1
|
Yoo CH, Rani N, Shen S, Loggia ML, Gaynor K, Moore KE, Bagdasarian FA, Lin YS, Edwards RR, Price JC, Hooker JM, Wey HY. Investigating neuroepigenetic alterations in chronic low back pain with positron emission tomography. Pain 2024; 165:2586-2594. [PMID: 38776171 PMCID: PMC11511648 DOI: 10.1097/j.pain.0000000000003272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
ABSTRACT Epigenetics has gained considerable interest as potential mediators of molecular alterations that could underlie the prolonged sensitization of nociceptors, neurons, and glia in response to various environmental stimuli. Histone acetylation and deacetylation, key processes in modulating chromatin, influence gene expression; elevated histone acetylation enhances transcriptional activity, whereas decreased acetylation leads to DNA condensation and gene repression. Altered levels of histone deacetylase (HDAC) have been detected in various animal pain models, and HDAC inhibitors have demonstrated analgesic effects in these models, indicating HDACs' involvement in chronic pain pathways. However, animal studies have predominantly examined epigenetic modulation within the spinal cord after pain induction, which may not fully reflect the complexity of chronic pain in humans. Moreover, methodological limitations have previously impeded an in-depth study of epigenetic changes in the human brain. In this study, we employed [ 11 C]Martinostat, an HDAC-selective radiotracer, positron emission tomography to assess HDAC availability in the brains of 23 patients with chronic low back pain (cLBP) and 11 age-matched and sex-matched controls. Our data revealed a significant reduction of [ 11 C]Martinostat binding in several brain regions associated with pain processing in patients with cLBP relative to controls, highlighting the promising potential of targeting HDAC modulation as a therapeutic strategy for cLBP.
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Nisha Rani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Kate Gaynor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Katelyn E. Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Frederick A. Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Yu-Shiaun Lin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Robert R. Edwards
- Anesthesia and Pain Management Center, Department of Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Julie C. Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
2
|
Ozolmez N, Silindir-Gunay M, Volkan-Salanci B. An overview: Radiotracers and nano-radiopharmaceuticals for diagnosis of Parkinson's disease. Appl Radiat Isot 2024; 203:111110. [PMID: 37989065 DOI: 10.1016/j.apradiso.2023.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Parkinson's disease (PD) is a widespread progressive neurodegenerative disease. Clinical diagnosis approaches are insufficient to provide an early and accurate diagnosis before a substantial of loss of dopaminergic neurons. PET and SPECT can be used for accurate and early diagnosis of PD by using target-specific radiotracers. Additionally, the importance of BBB penetrating targeted nanosystems has increased in recent years. This article reviews targeted radiopharmaceuticals used in clinics and novel nanocarriers for research purposes of PD imaging.
Collapse
Affiliation(s)
- Nur Ozolmez
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Mine Silindir-Gunay
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Bilge Volkan-Salanci
- Hacettepe University, Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey.
| |
Collapse
|
3
|
Yoo CH, DuBois JM, Wang L, Tang Y, Hou L, Xu H, Chen J, Liang SH, Izquierdo-Garcia D, Wey HY. Preliminary Exploration of Pseudo-CT-Based Attenuation Correction for Simultaneous PET/MRI Brain Imaging in Nonhuman Primates. ACS OMEGA 2023; 8:45438-45446. [PMID: 38075761 PMCID: PMC10702200 DOI: 10.1021/acsomega.3c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 02/12/2024]
Abstract
This study aimed to develop a template-based attenuation correction (AC) for the nonhuman primate (NHP) brain. We evaluated the effects of AC on positron emission tomography (PET) data quantification with two experimental paradigms by comparing the quantitative outcomes obtained using a segmentation-based AC versus template-based AC. Population-based atlas was generated from ten adult rhesus macaques. Bolus experiments using [18F]PF-06455943 and a bolus-infusion experiment using [11C]OMAR were performed on a 3T Siemens PET/magnetic resonance-imaging (MRI). PET data were reconstructed with either μ map obtained from the segmentation-based AC or template-based AC. The standard uptake value (SUV), volume of distribution (VT), or percentage occupancy of rimonabant were calculated for [18F]PF-06455943 and [11C]OMAR PET, respectively. The leave-one-out cross-validation showed that the absolute percentage differences were 2.54 ± 2.86% for all region of interests. The segmentation-based AC had a lower SUV and VT (∼10%) of [18F]PF-06455943 than the template-based method. The estimated occupancy was higher in the template-based method compared to the segmentation-based AC in the bolus-infusion study. However, future studies may be needed if a different reference tissue is selected for data quantification. Our template-based AC approach was successfully developed and applied to the NHP brain. One limitation of this study was that validation was performed by comparing two different MR-based AC approaches without validating against AC methods based on computed tomography (CT).
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, Charlestown 02129, United States
| | - Jonathan M. DuBois
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, Charlestown 02129, United States
| | - Lu Wang
- Department
of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yongjin Tang
- Department
of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Hou
- Department
of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Xu
- Department
of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical
Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical
Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Izquierdo-Garcia
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, Charlestown 02129, United States
- Harvard–MIT
Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- Bioengineering
Department, Universidad Carlos III de Madrid, Madrid 28911, Spain
| | - Hsiao-Ying Wey
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, Charlestown 02129, United States
| |
Collapse
|
4
|
Aleksandrova Y, Munkuev A, Mozhaitsev E, Suslov E, Tsypyshev D, Chaprov K, Begunov R, Volcho K, Salakhutdinov N, Neganova M. Elaboration of the Effective Multi-Target Therapeutic Platform for the Treatment of Alzheimer's Disease Based on Novel Monoterpene-Derived Hydroxamic Acids. Int J Mol Sci 2023; 24:ijms24119743. [PMID: 37298694 DOI: 10.3390/ijms24119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Novel monoterpene-based hydroxamic acids of two structural types were synthesized for the first time. The first type consisted of compounds with a hydroxamate group directly bound to acyclic, monocyclic and bicyclic monoterpene scaffolds. The second type included hydroxamic acids connected with the monoterpene moiety through aliphatic (hexa/heptamethylene) or aromatic linkers. An in vitro analysis of biological activity demonstrated that some of these molecules had powerful HDAC6 inhibitory activity, with the presence of a linker area in the structure of compounds playing a key role. In particular, it was found that hydroxamic acids containing a hexa- and heptamethylene linker and (-)-perill fragment in the Cap group exhibit excellent inhibitory activity against HDAC6 with IC50 in the submicromolar range from 0.56 ± 0.01 µM to 0.74 ± 0.02 µM. The results of the study of antiradical activity demonstrated the presence of moderate ability for some hydroxamic acids to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2ROO• radicals. The correlation coefficient between the DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC) value was R2 = 0.8400. In addition, compounds with an aromatic linker based on para-substituted cinnamic acids, having a monocyclic para-menthene skeleton as a Cap group, 35a, 38a, 35b and 38b, demonstrated a significant ability to suppress the aggregation of the pathological β-amyloid peptide 1-42. The 35a lead compound with a promising profile of biological activity, discovered in the in vitro experiments, demonstrated neuroprotective effects on in vivo models of Alzheimer's disease using 5xFAD transgenic mice. Together, the results obtained demonstrate a potential strategy for the use of monoterpene-derived hydroxamic acids for treatment of various aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Aldar Munkuev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Mozhaitsev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Suslov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Roman Begunov
- Biology and Ecology Faculty of P. G. Demidov Yaroslavl State University, Matrosova Ave., 9, Yaroslavl 150003, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| |
Collapse
|
5
|
Turkman N, Xu S, Huang CH, Eyermann C, Salino J, Khan P. High-Contrast PET Imaging with [ 18F]NT160, a Class-IIa Histone Deacetylase Probe for In Vivo Imaging of Epigenetic Machinery in the Central Nervous System. J Med Chem 2023; 66:5611-5621. [PMID: 37068265 PMCID: PMC10150721 DOI: 10.1021/acs.jmedchem.2c02064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 04/19/2023]
Abstract
We utilized positron emission tomography (PET) imaging in vivo to map the spatiotemporal biodistribution/expression of class-IIa histone deacetylases (class-IIa HDACs) in the central nervous system (CNS). Herein we report an improved radiosynthesis of [18F]NT160 using 4-hydroxy-TEMPO which led to a significant improvement in radiochemical yield and molar activity. PET imaging with [18F]NT160, a highly potent class-IIa HDAC inhibitor, led to high-quality and high-contrast images of the brain. [18F]NT160 displayed excellent pharmacokinetic and imaging characteristics: brain uptake is high in gray matter regions, tissue kinetics are appropriate for a 18F-tracer, and specific binding for class-IIa HDACs is demonstrated by self-blockade. Higher uptake with [18F]NT160 was observed in the hippocampus, thalamus, and cortex while the uptake in the cerebellum was relatively low. Overall, our current studies with [18F]NT160 will likely facilitate the development and clinical translation of PET tracers for imaging of class-IIa HDACs biodistribution/expression in cancer and the CNS.
