1
|
Jackson LR, Dumitrascu M, Alward BA. Sex differences in aggression and its neural substrate in a cichlid fish. Sci Rep 2025; 15:84. [PMID: 39748082 PMCID: PMC11696305 DOI: 10.1038/s41598-024-84188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Aggression is ubiquitous among social species and can function to maintain social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying aggression due to their dominance hierarchy and robust behavioral repertoire. To further understand the potential sex differences in aggression in this species, we characterized aggression in male and female A. burtoni in a mirror assay. We then quantified neural activation patterns in brain regions of the social behavior network (SBN) to investigate if differences in behavior are reflected in the brain with immunohistochemistry by detecting the phosphorylated ribosome marker phospho-S6 ribosomal protein (pS6), a marker for neural activation. We found that A. burtoni perform both identical and sex-specific aggressive behaviors in response to a mirror assay. Females had greater pS6 immunoreactivity than males in the Vv (ventral part of the ventral telencephalon), a homolog of the lateral septum in mammals. Males but not females had higher pS6 immunoreactivity in the ATn after the aggression assay. The ATn (anterior tuberal nucleus) is a homolog of the ventromedial hypothalamus in mammals, which is strongly implicated in the regulation of aggression in males. Several regions also have higher pS6 immunoreactivity in negative controls than fish exposed to a mirror, implicating a role for inhibitory neural processes in suppressing aggression until a relevant stimulus is present. Male and female A. burtoni display both similar and different behavioral patterns in aggression in response to a mirror assay. There are also sex differences in the corresponding neural activation patterns in the SBN. In mirror males but not females, the ATn clusters with the POA, revealing a functional connectivity of these regions that is triggered in an aggressive context in males. These findings suggest that distinct neural circuitry underlie aggressive behavior in male and female A. burtoni, serving as a foundation for future work investigating the molecular and neural underpinnings of sex differences in behavior in this species to reveal fundamental insights into understanding aggression.
Collapse
Affiliation(s)
- Lillian R Jackson
- Department of Psychology, University of Houston, Houston, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, USA
| | | | - Beau A Alward
- Department of Psychology, University of Houston, Houston, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, USA.
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, USA.
| |
Collapse
|
2
|
de Faria NPVM, Araújo BC, Kida BMS, Abdalla RP, Brito DDS, Moreira RG, Honji RM. Can Aluminum Affect Social Behavior and Cortisol Plasma Profile in the Neotropical Freshwater Teleost Astyanax lacustris (Teleostei: Characidae)? Life (Basel) 2024; 14:1697. [PMID: 39768403 PMCID: PMC11678517 DOI: 10.3390/life14121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aluminum (Al) can cause endocrine disruption in aquatic animals, but assessments of animal social behavior in neotropical teleost fish species with importance for Brazilian aquaculture have still not been addressed so far, which can further complete this ecotoxicological knowledge. In order to evaluate the social behavior and plasma cortisol concentration of fish exposed to Al, we performed a 1 h acute exposure with Astyanax lacustris couples in three different experimental groups: control in neutral pH (CTL/n group), acid pH (pH/ac group), and aluminum in acid pH (Al/ac group; 2.0 mg L-1). An ethogram of social interactions between males and females and swimming activities were performed. Furthermore, the cortisol plasma concentration was measured by enzyme-linked immunosorbent, and the gonadal maturation stage of the animals was evaluated by histology. Adult and mature females in the CTL/n and pH/ac groups were more aggressive and active than mature males, including several attacks on the male. Moreover, males did not present attack behavior in these groups at any time, but did show submission behavior and constant avoidance of female attacks. In the Al/ac, females did not attack males, couple decreased swimming activity, a repetitive movement toward the aquarium surface, and high mucus production were observed, making the water cloudy. Regarding cortisol plasma concentration, males had higher cortisol plasma concentrations than females in the CTL/n and pH/ac groups, which was not observed in the Al/ac group. Therefore, Al in addition to being described in the literature as an endocrine disruptor, it can be considered as behavioral disrupter in A. lacustris in this important freshwater species cultivated in South America.
Collapse
Affiliation(s)
- Natália Pires Vieira Morais de Faria
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Bruno Cavalheiro Araújo
- Laboratório de Fisiologia e Nutrição de Organismos Aquáticos (LAFINUTRI), Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Avenida Dr. Cândido Xavier de Almeida e Souza, No. 200, Mogi das Cruzes 08701-970, SP, Brazil
| | - Bianca Mayumi Silva Kida
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Raisa Pereira Abdalla
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Diego dos Santos Brito
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renato Massaaki Honji
- Laboratório de Aquicultura e Ecofisiologia Marinha (LAQUEFIM), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
3
|
Dijkstra PD, Fialkowski RJ, Bush B, Wong RY, Moore TI, Harvey AR. Oxidative stress in the brain is regulated by social status in a highly social cichlid fish. Front Behav Neurosci 2024; 18:1477984. [PMID: 39659705 PMCID: PMC11628283 DOI: 10.3389/fnbeh.2024.1477984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Social stress can increase reactive oxygen species and derail antioxidant function in the brain, which may contribute to the onset and progression of mental health disorders. In hierarchical species, repeated social defeat can raise oxidative stress in the brain. However, how oxidative balance in the brain is regulated across different levels in a social hierarchy is unknown. Here, we study the effect of social status on patterns of oxidative stress across several brain divisions in a highly social cichlid fish, Astatotilapia burtoni. In this species, dominant males are territorial, brightly colored, and reproductively active while subordinate males are not. We measured several markers of oxidative stress in macrodissected brain divisions in dominant and subordinate males. We found that dominant individuals had lower oxidative DNA damage (8-OhdG) in the midbrain while also having increased total antioxidant capacity in the midbrain and hypothalamus. However, in dominant males, oxidative DNA damage tended to be higher in the hypothalamus while total glutathione levels were lower in the telencephalon compared to subordinate males. Finally, we found that indicators of reproductive activity (gonadosomatic index and social behavior) were co-regulated with antioxidant function or oxidative damage in the telencephalon. Combined, our results suggest that social status and activation of the reproductive system regulate oxidative balance in the brain in a highly brain division specific manner.
Collapse
Affiliation(s)
- Peter D. Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, United States
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert J. Fialkowski
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Brady Bush
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ryan Y. Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Travis I. Moore
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ashley R. Harvey
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
4
|
Gedzun VR, Sukhanova IA, Aliper GM, Kotova MM, Melnik NO, Karimova EB, Voronkova AS, Coffman A, Pavshintcev VV, Mitkin NA, Doronin II, Babkin GA, Malyshev AV. From land to water: "Sunken" T-maze for associated learning in cichlid fish. Behav Brain Res 2024; 471:115077. [PMID: 38825022 DOI: 10.1016/j.bbr.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The study introduced and evaluated learning paradigms for Maylandia callainos cichlids using a modified version of the rodent T-maze, filled with tank water (the "sunken" modification). Both male and female fish underwent training in two distinct conditioning paradigms. Firstly, simple operant conditioning involved placing a food reward in either the right or left compartment. Cichlids demonstrated the ability to purposefully find the bait within 6 days of training, with a persistent place preference lasting up to 6 days. Additionally, the learning dynamics varied with sex: female cichlids exhibited reduction in latency to visit the target compartment and consume the bait, along with a decrease in the number of errors 3 and 4 days earlier than males, respectively. Secondly, visually-cued operant conditioning was conducted, with a food reward exclusively placed in the yellow compartment, randomly positioned on the left or right side of the maze during each training session. Visual learning persisted for 10 days until reaction time improvement plateaued. Color preference disappeared after 4 consecutive check-ups, with no sex-related interference. For further validation of visually-cued operant conditioning paradigm, drugs MK-801 (dizocilpine) and caffeine, known to affect performance in learning tasks, were administered intraperitoneally. Chronic MK-801 (0.17 mg/kg) impaired maze learning, resulting in no color preference development. Conversely, caffeine administration enhanced test performance, increasing precision in fish. This developed paradigm offers a viable approach for studying learning and memory and presents an effective alternative to rodent-based drug screening tools, exhibiting good face and predictive validity.
