1
|
Li W, Zhou Y, Tong T, He S, Wang C, Zhang X, Cao XY, Yang L, Tian ZQ. Catalytic Assembly of Peptides Mediated by Complex Coacervates. ACS NANO 2025; 19:2306-2314. [PMID: 39787272 DOI: 10.1021/acsnano.4c12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates. The negatively charged sodium alginate (SA) can form complex coacervates with the positively charged KLVFFAE (Aβ16-22, abbreviated as KE) peptide, thereby lowering the nucleation barrier and promoting the assembly of the peptide. As the binding affinity of SA-KE and the dosage of SA decrease, the system shifts from a relatively inefficient template-induced assembly to a highly efficient catalytic assembly before ultimately reverting to slow spontaneous assembly. Therefore, both the affinity as well as the stoichiometry do not follow the intuitive rule that "more is better", but rather there exists an optimal value that maximizes the rate of assembly.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Yang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Tianyi Tong
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng He
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Congsen Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xinran Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
2
|
Gupta A, Bohara VS, Chauhan AS, Mohapatra A, Kaur H, Sharma A, Chaudhary N, Kumar S. Alpha-synuclein expression in neurons modulates Japanese encephalitis virus infection. J Virol 2024; 98:e0041824. [PMID: 39508602 DOI: 10.1128/jvi.00418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition via LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis. IMPORTANCE Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Aditya Singh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Harpreet Kaur
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Ajanta Sharma
- Department of Microbiology, Gauhati Medical College, Guwahati, Assam, India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Sian-Hulsmann J, Riederer P. Virus-induced brain pathology and the neuroinflammation-inflammation continuum: the neurochemists view. J Neural Transm (Vienna) 2024; 131:1429-1453. [PMID: 38261034 PMCID: PMC11608394 DOI: 10.1007/s00702-023-02723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 01/24/2024]
Abstract
Fascinatingly, an abundance of recent studies has subscribed to the importance of cytotoxic immune mechanisms that appear to increase the risk/trigger for many progressive neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis. Events associated with the neuroinflammatory cascades, such as ageing, immunologic dysfunction, and eventually disruption of the blood-brain barrier and the "cytokine storm", appear to be orchestrated mainly through the activation of microglial cells and communication with the neurons. The inflammatory processes prompt cellular protein dyshomeostasis. Parkinson's and Alzheimer's disease share a common feature marked by characteristic pathological hallmarks of abnormal neuronal protein accumulation. These Lewy bodies contain misfolded α-synuclein aggregates in PD or in the case of AD, they are Aβ deposits and tau-containing neurofibrillary tangles. Subsequently, these abnormal protein aggregates further elicit neurotoxic processes and events which contribute to the onset of neurodegeneration and to its progression including aggravation of neuroinflammation. However, there is a caveat for exclusively linking neuroinflammation with neurodegeneration, since it's highly unlikely that immune dysregulation is the only factor that contributes to the manifestation of many of these neurodegenerative disorders. It is unquestionably a complex interaction with other factors such as genetics, age, and environment. This endorses the "multiple hit hypothesis". Consequently, if the host has a genetic susceptibility coupled to an age-related weakened immune system, this makes them more susceptible to the virus/bacteria-related infection. This may trigger the onset of chronic cytotoxic neuroinflammatory processes leading to protein dyshomeostasis and accumulation, and finally, these events lead to neuronal destruction. Here, we differentiate "neuroinflammation" and "inflammation" with regard to the involvement of the blood-brain barrier, which seems to be intact in the case of neuroinflammation but defect in the case of inflammation. There is a neuroinflammation-inflammation continuum with regard to virus-induced brain affection. Therefore, we propose a staging of this process, which might be further developed by adding blood- and CSF parameters, their stage-dependent composition and stage-dependent severeness grade. If so, this might be suitable to optimise therapeutic strategies to fight brain neuroinflammation in its beginning and avoid inflammation at all.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark, Winslows Vey 18, 5000, Odense, J.B, Denmark.
| |
Collapse
|
4
|
Motyl JA, Gromadzka G, Czapski GA, Adamczyk A. SARS-CoV-2 Infection and Alpha-Synucleinopathies: Potential Links and Underlying Mechanisms. Int J Mol Sci 2024; 25:12079. [PMID: 39596147 PMCID: PMC11593367 DOI: 10.3390/ijms252212079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully understood, α-syn can lose its physiological role and begin to aggregate. This altered α-syn disrupts dopaminergic transmission and causes both presynaptic and postsynaptic dysfunction, ultimately leading to cell death. A group of neurodegenerative diseases known as α-synucleinopathies is characterized by the intracellular accumulation of α-syn deposits in specific neuronal and glial cells within certain brain regions. In addition to Parkinson's disease (PD), these conditions include dementia with Lewy bodies (DLBs), multiple system atrophy (MSA), pure autonomic failure (PAF), and REM sleep behavior disorder (RBD). Given that these disorders are associated with α-syn-related neuroinflammation-and considering that SARS-CoV-2 infection has been shown to affect the nervous system, with COVID-19 patients experiencing neurological symptoms-it has been proposed that COVID-19 may contribute to neurodegeneration in PD and other α-synucleinopathies by promoting α-syn misfolding and aggregation. In this review, we focus on whether SARS-CoV-2 could act as an environmental trigger that facilitates the onset or progression of α-synucleinopathies. Specifically, we present new evidence on the potential role of SARS-CoV-2 in modulating α-syn function and discuss the causal relationship between SARS-CoV-2 infection and the development of parkinsonism-like symptoms.
Collapse
Affiliation(s)
- Joanna Agata Motyl
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| | - Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Grzegorz Arkadiusz Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Gupta A, Bohara VS, Siddegowda YB, Chaudhary N, Kumar S. Alpha-synuclein and RNA viruses: Exploring the neuronal nexus. Virology 2024; 597:110141. [PMID: 38917691 DOI: 10.1016/j.virol.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Alpha-synuclein (α-syn), known for its pivotal role in Parkinson's disease, has recently emerged as a significant player in neurotropic RNA virus infections. Upregulation of α-syn in various viral infections has been found to impact neuroprotective functions by regulating neurotransmitter synthesis, vesicle trafficking, and synaptic vesicle recycling. This review focuses on the multifaceted role of α-syn in controlling viral replication by modulating chemoattractant properties towards microglial cells, virus-induced ER stress signaling, anti-oxidative proteins expression. Furthermore, the text underlines the α-syn-mediated regulation of interferon-stimulated genes. The review may help suggest potential therapeutic avenues for mitigating the impact of RNA viruses on the central nervous system by exploiting α-syn neuroprotective biology.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
7
|
Luo YW, Zhou JP, Ji H, Xu D, Zheng A, Wang X, Dai Z, Luo Z, Cao F, Wang XY, Bai Y, Chen D, Chen Y, Wang Q, Yang Y, Zhang X, Chiu S, Peng X, Huang AL, Tang KF. SARS-CoV-2 N protein-induced Dicer, XPO5, SRSF3, and hnRNPA3 downregulation causes pneumonia. Nat Commun 2024; 15:6964. [PMID: 39138195 PMCID: PMC11322655 DOI: 10.1038/s41467-024-51192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.
