcome pathways depending on the population.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Vitaliy Baranovsky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | | | - Ruslan Symchak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Matciuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
18
|
Lokman M, Ashraf E, Kassab RB, Abdel Moneim AE, El-Yamany NA. Aluminum Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:4035-4044. [PMID: 34741695 DOI: 10.1007/s12011-021-03010-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Therefore, this study aimed to investigate the effects of zinc oxide nanoparticle (ZnONP) treatment on Al-induced reproductive toxicity in rats. Thirty-two adult male albino rats were allocated into four equal groups as follows: control, AlCl3 orally administered group (100 mg/kg bwt), ZnONPs injected intraperitoneally (i.p.) group (4 mg/kg bwt), and ZnONPs + AlCl3-treated group. The treatment was daily extended for 42 consecutive days. Oral administration of AlCl3 showed an oxidative damage confirmed by an increase in malondialdehyde and nitric oxide levels and superoxide dismutase activity and accompanied by a decrease in glutathione content and catalase activity. Also, AlCl3 administration increased the pro-inflammatory mediator tumor necrosis factor-alpha. Furthermore, significant declines in the levels of serum male reproductive hormones testosterone, luteinizing hormone, and follicle-stimulating hormone in AlCl3-intoxicated rats were noticed. In parallel, severe histopathological alterations were observed in testis tissues. Additionally, the immunohistochemical analysis showed that AlCl3 administration potentiates cell death in the testicular tissue by elevating the immunostaining intensity signal for the pro-apoptotic protein, cysteinyl aspartate specific protease-3 (caspase-3) and a marked depletion in the cell proliferation expression marker, Ki-67, in germinal cells of AlCl3-treated group. On the other hand, the daily i.p. injection to rats with ZnONPs before AlCl3 was found to ameliorate the reproductive toxicity induced by Al administration through reducing the testicular oxidative stress and improving the inflammatory, apoptotic, and reproductive markers as well as histopathological alterations in the testis. These results suggest that ZnONPs could be used as an alternative agent to minimize the reproductive toxicity associated with Al exposure through its antioxidant, anti-inflammatory, anti-apoptotic, and reproductive modulatory activities.
Collapse
Affiliation(s)
- Maha Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman Ashraf
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Nabil A El-Yamany
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
19
|
Marlin A, Le Pape F, Le Goff J, Hamon N, Troadec T, Tripier R, Berthou C, Patinec V. New Triazacycloalkane Derivatives as Cytotoxic Agents for CLL Treatment: From Proof of Concept to the Targeting Biomolecule. Bioconjug Chem 2022; 33:1377-1392. [PMID: 35709513 DOI: 10.1021/acs.bioconjchem.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 1,4,7-tris-(2-pyridinylmethyl)-1,4,7-triazacyclononane ligand (no3py) and its bifunctional analogue no3pyCOOK were synthesized to investigate their action toward zinc(II) depletion related to the apoptosis phenomenon in chronic lymphocytic leukemia (CLL) cells. no3py was used as the "free" ligand, while its "graftable" derivative was conjugated on a newly synthesized bifunctional sialoglycan, 6'-SL-NH2, selected to specifically bind CD22 biomarker expressed on the B-CLL cell surface. Both compounds were produced with good yields thanks to a Sonogashira coupling reaction and an orthoester function, respectively, for the chelator and the targeting moiety. The newly reported bioconjugate 6'-SL-no3py was then obtained through a peptidic coupling reaction. Biological in vitro studies of no3py and 6'-SL-no3py consisting of real-time detection of cell health (cytotoxicity and proliferation) and caspases 3/7 activation (crucial enzymes whose activation triggers cell death signaling pathways) have been investigated. First, Ramos, Daudi, and Raji B-cell lines, which present different sensitivity to zinc(II) content variation, were incubated with no3py and 6'-SL-no3py. Then, a videomicroscope allowed the real-time monitoring of the morphological changes leading to cell death from the detection of the cytotoxicity, the antiproliferative effect, and the caspasic activity. In terms of mechanism, the Zn2+ chelator cytotoxic effect of no3py has been evidenced by a culture medium ion supplementation study and by the decrease of intracellular fluorescence of Zn-specific fluorophore zinquin in the presence of no3py and 6'-SL-no3py chelators. Finally, flow cytometry analysis with classical Annexin V staining was conducted to detect no3py- and 6'-SL-no3py-induced apoptotic cell death in B-CLL cells. Time-course analysis, using the Incucyte Live-Cell Analysis System, demonstrated that no3py induced cell death in a time- and dose-dependent manner with variability across cell lines. 6'-SL-no3py exhibited the same dose-dependent trend as no3py, showing the efficiency of the targeting moiety. In both cases, the chelators depicted proliferation curves that were inversely correlated with kinetic death. Morphological changes specific to apoptosis and caspase 3/7 activation were observed for the three cell lines treated with no3py and 6'-SL-no3py, highlighting their role as apoptotic agents. A higher concentration of 6'-SL-no3py is needed to reach 50% of the B-CLL mortality, confirming a targeting of the chelator to the cell membrane. Overall, our results proved that the biological properties of the triazamacrocyclic chelator still remain even after addition of the targeting moiety. The free chelator as well as the bioconjugate constitute promising cytotoxic agents for CLL therapy through apoptosis induction.