Collapse
|
5
|
Howard MR, Ramsaroop MG, Hoadley AP, Jackson LR, Lopez MS, Saenz LA, Alward B. Female cichlids mate with novel androgen receptor mutant males that lack coloration. Horm Behav 2024; 163:105564. [PMID: 38772157 PMCID: PMC11189031 DOI: 10.1016/j.yhbeh.2024.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
A key challenge in animal behavior is disentangling the social stimuli that drive conspecific behaviors. For some species, like teleost fish, putative sexual signaling cues are inextricably linked to others, making it difficult to parse the precise roles distinct signals play in driving conspecific behaviors. In the African cichlid Astatotilapia burtoni, males are either dominant or subordinate, wherein bright coloration, territoriality, and courtship behavior inextricably correlate positively with rank. Here, we leveraged androgen receptor (AR) mutant male A. burtoni that lack dominance-typical coloration but not behavior to isolate the role of male coloration in driving female mating behaviors in this species. We found in independent behavioral assays that females behave aggressively towards AR mutant but not WT males, yet still mated with both types of males. Females showed enhanced activation of esr2b + cells in the hypothalamus when housed with either mutant or WT males and this activation scaled with spawning activities. Therefore, there is not a simple relationship between male coloration and female mating behaviors in A. burtoni, suggesting independent sensory mechanisms converge on hypothalamic esr2b cells to coordinate behavioral output.
Collapse
Affiliation(s)
- Megan R Howard
- University of Houston, Department of Psychology, United States of America
| | | | - Andrew P Hoadley
- University of Houston, Department of Psychology, United States of America
| | - Lillian R Jackson
- University of Houston, Department of Psychology, United States of America
| | - Mariana S Lopez
- University of Houston, Department of Psychology, United States of America
| | - Lauren A Saenz
- University of Houston, Department of Psychology, United States of America
| | - Beau Alward
- University of Houston, Department of Psychology, United States of America; University of Houston, Department of Biology and Biochemistry, United States of America.
| |
Collapse
|
6
|
Sommer-Trembo C, Santos ME, Clark B, Werner M, Fages A, Matschiner M, Hornung S, Ronco F, Oliver C, Garcia C, Tschopp P, Malinsky M, Salzburger W. The genetics of niche-specific behavioral tendencies in an adaptive radiation of cichlid fishes. Science 2024; 384:470-475. [PMID: 38662824 DOI: 10.1126/science.adj9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika. By integrating quantitative behavioral data from 57 cichlid species (702 wild-caught individuals) with high-resolution ecomorphological and genomic information, we show that exploratory behavior is linked to macrohabitat niche adaptations in Tanganyikan cichlids. Furthermore, we uncovered a correlation between the genotypes at a single-nucleotide polymorphism upstream of the AMPA glutamate-receptor regulatory gene cacng5b and variation in exploratory tendency. We validated this association using behavioral predictions with a neural network approach and CRISPR-Cas9 genome editing.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marco Werner
- Leibniz-Institute for Polymer Research Dresden, Dresden, Germany
| | - Antoine Fages
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Simon Hornung
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Chantal Oliver
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Cody Garcia
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Milan Malinsky
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Jackson LR, Dumitrascu M, Alward BA. Sex differences in aggression and its neural substrate in a cichlid fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562975. [PMID: 37905098 PMCID: PMC10614901 DOI: 10.1101/2023.10.18.562975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Aggression is ubiquitous among social species and functions to maintains social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying aggression due to their unique and flexible dominance hierarchy. However, female aggression in this species and the neural mechanisms of aggression in both sexes is not well understood. To further understand the potential sex differences in aggression in this species, we characterized aggression in male and female A. burtoni in a mirror assay. We then quantified neural activation patterns in brain regions of the social behavior network (SBN) to investigate if differences in behavior are reflected in the brain with immunohistochemistry by detecting the phosphorylated ribosome marker phospho-S6 ribosomal protein (pS6), a marker for neural activation. We found that A. burtoni perform both identical and sex-specific aggressive behaviors in response to a mirror assay. We observed sex differences in pS6 immunoreactivity in the Vv, a homolog of the lateral septum in mammals. Males but not females had higher ps6 immunoreactivity in the ATn after the aggression assay. The ATn is a homolog of the ventromedial hypothalamus in mammals, which is strongly implicated in the regulation of aggression in males. Several regions also have higher pS6 immunoreactivity in negative controls than fish exposed to a mirror, implicating a role for inhibitory neurons in suppressing aggression until a relevant stimulus is present. Male and female A. burtoni display both similar and sexually dimorphic behavioral patterns in aggression in response to a mirror assay. There are also sex differences in the corresponding neural activation patterns in the SBN. In mirror males but not females, the ATn clusters with the POA, revealing a functional connectivity of these regions that is triggered in an aggressive context in males. These findings suggest that distinct neural circuitry underlie aggressive behavior in male and female A. burtoni, serving as a foundation for future work investigating the molecular and neural underpinnings of sexually dimorphic behaviors in this species to reveal fundamental insights into understanding aggression.
Collapse
Affiliation(s)
| | | | - Beau A Alward
- University of Houston, Department of Psychology
- University of Houston, Department of Biology and Biochemistry
| |
Collapse
|
8
|
Lopez MS, Alward BA. Androgen receptor deficiency is associated with reduced aromatase expression in the ventromedial hypothalamus of male cichlids. Ann N Y Acad Sci 2024; 1532:73-82. [PMID: 38240562 PMCID: PMC10922992 DOI: 10.1111/nyas.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.
Collapse
Affiliation(s)
- Mariana S. Lopez
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Beau A. Alward
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry. University of Houston, Houston, Texas, USA
| |
Collapse
|
9
|
Wayne CR, Karam AM, McInnis AL, Arms CM, Kaller MD, Maruska KP. Impacts of repeated social defeat on behavior and the brain in a cichlid fish. J Exp Biol 2023; 226:jeb246322. [PMID: 37909345 DOI: 10.1242/jeb.246322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Social defeat is a powerful experience leading to drastic changes in physiology and behavior, many of which are negative. For example, repeated social defeat in vertebrates results in reduced reproductive success, sickness and behavioral abnormalities that threaten individual survival and species persistence. However, little is known about what neural mechanisms are involved in determining whether an individual is resilient or susceptible to repeated social defeat stress. It also remains unknown whether exclusive use of reactive behaviors after repeated social defeat is maintained over time and impacts future behaviors during subsequent contests. We used a resident-intruder experiment in the African cichlid fish Astatotilapia burtoni to investigate the behavior and neural correlates of these two opposing groups. Behavior was quantified by watching fish during defeat trials and used to distinguish resilient and susceptible individuals. Both resilient and susceptible fish started with searching and freezing behaviors, with searching decreasing and freezing increasing after repeated social defeat. After a 4 day break period, resilient fish used both searching and freezing behaviors during a social defeat encounter with a new resident, while susceptible fish almost exclusively used freezing behaviors. By quantifying neural activation using pS6 in socially relevant brain regions, we identified differential neural activation patterns associated with resilient and susceptible fish and found nuclei that co-varied and may represent functional networks. These data provide the first evidence of specific conserved brain networks underlying social stress resilience and susceptibility in fishes.
Collapse
Affiliation(s)
- C Rose Wayne
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Ava M Karam
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Alora L McInnis
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Catherine M Arms
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Michael D Kaller
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Howard MR, Ramsaroop MG, Hoadley AP, Jackson LR, Lopez MS, Saenz LA, Alward B. Female cichlids attack and avoid-but will still mate with-androgen receptor mutant males that lack male-typical body coloration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565323. [PMID: 37961273 PMCID: PMC10635145 DOI: 10.1101/2023.11.02.565323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A key challenge in animal behavior is disentangling the social stimuli that drive conspecific behaviors. For behaviors like birdsong, insights can be made through the experimental isolation of relevant cues that affect behavior. However, for some species like teleost fish, putative sexual signaling cues are inextricably linked to others, making it difficult to parse the precise roles distinct signals play in driving conspecific behaviors. In the African cichlid Astatotilapia burtoni, males are dominant or subordinate, wherein bright coloration and territorial and courtship behavior inextricably correlate positively with rank. Here, we leveraged androgen receptor (AR) mutant male A. burtoni that lack dominance-typical coloration but not behavior to isolate the role of male coloration in driving female mating behaviors in this species. We found in independent behavioral assays that females behave aggressively towards AR mutant but not WT males but still mated with both types of males. Females showed enhanced activation of esr2b+ cells in the hypothalamus when housed with either mutant or WT males and this activation scaled with spawning activities. Therefore, there is not a simple relationship between male coloration and female mating behaviors in A. burtoni, suggesting independent sensory mechanisms converge on hypothalamic esr2b+ cells to coordinate behavioral output.