Collapse
Grants
- 81972648 National Natural Science Foundation of China (National Science Foundation of China)
- CSTB2023NSCQ-BHX0134 Chongqing Postdoctoral Science Foundation
- 82172915 National Natural Science Foundation of China (National Science Foundation of China)
- 81773011 National Natural Science Foundation of China (National Science Foundation of China)
- I01 HX000134 HSRD VA
- The National Key Research and Development Program is aimed at addressing major scientific and technological issues that are crucial to the national economy, people's livelihood, public welfare, industrial core competitiveness, overall capability for independent innovation, and national security. It aims to overcome technological bottlenecks in key areas of national economic and social development. This program integrates several initiatives previously managed by different departments, including the National Basic Research Program of Ministry of Science and Technology, the National High-Tech Research and Development Program, the National Science and Technology Support Program, special projects for international science and technology cooperation and exchange, industrial technology research and development funds co-managed by the National Development and Reform Commission and the Ministry of Industry and Information Technology, as well as public welfare industry scientific research special projects managed by 13 departments including the Ministry of Agriculture and the National Health and Family Planning Commission, into a unified national key R&D program.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiang-Peng Zhou
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hongyu Ji
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Doudou Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhizheng Dai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhicheng Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Fang Cao
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xing-Yue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yunfang Bai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Di Chen
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qi Wang
- Department of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, PR China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, PR China
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, PR China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
8
|
Strong MJ, McLellan C, Kaplanis B, Droppelmann CA, Junop M. Phase Separation of SARS-CoV-2 Nucleocapsid Protein with TDP-43 Is Dependent on C-Terminus Domains. Int J Mol Sci 2024; 25:8779. [PMID: 39201466 PMCID: PMC11354357 DOI: 10.3390/ijms25168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid protein (N protein) is critical in viral replication by undergoing liquid-liquid phase separation to seed the formation of a ribonucleoprotein (RNP) complex to drive viral genomic RNA (gRNA) translation and in suppressing both stress granules and processing bodies, which is postulated to increase uncoated gRNA availability. The N protein can also form biomolecular condensates with a broad range of host endogenous proteins including RNA binding proteins (RBPs). Amongst these RBPs are proteins that are associated with pathological, neuronal, and glial cytoplasmic inclusions across several adult-onset neurodegenerative disorders, including TAR DNA binding protein 43 kDa (TDP-43) which forms pathological inclusions in over 95% of amyotrophic lateral sclerosis cases. In this study, we demonstrate that the N protein can form biomolecular condensates with TDP-43 and that this is dependent on the N protein C-terminus domain (N-CTD) and the intrinsically disordered C-terminus domain of TDP-43. This process is markedly accelerated in the presence of RNA. In silico modeling suggests that the biomolecular condensate that forms in the presence of RNA is composed of an N protein quadriplex in which the intrinsically disordered TDP-43 C terminus domain is incorporated.
Collapse
Affiliation(s)
- Michael J. Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (C.M.); (C.A.D.)
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Crystal McLellan
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (C.M.); (C.A.D.)
| | - Brianna Kaplanis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (B.K.); (M.J.)
| | - Cristian A. Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (C.M.); (C.A.D.)
| | - Murray Junop
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (B.K.); (M.J.)
| |
Collapse
|
9
|
Hao M, He Y, Song T, Guo H, Rayman MP, Zhang J. Dopamine and its precursor levodopa inactivate SARS-CoV-2 main protease by forming a quinoprotein. Free Radic Biol Med 2024; 220:167-178. [PMID: 38718952 DOI: 10.1016/j.freeradbiomed.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Many studies show either the absence, or very low levels of, SARS-CoV-2 viral RNA and/or antigen in the brain of COVID-19 patients. Reports consistently indicate an abortive infection phenomenon in nervous cells despite the fact that they contain the SARS-CoV-2 receptor, ACE2. Dopamine levels in different brain regions are in the range of micromolar to millimolar concentrations. We have shown that sub-micromolar to low micromolar concentrations of dopamine or its precursor (levodopa) time- and dose-dependently inhibit the activity of SARS-CoV-2 main protease (Mpro), which is vital for the viral life cycle, by forming a quinoprotein. Thiol detection coupled with the assessment of Mpro activity suggests that among the 12 cysteinyl thiols, the active site, Cys145-SH, is preferentially conjugated to the quinone derived from the oxidation of dopamine or levodopa. LC-MS/MS analyses show that the Cys145-SH is covalently conjugated by dopamine- or levodopa-o-quinone. These findings help explain why SARS-CoV-2 causes inefficient replication in many nerve cell lines. It is well recognized that inhaled pulmonary drug delivery is the most robust therapy pathway for lung diseases. CVT-301 (orally inhaled levodopa) was approved by the FDA as a drug for Parkinson's patients prior to the outbreak of COVID-19 in 2018. Based on the fact that SARS-CoV-2 causes inefficient replication in the CNS with abundant endogenous Mpro inhibitor in addition to the current finding that levodopa has an Mpro-inhibitory effect somewhat stronger than dopamine, we should urgently investigate the use of CVT-301 as a lung-targeting, COVID-19, Mpro inhibitor.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Schreiber CS, Wiesweg I, Stanelle-Bertram S, Beck S, Kouassi NM, Schaumburg B, Gabriel G, Richter F, Käufer C. Sex-specific biphasic alpha-synuclein response and alterations of interneurons in a COVID-19 hamster model. EBioMedicine 2024; 105:105191. [PMID: 38865747 PMCID: PMC11293593 DOI: 10.1016/j.ebiom.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) frequently leads to neurological complications after recovery from acute infection, with higher prevalence in women. However, mechanisms by which SARS-CoV-2 disrupts brain function remain unclear and treatment strategies are lacking. We previously demonstrated neuroinflammation in the olfactory bulb of intranasally infected hamsters, followed by alpha-synuclein and tau accumulation in cortex, thus mirroring pathogenesis of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. METHODS To uncover the sex-specific spatiotemporal profiles of neuroinflammation and neuronal dysfunction following intranasal SARS-CoV-2 infection, we quantified microglia cell density, alpha-synuclein immunoreactivity and inhibitory interneurons in cortical regions, limbic system and basal ganglia at acute and late post-recovery time points. FINDINGS Unexpectedly, microglia cell density and alpha-synuclein immunoreactivity decreased at 6 days post-infection, then rebounded to overt accumulation at 21 days post-infection. This biphasic response was most pronounced in amygdala and striatum, regions affected early in Parkinson's disease. Several brain regions showed altered densities of parvalbumin and calretinin interneurons which are involved in cognition and motor control. Of note, females appeared more affected. INTERPRETATION Our results demonstrate that SARS-CoV-2 profoundly disrupts brain homeostasis without neuroinvasion, via neuroinflammatory and protein regulation mechanisms that persist beyond viral clearance. The regional patterns and sex differences are in line with neurological deficits observed after SARS-CoV-2 infection. FUNDING Federal Ministry of Health, Germany (BMG; ZMV I 1-2520COR501 to G.G.), Federal Ministry of Education and Research, Germany (BMBF; 03COV06B to G.G.), Ministry of Science and Culture of Lower Saxony in Germany (14-76403-184, to G.G. and F.R.).