Collapse
Affiliation(s)
- Axia Marlin
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29238 Brest, France
| | - Fiona Le Pape
- Univ. Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France
| | - Jocelyn Le Goff
- Univ. Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France
| | - Nadège Hamon
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29238 Brest, France
| | - Thibault Troadec
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29238 Brest, France
| | - Raphaël Tripier
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29238 Brest, France
| | - Christian Berthou
- Univ. Brest, UMR-INSERM 1227 LBAI, 5 Avenue Foch, CHU Morvan, BP 824, 29609 Brest, France
| | - Véronique Patinec
- Univ. Brest, UMR-CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
20
|
Pang H, Wang C, Ye J, Wang L, Zhou X, Ge X, Zhang J, Liu Q. Diallyl trisulfide plays an antifibrotic role by inhibiting the expression of Bcl‐2 in hepatic stellate cells. J Biochem Mol Toxicol 2022; 36:e23097. [PMID: 35532220 PMCID: PMC9539501 DOI: 10.1002/jbt.23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/28/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Hepatic fibrosis is an important early stage in the evolution of liver cirrhosis, and specific medicine and therapeutic measures are unavailable to date. Hepatic stellate cells (HSCs) are the main cells involved in the formation of hepatic fibrosis, and induction of the apoptosis of HSCs is an important strategy for the treatment of hepatic fibrosis. Diallyl trisulfide (DATS) is a natural product and is the main active ingredient in garlic. However, the exact molecular mechanisms underlying HSC apoptosis induced by DATS are not well understood. This study aimed to analyze the efficiency and mechanism of DATS in hepatic fibrosis. Different concentrations (25, 50, 100, and 200 μM) of DATS were used to treat HSCs. Changes in cell morphology and formation of apoptotic bodies were observed under an inverted microscope and an electric microscope. Bcl‐2 signaling involving Bax, Caspase‐3, Caspase‐6, Caspase‐8, Caspase‐9, p53, Apaf‐1, and Cyto‐c in fibrosis were examined, which is a critical step in the evaluation of antihepatic fibrosis agents. We also evaluated the effect of DATS on the cellular morphology of HSCs and apoptosis‐related factors under different Bcl‐2 expression states. Our results suggest that DATS regulates hepatic fibrosis by blocking the Bcl‐2 signaling pathway and upregulating the Bax/Bcl‐2 ratio.
Collapse
Affiliation(s)
- Huai Pang
- Laboratory of Xinjiang Endemic and Ethnic Diseases Shihezi University School of Medicine Shihezi China
| | - Cuizhe Wang
- Laboratory of Xinjiang Endemic and Ethnic Diseases Shihezi University School of Medicine Shihezi China
| | - Jing Ye
- Department of Psychology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Lulu Wang
- Center of Community Health Services, The First Affiliated Hospital, Medical College Shihezi University Shihezi China
| | - Xiaoming Zhou
- Department of Pathology Hainan University School of Medicine Haikou China
| | - Xiaomeng Ge
- CAS Key Laboratory of Genome Science and Information Beijing Institute of Genomics, Chinese Academy of Sciences Beijing China
| | - Jun Zhang
- Laboratory of Xinjiang Endemic and Ethnic Diseases Shihezi University School of Medicine Shihezi China
| | - Qinghua Liu
- Department of Oncology People's Hospital of Deyang City Deyang Sichuan Province China
| |
Collapse
|
21
|
Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103859. [PMID: 35358731 DOI: 10.1016/j.etap.2022.103859] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
22
|
Khoma V, Martinyuk V, Matskiv T, Yunko K, Gnatyshyna L, Stoliar O. Does roundup affect zinc functions in a bivalve mollusk in ex vivo exposure? ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:335-340. [PMID: 34997370 DOI: 10.1007/s10646-021-02512-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Roundup (Rn), a glyphosate-based formulation, is one of the most commonly used herbicides in the world. It affects non-targeted organisms in several ways, including adhesive activity towards metal ions. Zinc (Zn) plays a crucial role in a number of biochemical processes. In this study, we aim to elucidate the direct impact of Rn on Zn accumulation and Zn-dependent activities in the ex vivo system. To this end, we exposed the samples of the digestive gland of a bivalve mollusk Unio tumidus to 3 µM of Rn (calculated as 3 µM of glyphosate), Zn, Zn chelator (N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine) (TPEN, Tp), and their combinations ZnTp and ZnRn for 17 h. We determined the levels of Zn in the tissue (Zn t) and metallothioneins (Zn-MT), metallothioneins (MTSH), and glutathione (GSH & GSSG), total antioxidant capacity (TAC), lysosomal membrane integrity, and caspase-3 activity. Our study demonstrated that Rn and Tp had different effects on the accumulation and functionality of Zn. Rn did not affect the accumulation of Zn (Zn t, Zn-MT) in the Zn- and ZnRn-groups. On the contrary, Tp produced effects antagonistic to Zn on caspase-3 activity, lysosomal stability, and MTSH concentration. Rn caused particular pro-oxidative effect that decreased GSH level (Rn- and ZnRn-groups) and lysosomal stability (Rn-group). The shared affected index was the GSH/GSSG ratio, which decreased by 2-8 times in each exposure. As the first experience with the application of Tp to indicate Zn activity in mollusks, the study concluded that the ex vivo approach could be useful in the study of numeral aquatic pollutants.
Collapse
Affiliation(s)
- Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
| | - Tetyana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
- I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine
- I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine.
| |
Collapse
|
23
|
Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021; 14:pharmaceutics14010062. [PMID: 35056958 PMCID: PMC8780423 DOI: 10.3390/pharmaceutics14010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 01/17/2023] Open
Abstract
The pharmacological inhibition of the bacterial collagenases (BC) enzymes is considered a promising strategy to block the virulence of the bacteria without targeting the selection mechanism leading to drug resistance. The chemical structures of the Clostridium perfringens collagenase A (ColA) inhibitors were analyzed using Bemis-Murcko skeletons, Murcko frameworks, the type of plain rings, and docking studies. The inhibitors were classified based on their structural architecture and various scoring methods were implemented to predict the probability of new compounds to inhibit ColA and other BC. The analyses indicated that all compounds contain at least one aromatic ring, which is often a nitrobenzene fragment. 2-Nitrobenzene based compounds are, on average, more potent BC inhibitors compared to those derived from 4-nitrobenzene. The molecular descriptors MDEO-11, AATS0s, ASP-0, and MAXDN were determined as filters to identify new BC inhibitors and highlighted the necessity for a compound to contain at least three primary oxygen atoms. The DrugBank database was virtually screened using the developed methods. A total of 100 compounds were identified as potential BC inhibitors, of which, 10 are human approved drugs. Benzthiazide, entacapone, and lodoxamide were chosen as the best candidates for in vitro testing based on their pharmaco-toxicological profile.