Collapse
Affiliation(s)
- Megan R. Howard
- University of Houston, Department of Psychology
- These authors share first authorship
| | | | | | | | | | | | - Beau Alward
- University of Houston, Department of Psychology
- University of Houston, Department of Biology and Biochemistry
| |
Collapse
|
11
|
Jackson LR, Lopez MS, Alward B. Breaking Through the Bottleneck: Krogh's Principle in Behavioral Neuroendocrinology and the Potential of Gene Editing. Integr Comp Biol 2023; 63:428-443. [PMID: 37312279 PMCID: PMC10445420 DOI: 10.1093/icb/icad068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
In 1929, August Krogh wrote that for every question in biology, there is a species or collection of species in which pursuing such questions is the most appropriate for achieving the deepest insights. Referred to as "Krogh's Principle," these words are a guiding force for many biologists. In practice, Krogh's principle might guide a biologist interested in studying bi-parental care to choose not to use lab mice, in which the female does most of the parenting, but instead study species in which bi-parental care is present and clearly observable, such as in certain poison dart frogs. This approach to pursuing biological questions has been fruitful, with more in-depth insights achievable with new technologies. However, up until recently, an important limitation of Krogh's principle for biologists interested in the functions of certain genes, was certain techniques were only available for a few traditional model organisms such as lab mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio) and C. elegans (Caenorhabditis elegans), in which testing the functions of molecular systems on biological processes can be achieved using genetic knockout (KO) and transgenic technology. These methods are typically more precise than other approaches (e.g., pharmacology) commonly used in nontraditional model organisms to address similar questions. Therefore, some of the most in-depth insights into our understanding of the molecular control of these mechanisms have come from a small number of genetically tractable species. Recent advances in gene editing technology such as CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 gene editing as a laboratory tool has changed the insights achievable for biologists applying Krogh's principle. In this review, we will provide a brief summary on how some researchers of nontraditional model organisms have been able to achieve different levels of experimental precision with limited genetic tractability in their non-traditional model organism in the field of behavioral neuroendocrinology, a field in which understanding tissue and brain-region specific actions of molecules of interest has been a major goal. Then, we will highlight the exciting potential of Krogh's principle using discoveries made in a popular model species of social behavior, the African cichlid fish Astatotilapia burtoni. Specifically, we will focus on insights gained from studies of the control of social status by sex steroid hormones (androgens and estrogens) in A. burtoni that originated during field observations during the 1970s, and have recently culminated in novel insights from CRISPR/Cas9 gene editing in laboratory studies. Our review highlighting discoveries in A. burtoni may function as a roadmap for others using Krogh's principle aiming to incorporate gene editing into their research program. Gene editing is thus a powerful complimentary laboratory tool researchers can use to yield novel insights into understanding the molecular mechanisms of physiology and behavior in non-traditional model organisms.
Collapse
Affiliation(s)
- Lillian R Jackson
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Mariana S Lopez
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Beau Alward
- Department of Psychology, University of Houston, Houston, TX 77204USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004USA
| |
Collapse
|
12
|
Lichilín N, Salzburger W, Böhne A. No evidence for sex chromosomes in natural populations of the cichlid fish Astatotilapia burtoni. G3 (BETHESDA, MD.) 2023; 13:6989787. [PMID: 36649174 PMCID: PMC9997565 DOI: 10.1093/g3journal/jkad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
Sex determination (SD) is not conserved among teleost fishes and can even differ between populations of the same species. Across the outstandingly species-rich fish family Cichlidae, more and more SD systems are being discovered. Still, the picture of SD evolution in this group is far from being complete. Lake Tanganyika and its affluent rivers are home to Astatotilapia burtoni, which belongs to the extremely successful East African cichlid lineage Haplochromini. Previously, in different families of an A. burtoni laboratory strain, an XYW system and an XY system have been described. The latter was also found in a second laboratory strain. In a laboratory-reared family descending from a population of the species' southern distribution, a second XY system was discovered. Yet, an analysis of sex chromosomes for the whole species distribution is missing. Here, we examined the genomes of 11 natural populations of A. burtoni, encompassing a wide range of its distribution, for sex-linked regions. We did not detect signs of differentiated sex chromosomes and also not the previously described sex chromosomal systems present in laboratory lines, suggesting different SD systems in the same species under natural and (long-term) artificial conditions. We suggest that SD in A. burtoni is more labile than previously assumed and consists of a combination of non-genetic, polygenic, or poorly differentiated sex chromosomes.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Department of Neuroscience and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany
| |
Collapse
|
13
|
Madireddy I. First Ever Whole Genome Sequencing and De Novo Assembly of the Freshwater Angelfish, Pterophyllum scalare. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000654. [PMID: 36338153 PMCID: PMC9627325 DOI: 10.17912/micropub.biology.000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
This research work is the first to ever sequence and perform a de novo assembly of the genome of the freshwater angelfish, Pterophyllum scalare . The final genome assembly consisted of 15,486 contigs and was 734.79 Mb in size with an 86.5% BUSCO score. Functional annotation of the genome revealed 24,247 protein-coding sequences related to other fish species. 14,329 (59%) of the identified genes were orthologous to Archocentrus centrarchus , a closely related South American cichlid.
Collapse
Affiliation(s)
- Indeever Madireddy
- BioCurious, Santa Clara, CA, USA
- BASIS Independent Silicon Valley, San Jose, CA, USA
| |
Collapse
|
14
|
Solomon-Lane TK, Butler RM, Hofmann HA. Vasopressin mediates nonapeptide and glucocorticoid signaling and social dynamics in juvenile dominance hierarchies of a highly social cichlid fish. Horm Behav 2022; 145:105238. [PMID: 35932752 DOI: 10.1016/j.yhbeh.2022.105238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Early-life social experience can strongly affect adult behavior, yet the behavioral mechanisms underlying developmental trajectories are poorly understood. Here, we use the highly social cichlid, Burton's Mouthbrooder (Astatotilapia burtoni) to investigate juvenile social status and behavior, as well as the underlying neuroendocrine mechanisms. We placed juveniles in pairs or triads and found that they readily establish social status hierarchies, with some group structural variation depending on group size, as well as the relative body size of the group members. Next, we used intracerebroventricular injections to test the hypothesis that arginine vasopressin (AVP) regulates juvenile social behavior and status, similar to adult A. burtoni. While we found no direct behavioral effects of experimentally increasing (via vasotocin) or decreasing (via antagonist Manning Compound) AVP signaling, social interactions directed at the treated individual were significantly altered. This group-level effect of central AVP manipulation was also reflected in a significant shift in whole brain expression of genes involved in nonapeptide signaling (AVP, oxytocin, and oxytocin receptor) and the neuroendocrine stress axis (corticotropin-releasing factor (CRF), glucocorticoid receptors (GR) 1a and 1b). Further, social status was associated with the expression of genes involved in glucocorticoid signaling (GR1a, GR1b, GR2, mineralocorticoid receptor), social interactions with the dominant fish, and nonapeptide signaling activity (AVP, AVP receptor V1aR2, OTR). Together, our results considerably expand our understanding of the context-specific emergence of social dominance hierarchies in juveniles and demonstrate a role for nonapeptide and stress axis signaling in the regulation of social status and social group dynamics.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Rebecca M Butler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Cell & Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
15
|
Friesen CN, Maclaine KD, Hofmann HA. Social status mediates behavioral, endocrine, and neural responses to an intruder challenge in a social cichlid, Astatotilapia burtoni. Horm Behav 2022; 145:105241. [PMID: 35964525 DOI: 10.1016/j.yhbeh.2022.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022]
Abstract
Most animals encounter social challenges throughout their lives as they compete for resources. Individual responses to such challenges can depend on social status, sex, and community-level attributes, yet most of our knowledge of the behavioral and physiological mechanisms by which individuals respond to challenges has come from dyadic interactions between a resource holder and a challenger (usually both males). To incorporate differences in individual behavior that are influenced by surrounding group members, we use naturalistic communities of the cichlid fish, Astatotilapia burtoni, and examine resident dominant male responses to a territorial intrusion within the social group. We measured behavior and steroid hormones (testosterone and cortisol), and neural activity in key brain regions implicated in regulating territorial and social dominance behavior. In response to a male intruder, resident dominant males shifted from border defense to overt attack behavior, accompanied by decreased basolateral amygdala activity. These differences were context dependent - resident dominant males only exhibited increased border defense when the intruder secured dominance. Neither subordinate males nor females changed their behavior in response to a territorial intrusion in their community. However, neural activity in both hippocampus and lateral septum of subordinates increased when the intruder failed to establish dominance. Our results demonstrate how a social challenge results in multi-faceted behavioral, hormonal, and neural changes, depending on social status, sex, and the outcome of an intruder challenge. Taken together, our work provides novel insights into the mechanisms through which individual group members display context- and status-appropriate challenge responses in dynamic social groups.