Collapse
Affiliation(s)
- Nashaat Turkman
- Stony
Brook Cancer Center, Stony Brook, Long Island, New York 11794, United States
- Department
of Radiology, School of Medicine, Stony
Brook University, Long Island, New York 11794, United States
- Department
of Biomedical Engineering, Stony Brook University, Long Island, New York 11794, United States
| | - Sulan Xu
- Stony
Brook Cancer Center, Stony Brook, Long Island, New York 11794, United States
- Department
of Radiology, School of Medicine, Stony
Brook University, Long Island, New York 11794, United States
| | - Chun-Han Huang
- Stony
Brook Cancer Center, Stony Brook, Long Island, New York 11794, United States
- Department
of Radiology, School of Medicine, Stony
Brook University, Long Island, New York 11794, United States
- Department
of Biomedical Engineering, Stony Brook University, Long Island, New York 11794, United States
| | - Christopher Eyermann
- Department
of Radiology, School of Medicine, Stony
Brook University, Long Island, New York 11794, United States
- Department
of Surgery, School of Medicine, Stony Brook
University, Long Island, New York 11794, United States
| | - Julia Salino
- Stony
Brook Cancer Center, Stony Brook, Long Island, New York 11794, United States
- Department
of Radiology, School of Medicine, Stony
Brook University, Long Island, New York 11794, United States
| | - Palwasha Khan
- Stony
Brook Cancer Center, Stony Brook, Long Island, New York 11794, United States
- Department
of Radiology, School of Medicine, Stony
Brook University, Long Island, New York 11794, United States
| |
Collapse
|
6
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Everix L, Seane EN, Ebenhan T, Goethals I, Bolcaen J. Introducing HDAC-Targeting Radiopharmaceuticals for Glioblastoma Imaging and Therapy. Pharmaceuticals (Basel) 2023; 16:227. [PMID: 37259375 PMCID: PMC9967489 DOI: 10.3390/ph16020227] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 09/29/2023] Open
Abstract
Despite recent advances in multimodality therapy for glioblastoma (GB) incorporating surgery, radiotherapy, chemotherapy and targeted therapy, the overall prognosis remains poor. One of the interesting targets for GB therapy is the histone deacetylase family (HDAC). Due to their pleiotropic effects on, e.g., DNA repair, cell proliferation, differentiation, apoptosis and cell cycle, HDAC inhibitors have gained a lot of attention in the last decade as anti-cancer agents. Despite their known underlying mechanism, their therapeutic activity is not well-defined. In this review, an extensive overview is given of the current status of HDAC inhibitors for GB therapy, followed by an overview of current HDAC-targeting radiopharmaceuticals. Imaging HDAC expression or activity could provide key insights regarding the role of HDAC enzymes in gliomagenesis, thus identifying patients likely to benefit from HDACi-targeted therapy.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, 2610 Antwerpen, Belgium
| | - Elsie Neo Seane
- Department of Medical Imaging and Therapeutic Sciences, Cape Peninsula University of Technology, Cape Town 7530, South Africa
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility (PCIF), (NuMeRI) NPC, Pretoria 0001, South Africa
- Department of Science and Technology/Preclinical Drug Development Platform (PCDDP), North West University, Potchefstroom 2520, South Africa
- Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC laboratory, iThemba LABS, Cape Town 7131, South Africa
| |
Collapse
|
9
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Yoo CH, Chen Z, Rani N, Chen J, Rong J, Chen L, Zhang L, Liang SH, Wey HY. Evaluation of [ 18F]PF-06455943 as a Potential LRRK2 PET Imaging Agent in the Brain of Nonhuman Primates. ACS Chem Neurosci 2023; 14:370-377. [PMID: 36630128 DOI: 10.1021/acschemneuro.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the common causes of inherited Parkinson's disease (PD) and emerged as a causative PD gene. Particularly, LRRK2-Gly2019Ser mutation was reported to alter the early phase of neuronal differentiation, increasing cell death. Selective inhibitors of LRRK2 kinase activity were considered as a promising therapeutic target for PD treatment. However, the development of effective brain-penetrant LRRK2 inhibitors remains challenging. Recently, we have developed a novel positron emission tomography (PET) radioligand for LRRK2 imaging and demonstrated preferable tracer properties in rodents. Herein, we evaluate [18F]PF-06455943 quantification methods in the nonhuman primate (NHP) brain using full kinetic modeling with radiometabolite-corrected arterial blood samples, and homologous blocking with two doses (0.1 and 0.3 mg/kg). Kinetic analysis results demonstrated that a two-tissue compartmental model and a Logan graphical analysis are appropriate for [18F]PF-06455943 PET quantification. In addition, we observed that total distribution volume (VT) values can be reliably estimated with as short as a 30 min scan duration. Homologous blocking studies confirmed the specific binding of [18F]PF-06455943 and revealed that the nonradioactive mass of PF-06455943 achieved 45-55% of VT displacement in the whole brain. This work supports the translation of [18F]PF-06455943 PET imaging for the human brain and target occupancy studies.