Collapse
|
24
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
25
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
26
|
Schwarz MGA, Antunes D, Brêda GC, Valente RH, Freire DMG. Revisiting Jatropha curcas Monomeric Esterase: A Dienelactone Hydrolase Compatible with the Electrostatic Catapult Model. Biomolecules 2021; 11:1486. [PMID: 34680119 PMCID: PMC8533429 DOI: 10.3390/biom11101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Jatropha curcas contains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the J. curcas seed did not fit the electrostatic catapult model for esterases/lipases. We decided to reevaluate this J. curcas esterase and extend its characterization to check this apparent discrepancy and gain insights into the enzyme's potential as a biocatalyst. After anion exchange chromatography and two-dimensional gel electrophoresis, we identified the enzyme as belonging to the dienelactone hydrolase family, characterized by a cysteine as the nucleophile in the catalytic triad. The enzyme displayed a basic optimum hydrolysis pH of 9.0 and an acidic pI range, in contrast to literature data, making it well in line with the electrostatic catapult model. Furthermore, the enzyme showed low hydrolysis activity in an organic solvent-containing medium (isopropanol, acetonitrile, and ethanol), which reverted when recovering in an aqueous reaction mixture. This enzyme can be a valuable tool for hydrolysis reactions of short-chain esters, useful for pharmaceutical intermediates synthesis, due to both its high hydrolytic rate in basic pH and its stability in an organic solvent.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Gabriela Coelho Brêda
- Laboratório de Microbiologia Molecular e Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941909, Brazil;
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Denise Maria Guimarães Freire
- Laboratório de Biotecnologia Microbiana, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941909, Brazil;
| |
Collapse
|
27
|
Anson F, Thayumanavan S, Hardy JA. Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. JACS AU 2021; 1:1240-1256. [PMID: 34467362 PMCID: PMC8385707 DOI: 10.1021/jacsau.1c00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 05/06/2023]
Abstract
The balance of pro-apoptotic and pro-survival proteins defines a cell's fate. These processes are controlled through an interdependent and finely tuned protein network that enables survival or leads to apoptotic cell death. The caspase family of proteases is central to this apoptotic network, with initiator and executioner caspases, and their interaction partners, regulating and executing apoptosis. In this work, we interrogate and modulate this network by exogenously introducing specific initiator or executioner caspase proteins. Each caspase is exogenously introduced using redox-responsive polymeric nanogels. Although caspase-3 might be expected to be the most effective due to the centrality of its role in apoptosis and its heightened catalytic efficiency relative to other family members, we observed that caspase-7 and caspase-9 are the most effective at inducing apoptotic cell death. By critically analyzing the introduced activity of the delivered caspase, the pattern of substrate cleavage, as well as the ability to activate endogenous caspases, we conclude that the efficacy of each caspase correlated with the levels of pro-survival factors that both directly and indirectly impact the introduced caspase. These findings lay the groundwork for developing methods for exogenous introduction of caspases as a therapeutic option that can be tuned to the apoptotic balance in a proliferating cell.
Collapse
|
28
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
29
|
He Y, Zhao T, Chen F, Song C, Zhong C, Luo Z. Functional Analysis of the Promoter Regions of Two Apoptosis-Related Genes ( Bcl-2 and Cycs) and Their Regulation by Zn in Yellow Catfish. Int J Mol Sci 2021; 22:ijms22126291. [PMID: 34208159 PMCID: PMC8230946 DOI: 10.3390/ijms22126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) and cytochrome c (Cycs) are two important proteins relevant to cellular apoptosis. In this study, we characterized the functions of the promoter regions of two apoptosis-related genes, Bcl-2 and Cycs, in yellow catfish Pelteobagrus fulvidraco. We obtained a 1989 bp Bcl-2 promoter and an 1830 bp Cycs promoter and predicted several key transcription factor binding sites (TFBSs) on the promoters, such as Kruppel-like factor 4 (KLF4), signal transducer and activator of transcription factor 3 (STAT3), forkhead box O (FOXO), metal-responsive element (MRE) and hepatocyte nuclear factor 1α (HNF-1α). Zinc (Zn) increased the activities of the Bcl-2 promoter but decreased the activities of the Cycs promoter. Metal-responsive transcription factor 1 (MTF-1) and HNF-1α directly bound with Bcl-2 and Cycs promoters, and they positively regulated the activity of the Bcl-2 promoter but negatively regulated the activity of the Cycs promoter. Zn promoted the binding ability of HNF-1α to the Bcl-2 promoter but decreased its binding ability to the Cycs promoter. However, Zn had no significant effect on the binding capability of MTF-1 to the regions of Bcl-2 and Cycs promoters. Zn upregulated the mRNA and total protein expression of Bcl-2 but downregulated the mRNA and total protein expression of Cycs. At the same time, Annexin V-FITC/PI staining showed that Zn significantly reduced the apoptosis of primary hepatocytes. For the first time, our study provides evidence for the MRE and HNF-1α response elements on the Bcl-2 and Cycs promoters, offering new insight into the mechanism by which Zn affects apoptosis in vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi Luo
- Correspondence: ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
30
|
Bowles IE, Pool EH, Lancaster BS, Lawson EK, Savas CP, Kartje ZJ, Severinac L, Cho DH, Macbeth MR, Johnson RJ, Hoops GC. Transition metal cation inhibition of Mycobacterium tuberculosis esterase RV0045C. Protein Sci 2021; 30:1554-1565. [PMID: 33914998 DOI: 10.1002/pro.4089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis virulence is highly metal-dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+ ) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for kcat rather than KM . Removal of the artificial N-terminal 6xHis-tag did not change the metal-dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal-dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.