Collapse
Affiliation(s)
- Caitlin N Friesen
- Department of Integrative Biology, The University of Texas at Austin, USA; Neuroscience Institute, Georgia State University, USA.
| | - Kendra D Maclaine
- Department of Integrative Biology, The University of Texas at Austin, USA; Institute for Cellular & Molecular Biology, The University of Texas at Austin, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, USA; Institute for Cellular & Molecular Biology, The University of Texas at Austin, USA; Institute for Neuroscience, The University of Texas at Austin, USA.
| |
Collapse
|
16
|
Mobley RB, Ray EJ, Maruska KP. Expression and localization of neuronal nitric oxide synthase in the brain and sensory tissues of the African cichlid fish Astatotilapia burtoni. J Comp Neurol 2022; 530:2901-2917. [PMID: 35781648 DOI: 10.1002/cne.25383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) produced by the enzyme neuronal nitric oxide synthase serves as an important neurotransmitter in the central nervous system that is involved in reproductive regulation, learning, sensory processing, and other forms of neural plasticity. Here, we map the distribution of nnos-expressing cells in the brain and retina of the cichlid fish Astatotilapia burtoni using in situ hybridization. In the brain, nnos-expressing cells are found from the olfactory bulbs to the hindbrain, including within specific nuclei involved in decision-making, sensory processing, neuroendocrine regulation, and the expression of social behaviors. In the retina, nnos-expressing cells are found in the inner nuclear layer, presumably in amacrine cells. We also used quantitative PCR to test for differences in nnos expression within the eye and olfactory bulbs of males and females of different reproductive states and social statuses. In the eye, males express more nnos than females, and socially dominant males express more nnos than subordinate males, but expression did not differ among female reproductive states. In the olfactory bulbs, dominant males had greater nnos expression than subordinate males. These results suggest a status-specific function for NO signaling in the visual and olfactory systems that may be important for sensory perception related to mating or territorial interactions to maintain the social hierarchy. The widespread distribution of nnos-expressing cells throughout the cichlid brain is similar to that in other teleosts, with some conserved localization patterns across vertebrates, suggesting diverse functions for this important neurotransmitter system.
Collapse
Affiliation(s)
- Robert B Mobley
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Emily J Ray
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
Montero-Taboada R, Sotil G, Dionicio-Acedo J, Rosado-Salazar M, Aguirre-Velarde A. Tolerance of juvenile Peruvian rock seabass (Paralabrax humeralis Valenciennes, 1828) and Peruvian grunt (Anisotremus scapularis Tschudi, 1846) to low-oxygen conditions. JOURNAL OF FISH BIOLOGY 2022; 100:1497-1509. [PMID: 35398900 DOI: 10.1111/jfb.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia is currently one of the greatest threats to coastal ecosystems worldwide, generating massive mortality of marine organisms, loss of benthic ecosystems and a decrease in fishery production. We evaluated and compared the tolerance to hypoxia of two species from different habitats of the Peruvian coast, the Peruvian rock seabass Paralabrax humeralis and the Peruvian grunt Anisotremus scapularis. The effect of hypoxia was measured as a function of the exposure time (progressive and chronic) on the behavioural and physiological responses of the two species, as well as on the enzymatic activity associated with the oxidative stress response of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and alkaline phosphatase (AKP). The ventilatory frequency was measured at two different temperatures (16 and 22°C) under progressive hypoxia conditions to determine the ventilatory critical point (Vcp). A. scapularis showed a higher Vcp than P. humeralis, which was positively affected by temperature. The median lethal time of A. scapularis was 36 min at 60% of oxygen saturation, while P. humeralis showed no mortality after 31 days of exposure at 5% oxygen saturation. Different enzymatic activity (P < 0.05) between species under hypoxia was recorded, in SOD (gill and muscle) and AKP (blood). A general tendency, under hypoxia, to slightly increase LDH activity (except for blood in A. scapularis, P < 0.05) and SOD activity (mainly in muscle of A. scapularis, P < 0.05), and decrease AKP activity (mainly in liver of P. humeralis, P < 0.05) was observed. The response of P. humeralis to hypoxia goes through a reduction in activity and metabolism, so this species can be considered hypoxia-tolerant, allowing it to face hypoxia events during prolonged periods. On the other hand, A. scapularis response to hypoxia prioritizes avoidance mechanisms and, together with other adaptations, makes it especially vulnerable to hypoxia and able to be considered hypoxia-intolerant.
Collapse
Affiliation(s)
- Rebeca Montero-Taboada
- Universidad Científica del Sur, Carretera Panamerica Sur Km 19, Lima, Peru
- Instituto del Mar del Perú, Esquina General Valle y Gamarra S/N, Callao, Peru
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Giovanna Sotil
- Instituto del Mar del Perú, Esquina General Valle y Gamarra S/N, Callao, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Ciudad Universitaria, Lima, Peru
| | - Jhon Dionicio-Acedo
- Instituto del Mar del Perú, Esquina General Valle y Gamarra S/N, Callao, Peru
| | | | | |
Collapse
|
18
|
Fischer S, Jungwirth A. The costs and benefits of larger brains in fishes. J Evol Biol 2022; 35:973-985. [PMID: 35612352 DOI: 10.1111/jeb.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
The astonishing diversity of brain sizes observed across the animal kingdom is typically explained in the context of trade-offs: the benefits of a larger brain, such as enhanced cognitive ability, are balanced against potential costs, such as increased energetic demands. Several hypotheses have been formulated in this framework, placing different emphasis on ecological, behavioural, or physiological aspects of trade-offs in brain size evolution. Within this body of work, there exists considerable taxonomic bias towards studies of birds and mammals, leaving some uncertainty about the generality of the respective arguments. Here, we test three of the most prominent such hypotheses, the 'expensive tissue', 'social brain' and 'cognitive buffer' hypotheses, in a large dataset of fishes, derived from a publicly available resource (FishBase). In accordance with predictions from the 'expensive tissue' and the 'social brain' hypothesis, larger brains co-occur with reduced fecundity and increased sociality in at least some Classes of fish. Contrary to expectations, however, lifespan is reduced in large-brained fishes, and there is a tendency for species that perform parental care to have smaller brains. As such, it appears that some potential costs (reduced fecundity) and benefits (increased sociality) of large brains are near universal to vertebrates, whereas others have more lineage-specific effects. We discuss our findings in the context of fundamental differences between the classically studied birds and mammals and the fishes we analyse here, namely divergent patterns of growth, parenting and neurogenesis. As such, our work highlights the need for a taxonomically diverse approach to any fundamental question in evolutionary biology.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Arne Jungwirth
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
19
|
Rodriguez-Santiago M, Jordan A, Hofmann HA. Neural activity patterns differ between learning contexts in a social fish. Proc Biol Sci 2022; 289:20220135. [PMID: 35506226 PMCID: PMC9065956 DOI: 10.1098/rspb.2022.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Learning and decision-making are greatly influenced by context. When navigating a complex social world, individuals must quickly ascertain where to gain important resources and which group members are useful sources of such information. Such dynamic behavioural processes require neural mechanisms that are flexible across contexts. Here we examine how the social context influences the learning response during a cue discrimination task and the neural activity patterns that underlie acquisition of this novel information. Using the cichlid fish, Astatotilapia burtoni, we show that learning of the task is faster in social groups than in a non-social context. We quantify the neural activity patterns by examining the expression of Fos, an immediate-early gene, across brain regions known to play a role in social behaviour and learning (such as the putative teleost homologues of the mammalian hippocampus, basolateral amygdala and medial amygdala/BNST complex). We find that neural activity patterns differ between social and non-social contexts. Taken together, our results suggest that while the same brain regions may be involved in the learning of a cue association, the activity in each region reflects an individual's social context.