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Nisha Rani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Laigao Chen
- Digital Medicine & Translational Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Lei Zhang
- Medicine Design, Internal Medicine Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
11
|
Pascoal TA, Chamoun M, Lax E, Wey HY, Shin M, Ng KP, Kang MS, Mathotaarachchi S, Benedet AL, Therriault J, Lussier FZ, Schroeder FA, DuBois JM, Hightower BG, Gilbert TM, Zürcher NR, Wang C, Hopewell R, Chakravarty M, Savard M, Thomas E, Mohaddes S, Farzin S, Salaciak A, Tullo S, Cuello AC, Soucy JP, Massarweh G, Hwang H, Kobayashi E, Hyman BT, Dickerson BC, Guiot MC, Szyf M, Gauthier S, Hooker JM, Rosa-Neto P. [ 11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer's disease. Nat Commun 2022; 13:4171. [PMID: 35853847 PMCID: PMC9296476 DOI: 10.1038/s41467-022-30653-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the brain accumulation of amyloid-β and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-β and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-β, tau, and class I histone deacetylase (HDAC I isoforms 1–3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-β PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-β and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-β plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology. The link between amyloid and tau proteins with Alzheimer’s disease progression remains unclear. Here, the authors propose HDACs I downregulation as an element linking the deleterious effects of brain proteinopathies with disease progression.
Collapse
Affiliation(s)
- Tharick A Pascoal
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.,Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Hsiao-Ying Wey
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Monica Shin
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Kok Pin Ng
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Frederick A Schroeder
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan M DuBois
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Baileigh G Hightower
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tonya M Gilbert
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nicole R Zürcher
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Changning Wang
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Robert Hopewell
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mallar Chakravarty
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Emilie Thomas
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sara Mohaddes
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sarah Farzin
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Alyssa Salaciak
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - Stephanie Tullo
- Departments of Biological and Biomedical Engineering and Psychiatry, Douglas Mental Health University Institute, Brain Imaging Centre, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heungsun Hwang
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford C Dickerson
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Psychology, McGill University, Montreal, QC, Canada
| | | | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jacob M Hooker
- Neurology Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Faculty of Medicine, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada. .,Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Bai P, Mondal P, Bagdasarian FA, Rani N, Liu Y, Gomm A, Tocci DR, Choi SH, Wey HY, Tanzi RE, Zhang C, Wang C. Development of a potential PET probe for HDAC6 imaging in Alzheimer’s disease. Acta Pharm Sin B 2022; 12:3891-3904. [PMID: 36213537 PMCID: PMC9532562 DOI: 10.1016/j.apsb.2022.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Although the epigenetic regulatory protein histone deacetylase 6 (HDAC6) has been recently implicated in the etiology of Alzheimer's disease (AD), little is known about the role of HDAC6 in the etiopathogenesis of AD and whether HDAC6 can be a potential therapeutic target for AD. Here, we performed positron emission tomography (PET) imaging in combination with histopathological analysis to better understand the underlying pathomechanisms of HDAC6 in AD. We first developed [18F]PB118 which was demonstrated as a valid HDAC6 radioligand with excellent brain penetration and high specificity to HDAC6. PET studies of [18F]PB118 in 5xFAD mice showed significantly increased radioactivity in the brain compared to WT animals, with more pronounced changes identified in the cortex and hippocampus. The translatability of this radiotracer for AD in a potential human use was supported by additional studies, including similar uptake profiles in non-human primates, an increase of HDAC6 in AD-related human postmortem hippocampal tissues by Western blotting protein analysis, and our ex vivo histopathological analysis of HDAC6 in postmortem brain tissues of our animals. Collectively, our findings show that HDAC6 may lead to AD by mechanisms that tend to affect brain regions particularly susceptible to AD through an association with amyloid pathology.
Collapse
Affiliation(s)
- Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Frederick A. Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nisha Rani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Darcy R. Tocci
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Corresponding authors. Tel.: +1 617 724 3983; fax: +1 617 726 7422.
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Corresponding authors. Tel.: +1 617 724 3983; fax: +1 617 726 7422.
| |
Collapse
|
13
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Clauß O, Schäker-Hübner L, Wenzel B, Toussaint M, Deuther-Conrad W, Gündel D, Teodoro R, Dukić-Stefanović S, Ludwig FA, Kopka K, Brust P, Hansen FK, Scheunemann M. Development and Biological Evaluation of the First Highly Potent and Specific Benzamide-Based Radiotracer [ 18F]BA3 for Imaging of Histone Deacetylases 1 and 2 in Brain. Pharmaceuticals (Basel) 2022; 15:ph15030324. [PMID: 35337122 PMCID: PMC8950173 DOI: 10.3390/ph15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.
Collapse
Affiliation(s)
- Oliver Clauß
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Correspondence: (O.C.); (M.S.)
| | - Linda Schäker-Hübner
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (L.S.-H.); (F.K.H.)
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Sladjana Dukić-Stefanović
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Finn K. Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (L.S.-H.); (F.K.H.)
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Correspondence: (O.C.); (M.S.)
| |
Collapse
|
15
|
Hopewell R, Jolly D, Li QY, Ross K, Tsai IH, Lactus-Samoila M, Soucy JP, Kobayashi E, Rosa-Neto P, Massarweh G. High-yielding, automated radiosynthesis of [ 11 C]martinostat using [ 11 C]methyl triflate. J Labelled Comp Radiopharm 2022; 65:167-173. [PMID: 35218059 DOI: 10.1002/jlcr.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
Histone deacetylases (HDACs) mediate epigenetic mechanisms implicated in a broad range of central nervous system dysfunction, including neurodegenerative diseases and neuropsychiatric disorders. [11 C]Martinostat allows in vivo quantification of class I/IIb HDACs and may be useful for the quantification of drug-occupancy relationship, facilitating drug development for disease modifying therapies. The present study reports a radiosynthesis of [11 C]martinostat using [11 C]methyl triflate in ethanol, as opposed to the originally described synthesis using [11 C]methyl iodide and DMSO. [11 C]Methyl triflate is trapped in a solution of 2 mg of precursor 1 dissolved in anhydrous ethanol (400 μl), reacted at ambient temperature for 5 minutes, and purified by high-performance liquid chromatography. 1.5-1.8 GBq (41-48 mCi; n=3) of formulated [11 C]martinostat was obtained from solid phase extraction using a hydrophilic-lipophilic cartridge in a radiochemical yield of 11.4 ± 1.1% (non-decay corrected to trapped [11 C]MeI), with a molar activity of 369 ± 53 GBq/μmol (9.97 ± 1.3 Ci/μmol) at the end of synthesis (40 min) and validated for human use. This methodology was used at our production site to produce [11 C]martinostat in sufficient quantities of activity to scan humans, including losses incurred from decay during pre-release quality control testing.