Collapse
Affiliation(s)
- Isobel E Bowles
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Emily H Pool
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Benjamin S Lancaster
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Emily K Lawson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Christopher P Savas
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Zach J Kartje
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Luke Severinac
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - David H Cho
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Mark R Macbeth
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Geoffrey C Hoops
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Procaspase-Activating Compound-1 Synergizes with TRAIL to Induce Apoptosis in Established Granulosa Cell Tumor Cell Line (KGN) and Explanted Patient Granulosa Cell Tumor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22094699. [PMID: 33946730 PMCID: PMC8124867 DOI: 10.3390/ijms22094699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Granulosa cell tumors (GCT) constitute only ~5% of ovarian neoplasms yet have significant consequences, as up to 80% of women with recurrent GCT will die of the disease. This study investigated the effectiveness of procaspase-activating compound 1 (PAC-1), an activator of procaspase-3, in treating adult GCT (AGCT) in combination with selected apoptosis-inducing agents. Sensitivity of the AGCT cell line KGN to these drugs, alone or in combination with PAC-1, was tested using a viability assay. Our results show a wide range in cytotoxic activity among the agents tested. Synergy with PAC-1 was most pronounced, both empirically and by mathematical modelling, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This combination showed rapid kinetics of apoptosis induction as determined by caspase-3 activity, and strongly synergistic killing of both KGN as well as patient samples of primary and recurrent AGCT. We have demonstrated that the novel combination of two pro-apoptotic agents, TRAIL and PAC-1, significantly amplified the induction of apoptosis in AGCT cells, warranting further investigation of this combination as a potential therapy for AGCT.
Collapse
|
32
|
Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, Yu C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021; 17:4266-4285. [PMID: 33843441 PMCID: PMC8726675 DOI: 10.1080/15548627.2021.1911016] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) hold great promise for biomedical applications. Previous studies have revealed that ZnONPs exposure can induce toxicity in endothelial cells, but the underlying mechanisms have not been fully elucidated. In this study, we report that ZnONPs can induce ferroptosis of both HUVECs and EA.hy926 cells, as evidenced by the elevation of intracellular iron levels, lipid peroxidation and cell death in a dose- and time-dependent manner. In addition, both the lipid reactive oxygen species (ROS) scavenger ferrostatin-1 and the iron chelator deferiprone attenuated ZnONPs-induced cell death. Intriguingly, we found that ZnONPs-induced ferroptosis is macroautophagy/autophagy-dependent, because the inhibition of autophagy with a pharmacological inhibitor or by ATG5 gene knockout profoundly mitigated ZnONPs-induced ferroptosis. We further demonstrated that NCOA4 (nuclear receptor coactivator 4)-mediated ferritinophagy (autophagic degradation of the major intracellular iron storage protein ferritin) was required for the ferroptosis induced by ZnONPs, by showing that NCOA4 knockdown can reduce the intracellular iron level and lipid peroxidation, and subsequently alleviate ZnONPs-induced cell death. Furthermore, we showed that ROS originating from mitochondria (mtROS) probably activated the AMPK-ULK1 axis to trigger ferritinophagy. Most importantly, pulmonary ZnONPs exposure caused vascular inflammation and ferritinophagy in mice, and ferrostatin-1 supplementation significantly reversed the vascular injury induced by pulmonary ZnONPs exposure. Overall, our study indicates that ferroptosis is a novel mechanism for ZnONPs-induced endothelial cytotoxicity, and that NCOA4-mediated ferritinophagy is required for ZnONPs-induced ferroptotic cell death.
Collapse
Affiliation(s)
- Xia Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung‑Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China.,Lead Contact
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
33
|
Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N. Anticancer Potential of Damnacanthal and Nordamnacanthal from Morinda elliptica Roots on T-lymphoblastic Leukemia Cells. Molecules 2021; 26:molecules26061554. [PMID: 33808969 PMCID: PMC7998966 DOI: 10.3390/molecules26061554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines. Methods: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out. Results: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180–200 bp fragments that are visible as a “ladder” on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle. Conclusion: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.
Collapse
Affiliation(s)
- Saiful Yazan Latifah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Correspondence: ; Tel.: +603-89472308
| | - Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Kuala 20300, Terengganu, Malaysia;
| | - Nordin Haji Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
34
|
Interactions of zinc- and redox-signaling pathways. Redox Biol 2021; 41:101916. [PMID: 33662875 PMCID: PMC7937829 DOI: 10.1016/j.redox.2021.101916] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc and cellular oxidants such as reactive oxygen species (ROS) each participate in a multitude of physiological functions. There is considerable overlap between the affected events, including signal transduction. While there is no obvious direct connection between zinc and ROS, mainly because the bivalent cation zinc does not change its oxidation state in biological systems, these are linked by their interaction with sulfur, forming the remarkable triad of zinc, ROS, and protein thiols. First, zinc binds to reduced thiols and can be released upon oxidation. Thereby, redox signals are translated into changes in the free zinc concentration, which can act as zinc signals. Second, zinc affects oxidation of thiols in several ways, directly as well as indirectly. A protein incorporating many of these interactions is metallothionein (MT), which is rich in cysteine and capable of binding up to seven zinc ions in its fully reduced state. Zinc binding is diminished after (partial) oxidation, while thiols show increased reactivity in the absence of bound metal ions. Adding still more complexity, the MT promoter is controlled by zinc (via metal regulatory transcription factor 1 (MTF-1)) as well as redox (via nuclear factor erythroid 2-related factor 2 (NRF2)). Many signaling cascades that are important for cell proliferation or apoptosis contain protein thiols, acting as centers for crosstalk between zinc- and redox-signaling. A prominent example for shared molecular targets for zinc and ROS are active site cysteine thiols in protein tyrosine phosphatases (PTP), their activity being downregulated by oxidation as well as zinc binding. Because zinc binding also protects PTP thiols form irreversible oxidation, there is a multi-faceted reciprocal interaction, illustrating that zinc- and redox-signaling are intricately linked on multiple levels.