Collapse
Affiliation(s)
- Mariana Rodriguez-Santiago
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alex Jordan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.,Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Hans A Hofmann
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.,Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Characterization and Distribution of Kisspeptins, Kisspeptin Receptors, GnIH, and GnRH1 in the Brain of the Protogynous Bluehead Wrasse (Thalassoma bifasciatum). J Chem Neuroanat 2022; 121:102087. [DOI: 10.1016/j.jchemneu.2022.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
21
|
Maruska KP, Anselmo CM, King T, Mobley RB, Ray EJ, Wayne R. Endocrine and neuroendocrine regulation of social status in cichlid fishes. Horm Behav 2022; 139:105110. [PMID: 35065406 DOI: 10.1016/j.yhbeh.2022.105110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023]
Abstract
Position in a dominance hierarchy profoundly impacts group members' survival, health, and reproductive success. Thus, understanding the mechanisms that regulate or are associated with an individuals' social position is important. Across taxa, various endocrine and neuroendocrine signaling systems are implicated in the control of social rank. Cichlid fishes, with their often-limited resources of food, shelter, and mates that leads to competition, have provided important insights on the proximate and ultimate mechanisms related to establishment and maintenance of dominance hierarchies. Here we review the existing information on the relationships between endocrine (e.g., circulating hormones, gonadal and other tissue measures) and neuroendocrine (e.g., central neuropeptides, biogenic amines, steroids) systems and dominant and subordinate social rank in male cichlids. Much of the current literature is focused on only a few representative cichlids, particularly the African Astatotilapia burtoni, and several other African and Neotropical species. Many hormonal regulators show distinct differences at multiple biological levels between dominant and subordinate males, but generalizations are complicated by variations in experimental paradigms, methodological approaches, and in the reproductive and parental care strategies of the study species. Future studies that capitalize on the diversity of hierarchical structures among cichlids should provide insights towards better understanding the endocrine and neuroendocrine mechanisms contributing to social rank. Further, examination of this topic in cichlids will help reveal the selective pressures driving the evolution of endocrine-related phenotypic traits that may facilitate an individual's ability to acquire and maintain a specific social rank to improve survival and reproductive success.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Chase M Anselmo
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Teisha King
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Robert B Mobley
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Emily J Ray
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Rose Wayne
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| |
Collapse
|
22
|
Wallace KJ, Choudhary KD, Kutty LA, Le DH, Lee MT, Wu K, Hofmann HA. Social ascent changes cognition, behaviour and physiology in a highly social cichlid fish. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200448. [PMID: 35000445 PMCID: PMC8743896 DOI: 10.1098/rstb.2020.0448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When an individual ascends in dominance status within their social community, they often undergo a suite of behavioural, physiological and neuromolecular changes. While these changes have been extensively characterized across a number of species, we know much less about the degree to which these changes in turn influence cognitive processes like associative learning, memory and spatial navigation. Here, we assessed male Astatotilapia burtoni, an African cichlid fish known for its dynamic social dominance hierarchies, in a set of cognitive tasks both before and after a community perturbation in which some individuals ascended in dominance status. We assayed steroid hormone (cortisol, testosterone) levels before and after the community experienced a social perturbation. We found that ascending males changed their physiology and novel object recognition preference during the perturbation, and they subsequently differed in social competence from non-ascenders. Additionally, using a principal component analysis we were able to identify specific cognitive and physiological attributes that appear to predispose certain individuals to ascend in social status once a perturbation occurs. These previously undiscovered relationships between social ascent and cognition further emphasize the broad influence of social dominance on animal decision-making. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Kelly J. Wallace
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Kavyaa D. Choudhary
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Layla A. Kutty
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Don H. Le
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Matthew T. Lee
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Karleen Wu
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Hans A. Hofmann
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA,Institute for Neuroscience, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
23
|
Hollander-Cohen L, Meir I, Shulman M, Levavi-Sivan B. Identifying the Interaction of the Brain and the Pituitary in Social - and Reproductive - State of Tilapia by Transcriptome Analyses. Neuroendocrinology 2022; 112:1237-1260. [PMID: 35381588 DOI: 10.1159/000524437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As in all vertebrates, reproduction in fish is regulated by gonadotrophin-releasing hormone (GnRH) control on gonadotrophic hormones (GtHs) activity. However, the neuroendocrine factors that promote GnRH and GtH activity are unknown. In Nile tilapia (Oreochromis niloticus), sexual activity and reproduction ability depend on social rank; only dominant males and females reproduce. Here, this characteristic of dominant fish allows us to compare brain and pituitary gene expression in animals that do and do not reproduce, aiming to reveal mechanisms that regulate reproduction. METHODS An extensive transcriptome analysis was performed, combining two sets of transcriptomes: a novel whole-brain and pituitary transcriptome of established dominant and subordinate males, together with a cell-specific transcriptome of luteinizing hormone (LH) and follicle-stimulating hormone cells. Pituitary incubation assay validated the direct effect of steroid application on chosen genes and GtH secretion. RESULTS In most dominant fish, as determined behaviorally, the gonadosomatic index was higher than in subordinate fish, and the leading upregulated pituitary genes were those coding for GtHs. In the brain, various neuropeptide genes, including isotocin, cholecystokinin, and MCH, were upregulated; these may be related to reproductive status through effects on behavior and feeding. In a STRING network analysis combining the two transcriptome sets, brain aromatase, highly expressed in LH cells, is the most central gene with the highest number of connections. In the pituitary incubation assay, testosterone and estradiol increased the secretion of LH and specific gene transcription. CONCLUSIONS The close correlation between behavioral dominance and reproductive capacity in tilapia allows unraveling novel genes that may regulate the hypothalamic-pituitary-gonadal axis, highlighting aromatase as the main factor affecting the brain and pituitary in maintaining a sexually active organism.
Collapse
Affiliation(s)
- Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel,
| | - Inbar Meir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Miriam Shulman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
24
|
Border SE, Piefke TJ, Funnell TR, Fialkowski RF, Sawecki J, Dijkstra PD. Social instability influences rank-specific patterns of oxidative stress in a cichlid fish. J Exp Biol 2021; 224:272109. [PMID: 34495308 DOI: 10.1242/jeb.237172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/01/2021] [Indexed: 01/13/2023]
Abstract
In many animal societies, dominant individuals have priority access to resources. However, defending high rank can be costly, especially in unstable social hierarchies where there is more intense competition. Oxidative stress has been proposed as a potential cost of social dominance, but few studies have examined this cost in relation to social stability. We studied the cost of social dominance in the cichlid fish Astatotilapia burtoni by manipulating social stability among males in replicate naturalistic communities for 22 weeks. We found that our social stability treatment influenced status-specific patterns in 3 out of 6 measurements of oxidative stress. Specifically, dominant males experienced increased plasma oxidative damage (measured as reactive oxygen metabolites, ROMs) compared with subordinate males in stable hierarchies only. Subordinate males in unstable hierarchies had higher ROMs than their stable community counterparts, but we found no effect of social stability treatment for dominant males. However, dominant males tended to have reduced total antioxidant capacity (TAC) in the liver when compared with subordinate males in unstable hierarchies, suggesting that the cost of social dominance is higher in unstable hierarchies. There were no effects of status and treatment on gonad TAC, muscle TAC or oxidative DNA damage. We conclude that the stability of the social environment influences the relative cost of social dominance in a tissue- and marker-specific manner.
Collapse
Affiliation(s)
- Shana E Border
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA.,School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Taylor J Piefke
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA
| | - Tyler R Funnell
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA.,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Robert F Fialkowski
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA
| | - Jacob Sawecki
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA.,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Peter D Dijkstra
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA.,Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA.,Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
25
|
Renn SC, Hurd PL. Epigenetic Regulation and Environmental Sex Determination in Cichlid Fishes. Sex Dev 2021; 15:93-107. [PMID: 34433170 PMCID: PMC8440468 DOI: 10.1159/000517197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Studying environmental sex determination (ESD) in cichlids provides a phylogenetic and comparative approach to understand the evolution of the underlying mechanisms, their impact on the evolution of the overlying systems, and the neuroethology of life history strategies. Natural selection normally favors parents who invest equally in the development of male and female offspring, but evolution may favor deviations from this 50:50 ratio when environmental conditions produce an advantage for doing so. Many species of cichlids demonstrate ESD in response to water chemistry (temperature, pH, and oxygen concentration). The relative strengths of and the exact interactions between these factors vary between congeners, demonstrating genetic variation in sensitivity. The presence of sizable proportions of the less common sex towards the environmental extremes in most species strongly suggests the presence of some genetic sex-determining loci acting in parallel with the ESD factors. Sex determination and differentiation in these species does not seem to result in the organization of a final and irreversible sexual fate, so much as a life-long ongoing battle between competing male- and female-determining genetic and hormonal networks governed by epigenetic factors. We discuss what is and is not known about the epigenetic mechanism behind the differentiation of both gonads and sex differences in the brain. Beyond the well-studied tilapia species, the 2 best-studied dwarf cichlid systems showing ESD are the South American genus Apistogramma and the West African genus Pelvicachromis. Both species demonstrate male morphs with alternative reproductive tactics. We discuss the further neuroethology opportunities such systems provide to the study of epigenetics of alternative life history strategies and other behavioral variation.