Collapse
Affiliation(s)
- Robert Hopewell
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Dean Jolly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qian Ying Li
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Karen Ross
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - I-Huang Tsai
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Turkman N, Liu D, Pirola I. Design, synthesis, biochemical evaluation, radiolabeling and in vivo imaging with high affinity class-IIa histone deacetylase inhibitor for molecular imaging and targeted therapy. Eur J Med Chem 2022; 228:114011. [PMID: 34875522 PMCID: PMC8919062 DOI: 10.1016/j.ejmech.2021.114011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022]
Abstract
Herein, we describe the design, synthesis and deciphering of the key characteristics of the structure activity relationship (SAR) of trifluoromethyloxadiazole (TFMO) bearing class-IIa HDAC inhibitors. Our medicinal chemistry campaign of 23 compounds identified compound 1 as a highly potent inhibitor with sub nM affinity to class-IIa HDAC4 isoform. Therefore, We radiolabeled compound 1 (named thereafter as NT160) with [18F]fluoride thus producing the identical [18F]-NT160 as a diagnostic tool for positron emission tomography (PET). [18F]-NT160 was produced in high radiochemical purity (>95%), moderate radiochemical yield (2−5%) and moderate molar activity in the range of 0.30−0.85 GBq/umol (8.0−23.0 mCi/umol). We also established that [18F]-NT160 can cross the blood brain barrier and bind to class-IIa HDACs in vivo. The combination of [18F]-NT160 and 1 represent a novel theranostic pair using the same molecule to enable diagnostic PET imaging with [18F]-NT160 followed by targeted therapy with NT160.
Collapse
Affiliation(s)
- Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, USA; Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY, USA.
| | - Daxing Liu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, USA; Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY, USA
| | - Isabella Pirola
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, USA; Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY, USA
| |
Collapse
|
17
|
Donovan LL, Magnussen JH, Dyssegaard A, Lehel S, Hooker JM, Knudsen GM, Hansen HD. Imaging HDACs In Vivo: Cross-Validation of the [ 11C]Martinostat Radioligand in the Pig Brain. Mol Imaging Biol 2021; 22:569-577. [PMID: 31290052 DOI: 10.1007/s11307-019-01403-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE With the emerging knowledge about the impact of epigenetic alterations on behavior and brain disorders, the ability to measure epigenetic alterations in brain tissue in vivo has become critically important. We present the first in vivo/in vitro cross-validation of the novel positron emission tomography (PET) radioligand [11C]Martinostat in the pig brain with regard to its ability to measure histone deacetylase 1-3 (HDAC1-3) levels in vivo. PROCEDURES Nine female Danish landrace pigs underwent 121-min dynamic PET scans with [11C]Martinostat. We quantified [11C]Martinostat uptake using both a simple ratio method and kinetic models with arterial input function. By the end of the scan, the animals were euthanized and the brains were extracted. We measured HDAC1-3 protein levels in frontal cortex, cerebellum vermis, and hippocampus and compared the protein levels and regional outcome values to the [11C]Martinostat PET quantification. RESULTS [11C]Martinostat distributed widely across brain regions, with the highest uptake in the cerebellum vermis and the lowest in the olfactory bulbs. Based on the Akaike information criterion, the quantification was most reliably performed by Ichise MA1 kinetic modeling, but since the radioligand displayed very slow kinetics, we also calculated standard uptake value (SUV) ratios which correlated well with VT. The western blots revealed higher brain tissue protein levels of HDAC1/2 compared to HDAC3, and HDAC1 and HDAC2 levels were highly correlated in all three investigated brain regions. The in vivo SUV ratio measure correlated well with the in vitro HDAC1-3 levels, whereas no correlation was found between VT values and HDAC levels. CONCLUSIONS We found good correlation between in vivo measured SUV ratios and in vitro measures of HDAC 1-3 proteins, supporting that [11C]Martinostat provides a good in vivo measure of the cerebral HDAC1-3 protein levels.
Collapse
Affiliation(s)
- L L Donovan
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - J H Magnussen
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark
| | - A Dyssegaard
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark
| | - S Lehel
- PET and Cyclotron Unit, Copenhagen University Hospital Rigshospitalet, 2100, Copenhagen O, Denmark
| | - J M Hooker
- MGH/HST A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - G M Knudsen
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - H D Hansen
- Neurobiology Research Unit and Center for NeuroPharm, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen O, Denmark.
| |
Collapse
|
18
|
Novel late-stage radiosynthesis of 5-[18F]-trifluoromethyl-1,2,4-oxadiazole (TFMO) containing molecules for PET imaging. Sci Rep 2021; 11:10668. [PMID: 34021207 PMCID: PMC8139947 DOI: 10.1038/s41598-021-90069-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Small molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.
Collapse
|
19
|
Park HS, Kim J, Ahn SH, Ryu HY. Epigenetic Targeting of Histone Deacetylases in Diagnostics and Treatment of Depression. Int J Mol Sci 2021; 22:5398. [PMID: 34065586 PMCID: PMC8160658 DOI: 10.3390/ijms22105398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Depression is a highly prevalent, disabling, and often chronic illness that places substantial burdens on patients, families, healthcare systems, and the economy. A substantial minority of patients are unresponsive to current therapies, so there is an urgent need to develop more broadly effective, accessible, and tolerable therapies. Pharmacological regulation of histone acetylation level has been investigated as one potential clinical strategy. Histone acetylation status is considered a potential diagnostic biomarker for depression, while inhibitors of histone deacetylases (HDACs) have garnered interest as novel therapeutics. This review describes recent advances in our knowledge of histone acetylation status in depression and the therapeutic potential of HDAC inhibitors.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 47392, Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Korea;
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
20
|
Zürcher NR, Roberts VHJ, Schabel MC, Edlow AG, Hooker JM, Lo JO. Imaging Epigenetics of Prenatal THC. ACS Chem Neurosci 2021; 12:1466-1468. [PMID: 33852273 PMCID: PMC9843704 DOI: 10.1021/acschemneuro.1c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prenatal exposure to marijuana may lead to epigenetic alterations in the placenta and fetal brain, affecting short- and long-term offspring health. This Viewpoint addresses the critical need to study and characterize the impact of maternal marijuana use and consequences of in utero exposure on later development and health. We highlight the development of new PET imaging tools and the opportunity for longitudinal in vivo non-human primate studies to help elucidate epigenetic changes resulting from prenatal marijuana exposure throughout gestation.
Collapse
Affiliation(s)
- Nicole R. Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Victoria HJ. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Matthias C. Schabel
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Massachusetts General Hospital; Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jamie O. Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA,Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Abstract
Imaging has made an immense contribution toward supporting the diagnosis of dementias, detecting preclinical and prodromal pathology, and allowing disease progression to be objectively tracked. This has led to consensus guidelines for the use of imaging in dementias to be published and a future task will be to validate these guidelines. Additionally, there needs to be standardised approaches over the use of binary thresholds when assigning an abnormality status. Other medical unmet needs include the need for specific imaging markers of (1) linear tau tangles, TDP-43 and alpha synuclein aggregates; (2) microglial phenotypes that throw light on the activity of these inflammatory cells; (3) activity of intracellular processes which normally act to clear misfolded proteins; (4) epigenetic activity which regulates gene expression. Future imaging studies are predicted to be active in all these areas. Finally, as safer and more effective immunotherapy and other protective strategies against the pathologies of dementias are developed and trialed, imaging will play a major future role in determining the efficacy of neuroprotective treatments and their mechanism of action to be examined.