Collapse
Affiliation(s)
- Cara Sophie Schreiber
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| |
Collapse
|
11
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
13
|
Pandey S, Bapat V, Abraham JN, Abraham NM. Long COVID: From olfactory dysfunctions to viral Parkinsonism. World J Otorhinolaryngol Head Neck Surg 2024; 10:137-147. [PMID: 38855289 PMCID: PMC11156689 DOI: 10.1002/wjo2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 06/11/2024] Open
Abstract
Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.
Collapse
Affiliation(s)
- Sanyukta Pandey
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Vibha Bapat
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Jancy Nixon Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
- Department of Life Sciences, Centre of Excellence in EpigeneticsShiv Nadar Institution of EminenceGautam Buddha NagarUttar PradeshIndia
| | - Nixon M. Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| |
Collapse
|
14
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
15
|
Wang J, Dai L, Deng M, Xiao T, Zhang Z, Zhang Z. SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation and Aggregation in Cellular Models of Synucleinopathy. Mol Neurobiol 2024; 61:2446-2458. [PMID: 37897633 DOI: 10.1007/s12035-023-03726-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) is an infectious disease that began to spread globally since 2019. Some COVID-19 patients have neurological complications, such as olfactory disorders and movement disorders, which coincide with the symptoms of Parkinson's disease (PD). Increasing imaging and autopsy evidence supports that the density of dopaminergic neurons in the nigrostriatal pathway is damaged in some COVID-19 patients. However, the underlying mechanism that causes PD-like symptoms remains unclear. PD is an age-related neurodegenerative disease with Lewy bodies (LBs) as its histopathologic feature. The main component of LBs is abnormally aggregated α-synuclein (α-syn). The prion-like propagation of α-syn aggregates plays a key role in the onset and progression of PD. The spike protein (S protein) of SARS-CoV-2 is a heparin-binding protein that mediates the entry of the virus into host cells. Here we found that the S1 domain interacts with α-syn and promotes α-syn aggregation. The S1 domain induces mitochondrial dysfunction, oxidative stress, and cytotoxicity. The S1-seeded α-syn fibrils show enhanced seeding activity and induce synaptic damage and cytotoxicity. Thus, the S1 domain of SARS-CoV-2 promotes the aggregation of α-syn in the cellular model of synucleinopathy and may contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
16
|
Cárdenas-Rodríguez N, Ignacio-Mejía I, Correa-Basurto J, Carrasco-Vargas H, Vargas-Hernández MA, Albores-Méndez EM, Mayen-Quinto RD, De La Paz-Valente R, Bandala C. Possible Role of Cannabis in the Management of Neuroinflammation in Patients with Post-COVID Condition. Int J Mol Sci 2024; 25:3805. [PMID: 38612615 PMCID: PMC11012123 DOI: 10.3390/ijms25073805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024] Open
Abstract
The post-COVID condition (PCC) is a pathology stemming from COVID-19, and studying its pathophysiology, diagnosis, and treatment is crucial. Neuroinflammation causes the most common manifestations of this disease including headaches, fatigue, insomnia, depression, anxiety, among others. Currently, there are no specific management proposals; however, given that the inflammatory component involves cytokines and free radicals, these conditions must be treated to reduce the current symptoms and provide neuroprotection to reduce the risk of a long-term neurodegenerative disease. It has been shown that cannabis has compounds with immunomodulatory and antioxidant functions in other pathologies. Therefore, exploring this approach could provide a viable therapeutic option for PCC, which is the purpose of this review. This review involved an exhaustive search in specialized databases including PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, and Clinical Trials. Phytocannabinoids, including cannabidiol (CBD), cannabigerol (CBG), and Delta-9-tetrahydrocannabinol (THC), exhibit significant antioxidative and anti-inflammatory properties and have been shown to be an effective treatment for neuroinflammatory conditions. These compounds could be promising adjuvants for PCC alone or in combination with other antioxidants or therapies. PCC presents significant challenges to neurological health, and neuroinflammation and oxidative stress play central roles in its pathogenesis. Antioxidant therapy and cannabinoid-based approaches represent promising areas of research and treatment for mitigating adverse effects, but further studies are needed.
Collapse
Affiliation(s)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico;
| | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exal Manuel Albores-Méndez
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | | | - Reynita De La Paz-Valente
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Cindy Bandala
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| |
Collapse
|
17
|
Jia F, Han J. COVID-19 related neurological manifestations in Parkinson's disease: has ferroptosis been a suspect? Cell Death Discov 2024; 10:146. [PMID: 38503730 PMCID: PMC10951317 DOI: 10.1038/s41420-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
A rising number of patient cases point to a probable link between SARS-CoV-2 infection and Parkinson's disease (PD), yet the mechanisms by which SARS-CoV-2 affects the brain and generates neuropsychiatric symptoms in COVID-19 patients remain unknown. Ferroptosis, a distinct iron-dependent non-apoptotic type of cell death characterized by lipid peroxidation and glutathione depletion, a key factor in neurological disorders. Ferroptosis may have a pathogenic role in COVID-19, according to recent findings, however its potential contributions to COVID-19-related PD have not yet been investigated. This review covers potential paths for SARS-CoV-2 infection of the brain. Among these putative processes, ferroptosis may contribute to the etiology of COVID-19-associated PD, potentially providing therapeutic methods.
Collapse
Affiliation(s)
- Fengju Jia
- School of Nursing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China.