Collapse
Affiliation(s)
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, CA
- Department of Psychology, University of Alberta, Edmonton, AB, CA
| |
Collapse
|
26
|
Manipulation of the Tyrosinase gene permits improved CRISPR/Cas editing and neural imaging in cichlid fish. Sci Rep 2021; 11:15138. [PMID: 34302019 PMCID: PMC8302579 DOI: 10.1038/s41598-021-94577-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Direct tests of gene function have historically been performed in a limited number of model organisms. The CRISPR/Cas system is species-agnostic, offering the ability to manipulate genes in a range of models, enabling insights into evolution, development, and physiology. Astatotilapia burtoni, a cichlid fish from the rivers and shoreline around Lake Tanganyika, has been extensively studied in the laboratory to understand evolution and the neural control of behavior. Here we develop protocols for the creation of CRISPR-edited cichlids and create a broadly useful mutant line. By manipulating the Tyrosinase gene, which is necessary for eumelanin pigment production, we describe a fast and reliable approach to quantify and optimize gene editing efficiency. Tyrosinase mutants also remove a major obstruction to imaging, enabling visualization of subdermal structures and fluorophores in situ. These protocols will facilitate broad application of CRISPR/Cas9 to studies of cichlids as well as other non-traditional model aquatic species.
Collapse
|
27
|
Maruska KP, Butler JM. Reproductive- and Social-State Plasticity of Multiple Sensory Systems in a Cichlid Fish. Integr Comp Biol 2021; 61:249-268. [PMID: 33963407 DOI: 10.1093/icb/icab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra- and inter-sexual communications are vital to the survival and reproductive success of animals. In species that cycle in and out of breeding or other physiological condition, sensory function can be modulated to optimize communication at crucial times. Little is known, however, about how widespread this sensory plasticity is across taxa, whether it occurs in multiple senses or both sexes within a species, and what potential modulatory substances and substrates are involved. Thus, studying modulation of sensory communication in a single species can provide valuable insights for understanding how sensory abilities can be altered to optimize detection of salient signals in different sensory channels and social contexts. The African cichlid fish Astatotilapia burtoni uses multimodal communication in social contexts such as courtship, territoriality, and parental care and shows plasticity in sensory abilities. In this review, we synthesize what is known about how visual, acoustic, and chemosensory communication is used in A. burtoni in inter- and intra-specific social contexts, how sensory funtion is modulated by an individual's reproductive, metabolic, and social state, and discuss evidence for plasticity in potential modulators that may contribute to changes in sensory abilities and behaviors. Sensory plasticity in females is primarily associated with the natural reproductive cycle and functions to improve detection of courtship signals (visual, auditory, chemosensory, and likely mechanosensory) from high-quality males for reproduction. Plasticity in male sensory abilities seems to function in altering their ability to detect the status of other males in the service of territory ownership and future reproductive opportunities. Changes in different classes of potential modulators or their receptors (steroids, neuropeptides, and biogenic amines) occur at both peripheral sensory organs (eye, inner ear, and olfactory epithelium) and central visual, olfactory, and auditory processing regions, suggesting complex mechanisms contributing to plasticity of sensory function. This type of sensory plasticity revealed in males and females of A. burtoni is likely more widespread among diverse animals than currently realized, and future studies should take an integrative and comparative approach to better understand the proximate and ultimate mechanisms modulating communication abilities across taxa.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Piefke TJ, Bonnell TR, DeOliveira GM, Border SE, Dijkstra PD. Social network stability is impacted by removing a dominant male in replicate dominance hierarchies of a cichlid fish. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
30
|
Decision-making in a social world: Integrating cognitive ecology and social neuroscience. Curr Opin Neurobiol 2021; 68:152-158. [PMID: 33915497 DOI: 10.1016/j.conb.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
Understanding animal decision-making involves simultaneously dissecting and reconstructing processes across levels of biological organization, such as behavior, physiology, and brain function, as well as considering the environment in which decisions are made. Over the past few decades, foundational breakthroughs originating from a variety of model systems and disciplines have painted an increasingly comprehensive picture of how individuals sense information, process it, and subsequently modify behavior or states. Still, our understanding of decision-making in social contexts is far from complete and requires integrating novel approaches and perspectives. The fields of social neuroscience and cognitive ecology have approached social decision-making from orthogonal perspectives. The integration of these perspectives (and fields) is critical in developing comprehensive and testable theories of the brain.
Collapse
|
31
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
32
|
Wallace KJ, Hofmann HA. Equal performance but distinct behaviors: sex differences in a novel object recognition task and spatial maze in a highly social cichlid fish. Anim Cogn 2021; 24:1057-1073. [PMID: 33718996 DOI: 10.1007/s10071-021-01498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Sex differences in behavior and cognition can be driven by differential selection pressures from the environment and in the underlying neuromolecular mechanisms of decision-making. The highly social cichlid fish Astatotilapia burtoni exhibits dynamic and complex social hierarchies, yet explicit cognitive testing (outside of social contexts) and investigations of sex differences in cognition have yet to be fully explored. Here we assessed male and female A. burtoni in two cognitive tasks: a novel object recognition task and a spatial task. We hypothesized that males outperform females in a spatial learning task and exhibit more neophilic/exploratory behavior across both tasks. In the present study we find that both sexes prefer the familiar object in a novel object recognition task, but the time at which they exhibit this preference differs between the sexes. Females more frequently learned the spatial task, exhibiting longer decision latencies and quicker error correction, suggesting a potential speed-accuracy tradeoff. Furthermore, the sexes differ in space use in both tasks and in a principal component analysis of the spatial task. A model selection analysis finds that preference, approach, and interaction duration in the novel object recognition task reach a threshold of importance averaged across all models. This work highlights the need to explicitly test for sex differences in cognition to better understand how individuals navigate dynamic social environments.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Hans A Hofmann
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
33
|
Mack AF, DeOliveira-Mello L, Mattheus U, Neckel PH. Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni. J Comp Neurol 2021; 529:2813-2823. [PMID: 33580516 DOI: 10.1002/cne.25126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10-12 cm in this fish species, corresponding to a more than 100-fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue-cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Laura DeOliveira-Mello
- Department of Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León, University of Salamanca, Spain
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
DeOliveira-Mello L, Mack AF, Lara JM, Arévalo R. Cultures of glial cells from optic nerve of two adult teleost fish: Astatotilapia burtoni and Danio rerio. J Neurosci Methods 2021; 353:109096. [PMID: 33581217 DOI: 10.1016/j.jneumeth.2021.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND In vitro studies are very useful to increase the knowledge of different cell types and could be the key to understand cell metabolism and function. Fish optic nerves (ON) can recover visual functions by reestablishing its structure and reconnecting the axons of ganglion cells. This is because fish show spontaneous regeneration of the central nervous system which does not occur in mammals. In addition, several studies have indicated that glial cells of ON have different properties in comparison to the glial cells from brain or retina. Consequently, providing an in vitro tool will be highly beneficial to increase the knowledge of these cells. NEW METHOD We developed a cell culture protocol to isolate glial cells from ON of two teleost fish species, Danio rerio and Astatotilapia burtoni. RESULTS The optimized protocol allowed us to obtain ON cells and brain-derived cells from adult teleost fish. These cells were characterized as glial cells and their proprieties in vitro were analyzed.Comparison with Existing Method(s): Although it is striking that ON glial cells show peculiarities, their study in vitro has been limited by the only published protocol going back to the 1990s. Our protocol makes glial cells of different fish species available for experiments and studies to increase the understanding of these glial cell types. CONCLUSIONS This validated and effective in vitro tool increases the possibilities on studies of glial cells from fish ON which implies a reduction in animal experimentation.