Collapse
Affiliation(s)
- David J Brooks
- Translational and Clinical Research Institute, University of Newcastle upon Tyne, UK; Department of Nuclear Medicine, PET Centre, Aarhus University, Denmark; Department of Brain Sciences, Imperial College London, UK.
| |
Collapse
|
22
|
Gullberg GT, Shrestha UM, Seo Y. PET imaging of glucose and fatty acid metabolism for NAFLD patients. J Nucl Cardiol 2020; 27:1689-1697. [PMID: 30547298 PMCID: PMC8356561 DOI: 10.1007/s12350-018-01532-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Grant T Gullberg
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Uttam M Shrestha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Villa C, Lavitrano M, Salvatore E, Combi R. Molecular and Imaging Biomarkers in Alzheimer's Disease: A Focus on Recent Insights. J Pers Med 2020; 10:jpm10030061. [PMID: 32664352 PMCID: PMC7565667 DOI: 10.3390/jpm10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly, affecting millions of people worldwide and clinically characterized by a progressive and irreversible cognitive decline. The rapid increase in the incidence of AD highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods rely on measures of amyloid-β (Aβ), phosphorylated (p-tau) and total tau (t-tau) protein levels in the cerebrospinal fluid (CSF) aided by advanced neuroimaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI). However, the invasiveness of these procedures and the high cost restrict their utilization. Hence, biomarkers from biological fluids obtained using non-invasive methods and novel neuroimaging approaches provide an attractive alternative for the early diagnosis of AD. Such biomarkers may also be helpful for better understanding of the molecular mechanisms underlying the disease, allowing differential diagnosis or at least prolonging the pre-symptomatic stage in patients suffering from AD. Herein, we discuss the advantages and limits of the conventional biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Institute for the Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy;
| | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy;
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (R.C.)
| |
Collapse
|
24
|
Tseng CEJ, Gilbert TM, Catanese MC, Hightower BG, Peters AT, Parmar AJ, Kim M, Wang C, Roffman JL, Brown HE, Perlis RH, Zürcher NR, Hooker JM. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl Psychiatry 2020; 10:224. [PMID: 32641695 PMCID: PMC7343804 DOI: 10.1038/s41398-020-00911-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of bipolar disorder (BD) is unknown and the neurobiological underpinnings are not fully understood. Both genetic and environmental factors contribute to the risk of BD, which may be linked through epigenetic mechanisms, including those regulated by histone deacetylase (HDAC) enzymes. This study measures in vivo HDAC expression in individuals with BD for the first time using the HDAC-specific radiotracer [11C]Martinostat. Eleven participants with BD and 11 age- and sex-matched control participants (CON) completed a simultaneous magnetic resonance - positron emission tomography (MR-PET) scan with [11C]Martinostat. Lower [11C]Martinostat uptake was found in the right amygdala of BD compared to CON. We assessed uptake in the dorsolateral prefrontal cortex (DLPFC) to compare previous findings of lower uptake in the DLPFC in schizophrenia and found no group differences in BD. Exploratory whole-brain voxelwise analysis showed lower [11C]Martinostat uptake in the bilateral thalamus, orbitofrontal cortex, right hippocampus, and right amygdala in BD compared to CON. Furthermore, regional [11C]Martinostat uptake was associated with emotion regulation in BD in fronto-limbic areas, which aligns with findings from previous structural, functional, and molecular neuroimaging studies in BD. Regional [11C]Martinostat uptake was associated with attention in BD in fronto-parietal and temporal regions. These findings indicate a potential role of HDACs in BD pathophysiology. In particular, HDAC expression levels may modulate attention and emotion regulation, which represent two core clinical features of BD.
Collapse
Affiliation(s)
- Chieh-En J. Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Tonya M. Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Mary C. Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Baileigh G. Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Amy T. Peters
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Anjali J. Parmar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Joshua L. Roffman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Hannah E. Brown
- grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Roy H. Perlis
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Nicole R. Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| |
Collapse
|
25
|
Clinical validation of the novel HDAC6 radiotracer [ 18F]EKZ-001 in the human brain. Eur J Nucl Med Mol Imaging 2020; 48:596-611. [PMID: 32638097 PMCID: PMC7835181 DOI: 10.1007/s00259-020-04891-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Purpose Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that modulates intracellular transport and protein quality control. Inhibition of HDAC6 deacetylase activity has shown beneficial effects in disease models, including Alzheimer’s disease and amyotrophic lateral sclerosis. This first-in-human positron emission tomography (PET) study evaluated the brain binding of [18F]EKZ-001 ([18F]Bavarostat), a radiotracer selective for HDAC6, in healthy adult subjects. Methods Biodistribution and radiation dosimetry studies were performed in four healthy subjects (2M/2F, 23.5 ± 2.4 years) using sequential whole-body PET/CT. The most appropriate kinetic model to quantify brain uptake was determined in 12 healthy subjects (6M/6F, 57.6 ± 3.7 years) from 120-min dynamic PET/MR scans using a radiometabolite-corrected arterial plasma input function. Four subjects underwent retest scans (2M/2F, 57.3 ± 5.6 years) with a 1-day interscan interval to determine test-retest variability (TRV). Regional volume of distribution (VT) was calculated using one-tissue and two-tissue compartment models (1-2TCM) and Logan graphical analysis (LGA), with time-stability assessed. VT differences between males and females were evaluated using volume of interest and whole-brain voxel-wise approaches. Results The effective dose was 39.1 ± 7.0 μSv/MBq. Based on the Akaike information criterion, 2TCM was the preferred model compared to 1TCM. Regional LGA VT were in agreement with 2TCM VT, however demonstrated a lower absolute TRV of 7.7 ± 4.9%. Regional VT values were relatively homogeneous with highest values in the hippocampus and entorhinal cortex. Reduction of acquisition time was achieved with a 0 to 60-min scan followed by a 90 to 120-min scan. Males demonstrated significantly higher VT than females in the majority of cortical and subcortical brain regions. No relevant radiotracer related adverse events were reported. Conclusion [18F]EKZ-001 is safe and appropriate for quantifying HDAC6 expression in the human brain with Logan graphical analysis as the preferred quantitative approach. Males showed higher HDAC6 expression across the brain compared to females.