Collapse
|
35
|
Khoma V, Gnatyshyna L, Martinyuk V, Mackiv T, Mishchenko L, Manusadžianas L, Stoliar O. Common and particular biochemical responses of Unio tumidus to herbicide, pharmaceuticals and their combined exposure with heating. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111695. [PMID: 33396026 DOI: 10.1016/j.ecoenv.2020.111695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The priority list of freshwater pollutants is increasingly amended by pharmaceuticals. Their impact on the aquatic biota can be modulated by the presence of typical pollutants, like pesticides, and/or abnormal heating. The aim of this study was to elucidate potentially hazardous impact of combined environmental factors on the freshwater mussels by analyzing various sets of biochemical markers. We treated the bivalve molluscs of Unio tumidus with non-steroidal anti-inflammatory drug diclofenac (Dc, 2 nM), calcium antagonist and antihypertensive drug nifedipine (Nf, 2 nM) or organophosphonate glyphosate-based herbicide Roundup MAX (Rn, 79 nM of glyphosate) at 18 °C as well as with the mixture of these substances at 18 °C (Mix) or 25 °C (MixT) during 14 days. The concentrations used were correspondent to the environmentally relevant levels. The biomarkers of stress and toxicity were evaluated in digestive gland, except the lysosomal membrane stability measured in hemocytes. Exposures caused an oxidative stress due to the decreased SOD and GST activities and GSH/GSSG ratio, increased levels of thiobarbituric acid-reactive substances and protein carbonyls (with some exceptions). Dc increased cathepsin D activity in lysosomes. Nf increased lysosomal membrane stability and caspase-3 activity. Rn caused a dramatic distortion of metallo-thiolome due to increased levels of GSH and metallothionein-related thiols (MTSH) as well as depletion of Zn, Cu and Cd in the composition of metallothioneins, and decreased Zn/Cu molar ratio in the tissue. The particular toxicity of Rn was also attested by decreased lysosomal membrane stability and cholinesterase activity. Canonical discriminant analysis separated Rn-, Mix- and MixT-groups from the joint set of C-, Dc- and Nf-groups. Generally, compound-specific effects were expressed in U. tumidus responses to the mixtures, but in MixT-group some effects were particular or extremely strong. Multi-marker approach and integrative analysis proved to be a useful tool for understanding possible future risks to freshwater mussels under a combination of xenobiotics and warming climate.
Collapse
Affiliation(s)
- Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine; I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine.
| | - Tetyana Mackiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine; I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Lidiya Mishchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska St, 60, Kyiv, 01033, Ukraine.
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str., 2, Ternopil, 46027, Ukraine.
| |
Collapse
|
36
|
Chen M, Ding Y, Ke Y, Zeng Y, Liu N, Zhong Y, Hua X, Li Z, Xiong Y, Wu C, Yu H. Anti-tumour activity of zinc ionophore pyrithione in human ovarian cancer cells through inhibition of proliferation and migration and promotion of lysosome-mitochondrial apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:824-833. [PMID: 32456481 DOI: 10.1080/21691401.2020.1770266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zinc pyrithione (ZPT) is widely used as an antimicrobial. Zinc is a necessary trace element of the human whose homeostasis associated with several cancers. However, the anticancer effect of increased Zinc in ovarian cancer is still unclear. This study focussed on the anti-tumour effects of ZPT combined with Zinc in SKOV3 and SKOV3/DDP cells. The cell viability, apoptosis, migration, and invasion assays were detected by CCK-8, flow cytometry, wound healing and transwell assay, respectively. The distribution of Zinc in cells was monitored by staining of Zinc fluorescent dye and lysosome tracker. The changes in lysosomal membrane stability were reflected by acridine orange fluorescence and cathepsin D reposition. Expression of the proteins about invasion and apoptosis was evaluated by western blot. The results indicated that ZPT combined with Zinc could notably reduce cell viability, inhibit migration and invasion in SKOV3 and SKOV3/DDP cells. Besides, ZPT performed as a Zinc carrier targeted lysosomes, caused the increase of its membrane permeability and the release of cathepsin D accompanied by mitochondrial apoptosis in SKOV3/DDP cells. In conclusion, our work suggests that ZPT combined with Zinc could inhibit proliferation, migration, invasion, and promote apoptosis by trigger the lysosome-mitochondrial apoptosis pathway in ovarian carcinoma.