Collapse
Affiliation(s)
- Laura DeOliveira-Mello
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis University of Tübingen Tübingen, Germany
| | - Juan M Lara
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain
| | - Rosario Arévalo
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain
| |
Collapse
|
35
|
Ogawa S, Pfaff DW, Parhar IS. Fish as a model in social neuroscience: conservation and diversity in the social brain network. Biol Rev Camb Philos Soc 2021; 96:999-1020. [PMID: 33559323 DOI: 10.1111/brv.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Mechanisms for fish social behaviours involve a social brain network (SBN) which is evolutionarily conserved among vertebrates. However, considerable diversity is observed in the actual behaviour patterns amongst nearly 30000 fish species. The huge variation found in socio-sexual behaviours and strategies is likely generated by a morphologically and genetically well-conserved small forebrain system. Hence, teleost fish provide a useful model to study the fundamental mechanisms underlying social brain functions. Herein we review the foundations underlying fish social behaviours including sensory, hormonal, molecular and neuroanatomical features. Gonadotropin-releasing hormone neurons clearly play important roles, but the participation of vasotocin and isotocin is also highlighted. Genetic investigations of developing fish brain have revealed the molecular complexity of neural development of the SBN. In addition to straightforward social behaviours such as sex and aggression, new experiments have revealed higher order and unique phenomena such as social eavesdropping and social buffering in fish. Finally, observations interpreted as 'collective cognition' in fish can likely be explained by careful observation of sensory determinants and analyses using the dynamics of quantitative scaling. Understanding of the functions of the SBN in fish provide clues for understanding the origin and evolution of higher social functions in vertebrates.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, 10065, U.S.A
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
36
|
Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin‐releasing hormone genes in a cichlid fish. J Comp Neurol 2021; 529:2596-2619. [DOI: 10.1002/cne.25113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Department of Biology Stanford University Stanford California USA
| | - Christy R. Wayne
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
37
|
Radical change: temporal patterns of oxidative stress during social ascent in a dominance hierarchy. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02981-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Butler JM, Herath EM, Rimal A, Whitlow SM, Maruska KP. Galanin neuron activation in feeding, parental care, and infanticide in a mouthbrooding African cichlid fish. Horm Behav 2020; 126:104870. [PMID: 33002455 DOI: 10.1016/j.yhbeh.2020.104870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Galanin is a conserved neuropeptide involved in parental care and feeding. While galanin is known to mediate parental care and infanticide in rodents, its role in parental care and feeding behaviors in other taxa, particularly fishes, remains poorly understood. Mouthbrooding is an extreme form of parental care common in fishes in which caregivers carry offspring in their buccal cavity for the duration of development, resulting in obligatory starvation. In the cichlid fish Astatotilapia burtoni, females brood their young for ~2 wks and perform maternal care after release by collecting them into their mouth when threatened. However, females will cannibalize their brood after ~5 days. To examine the role of gal in feeding and maternal care, we collected mouthbrooding, fed, and starved females, as well as those displaying post-release maternal care and infanticide behaviors. Activation of gal neurons in the preoptic area (POA) was associated with parental care, providing the first link between gal and offspring-promoting behaviors in fishes. In contrast, activation of gal neurons in the lateral tuberal nucleus (NLT), the Arcuate homolog, was associated with feeding and infanticide. Overall, these data suggest gal is functionally conserved across vertebrate taxa with POA gal neurons promoting maternal care and Arc/NLT gal neurons promoting feeding.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, United States of America.
| | - Erandi M Herath
- Department of Biological Sciences, Louisiana State University, United States of America
| | - Arohan Rimal
- Department of Biological Sciences, Louisiana State University, United States of America
| | - Sarah M Whitlow
- Department of Biological Sciences, Louisiana State University, United States of America
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, United States of America
| |
Collapse
|
39
|
Maruska KP, Butler JM, Field KE, Forester C, Augustus A. Neural Activation Patterns Associated with Maternal Mouthbrooding and Energetic State in an African Cichlid Fish. Neuroscience 2020; 446:199-212. [PMID: 32707292 DOI: 10.1016/j.neuroscience.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Parental care is widespread in the animal kingdom, but for many species, provisioning energetic resources must be balanced with trade-offs between self-promoting and offspring-promoting behaviors. However, little is known about the neural mechanisms underlying these motivational decisions. Mouthbrooding is an extreme form of parental care most common in fishes that provides an ideal opportunity to examine which brain regions are involved in parenting and energetics. The African cichlid fish Astatotilapia burtoni is a maternal mouthbrooder in which females hold developing young inside their mouths for 2 weeks. This brood care makes feeding impossible, so females undergo obligatory starvation. We used immunohistochemistry for the neural activation marker pS6 to examine which brain regions were involved in processing salient information in mouthbrooding, starved, and fed females. We identified brain regions more associated with maternal brood care (TPp, Dc-4/-5), and others reflective of energetic state (Dl-v, NLTi). Most nuclei examined, however, were involved in both maternal care and energetic status. Placement of each of the 16 examined nuclei into these functional categories was supported by node by node comparisons, co-activity networks, hierarchical clustering, and discriminant function analysis. These results reveal which brain regions are involved in parental care and food intake in a species where provisioning is skewed towards the offspring when parental feeding is not possible. This study provides support for both distinct and shared circuitry involved in regulation of maternal care, food intake, and energy balance, and helps put the extreme parental case of mouthbrooding into a comparative and evolutionary context.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Julie M Butler
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States; Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305-5020, United States
| | - Karen E Field
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States
| | - Christopher Forester
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ashley Augustus
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
40
|
Butler JM, Anselmo CM, Maruska KP. Female reproductive state is associated with changes in distinct arginine vasotocin cell types in the preoptic area of Astatotilapia burtoni. J Comp Neurol 2020; 529:987-1003. [PMID: 32706120 DOI: 10.1002/cne.24995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Nonapeptides play a crucial role in mediating reproduction, aggression, and parental care across taxa. In fishes, arginine vasotocin (AVT) expression is related to social and/or reproductive status in most male fishes studied to date, and is linked to territorial defense, paternal care, and courtship. Despite a plethora of studies examining AVT in male fishes, relatively little is known about how AVT expression varies with female reproductive state or its role in female social behaviors. We used multiple methods for examining the AVT system in female African cichlid fish Astatotilapia burtoni, including immunohistochemistry for AVT, in situ hybridization for avt-mRNA, and quantitative PCR. Ovulated and mouthbrooding females had similar numbers of parvocellular, magnocellular, and gigantocellular AVT cells in the preoptic area. However, ovulated females had larger magnocellular and gigantocellular cells compared to mouthbrooding females, and gigantocellular AVT cell size correlated with the number of days brooding, such that late-stage brooding females had larger AVT cells than mid-stage brooding females. In addition, we found that ventral hypothalamic cells were more prominent in females compared to males, and were larger in mouthbrooding compared to ovulated females, suggesting a role in maternal care. Together, these data indicate that AVT neurons change across the reproductive cycle in female fishes, similar to that seen in males. These data on females complement studies in male A. burtoni, providing a comprehensive picture of the regulation and potential function of different AVT cell types in reproduction and social behaviors in both sexes.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chase M Anselmo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
41
|
Behavioral traits that define social dominance are the same that reduce social influence in a consensus task. Proc Natl Acad Sci U S A 2020; 117:18566-18573. [PMID: 32675244 PMCID: PMC7414064 DOI: 10.1073/pnas.2000158117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The attributes allowing individuals to attain positions of social power and dominance are common across many vertebrate social systems: aggression, intimidation, and coercion. These traits may be associated with influence, but may also be socially aversive, and thereby decrease social influence of dominant individuals. Using a social cichlid fish, we show that dominant males are aggressive, socially central, and influence group movement. Yet, dominant males are poor effectors of consensus in a more sophisticated association task compared with passive, socially peripheral subordinate males. These influential, subordinate males possess behavioral traits opposite of those generally associated with dominance, suggesting that the link between social dominance and social influence is context dependent, and behavioral traits of dominant males impede group consensus formation. Dominant individuals are often most influential in their social groups, affecting movement, opinion, and performance across species and contexts. Yet, behavioral traits like aggression, intimidation, and coercion, which are associated with and in many cases define dominance, can be socially aversive. The traits that make dominant individuals influential in one context may therefore reduce their influence in other contexts. Here, we examine this association between dominance and influence using the cichlid fish Astatotilapia burtoni, comparing the influence of dominant and subordinate males during normal social interactions and in a more complex group consensus association task. We find that phenotypically dominant males are aggressive, socially central, and that these males have a strong influence over normal group movement, whereas subordinate males are passive, socially peripheral, and have little influence over normal movement. However, subordinate males have the greatest influence in generating group consensus during the association task. Dominant males are spatially distant and have lower signal-to-noise ratios of informative behavior in the association task, potentially interfering with their ability to generate group consensus. In contrast, subordinate males are physically close to other group members, have a high signal-to-noise ratio of informative behavior, and equivalent visual connectedness to their group as dominant males. The behavioral traits that define effective social influence are thus highly context specific and can be dissociated with social dominance. Thus, processes of hierarchical ascension in which the most aggressive, competitive, or coercive individuals rise to positions of dominance may be counterproductive in contexts where group performance is prioritized.