Collapse
|
26
|
Chouliaras L, Kumar GS, Thomas AJ, Lunnon K, Chinnery PF, O'Brien JT. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog Neurobiol 2020; 192:101822. [PMID: 32407744 DOI: 10.1016/j.pneurobio.2020.101822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
Lewy body dementia encompasses both dementia with Lewy bodies and Parkinson's disease dementia. Although both are common causes of dementia, they remain relatively understudied. The review summarises the clinico-pathologic characteristics of Lewy Body dementia and discusses the genetic and environmental evidence contributing to the risk of developing the condition. Considering that the pathophysiology of Lewy body dementia is not yet fully understood, here we focus on the role of epigenetic mechanisms as potential key mediators of gene-environment interactions in the development of the disease. We examine available important data on genomics, epigenomics, gene expression and proteomic studies in Lewy body dementia on human post-mortem brain and peripheral tissues. Genetic variation and epigenetic modifications in key genes involved in the disorder, such as apolipoprotein E (APOE), α-synuclein (SNCA) and glucocerobrosidase (GBA), suggest a central involvement of epigenetics in DLB but conclusive evidence is scarce. This is due to limitations of existing literature, such as small sample sizes, lack of replication and lack of studies interrogating cell-type specific epigenetic modifications in the brain. Future research in the field can improve the understanding of this common but complex and rapidly progressing type of dementia and potentially open early diagnostic and effective therapeutic targets.
Collapse
Affiliation(s)
| | - Gautham S Kumar
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Alan J Thomas
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Katie Lunnon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
28
|
Tago T, Toyohara J, Ishii K. Radiosynthesis and preliminary evaluation of an 18 F-labeled tubastatin A analog for PET imaging of histone deacetylase 6. J Labelled Comp Radiopharm 2020; 63:85-95. [PMID: 31881107 DOI: 10.1002/jlcr.3823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family because of its characteristics, namely, its cytoplasmic localization and ubiquitin binding. HDAC6 has been implicated in cancer metastasis and neurodegeneration. In the present study, we performed radiosynthesis and biological evaluation of a fluorine-18-labeled ligand [18 F]3, which is an analog of the HDAC6-selective inhibitor tubastatin A, for positron emission tomography (PET) imaging. [18 F]3 was synthesized by a two-step reaction composed of 18 F-fluorination and formation of a hydroxamic acid group. IC50 values of 3 against HDAC1 and HDAC6 activities were 996 nM and 33.1 nM, respectively. A biodistribution study in mice demonstrated low brain uptake of [18 F]3. Furthermore, bone radioactivity was stable at around 2% ID/g after injection, suggesting high tolerance to defluorination. Regarding metabolic stability, 70% of the compound was observed as the unchanged form at 30 minutes post injection in mouse plasma. A small animal PET study in mice showed that pretreatment with cyclosporine A had no effect on initial brain uptake of [18 F]3, suggesting low brain uptake of [18 F]3 was not caused by the P-glycoprotein-mediated efflux. While PET imaging using [18 F]3 has a limitation with respect to neurodegenerative diseases, further studies evaluating its utility for certain cancers are worth evaluating.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
29
|
Neuroepigenetic signatures of age and sex in the living human brain. Nat Commun 2019; 10:2945. [PMID: 31270332 PMCID: PMC6610136 DOI: 10.1038/s41467-019-11031-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Age- and sex-related alterations in gene transcription have been demonstrated, however the underlying mechanisms are unresolved. Neuroepigenetic pathways regulate gene transcription in the brain. Here, we measure in vivo expression of the epigenetic enzymes, histone deacetylases (HDACs), across healthy human aging and between sexes using [11C]Martinostat positron emission tomography (PET) neuroimaging (n = 41). Relative HDAC expression increases with age in cerebral white matter, and correlates with age-associated disruptions in white matter microstructure. A post mortem study confirmed that HDAC1 and HDAC2 paralogs are elevated in white matter tissue from elderly donors. There are also sex-specific in vivo HDAC expression differences in brain regions associated with emotion and memory, including the amygdala and hippocampus. Hippocampus and white matter HDAC expression negatively correlates with emotion regulation skills (n = 23). Age and sex are associated with HDAC expression in vivo, which could drive age- and sex-related transcriptional changes and impact human behavior. Gene transcription is known to vary with age and sex, although the underlying mechanisms are unresolved. Here, the authors show that epigenetic enzymes known as HDACs, which regulate gene transcription, are increasingly expressed with age in the living human brain, with sex differences also observed.
Collapse
|
30
|
Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer's Disease. Mol Neurodegener 2019; 14:21. [PMID: 31174557 PMCID: PMC6555939 DOI: 10.1186/s13024-019-0325-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, over five million Americans suffer with Alzheimer's disease (AD). In the absence of a cure, this number could increase to 13.8 million by 2050. A critical goal of biomedical research is to establish indicators of AD during the preclinical stage (i.e. biomarkers) allowing for early diagnosis and intervention. Numerous advances have been made in developing biomarkers for AD using neuroimaging approaches. These approaches offer tremendous versatility in terms of targeting distinct age-related and pathophysiological mechanisms such as structural decline (e.g. volumetry, cortical thinning), functional decline (e.g. fMRI activity, network correlations), connectivity decline (e.g. diffusion anisotropy), and pathological aggregates (e.g. amyloid and tau PET). In this review, we survey the state of the literature on neuroimaging approaches to developing novel biomarkers for the amnestic form of AD, with an emphasis on combining approaches into multimodal biomarkers. We also discuss emerging methods including imaging epigenetics, neuroinflammation, and synaptic integrity using PET tracers. Finally, we review the complementary information that neuroimaging biomarkers provide, which highlights the potential utility of composite biomarkers as suitable outcome measures for proof-of-concept clinical trials with experimental therapeutics.
Collapse
Affiliation(s)
- Freddie Márquez
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92697, USA.
| | - Michael A Yassa
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
31
|
Gilbert TM, Zürcher NR, Wu CJ, Bhanot A, Hightower BG, Kim M, Albrecht DS, Wey HY, Schroeder FA, Rodriguez-Thompson A, Morin TM, Hart KL, Pellegrini AM, Riley MM, Wang C, Stufflebeam SM, Haggarty SJ, Holt DJ, Loggia ML, Perlis RH, Brown HE, Roffman JL, Hooker JM. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J Clin Invest 2018; 129:364-372. [PMID: 30530989 DOI: 10.1172/jci123743] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with schizophrenia (SCZ) experience chronic cognitive deficits. Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry; however, the role of HDACs in cognitive disorders, including SCZ, remains unknown in humans. We previously determined that HDAC2 mRNA levels were lower in dorsolateral prefrontal cortex (DLPFC) tissue from donors with SCZ compared with controls. Here we investigated the relationship between in vivo HDAC expression and cognitive impairment in patients with SCZ and matched healthy controls using [11C]Martinostat positron emission tomography (PET). METHODS In a case-control study, relative [11C]Martinostat uptake was compared between 14 patients with SCZ or schizoaffective disorder (SCZ/SAD) and 17 controls using hypothesis-driven region-of-interest analysis and unbiased whole brain voxel-wise approaches. Clinical measures, including the MATRICS consensus cognitive battery, were administered. RESULTS Relative HDAC expression was lower in the DLPFC of patients with SCZ/SAD compared with controls, and HDAC expression positively correlated with cognitive performance scores across groups. Patients with SCZ/SAD also showed lower relative HDAC expression in the dorsomedial prefrontal cortex and orbitofrontal gyrus, and higher relative HDAC expression in the cerebral white matter, pons, and cerebellum compared with controls. CONCLUSIONS These findings provide in vivo evidence of HDAC dysregulation in patients with SCZ and suggest that altered HDAC expression may impact cognitive function in humans. FUNDING National Institute of Mental Health (NIMH), Brain and Behavior Foundation, Massachusetts General Hospital (MGH), Athinoula A. Martinos Center for Biomedical Imaging, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH Shared Instrumentation Grant Program.