Collapse
Affiliation(s)
- Mengge Chen
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanpeng Ding
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Ke
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifei Zeng
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nuomin Liu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinying Hua
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Li
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yudi Xiong
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaoyan Wu
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Wessels I, Fischer HJ, Rink L. Update on the multi-layered levels of zinc-mediated immune regulation. Semin Cell Dev Biol 2020; 115:62-69. [PMID: 33323322 DOI: 10.1016/j.semcdb.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022]
Abstract
The significance of zinc for an efficient immune response is well accepted. During zinc deficiency, an increase in the myeloid to lymphoid immune cells ratio was observed. This results in a disturbed balance of pro- and anti-inflammatory processes as well as defects in tolerance during infections. Consequently, instead of efficiently defending the body against invading pathogens, damage of host cells is frequently observed. This explains the increased susceptibility to infections and their severe progression observed for zinc deficient individuals as well as the association of autoimmune diseases with low serum zinc levels. Together with the advances in techniques for investigating cellular development, communication and intracellular metabolism, our understanding of the mechanisms underlying the benefits of zinc for human health and the detriments of zinc deficiency has much improved. As analyses of the zinc status and effects of zinc supplementation were more frequently included into clinical studies, our knowledge of the association of zinc deficiency to a variety of diseases was strongly improved. Still there are several areas in zinc biology that require further in-depth investigation such as the interaction with other nutritional elements, the direct association between zinc transportation, membrane-structure, receptors, and signaling as well as its role in cell degeneration. This article will describe our current understanding of the role of zinc during the immune response focusing on the most recent findings and underlying mechanisms. Research questions that need to be addressed in the future will be discussed as well.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Henrike J Fischer
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
38
|
Zhao Y, Liu S, Wen Y, Zhong L. Effect of MicroRNA-210 on the Growth of Ovarian Cancer Cells and the Efficacy of Radiotherapy. Gynecol Obstet Invest 2020; 86:71-80. [PMID: 33260174 DOI: 10.1159/000511771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/21/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study is to explore the role of miR-210 in the growth of ovarian cancer cells and the correlation with radiotherapy and to elucidate underlying molecular mechanisms. METHODS Human ovarian cancer cell lines OVCAR3 and SKOV3 were cultured in vitro, and miR-210 over-expression and low-expression ovarian cancer cell models were established by cell transfection. MTT assay was used to detect the proliferation activity. Transwell was used to detect the migration and invasion abilities. Western blot measured the expression of proteins related to cell proliferation, migration, and invasion. The cells were treated with different doses of ionizing radiation, and then the cell proliferation activity was detected by MTT. The expression of apoptosis-related proteins was detected by Western blot. The Caspase-Glo® Kit was used to detect the activity of cellular caspase 3/7 enzymes. RESULTS The proliferation, migration, and invasion abilities of miR-210 over-expression ovarian cancer cells were increased (p < 0.05), the expressions of PTEN and E-cadherin were decreased, and the expression of p-Protein kinase B (AKT), N-cadherin, Snail, and Vimentin were elevated. After ionizing radiation, the sensitivity of miR-210 over-expression cells to radiotherapy was decreased, the expression of apoptosis-related protein Bax was decreased, the expression of Bcl-2 was increased, and the activity of cellular caspase 3/7 enzyme was reduced (p < 0.05). CONCLUSION miR-210 can promote the proliferation, migration, and invasion of ovarian cancer cells by activating the AKT signaling pathway and regulating the expression of Epithelial-mesenchymal transition-related proteins. miR-210 can reduce the sensitivity of ovarian cancer cells to radiotherapy by inhibiting apoptosis, which might serve as a potential target for the treatment of ovarian tumors.
Collapse
Affiliation(s)
- Yinlong Zhao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Shirui Liu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Wen
- Purchasing Center, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China,
| |
Collapse
|
39
|
Koh JY, Lee SJ. Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Mol Brain 2020; 13:116. [PMID: 32843100 PMCID: PMC7448430 DOI: 10.1186/s13041-020-00654-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
Transition metals, such as iron, copper, and zinc, play a very important role in life as the regulators of various physiochemical reactions in cells. Abnormal distribution and concentration of these metals in the body are closely associated with various diseases including ischemic seizure, Alzheimer's disease, diabetes, and cancer. Iron and copper are known to be mainly involved in in vivo redox reaction. Zinc controls a variety of intracellular metabolism via binding to lots of proteins in cells and altering their structure and function. Metallothionein-3 (MT3) is a representative zinc binding protein predominant in the brain. Although the role of MT3 in other organs still needs to be elucidated, many reports have suggested critical roles for the protein in the control of a variety of cellular homeostasis. Here, we review various biological functions of MT3, focusing on different cellular molecules and diseases involving MT3 in the body.
Collapse
Affiliation(s)
- Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
- Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
40
|
Khoma V, Gnatyshyna L, Martinyuk V, Rarok Y, Mudra A, Stoliar O. Biochemical Responses of the Bivalve Mollusk Unio tumidus Inhabiting a Small Power Plant Reservoir on the Dniester River Basin, Ukraine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:67-75. [PMID: 32409854 DOI: 10.1007/s00128-020-02873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Hydropower plants (HPPs) can affect the hydrological regime. However, biochemical responses of aquatic animals for the evaluation of this disturbing are not applied yet. The specimens of Unio tumidus were sampled in a reservoir (R) of a small HPP as well as downstream from the dam (DS). Biochemical indexes in the digestive gland and alkali labile phosphates (ALP) in the gonads were examined. The R-mollusks showed low cholinesterase, catalase and caspase-3 activities, and metallothionein concentration, but elevated levels of zinc and copper, oxidized glutathione and protein carbonyls. Concentrations of lactate, pyruvate and ALP, activity of superoxide dismutase and glutathione S-transferase, and lipid peroxidation level were similar in both groups. Integrated biomarker response (IBR/n) index (n = 13) was 2.17 and 0.29 in the R- and DS-groups correspondingly. We suggest that using integrative biological response based on the biochemical markers of bivalve mollusks can be a valid early warning step in assessing 'environmental flow' impact.
Collapse
Affiliation(s)
- Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Yulya Rarok
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Alla Mudra
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| |
Collapse
|
41
|
Hatching gland development and hatching in zebrafish embryos: A role for zinc and its transporters Zip10 and Znt1a. Biochem Biophys Res Commun 2020; 528:698-705. [PMID: 32517868 DOI: 10.1016/j.bbrc.2020.05.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
Zinc transporters of the ZIP (Slc39, importers) and ZnT (Slc30, exporters) protein families have evolutionary conserved roles in biology. The aim of the present study was to explore the role of zinc, and zinc transporters Zip10 and Znt1a in zebrafish hatching gland development and larval hatching. In the study, knockdown of genes for Zip10 and Znt1a in zebrafish embryos was achieved using morpholino-modified oligonucleotides. A partial loss-of-function Znt1a mutant (Znt1asa17) allowed comparison with the Znt1a morphant. Free Zn2+ in embryos and apoptosis were investigated using fluorescent dyes whereas gene expression was investigated by whole-mount in situ hybridization (WISH). The results showed high levels of free Zn2+ in the hatching gland cells (HGC) along with abundant expression of zip10 and znt1a in normal embryo. Knockdown of zip10 reduced free Zn2+ in HGC, ceased their normal developmental apoptosis, and resulted in displacement and later disappearance of hatching glands and hatching enzymes he1a and catL1b, and inability to hatch. Conversely, knockdown of znt1a or the Znt1asa17 mutation accelerated hatching and coincided with high expression of hatching enzymes and free Zn2+ in the HGC. Thus, Zip10 and free Zn2+ in the HGC are required both for their development and function. This study also demonstrated the opposite functions of the two zinc transporters, ZIP10 and ZnT1 as well as shedding light on the role of Zn2+ in regulation of the human hatching enzyme homologue, ovastacin, which is activated by zinc and cleaves the zona pellucida protein, ZP2, to prevent polyspermy.