| | - Jing Han
- School of Nursing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
18
|
Vavougios GD, Tseriotis VS, Liampas A, Mavridis T, de Erausquin GA, Hadjigeorgiou G. Type I interferon signaling, cognition and neurodegeneration following COVID-19: update on a mechanistic pathogenetic model with implications for Alzheimer's disease. Front Hum Neurosci 2024; 18:1352118. [PMID: 38562226 PMCID: PMC10982434 DOI: 10.3389/fnhum.2024.1352118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
COVID-19's effects on the human brain reveal a multifactorial impact on cognition and the potential to inflict lasting neuronal damage. Type I interferon signaling, a pathway that represents our defense against pathogens, is primarily affected by COVID-19. Type I interferon signaling, however, is known to mediate cognitive dysfunction upon its dysregulation following synaptopathy, microgliosis and neuronal damage. In previous studies, we proposed a model of outside-in dysregulation of tonic IFN-I signaling in the brain following a COVID-19. This disruption would be mediated by the crosstalk between central and peripheral immunity, and could potentially establish feed-forward IFN-I dysregulation leading to neuroinflammation and potentially, neurodegeneration. We proposed that for the CNS, the second-order mediators would be intrinsic disease-associated molecular patterns (DAMPs) such as proteopathic seeds, without the requirement of neuroinvasion to sustain inflammation. Selective vulnerability of neurogenesis sites to IFN-I dysregulation would then lead to clinical manifestations such as anosmia and cognitive impairment. Since the inception of our model at the beginning of the pandemic, a growing body of studies has provided further evidence for the effects of SARS-CoV-2 infection on the human CNS and cognition. Several preclinical and clinical studies have displayed IFN-I dysregulation and tauopathy in gene expression and neuropathological data in new cases, correspondingly. Furthermore, neurodegeneration identified with a predilection for the extended olfactory network furthermore supports the neuroanatomical concept of our model, and its independence from fulminant neuroinvasion and encephalitis as a cause of CNS damage. In this perspective, we summarize the data on IFN-I as a plausible mechanism of cognitive impairment in this setting, and its potential contribution to Alzheimer's disease and its interplay with COVID-19.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, Medical School, University of Cyprus, Lefkosia, Cyprus
| | | | - Andreas Liampas
- Department of Neurology, Medical School, University of Cyprus, Lefkosia, Cyprus
| | - Theodore Mavridis
- Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | - Gabriel A. de Erausquin
- Laboratory of Brain Development, Modulation and Repair, The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Joe R. and Teresa Lozano Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | |
Collapse
|
19
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
20
|
Wang J, Dai L, Chen S, Zhang Z, Fang X, Zhang Z. Protein-protein interactions regulating α-synuclein pathology. Trends Neurosci 2024; 47:209-226. [PMID: 38355325 DOI: 10.1016/j.tins.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies (LBs). The main proteinaceous component of LBs is aggregated α-synuclein (α-syn). However, the mechanisms underlying α-syn aggregation are not yet fully understood. Converging lines of evidence indicate that, under certain pathological conditions, various proteins can interact with α-syn and regulate its aggregation. Understanding these protein-protein interactions is crucial for unraveling the molecular mechanisms contributing to PD pathogenesis. In this review we provide an overview of the current knowledge on protein-protein interactions that regulate α-syn aggregation. Additionally, we briefly summarize the methods used to investigate the influence of protein-protein interactions on α-syn aggregation and propagation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
21
|
Eidhof I, Twohig D, Falk A. Unraveling the brain's response to COVID-19: How SARS-CoV-2 afflicts dopaminergic neurons. Cell Stem Cell 2024; 31:152-154. [PMID: 38306990 DOI: 10.1016/j.stem.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
COVID-19 patients often display dysfunctions of the nervous system, indicating an effect of SARS-CoV-2 on neural cells. Yang et al. now show that human stem-cell-derived dopaminergic neurons are susceptible to SARS-CoV-2, triggering inflammation and senescence. The study further identifies three FDA-approved drugs capable of reversing these cellular phenotypes.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 11 Stockholm, Sweden
| | - Daniel Twohig
- Department of Experimental Medical Science, Lund Stem Cell Center Lund University, 221 84 Lund, Sweden
| | - Anna Falk
- Department of Experimental Medical Science, Lund Stem Cell Center Lund University, 221 84 Lund, Sweden; Department of Neuroscience, Karolinska Institutet, 171 11 Stockholm, Sweden.
| |
Collapse
|
22
|
Mahin A, Soman SP, Modi PK, Raju R, Keshava Prasad TS, Abhinand CS. Meta-analysis of the serum/plasma proteome identifies significant associations between COVID-19 with Alzheimer's/Parkinson's diseases. J Neurovirol 2024; 30:57-70. [PMID: 38167982 DOI: 10.1007/s13365-023-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
In recent years, we have seen the widespread devastations and serious health complications manifested by COVID-19 globally. Although we have effectively controlled the pandemic, uncertainties persist regarding its potential long-term effects, including prolonged neurological issues. To gain comprehensive insights, we conducted a meta-analysis of mass spectrometry-based proteomics data retrieved from different studies with a total of 538 COVID-19 patients and 523 healthy controls. The meta-analysis revealed that top-enriched pathways were associated with neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). Further analysis confirmed a direct correlation in the expression patterns of 24 proteins involved in Alzheimer's and 23 proteins in Parkinson's disease with COVID-19. Protein-protein interaction network and cluster analysis identified SNCA as a hub protein, a known biomarker for Parkinson's disease, in both AD and PD. To the best of our knowledge, this is the first meta-analysis study providing proteomic profiling evidence linking COVID-19 to neurological complications.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Sreelakshmi Pathappillil Soman
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| |
Collapse
|
23
|
Yang L, Kim TW, Han Y, Nair MS, Harschnitz O, Zhu J, Wang P, Koo SY, Lacko LA, Chandar V, Bram Y, Zhang T, Zhang W, He F, Pan C, Wu J, Huang Y, Evans T, van der Valk P, Titulaer MJ, Spoor JKH, Furler O'Brien RL, Bugiani M, D J Van de Berg W, Schwartz RE, Ho DD, Studer L, Chen S. SARS-CoV-2 infection causes dopaminergic neuron senescence. Cell Stem Cell 2024; 31:196-211.e6. [PMID: 38237586 PMCID: PMC10843182 DOI: 10.1016/j.stem.2023.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Tae Wan Kim
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - So Yeon Koo
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Wei Zhang
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Feng He
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Junjie Wu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Paul van der Valk
- Department of Pathology, Amsterdam University Medical Center, VU University Amsterdam, Amsterdam, the Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jochem K H Spoor
- Department of Neurosurgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert L Furler O'Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Marianna Bugiani
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Wilma D J Van de Berg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands; Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| |
Collapse
|
24
|
Zilio G, Masato A, Sandre M, Caregnato A, Moret F, Maciola AK, Antonini A, Brucale M, Cendron L, Plotegher N, Bubacco L. SARS-CoV-2-Mimicking Pseudoviral Particles Accelerate α-Synuclein Aggregation In Vitro. ACS Chem Neurosci 2024; 15:215-221. [PMID: 38131609 DOI: 10.1021/acschemneuro.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Since the SARS-CoV-2 virus started spreading worldwide, evidence pointed toward an impact of the infection on the nervous system. COVID-19 patients present neurological manifestations and have an increased risk of developing brain-related symptoms in the long term. In fact, evidence in support of the neuroinvasive potential of SARS-CoV-2 has emerged. Considering that viral parkisonism was observed as a consequence of encephalopathies caused by viral infections, it has been already suggested that COVID-19 could affect the dopaminergic neurons and contribute to neurodegeneration in Parkinson's disease (PD), by promoting the formation of amyloid fibrils constituted by the PD-related protein α-synuclein. Here, we observe not only that SARS-CoV-2 viral spike protein and nucleocapsid protein can alone promote α-synuclein aggregation but also that the spike protein organization in a corona shape on the viral envelope may be crucial in triggering fast amyloid fibrils formation, thus possibly contributing to PD pathogenesis.