Collapse
Affiliation(s)
- Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christine J Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anisha Bhanot
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anais Rodriguez-Thompson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Thomas M Morin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | - Misha M Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Stephen J Haggarty
- Center for Genomic Medicine.,Department of Neurology, and.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne J Holt
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Roy H Perlis
- Center for Genomic Medicine.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Hannah E Brown
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua L Roffman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
32
|
Jung YJ, Kim YH, Bhalla M, Lee SB, Seo J. Genomics: New Light on Alzheimer's Disease Research. Int J Mol Sci 2018; 19:E3771. [PMID: 30486438 PMCID: PMC6321384 DOI: 10.3390/ijms19123771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that represents a major cause of death in many countries. AD is characterized by profound memory loss, disruptions in thinking and reasoning, and changes in personality and behavior followed by malfunctions in various bodily systems. Although AD was first identified over 100 years ago, and tremendous efforts have been made to cure the disease, the precise mechanisms underlying the onset of AD remain unclear. The recent development of next-generation sequencing tools and bioinformatics has enabled us to investigate the role of genetics in the pathogenesis of AD. In this review, we discuss novel discoveries in this area, including the results of genome-wide association studies (GWAS) that have implicated a number of novel genes as risk factors, as well as the identification of epigenetic regulators strongly associated with the onset and progression of AD. We also review how genetic risk factors may interact with age-associated, progressive decreases in cognitive function in patients with AD.
Collapse
Affiliation(s)
- Yeong Ju Jung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea.
| | - Yoon Ha Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea.
| | - Mridula Bhalla
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea.
| | - Jinsoo Seo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea.
| |
Collapse
|
33
|
Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [ 18F]-2-Fluorobenzoylaminohexanoicanilide. J Med Chem 2018; 61:7116-7130. [PMID: 30052441 DOI: 10.1021/acs.jmedchem.8b00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that plays significant roles in the regulation of lifespan, metabolism, memory, and circadian rhythms and in the mechanisms of many diseases. However, methods of monitoring the pharmacodynamics of SIRT1-targeted drugs are limited to blood sampling because of the invasive nature of biopsies. For the noninvasive monitoring of the spatial and temporal dynamics of SIRT1 expression-activity in vivo by PET-CT-MRI, we developed a novel substrate-type radiotracer, [18F]-2-fluorobenzoylaminohexanoicanilide (2-[18F]BzAHA). PET-CT-MRI studies in rats demonstrated increased accumulation of 2-[18F]BzAHA-derived radioactivity in the hypothalamus, hippocampus, nucleus accumbens, and locus coeruleus, consistent with autoradiographic and immunofluorescent (IMF) analyses of brain-tissue sections. Pretreatment with the SIRT1 specific inhibitor, EX-527 (5 mg/kg, ip), resulted in about a 20% reduction of 2-[18F]BzAHA-derived-radioactivity accumulation in these structures. In vivo imaging of SIRT1 expression-activity should facilitate studies that improve the understanding of SIRT1-mediated regulation in the brain and aid in the development and clinical translation of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Robin Bonomi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Vadim Popov
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Maxwell T Laws
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - David Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Anjoy Majhi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Aleksandr Shavrin
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | | | | | - Nashaat Turkman
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Renshyan Liu
- National Taiwan University , Taipei City 10617 , Taiwan
| | | | - Juri G Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| |
Collapse
|
34
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
35
|
Tago T, Toyohara J. Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases. Molecules 2018; 23:E300. [PMID: 29385079 PMCID: PMC6017260 DOI: 10.3390/molecules23020300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/05/2022] Open
Abstract
Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs), which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET). We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
36
|
Wey HY, Gilbert TM, Zürcher NR, She A, Bhanot A, Taillon BD, Schroeder FA, Wang C, Haggarty SJ, Hooker JM. Insights into neuroepigenetics through human histone deacetylase PET imaging. Sci Transl Med 2017; 8:351ra106. [PMID: 27510902 DOI: 10.1126/scitranslmed.aaf7551] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Epigenetic dysfunction is implicated in many neurological and psychiatric diseases, including Alzheimer's disease and schizophrenia. Consequently, histone deacetylases (HDACs) are being aggressively pursued as therapeutic targets. However, a fundamental knowledge gap exists regarding the expression and distribution of HDACs in healthy individuals for comparison to disease states. Here, we report the first-in-human evaluation of neuroepigenetic regulation in vivo. Using positron emission tomography with [(11)C]Martinostat, an imaging probe selective for class I HDACs (isoforms 1, 2, and 3), we found that HDAC expression is higher in cortical gray matter than in white matter, with conserved regional distribution patterns within and between healthy individuals. Among gray matter regions, HDAC expression was lowest in the hippocampus and amygdala. Through biochemical profiling of postmortem human brain tissue, we confirmed that [(11)C]Martinostat selectively binds HDAC isoforms 1, 2, and 3, the HDAC subtypes most implicated in regulating neuroplasticity and cognitive function. In human stem cell-derived neural progenitor cells, pharmacologic-level doses of Martinostat induced changes in genes closely associated with synaptic plasticity, including BDNF (brain-derived neurotrophic factor) and SYP (synaptophysin), as well as genes implicated in neurodegeneration, including GRN (progranulin), at the transcript level, in concert with increased acetylation at both histone H3 lysine 9 and histone H4 lysine 12. This study quantifies HDAC expression in the living human brain and provides the foundation for gaining unprecedented in vivo epigenetic information in health and disease.
Collapse
Affiliation(s)
- Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anisha Bhanot
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brendan D Taillon
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Fredrick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Changing Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
37
|
Strebl M, Campbell AJ, Zhao WN, Schroeder FA, Riley MM, Chindavong PS, Morin TM, Haggarty SJ, Wagner FF, Ritter T, Hooker JM. HDAC6 Brain Mapping with [ 18F]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination. ACS CENTRAL SCIENCE 2017; 3:1006-1014. [PMID: 28979942 PMCID: PMC5620987 DOI: 10.1021/acscentsci.7b00274] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 05/23/2023]
Abstract
Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulates tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [18F]Bavarostat. Finally, by using [18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.