Collapse
|
42
|
Hernández-Camacho JD, Vicente-García C, Parsons DS, Navas-Enamorado I. Zinc at the crossroads of exercise and proteostasis. Redox Biol 2020; 35:101529. [PMID: 32273258 PMCID: PMC7284914 DOI: 10.1016/j.redox.2020.101529] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential element for all forms of life, and one in every ten human proteins is a zinc protein. Zinc has catalytic, structural and signalling functions and its correct homeostasis affects many cellular processes. Zinc deficiency leads to detrimental consequences, especially in tissues with high demand such as skeletal muscle. Zinc cellular homeostasis is tightly regulated by different transport and buffer protein systems. Specifically, in skeletal muscle, zinc has been found to affect myogenesis and muscle regeneration due to its effects on muscle cell activation, proliferation and differentiation. In relation to skeletal muscle, exercise has been shown to modulate zinc serum and urinary levels and could directly affect cellular zinc transport. The oxidative stress induced by exercise may provide the basis for the mild zinc deficiency observed in athletes and could have severe consequences on health and sport performance. Proteostasis is induced during exercise and zinc plays an essential role in several of the associated pathways. Zinc deficiency could be a crucial issue in sport performance for athletes. Exercise could modulate zinc serum and cellular homeostasis. Zinc is part of proteostatic systems critical during exercise.
Collapse
Affiliation(s)
- Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain; CIBERER, Instituto de Salud Carlos III, Madrid, 28000, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| | | | | |
Collapse
|
43
|
Gobetto MN, Mendes Garrido Abregú F, Caniffi C, Veiras L, Elesgaray R, Gironacci M, Tomat AL, Arranz C. Fetal and postnatal zinc restriction: sex differences in the renal renin-angiotensin system of newborn and adult Wistar rats. J Nutr Biochem 2020; 81:108385. [PMID: 32388253 DOI: 10.1016/j.jnutbio.2020.108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate renal morphology and the renal renin-angiotensin system in 6- and 81-day-old male and female offspring exposed to zinc deficiency during fetal life, lactation and/or postnatal growth. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. Afterwards, offspring were fed a low- or a control zinc diet until 81 days of life. In 6- and/or 81-day-old offspring, we evaluated systolic blood pressure, renal morphology, renal angiotensin II and angiotensin 1-7 concentration, and AT1 and AT2 receptors and angiotensin-converting enzymes protein and/or mRNA expression. At 6 days, zinc-deficient male offspring showed decreased glomerular filtration areas, remodelling of renal arteries, greater number of renal apoptotic cells, increased levels of Angiotensin II, higher Angiotensin II/Angiotensin 1-7 ratio and increased angiotensin-converting enzyme 1, AT1 and AT2 receptors mRNA and/or protein expression. Exacerbation of the renal Ang II/AT1 receptor axis and remodelling of renal arteries were also observed in adult zinc-deficient male offspring. An adequate zinc diet during post-weaning life did not improve all the alterations induced by zinc deficiency in early stages of development. Female offspring would appear to be less sensitive to zinc deficiency with no increase in blood pressure or significant alterations in renal morphology and the renin-angiotensin system. Moderate zinc deficiency during critical periods of prenatal and postnatal development leads to early morphological renal alterations and to permanent and long-term changes in the renal renin-angiotensin system that could predispose to renal and cardiovascular diseases in adult life.
Collapse
Affiliation(s)
- María Natalia Gobetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Mendes Garrido Abregú
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Caniffi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana Veiras
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Davis Research Bldg., Rm. 2007.110N, George Burns Rd., Los Angeles, CA 90048
| | - Rosana Elesgaray
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Analía Lorena Tomat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cristina Arranz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
44
|
El-Desouky MA, Fahmi AA, Abdelkader IY, Nasraldin KM. Anticancer Effect of Amygdalin (Vitamin B-17) on Hepatocellular Carcinoma Cell Line (HepG2) in the Presence and Absence of Zinc. Anticancer Agents Med Chem 2020; 20:486-494. [PMID: 31958042 DOI: 10.2174/1871520620666200120095525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Amygdalin (Vitamin B-17) is a naturally occurring vitamin found in the seeds of the fruits of Prunus Rosacea family including apricot, bitter almond, cherry, and peach. OBJECTIVE The purpose of this study was to examine the effect of amygdalin with and without zinc on hepatocellular carcinoma (HepG2) cell line. METHODS MTT assay was used to evaluate the cytotoxicity of amygdalin without zinc, amygdalin + 20μmol zinc, and amygdalin + 800μmol zinc on HepG2 cell lines. The cell cycle distribution assay was determined by flow cytometry. Apoptosis was confirmed by Annexin V-FITC/PI staining assay. Moreover, the pathway of apoptosis was determined by the percentage of change in the mean levels of P53, Bcl2, Bax, cytochrome c, and caspase-3. RESULTS Amygdalin without zinc showed strong anti-HepG2 activity. Furthermore, HepG2 cell lines treatment with amygdalin + 20μmol zinc and amygdalin + 800μmol zinc showed a highly significant apoptotic effect than the effect of amygdalin without zinc. Amygdalin treatment induced cell cycle arrest at G2/M and increased the levels of P53, Bax, cytochrome c, and caspase-3 significantly, while it decreased the level of anti-apoptotic Bcl2. CONCLUSION Amygdalin is a natural anti-cancer agent, which can be used for the treatment of hepatocellular carcinoma. It promotes apoptosis via the intrinsic cell death pathway (the mitochondria-initiated pathway) and cell cycle arrest at G/M. The potency of amygdalin in HepG2 treatment increased significantly by the addition of zinc.