Collapse
Affiliation(s)
- Gianluca Zilio
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Anna Masato
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Michele Sandre
- Department of Biology, University of Padova, Padova 35131, Italy
- Department of Neuroscience, University of Padova, Padova 35121, Italy
| | - Alberto Caregnato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Francesca Moret
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padova 35121, Italy
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna 40129, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padova, Padova 35131, Italy
| |
Collapse
|
25
|
Limanaqi F, Zecchini S, Saulle I, Strizzi S, Vanetti C, Garziano M, Cappelletti G, Parolin D, Caccia S, Trabattoni D, Fenizia C, Clerici M, Biasin M. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024; 57:2. [PMID: 38191441 PMCID: PMC10775536 DOI: 10.1186/s40659-023-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, Milan, Italy.
| |
Collapse
|
26
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
27
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Khramtsov YV, Ulasov AV, Lupanova TN, Slastnikova TA, Rosenkranz AA, Bunin ES, Georgiev GP, Sobolev AS. Intracellular Degradation of SARS-CoV-2 N-Protein Caused by Modular Nanotransporters Containing Anti-N-Protein Monobody and a Sequence That Recruits the Keap1 E3 Ligase. Pharmaceutics 2023; 16:4. [PMID: 38276482 PMCID: PMC10818351 DOI: 10.3390/pharmaceutics16010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The proper viral assembly relies on both nucleic acids and structural viral proteins. Thus a biologically active agent that provides the degradation of one of these key proteins and/or destroys the viral factory could suppress viral replication efficiently. The nucleocapsid protein (N-protein) is a key protein for the SARS-CoV-2 virus. As a bioactive agent, we offer a modular nanotransporter (MNT) developed by us, which, in addition to an antibody mimetic to the N-protein, contains an amino acid sequence for the attraction of the Keap1 E3 ubiquitin ligase. This should lead to the subsequent degradation of the N-protein. We have shown that the functional properties of modules within the MNT permit its internalization into target cells, endosome escape into the cytosol, and binding to the N-protein. Using flow cytometry and western blotting, we demonstrated significant degradation of N-protein when A549 and A431 cells transfected with a plasmid coding for N-protein were incubated with the developed MNTs. The proposed MNTs open up a new approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Egor S. Bunin
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
29
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Gondelaud F, Lozach PY, Longhi S. Viral amyloids: New opportunities for antiviral therapeutic strategies. Curr Opin Struct Biol 2023; 83:102706. [PMID: 37783197 DOI: 10.1016/j.sbi.2023.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.
Collapse
Affiliation(s)
- Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, 69007, Lyon, France. https://twitter.com/pylozach
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
31
|
Dong H, Zhang H, Jalin J, He Z, Wang R, Huang L, Liu Z, Zhang S, Dai B, Li D. Nucleocapsid proteins from human coronaviruses possess phase separation capabilities and promote FUS pathological aggregation. Protein Sci 2023; 32:e4826. [PMID: 37906538 PMCID: PMC10659942 DOI: 10.1002/pro.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.
Collapse
Affiliation(s)
- Hui Dong
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Present address:
Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Hong Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Julie Jalin
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ziqi He
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
| | - Runhan Wang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Leqi Huang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zibo Liu
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shenqing Zhang
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghaiChina
| | - Bin Dai
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dan Li
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
32
|
Yu H, Guan F, Miller H, Lei J, Liu C. The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerg Microbes Infect 2023; 12:e2164219. [PMID: 36583642 PMCID: PMC9980416 DOI: 10.1080/22221751.2022.2164219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.
Collapse
Affiliation(s)
- Haiyun Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Chaohong Liu
| |
Collapse
|
33
|
Semerdzhiev SA, Segers-Nolten I, van der Schoot P, Blum C, Claessens MMAE. SARS-CoV-2 N-protein induces the formation of composite α-synuclein/N-protein fibrils that transform into a strain of α-synuclein fibrils. NANOSCALE 2023; 15:18337-18346. [PMID: 37921451 DOI: 10.1039/d3nr03556e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The presence of deposits of alpha-synuclein (αS) fibrils in the cells of the brain is a hallmark of several α-synucleinopathies, including Parkinson's disease. As most disease cases are not familial, it is likely that external factors play a role in the disease onset. One of the external factors that may influence the disease onset is viral infection. It has recently been shown in in vitro assays that in the presence of SARS-Cov-2 N-protein, αS fibril formation is faster and proceeds in an unusual two-step aggregation process. Here, we show that faster fibril formation is not due to the SARS-CoV-2 N-protein-catalysed formation of an aggregation-prone nucleus. Instead, aggregation starts with the formation of a population of mixed αS/N-protein fibrils with low affinity for αS. Mixed amyloid fibrils, composed of two different proteins, have not been observed before. After the depletion of N-protein, fibril formation comes to a halt, until a slow transformation into fibrils with characteristics of a pure αS fibril strain occurs. This transformation into a strain of αS fibrils subsequently results in a second phase of fibril growth until a new equilibrium is reached. We hypothesize that this fibril strain transformation may be of relevance in the cell-to-cell spread of the αS pathology and disease onset.
Collapse
Affiliation(s)
- Slav A Semerdzhiev
- Nanobiophysics, Faculty of Science and Technology, MESA + Institute for Nanotechnology and, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Ine Segers-Nolten
- Nanobiophysics, Faculty of Science and Technology, MESA + Institute for Nanotechnology and, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Paul van der Schoot
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Blum
- Nanobiophysics, Faculty of Science and Technology, MESA + Institute for Nanotechnology and, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Mireille M A E Claessens
- Nanobiophysics, Faculty of Science and Technology, MESA + Institute for Nanotechnology and, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
34
|
Xia J, Wang J, Ying L, Huang R, Zhang K, Zhang R, Tang W, Xu Q, Lai D, Zhang Y, Hu Y, Zhang X, Zang R, Fan J, Shu Q, Xu J. RAGE Is a Receptor for SARS-CoV-2 N Protein and Mediates N Protein-induced Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 69:508-520. [PMID: 37478333 PMCID: PMC10633841 DOI: 10.1165/rcmb.2022-0351oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.
Collapse
Affiliation(s)
- Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Liyang Ying
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ruoyang Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqi Tang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Xu
- Hangzhou Medical College, Hangzhou, China
| | - Dengming Lai
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaodie Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoxi Zang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
35
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
36
|
Boura I, Qamar MA, Daddoveri F, Leta V, Poplawska-Domaszewicz K, Falup-Pecurariu C, Ray Chaudhuri K. SARS-CoV-2 and Parkinson's Disease: A Review of Where We Are Now. Biomedicines 2023; 11:2524. [PMID: 37760965 PMCID: PMC10526287 DOI: 10.3390/biomedicines11092524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has been discussed in the context of Parkinson's disease (PD) over the last three years. Now that we are entering the long-term phase of this pandemic, we are intrigued to look back and see how and why the community of patients with PD was impacted and what knowledge we have collected so far. The relationship between COVID-19 and PD is likely multifactorial in nature. Similar to other systemic infections, a probable worsening of PD symptoms secondary to COVID-19, either transient or persistent (long COVID), has been demonstrated, while the COVID-19-related mortality of PD patients may be increased compared to the general population. These observations could be attributed to direct or indirect damage from SARS-CoV-2 in the central nervous system (CNS) or could result from general infection-related parameters (e.g., hospitalization or drugs) and the sequelae of the COVID-19 pandemic (e.g., quarantine). A growing number of cases of new-onset parkinsonism or PD following SARS-CoV-2 infection have been reported, either closely (post-infectious) or remotely (para-infectious) after a COVID-19 diagnosis, although such a link remains hypothetical. The pathophysiological substrate of these phenomena remains elusive; however, research studies, particularly pathology studies, have suggested various COVID-19-induced degenerative changes with potential associations with PD/parkinsonism. We review the literature to date for answers considering the relationship between SARS-CoV-2 infection and PD/parkinsonism, examining pathophysiology, clinical manifestations, vaccination, and future directions.