Collapse
Affiliation(s)
- Martin
G. Strebl
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Arthur J. Campbell
- Stanley
Center for Psychiatric Research, Broad Institute
of MIT and Harvard, 75
Ames Street, Cambridge, Massachusetts 02142, United States
| | - Wen-Ning Zhao
- Chemical
Neurobiology Laboratory, Center for Genomic Medicine, Department of
Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Frederick A. Schroeder
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Misha M. Riley
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Peter S. Chindavong
- Chemical
Neurobiology Laboratory, Center for Genomic Medicine, Department of
Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas M. Morin
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Tufts University, 419 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Stephen J. Haggarty
- Chemical
Neurobiology Laboratory, Center for Genomic Medicine, Department of
Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Florence F. Wagner
- Stanley
Center for Psychiatric Research, Broad Institute
of MIT and Harvard, 75
Ames Street, Cambridge, Massachusetts 02142, United States
| | - Tobias Ritter
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
- Division
of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Division
of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| |
Collapse
|
38
|
Schroeder FA, Gilbert TM, Feng N, Taillon BD, Volkow ND, Innis RB, Hooker JM, Lipska BK. Expression of HDAC2 but Not HDAC1 Transcript Is Reduced in Dorsolateral Prefrontal Cortex of Patients with Schizophrenia. ACS Chem Neurosci 2017; 8:662-668. [PMID: 27959513 PMCID: PMC5436730 DOI: 10.1021/acschemneuro.6b00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
![]()
Postmortem brain
studies support dysregulated expression of the
histone deacetylase enzymes, HDAC1 and HDAC2, as a central feature
in diseases including schizophrenia, bipolar disorder, and depression.
Our objective was to investigate HDAC expression in a large postmortem
sample set representing healthy and disease brains. We used >700
well-characterized
samples from patients diagnosed with schizophrenia (n = 175), major depressive disorder (n = 135), and
bipolar disorder (n = 61) to measure HDAC1 and HDAC2 transcript levels by quantitative real-time
PCR in dorsolateral prefrontal cortex (DLPFC) and caudate compared
to control samples. HDAC expression was calculated
relative to the geometric mean of β-2-microglobulin, β-glucuronidase,
and β-actin. In adult-age DLPFC, HDAC2 was
decreased by 34% in schizophrenia samples compared to controls (p < 10–4). HDAC2 was
significantly upregulated in major depressive disorder samples by
17% versus controls (p = 0.002). Neither smoking
history nor therapeutic drugs impacted HDAC2 levels
and no HDAC1 patient-control differences were observed.
In caudate, HDAC levels were unchanged between patient
and control groups. In control DLPFC, age fetal week 14 to 97 years
(n = 326), both HDAC1 and HDAC2 levels sharply declined around birth and stabilized
thereafter. Using by far the largest postmortem sample set on this
topic, our major finding (decreased HDAC2 transcript)
showed notable specificity in disease (schizophrenia but not major
depressive disorder), HDAC subtype (HDAC2 but not HDAC1) and brain region (DLPFC but not caudate). These differences
shape understanding of regional components of neural circuitry in
the diseased brain and set a benchmark to quantify HDAC density and
distribution using in vivo neuroimaging tools.
Collapse
Affiliation(s)
- Frederick A. Schroeder
- Athinoula
A. Martinos Center, Department of Radiology, Massachusetts General
Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tonya M. Gilbert
- Athinoula
A. Martinos Center, Department of Radiology, Massachusetts General
Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ningping Feng
- Human Brain
Collection
Core, Division of Intramural Research Programs, National Institute
of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Brendan D. Taillon
- Athinoula
A. Martinos Center, Department of Radiology, Massachusetts General
Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nora D. Volkow
- National Institute
on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert B. Innis
- Molecular Imaging
Branch, National Institute of Mental Health, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center, Department of Radiology, Massachusetts General
Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Barbara K. Lipska
- Human Brain
Collection
Core, Division of Intramural Research Programs, National Institute
of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
39
|
Ricq EL, Hooker JM, Haggarty SJ. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci 2016; 70:536-550. [PMID: 27485392 PMCID: PMC5764164 DOI: 10.1111/pcn.12426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders. Furthermore, environmental factors have been implicated in the increased risk of heterogeneous, multifactorial, neuropsychiatric disorders via epigenetic mechanisms. Aberrant epigenetic regulation of gene expression thus provides an attractive unifying model for understanding the complex risk architecture of mental illness. Here, we review emerging genetic evidence implicating dysregulation of histone lysine methylation in neuropsychiatric disease and outline advancements in small-molecule probes targeting this chromatin modification. The emerging field of neuroepigenetic research is poised to provide insight into the biochemical basis of genetic risk for diverse neuropsychiatric disorders and to develop the highly selective chemical tools and imaging agents necessary to dissect dynamic transcriptional-regulatory mechanisms in the nervous system. On the basis of these findings, continued advances may lead to the validation of novel, disease-modifying therapeutic targets for a range of disorders with aberrant chromatin-mediated neuroplasticity.
Collapse
Affiliation(s)
- Emily L. Ricq
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jacob M. Hooker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
40
|
Strebl MG, Wang C, Schroeder FA, Placzek MS, Wey HY, Van de Bittner GC, Neelamegam R, Hooker JM. Development of a Fluorinated Class-I HDAC Radiotracer Reveals Key Chemical Determinants of Brain Penetrance. ACS Chem Neurosci 2016; 7:528-33. [PMID: 26675505 PMCID: PMC5784429 DOI: 10.1021/acschemneuro.5b00297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite major efforts, our knowledge about many brain diseases remains remarkably limited. Epigenetic dysregulation has been one of the few leads toward identifying the causes and potential treatments of psychiatric disease over the past decade. A new positron emission tomography radiotracer, [(11)C]Martinostat, has enabled the study of histone deacetylase in living human subjects. A unique property of [(11)C]Martinostat is its profound brain penetrance, a feature that is challenging to engineer intentionally. In order to understand determining factors for the high brain-uptake of Martinostat, a series of compounds was evaluated in rodents and nonhuman primates. The study revealed the major structural contributors to brain uptake, as well as a more clinically relevant fluorinated HDAC radiotracer with comparable behavior to Martinostat, yet longer half-life.
Collapse
Affiliation(s)
- Martin G. Strebl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
- Department of Psychiatry, McLean Imaging Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Genevieve C. Van de Bittner
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
41
|
Neurocognitive Aging and the Hippocampus across Species. Trends Neurosci 2015; 38:800-812. [PMID: 26607684 DOI: 10.1016/j.tins.2015.10.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/27/2015] [Accepted: 10/18/2015] [Indexed: 11/23/2022]
Abstract
There is extensive evidence that aging is associated with impairments in episodic memory. Many of these changes have been ascribed to neurobiological alterations to the hippocampal network and its input pathways. A cross-species consensus is beginning to emerge suggesting that subtle synaptic and functional changes within this network may underlie the majority of age-related memory impairments. In this review we survey convergent data from animal and human studies that have contributed significantly to our understanding of the brain-behavior relationships in this network, particularly in the aging brain. We utilize a cognitive as well as a neurobiological perspective and synthesize data across approaches and species to reach a more detailed understanding of age-related alterations in hippocampal memory function.
Collapse
|