Collapse
Affiliation(s)
| | - Abdelgawad A Fahmi
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ibrahim Y Abdelkader
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt (BUE), El-Shorouk, Egypt
| | - Karima M Nasraldin
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt (BUE), El-Shorouk, Egypt
| |
Collapse
|
45
|
Sousa SA, Leitão JH, Silva RA, Belo D, Santos IC, Guerreiro JF, Martins M, Fontinha D, Prudêncio M, Almeida M, Lorcy D, Marques F. On the path to gold: Monoanionic Au bisdithiolate complexes with antimicrobial and antitumor activities. J Inorg Biochem 2020; 202:110904. [DOI: 10.1016/j.jinorgbio.2019.110904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022]
|
46
|
Graham RJ, Ketcham S, Mohammad A, Bandaranayake BMB, Cao T, Ghosh B, Weaver J, Yoon S, Faustino PJ, Ashraf M, Cruz CN, Madhavarao CN. Zinc supplementation improves the harvest purity of β-glucuronidase from CHO cell culture by suppressing apoptosis. Appl Microbiol Biotechnol 2019; 104:1097-1108. [DOI: 10.1007/s00253-019-10296-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
|
47
|
Adedara IA, Abiola MA, Adegbosin AN, Odunewu AA, Farombi EO. Impact of binary waterborne mixtures of nickel and zinc on hypothalamic-pituitary-testicular axis in rats. CHEMOSPHERE 2019; 237:124501. [PMID: 31398612 DOI: 10.1016/j.chemosphere.2019.124501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Several evidences from the literature showed that the coexistence of nickel and zinc in polluted waters is related to the similarity in their geogenic and anthropogenic factors. Although most environmental exposures to metals do not occur singly, there is a paucity of scientific knowledge on the effects of zinc and nickel co-exposure on mammalian reproductive health. The present study investigated the influence of co-exposure to nickel and zinc on male reproductive function in rats. Experimental rats were co-exposed to environmentally relevant concentrations of waterborne nickel (75 and 150 μg NiCl2 L-1) and zinc (100 and 200 μg ZnCl2 L-1) for 45 successive days. Subsequently, reproductive hormones were assayed whereas the hypothalamus, epididymis and testes of the rats were processed for the assessment of oxidative stress and inflammation indices, caspase-3 activity and histology. Results indicated that co-exposure to nickel and zinc significantly (p < 0.05) abolished nickel-mediated diminution of antioxidant defense mechanisms while diminishing levels of reactive oxygen and nitrogen species and lipid peroxidation in the hypothalamus, epididymis and testes of the exposed rats. Additionally, co-exposure to zinc abated nickel-mediated diminutions in luteinizing hormone, follicle-stimulating hormone, serum and intra-testicular testosterone with concomitant enhancement of sperm production and quality. Further, zinc abrogated nickel-mediated elevation in inflammatory biomarkers including nitric oxide, tumor necrosis factor alpha, interleukin-1 beta as well as caspase-3 activity. The protective influence of zinc on nicked-induced reproductive toxicity was well supported by histological data. Overall, zinc ameliorated nickel-induced reproductive dysfunction via its anti-oxidant, anti-inflammatory, anti-apoptotic and spermato-protective activities in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Abiola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedayo N Adegbosin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ajibola A Odunewu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
48
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
49
|
Huan LC, Tran PT, Phuong CV, Duc PH, Anh DT, Hai PT, Huong LTT, Thuan NT, Lee HJ, Park EJ, Kang JS, Linh NP, Hieu TT, Oanh DTK, Han SB, Nam NH. Novel 3,4-dihydro-4-oxoquinazoline-based acetohydrazides: Design, synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Bioorg Chem 2019; 92:103202. [DOI: 10.1016/j.bioorg.2019.103202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023]
|
50
|
Caspase-7 uses RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and other RNA-binding proteins. Proc Natl Acad Sci U S A 2019; 116:21521-21528. [PMID: 31586028 PMCID: PMC6815152 DOI: 10.1073/pnas.1909283116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During apoptosis, hundreds of intracellular proteins are cleaved by caspases. In addition to recognizing optimized motifs in the primary structure of its substrates, we show that caspase-7 possesses an exosite to enhance poly(ADP-ribose) polymerase 1 (PARP-1) recognition via the mutual binding of RNA. We also demonstrate that caspase-7 binds RNA and that PARP-1, via 2 RNA-binding domains, likely binds the same RNA molecule, bringing itself near caspase-7 for prompt inactivation. This mechanism is conserved in the mouse ortholog. We have also validated the use of RNA for the efficient cleavage of 6 other RNA-BPs, demonstrating that this distinctive mode of proteolysis enhancement by caspase-7 is an essential feature of substrate recognition during apoptosis. To achieve swift cell demise during apoptosis, caspases cleave essential proteins for cell survival and removal. In addition to the binding of preferred amino acid sequences to its substrate-binding pocket, caspase-7 also uses exosites to select specific substrates. 4 lysine residues (K38KKK) located in the N-terminal domain of caspase-7 form such an exosite and promote the rapid proteolysis of the poly(ADP-ribose) polymerase 1 (PARP-1), but the mechanism of recognition remains mostly unknown. In this study, we show that the overall positive charge of the exosite is the critical feature of this evolutionarily conserved binding site. Additionally, interaction with the caspase-7 exosite involves both the Zn3 and BRCT domains of PARP-1 and is mediated by RNA. Indeed, PARP-1 proteolysis efficacy is sensitive to RNase A and promoted by added RNA. Moreover, using affinity chromatography and gel shift assays, we demonstrate that caspase-7, but not caspase-3 or a caspase-7 with a mutated exosite, binds nucleic acids. Finally, we show that caspase-7 prefers RNA-binding proteins (RNA-BPs) as substrates compared to caspase-3 and that RNA enhances proteolysis by caspase-7 of many of these RNA-BPs. Thus, we have uncovered an unusual way by which caspase-7 selects and cleaves specific substrates.
Collapse
|