Collapse
Affiliation(s)
- Iro Boura
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
- Medical School, University of Crete, Heraklion, 71003 Iraklion, Greece
| | - Mubasher A. Qamar
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Francesco Daddoveri
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Valentina Leta
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson and Movement Disorders Unit, Department of Clinical Neuroscience, Fondazione, IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | | | - Cristian Falup-Pecurariu
- Department of Neurology, County Clinic Hospital, Faculty of Medicine, Transilvania University Brasov, 500019 Brasov, Romania
| | - K. Ray Chaudhuri
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
37
|
Zhang J, Bishir M, Barbhuiya S, Chang SL. Meta-Analysis of the Mechanisms Underlying COVID-19 Modulation of Parkinson's Disease. Int J Mol Sci 2023; 24:13554. [PMID: 37686360 PMCID: PMC10487929 DOI: 10.3390/ijms241713554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by the infection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The virus enters host cells through receptor-mediated endocytosis of angiotensin-converting enzyme-2 (ACE2), leading to systemic inflammation, also known as a "cytokine storm", and neuroinflammation. COVID-19's upstream regulator, interferon-gamma (IFNG), is downregulated upon the infection of SARS-CoV-2, which leads to the downregulation of ACE2. The neuroinflammation signaling pathway (NISP) can lead to neurodegenerative diseases, such as Parkinson's disease (PD), which is characterized by the formation of Lewy bodies made primarily of the α-synuclein protein encoded by the synuclein alpha (SNCA) gene. We hypothesize that COVID-19 may modulate PD progression through neuroinflammation induced by cytokine storms. This study aimed to elucidate the possible mechanisms and signaling pathways involved in COVID-19-triggered pathology associated with neurodegenerative diseases like PD. This study presents the analysis of the pathways involved in the downregulation of ACE2 following SARS-CoV-2 infection and its effect on PD progression. Through QIAGEN's Ingenuity Pathway Analysis (IPA), the study identified the NISP as a top-five canonical pathway/signaling pathway and SNCA as a top-five upstream regulator. Core Analysis was also conducted on the associated molecules between COVID-19 and SNCA to construct a network connectivity map. The Molecule Activity Predictor tool was used to simulate the infection of SARS-CoV-2 by downregulating IFNG, which leads to the predicted activation of SNCA, and subsequently PD, through a dataset of intermediary molecules. Downstream effect analysis was further used to quantify the downregulation of ACE2 on SNCA activation.
Collapse
Affiliation(s)
- Jonathan Zhang
- Institute of NeuroImmune Pharmacology, South Orange, NJ 07079, USA; (J.Z.); (M.B.); (S.B.)
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology, South Orange, NJ 07079, USA; (J.Z.); (M.B.); (S.B.)
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sharman Barbhuiya
- Institute of NeuroImmune Pharmacology, South Orange, NJ 07079, USA; (J.Z.); (M.B.); (S.B.)
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, South Orange, NJ 07079, USA; (J.Z.); (M.B.); (S.B.)
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
38
|
Cao S, Song Z, Rong J, Andrikopoulos N, Liang X, Wang Y, Peng G, Ding F, Ke PC. Spike Protein Fragments Promote Alzheimer's Amyloidogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40317-40329. [PMID: 37585091 PMCID: PMC10480042 DOI: 10.1021/acsami.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia inducing memory loss, cognitive decline, and mortality among the aging population. While the amyloid aggregation of peptide Aβ has long been implicated in neurodegeneration in AD, primarily through the production of toxic polymorphic aggregates and reactive oxygen species, viral infection has a less explicit role in the etiology of the brain disease. On the other hand, while the COVID-19 pandemic is known to harm human organs and function, its adverse effects on AD pathobiology and other human conditions remain unclear. Here we first identified the amyloidogenic potential of 1058HGVVFLHVTYV1068, a short fragment of the spike protein of SARS-CoV-2 coronavirus. The peptide fragment was found to be toxic and displayed a high binding propensity for the amyloidogenic segments of Aβ, thereby promoting the aggregation and toxicity of the peptide in vitro and in silico, while retarding the hatching and survival of zebrafish embryos upon exposure. Our study implicated SARS-CoV-2 viral infection as a potential contributor to AD pathogenesis, a little explored area in our quest for understanding and overcoming Long Covid.
Collapse
Affiliation(s)
- Sujian Cao
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jinyu Rong
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
39
|
Chesney AD, Maiti B, Hansmann UHE. SARS-COV-2 spike protein fragment eases amyloidogenesis of α-synuclein. J Chem Phys 2023; 159:015103. [PMID: 37409768 PMCID: PMC10328560 DOI: 10.1063/5.0157331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Parkinson's disease is accompanied by the presence of amyloids in the brain that are formed of α-synuclein chains. The correlation between COVID-19 and the onset of Parkinson's disease led to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, preferentially shifts the ensemble of α-synuclein monomer toward rod-like fibril seeding conformations and, at the same time, differentially stabilizes this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.
Collapse
Affiliation(s)
- Andrew D. Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
40
|
Iacono S, Schirò G, Davì C, Mastrilli S, Abbott M, Guajana F, Arnao V, Aridon P, Ragonese P, Gagliardo C, Colomba C, Scichilone N, D’Amelio M. COVID-19 and neurological disorders: what might connect Parkinson's disease to SARS-CoV-2 infection. Front Neurol 2023; 14:1172416. [PMID: 37273689 PMCID: PMC10232873 DOI: 10.3389/fneur.2023.1172416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus disease 19 (COVID-19) rapidly became a worldwide health emergency due to its elevated infecting capacity, morbidity, and mortality. Parkinson’s disease (PD) is the second most common neurodegenerative disorder and, nowadays the relationship between SARS-CoV-2 outbreak and PD reached a great interest. Apparently independent one from the other, both diseases share some pathogenetic and clinical features. The relationship between SARS-CoV-2 infection and PD is complex and it depends on the direction of the association that is which of the two diseases comes first. Some evidence suggests that SARS-CoV-2 infection might be a possible risk factor for PD wherein the exposure to SARS-CoV-2 increase the risk for PD. This perspective comes out from the increasing cases of parkinsonism following COVID-19 and also from the anatomical structures affected in both COVID-19 and early PD such as olfactory bulb and gastrointestinal tract resulting in the same symptoms such as hyposmia and constipation. Furthermore, there are many reported cases of patients who developed hypokinetic extrapyramidal syndrome following SARS-CoV-2 infection although these would resemble a post-encephalitic conditions and there are to date relevant data to support the hypothesis that SARS-CoV-2 infection is a risk factor for the development of PD. Future large, longitudinal and population-based studies are needed to better assess whether the risk of developing PD after COVID-19 exists given the short time span from the starting of pandemic. Indeed, this brief time-window does not allow the precise estimation of the incidence and prevalence of PD after pandemic when compared with pre-pandemic era. If the association between SARS-CoV-2 infection and PD pathogenesis is actually putative, on the other hand, vulnerable PD patients may have a greater risk to develop COVID-19 being also more prone to develop a more aggressive disease course. Furthermore, PD patients with PD showed a worsening of motor and non-motor symptoms during COVID-19 outbreak due to both infection and social restriction. As well, the worries related to the risk of being infected should not be neglected. Here we summarize the current knowledge emerging about the epidemiological, pathogenetic and clinical relationship between SARS-CoV-2 infection and PD.
Collapse
Affiliation(s)
- Salvatore Iacono
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Mastrilli
- Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone di Palermo, Palermo, Italy
| | - Michelle Abbott
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabrizio Guajana
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Arnao
- UO Neurologia e Stroke Unit, Azienda di Rilievo Nazionale ad Alta Specializzazione, Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Paolo Aridon
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Chesney AD, Maiti B, Hansmann UHE. SARS-COV-2 Spike Protein Fragment eases Amyloidogenesis of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539715. [PMID: 37214999 PMCID: PMC10197603 DOI: 10.1101/2023.05.06.539715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Parkinson's Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson's disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, shifts preferentially the ensemble of α-synuclein monomer towards rod-like fibril seeding conformations, and at the same time stabilizes differentially this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.
Collapse
|
42
|
Tayeb-Fligelman E, Bowler JT, Tai CE, Sawaya MR, Jiang YX, Garcia G, Griner SL, Cheng X, Salwinski L, Lutter L, Seidler PM, Lu J, Rosenberg GM, Hou K, Abskharon R, Pan H, Zee CT, Boyer DR, Li Y, Anderson DH, Murray KA, Falcon G, Cascio D, Saelices L, Damoiseaux R, Arumugaswami V, Guo F, Eisenberg DS. Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils. Nat Commun 2023; 14:2379. [PMID: 37185252 PMCID: PMC10127185 DOI: 10.1038/s41467-023-37865-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.
Collapse
Affiliation(s)
- Einav Tayeb-Fligelman
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Jeannette T Bowler
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Christen E Tai
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sawaya
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Yi Xiao Jiang
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Sarah L Griner
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Xinyi Cheng
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Lukasz Salwinski
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Liisa Lutter
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Paul M Seidler
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, CA, 90089-9121, USA
| | - Jiahui Lu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Gregory M Rosenberg
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Ke Hou
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Romany Abskharon
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Hope Pan
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Chih-Te Zee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - David R Boyer
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Yan Li
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel H Anderson
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Kevin A Murray
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Genesis Falcon
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Lorena Saelices
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| | - Feng Guo
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - David S Eisenberg
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA.
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
43
|
Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial Properties of Amyloidogenic Proteins and Peptides: New Data in the COVID Era. Biomedicines 2023; 11:1215. [PMID: 37189833 PMCID: PMC10136278 DOI: 10.3390/biomedicines11041215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs' detrimental and beneficial properties using as examples beta-amyloid (β-amyloid), implicated in the pathogenesis of Alzheimer's disease (AD), and α-synuclein-one of the hallmarks of Parkinson's disease (PD). Recently amyloidogenic PPs' antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fatemeh N. Emamzadeh
- Analytical Development Department, Iovance Biotherapeutics, Inc., Tampa, FL 33612, USA
| | - Mariya Titova
- The College of Liberal Arts & Sciences, Kansas University, Lawrence, KS 66045, USA
| | - Alexei A. Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Strong MJ. SARS-CoV-2, aging, and Post-COVID-19 neurodegeneration. J Neurochem 2023; 165:115-130. [PMID: 36458986 PMCID: PMC9877664 DOI: 10.1111/jnc.15736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
As the world continues to experience the effects of SARS-CoV-2, there is evidence to suggest that the sequelae of viral infection (the post-COVID-19 condition; PCC) at both an individual and population level will be significant and long-lasting. The history of pandemics or epidemics in the last 100 years caused by members of the RNA virus family, of which coronaviruses are a member, provides ample evidence of the acute neurological effects. However, except for the H1N1 influenza pandemic of 1918/1919 (the Spanish flu) with its associated encephalitis lethargica, there is little information on long-term neurological sequelae. COVID-19 is the first pandemic that has occurred in a setting of an aging population, especially in several high-income countries. Its survivors are at the greatest risk for developing neurodegenerative conditions as they age, rendering the current pandemic a unique paradigm not previously witnessed. The SARS-CoV-2 virus, among the largest of the RNA viruses, is a single-stranded RNA that encodes for 29 proteins that include the spike protein that contains the key domains required for ACE2 binding, and a complex array of nonstructural proteins (NSPs) and accessory proteins that ensure the escape of the virus from the innate immune response, allowing for its efficient replication, translation, and exocytosis as a fully functional virion. Increasingly, these proteins are also recognized as potentially contributing to biochemical and molecular processes underlying neurodegeneration. In addition to directly being taken up by brain endothelium, the virus or key protein constituents can be transported to neurons, astrocytes, and microglia by extracellular vesicles and can accelerate pathological fibril formation. The SARS-CoV-2 nucleocapsid protein is intrinsically disordered and can participate in liquid condensate formation, including as pathological heteropolymers with neurodegenerative disease-associated RNA-binding proteins such as TDP-43, FUS, and hnRNP1A. As the SARS-CoV-2 virus continues to mutate under the immune pressure exerted by highly efficacious vaccines, it is evolving into a virus with greater transmissibility but less severity compared with the original strain. The potential of its lingering impact on the nervous system thus has the potential to represent an ongoing legacy of an even greater global health challenge than acute infection.
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Clinical Neurological Sciences and The Robarts Research InstituteWestern UniversityLondonCanada
| |
Collapse
|
45
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
46
|
Karas BY, Sitnikova VE, Nosenko TN, Dedkov VG, Arsentieva NA, Gavrilenko NV, Moiseev IS, Totolian AA, Kajava AV, Uspenskaya MV. ATR-FTIR spectrum analysis of plasma samples for rapid identification of recovered COVID-19 individuals. JOURNAL OF BIOPHOTONICS 2023:e202200166. [PMID: 36869427 DOI: 10.1002/jbio.202200166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/08/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of fast, cheap and reliable methods to determine seroconversion against infectious agents is of great practical importance. In the context of the COVID-19 pandemic, an important issue is to study the rate of formation of the immune layer in the population of different regions, as well as the study of the formation of post-vaccination immunity in individuals after vaccination. Currently, the main method for this kind of research is enzyme immunoassay (ELISA, enzyme-linked immunosorbent assay). This technique is sufficiently sensitive and specific, but it requires significant time and material costs. We investigated the applicability of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy associated with machine learning in blood plasma to detect seroconversion against SARS-CoV-2. The study included samples of 60 patients. Clear spectral differences in plasma samples from recovered COVID-19 patients and conditionally healthy donors were identified using multivariate and statistical analysis. The results showed that ATR-FTIR spectroscopy, combined with principal components analysis (PCA) and linear discriminant analysis (LDA) or artificial neural network (ANN), made it possible to efficiently identify specimens from recovered COVID-19 patients. We built classification models based on PCA associated with LDA and ANN. Our analysis led to 87% accuracy for PCA-LDA model and 91% accuracy for ANN, respectively. Based on this proof-of-concept study, we believe this method could offer a simple, label-free, cost-effective tool for detecting seroconversion against SARS-CoV-2. This approach could be used as an alternative to ELISA.
Collapse
Affiliation(s)
- Boris Y Karas
- Institute BioEngineering, ITMO University, St. Petersburg, Russia
| | - Vera E Sitnikova
- Institute BioEngineering, ITMO University, St. Petersburg, Russia
| | | | - Vladimir G Dedkov
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, St. Petersburg, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia A Arsentieva
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, St. Petersburg, Russia
| | - Natalia V Gavrilenko
- Raisa Gorbacheva memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Ivan S Moiseev
- Raisa Gorbacheva memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Areg A Totolian
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers' Rights Protection and Human Well-Being Surveillance, St. Petersburg, Russia
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, Université Montpellier, Montpellier, France
| | | |
Collapse
|
47
|
Vaneyck J, Yousif TA, Segers-Nolten I, Blum C, Claessens MMAE. Quantitative Seed Amplification Assay: A Proof-of-Principle Study. J Phys Chem B 2023; 127:1735-1743. [PMID: 36795058 PMCID: PMC9986870 DOI: 10.1021/acs.jpcb.2c08326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Amyloid fibrils of the protein α-synuclein (αS) have recently been identified as a biomarker for Parkinson's disease (PD). To detect the presence of these amyloid fibrils, seed amplification assays (SAAs) have been developed. SAAs allow for the detection of αS amyloid fibrils in biomatrices such as cerebral spinal fluid and are promising for PD diagnosis by providing a dichotomous (yes/no) response. The additional quantification of the number of αS amyloid fibrils may enable clinicians to evaluate and follow the disease progression and severity. Developing quantitative SAAs has been shown to be challenging. Here, we report on a proof-of-principle study on the quantification of αS fibrils in fibril-spiked model solutions of increasing compositional complexity including blood serum. We show that parameters derived from standard SAAs can be used for fibril quantification in these solutions. However, interactions between the monomeric αS reactant that is used for amplification and biomatrix components such as human serum albumin have to be taken into account. We demonstrate that quantification of fibrils is possible even down to the single fibril level in a model sample consisting of fibril-spiked diluted blood serum.
Collapse
Affiliation(s)
- Jonathan Vaneyck
- Nanobiophysics (NBP), Faculty of Science and Technology, MESA + Institute for Nanotechnology and Technical Medical Centre, University of Twente, PO Box 217, 7500 AE Enschede, Overijssel, The Netherlands
| | - Therese A Yousif
- Nanobiophysics (NBP), Faculty of Science and Technology, MESA + Institute for Nanotechnology and Technical Medical Centre, University of Twente, PO Box 217, 7500 AE Enschede, Overijssel, The Netherlands
| | - Ine Segers-Nolten
- Nanobiophysics (NBP), Faculty of Science and Technology, MESA + Institute for Nanotechnology and Technical Medical Centre, University of Twente, PO Box 217, 7500 AE Enschede, Overijssel, The Netherlands
| | - Christian Blum
- Nanobiophysics (NBP), Faculty of Science and Technology, MESA + Institute for Nanotechnology and Technical Medical Centre, University of Twente, PO Box 217, 7500 AE Enschede, Overijssel, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics (NBP), Faculty of Science and Technology, MESA + Institute for Nanotechnology and Technical Medical Centre, University of Twente, PO Box 217, 7500 AE Enschede, Overijssel, The Netherlands
| |
Collapse
|
48
|
Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes. Nat Commun 2023; 14:945. [PMID: 36806058 PMCID: PMC9940680 DOI: 10.1038/s41467-023-36234-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
The phenomenon of protein aggregation is associated with a wide range of human diseases. Our knowledge of the aggregation behaviour of viral proteins, however, is still rather limited. Here, we investigated this behaviour in the SARS-CoV and SARS-CoV-2 proteomes. An initial analysis using a panel of sequence-based predictors suggested the presence of multiple aggregation-prone regions (APRs) in these proteomes and revealed a strong aggregation propensity in some SARS-CoV-2 proteins. We then studied the in vitro aggregation of predicted aggregation-prone SARS-CoV and SARS-CoV-2 proteins and protein regions, including the signal sequence peptide and fusion peptides 1 and 2 of the spike protein, a peptide from the NSP6 protein, and the ORF10 and NSP11 proteins. Our results show that these peptides and proteins can form amyloid aggregates. We used circular dichroism spectroscopy to reveal the presence of β-sheet rich cores in aggregates and X-ray diffraction and Raman spectroscopy to confirm the formation of amyloid structures. Furthermore, we demonstrated that SARS-CoV-2 NSP11 aggregates are toxic to mammalian cell cultures. These results motivate further studies about the possible role of aggregation of SARS proteins in protein misfolding diseases and other human conditions.
Collapse
|
49
|
Does the SARS-CoV-2 Spike Receptor-Binding Domain Hamper the Amyloid Transformation of Alpha-Synuclein after All? Biomedicines 2023; 11:biomedicines11020498. [PMID: 36831034 PMCID: PMC9953139 DOI: 10.3390/biomedicines11020498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Interactions of key amyloidogenic proteins with SARS-CoV-2 proteins may be one of the causes of expanding and delayed post-COVID-19 neurodegenerative processes. Furthermore, such abnormal effects can be caused by proteins and their fragments circulating in the body during vaccination. The aim of our work was to analyze the effect of the receptor-binding domain of the coronavirus S-protein domain (RBD) on alpha-synuclein amyloid aggregation. Molecular modeling showed that the predicted RBD complex with monomeric alpha-synuclein is stable over 100 ns of molecular dynamics. Analysis of the interactions of RBD with the amyloid form of alpha-synuclein showed that during molecular dynamics for 200 ns the number of contacts is markedly higher than that for the monomeric form. The formation of the RBD complex with the alpha-synuclein monomer was confirmed immunochemically by immobilization of RBD on its specific receptor ACE2. Changes in the spectral characteristics of the intrinsic tryptophans of RBD and hydrophobic dye ANS indicate an interaction between the monomeric proteins, but according to the data of circular dichroism spectra, this interaction does not lead to a change in their secondary structure. Data on the kinetics of amyloid fibril formation using several spectral approaches strongly suggest that RBD prevents the amyloid transformation of alpha-synuclein. Moreover, the fibrils obtained in the presence of RBD showed significantly less cytotoxicity on SH-SY5Y neuroblastoma cells.
Collapse
|
50
|
Chau BA, Chen V, Cochrane AW, Parent LJ, Mouland AJ. Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Rep 2023; 42:111968. [PMID: 36640305 PMCID: PMC9790868 DOI: 10.1016/j.celrep.2022.111968] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The leap of retroviruses and coronaviruses from animal hosts to humans has led to two ongoing pandemics and tens of millions of deaths worldwide. Retrovirus and coronavirus nucleocapsid proteins have been studied extensively as potential drug targets due to their central roles in virus replication, among which is their capacity to bind their respective genomic RNAs for packaging into nascent virions. This review focuses on fundamental studies of these nucleocapsid proteins and how their intrinsic abilities to condense through liquid-liquid phase separation (LLPS) contribute to viral replication. Therapeutic targeting of these condensates and methodological advances are also described to address future questions on how phase separation contributes to viral replication.
Collapse
Affiliation(s)
- Bao-An Chau
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Venessa Chen
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alan W Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Departments of Medicine and Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|