Collapse
|
42
|
Wright EC, Hostinar CE, Trainor BC. Anxious to see you: Neuroendocrine mechanisms of social vigilance and anxiety during adolescence. Eur J Neurosci 2020; 52:2516-2529. [PMID: 31782841 PMCID: PMC7255921 DOI: 10.1111/ejn.14628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
Social vigilance is a behavioral strategy commonly used in adverse or changing social environments. In animals, a combination of avoidance and vigilance allows an individual to evade potentially dangerous confrontations while monitoring the social environment to identify favorable changes. However, prolonged use of this behavioral strategy in humans is associated with increased risk of anxiety disorders, a major burden for human health. Elucidating the mechanisms of social vigilance in animals could provide important clues for new treatment strategies for social anxiety. Importantly, during adolescence the prevalence of social anxiety increases significantly. We hypothesize that many of the actions typically characterized as anxiety behaviors begin to emerge during this time as strategies for navigating more complex social structures. Here, we consider how the social environment and the pubertal transition shape neural circuits that modulate social vigilance, focusing on the bed nucleus of the stria terminalis and prefrontal cortex. The emergence of gonadal hormone secretion during adolescence has important effects on the function and structure of these circuits, and may play a role in the emergence of a notable sex difference in anxiety rates across adolescence. However, the significance of these changes in the context of anxiety is still uncertain, as not enough studies are sufficiently powered to evaluate sex as a biological variable. We conclude that greater integration between human and animal models will aid the development of more effective strategies for treating social anxiety.
Collapse
Affiliation(s)
- Emily C Wright
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
43
|
|
44
|
Maruska KP, Butler JM, Anselmo C, Tandukar G. Distribution of aromatase in the brain of the African cichlid fish
Astatotilapia burtoni
: Aromatase expression, but not estrogen receptors, varies with female reproductive‐state. J Comp Neurol 2020; 528:2499-2522. [DOI: 10.1002/cne.24908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Chase Anselmo
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Ganga Tandukar
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Biology Program University of Louisiana at Monroe Monroe Louisiana USA
| |
Collapse
|
45
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
46
|
Maruska KP, Sohn YC, Fernald RD. Mechanistic target of rapamycin (mTOR) implicated in plasticity of the reproductive axis during social status transitions. Gen Comp Endocrinol 2019; 282:113209. [PMID: 31226256 PMCID: PMC6718321 DOI: 10.1016/j.ygcen.2019.113209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
Abstract
The highly conserved brain-pituitary-gonadal (BPG) axis controls reproduction in all vertebrates, so analyzing the regulation of this signaling cascade is important for understanding reproductive competence. The protein kinase mechanistic target of rapamycin (mTOR) functions as a conserved regulator of cellular growth and metabolism in all eukaryotes, and also regulates the reproductive axis in mammals. However, whether mTOR might also regulate the BPG axis in non-mammalian vertebrates remains unexplored. We used complementary experimental approaches in an African cichlid fish, Astatotilapia burtoni, to demonstrate that mTOR is involved in regulation of the brain, pituitary, and testes when males rise in rank to social dominance. mTOR or downstream components of its signaling pathway (p-p70S6K) were detected in gonadotropin-releasing hormone (GnRH1) neurons, the pituitary, and testes. Transcript levels of mtor in the pituitary and testes also varied when reproductively-suppressed subordinate males rose in social rank to become dominant reproductively-active males, a transition similar to puberty in mammals. Intracerebroventricular injection of the mTORC1 inhibitor, rapamycin, revealed a role for mTOR in the socially-induced hypertrophy of GnRH1 neurons. Rapamycin treatment also had effects at the pituitary and testes, suggesting involvement of the mTORC1 complex at multiple levels of the reproductive axis. Thus, we show that mTOR regulation of BPG function is conserved to fishes, likely playing important roles in regulating reproduction and fertility across all male vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
47
|
Butler JM, Whitlow SM, Rogers LS, Putland RL, Mensinger AF, Maruska KP. Reproductive state-dependent plasticity in the visual system of an African cichlid fish. Horm Behav 2019; 114:104539. [PMID: 31199904 DOI: 10.1016/j.yhbeh.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/22/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
Visual communication is used widely across the animal kingdom to convey crucial information about an animals' identity, reproductive status, and sex. Although it is well-demonstrated that auditory and olfactory sensitivity can change with reproductive state, fewer studies have tested for plasticity in the visual system, a surprising detail since courtship and mate choice behaviors in many species are largely dependent on visual signals. Here, we tested for reproductive state-dependent plasticity in the eye of the cichlid fish Astatotilapia burtoni using behavioral, gene expression, neural activation, and electrophysiology techniques. Males court ovulated females more intensely than gravid females, and ovulated females were more responsive to male courtship behaviors than gravid females. Using electroretinography to measure visual sensitivity in dark-adapted fish, we revealed that gravid, reproductively-ready females have increased visual sensitivity at wavelengths associated with male courtship coloration compared to non-gravid females. After ovulation was hormonally induced, female's spectral sensitivity further increased compared to pre-injection measurements. This increased sensitivity after hormone injection was absent in non-gravid females and in males, suggesting an ovulation-triggered increase in visual sensitivity. Ovulated females had higher mRNA expression levels of reproductive neuromodulatory receptors (sex-steroids; gonadotropins) in the eye than nonovulated females, whereas males had similar expression levels independent of reproductive/social state. In addition, female mate choice-like behaviors positively correlated with expression of gonadotropin system receptors in the eye. Collectively, these data provide crucial evidence linking endocrine modulation of visual plasticity to mate choice behaviors in females.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, USA.
| | - Sarah M Whitlow
- Department of Biological Sciences, Louisiana State University, USA
| | | | | | | | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, USA
| |
Collapse
|
48
|
Weissman YA, Demartsev V, Ilany A, Barocas A, Bar-Ziv E, Geffen E, Koren L. Social context mediates testosterone's effect on snort acoustics in male hyrax songs. Horm Behav 2019; 114:104535. [PMID: 31129283 DOI: 10.1016/j.yhbeh.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/25/2019] [Accepted: 05/18/2019] [Indexed: 11/20/2022]
Abstract
Testosterone affects physical and motivational states, both of which may strongly influence vocalization structure and acoustics. The loud complex calls (i.e., songs) of male rock hyraxes (Procavia capensis) are used as honest signals for advertising physical and social states. The snort, a low frequency, noisy element of the song, encodes information on the singer's age and social rank via harshness, as measured by jitter (i.e., acoustic frequency stability) and duration; suggesting that the snort concomitantly advertises both vocal stability and aggression. Our past findings revealed that testosterone levels are related to both vocal elements and social status of male hyraxes, suggesting that hormonal mechanisms mediate the motivation for aggressive and courtship behaviors. Here we examined whether long-term androgen levels are related to snort acoustics and song structure by comparing levels of testosterone in hair with acoustic and structural parameters. We found that songs performed by individuals with higher testosterone levels include more singing bouts and longer, smoother snorts, but only in those songs induced by external triggers. It is possible that hyraxes with higher levels of testosterone possess the ability to perform higher-quality singing, but only invest in situations of high social arousal and potential benefit. Surprisingly, in spontaneous songs, hyraxes with high testosterone were found to snort more harshly than low-testosterone males. The context dependent effects of high testosterone on snort acoustics suggest that the aggressive emotional arousal associated with testosterone is naturally reflected in the jittery hyrax snort, but that it can be masked by high-quality performance.
Collapse
Affiliation(s)
- Yishai A Weissman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Vlad Demartsev
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amiyaal Ilany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Adi Barocas
- San Diego Zoo's Institute for Conservation Research, Escondido, CA 92027, USA; Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK
| | - Einat Bar-Ziv
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel; Mitrani Dept. of Desert Ecology, Ben-Gurion University of the Negev, 8499000, Israel
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
49
|
Holmes MM, Monks DA. Bridging Sex and Gender in Neuroscience by Shedding a priori Assumptions of Causality. Front Neurosci 2019; 13:475. [PMID: 31143099 PMCID: PMC6521798 DOI: 10.3389/fnins.2019.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
- Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell & Systems BiologyUniversity of Toronto, Toronto, ON, Canada
- Department of Ecology & Evolutionary BiologyUniversity of Toronto, Toronto, ON, Canada
| | - D. Ashley Monks
- Department of PsychologyUniversity of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell & Systems BiologyUniversity of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Nikonov AA, Maruska KP. Male dominance status regulates odor-evoked processing in the forebrain of a cichlid fish. Sci Rep 2019; 9:5083. [PMID: 30911102 PMCID: PMC6433859 DOI: 10.1038/s41598-019-41521-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to identify odors in the environment is crucial for survival and reproduction. However, whether olfactory processing in higher-order brain centers is influenced by an animal's physiological condition is unknown. We used in vivo neuron and local field potential (LFP) recordings from the ventral telencephalon of dominant and subordinate male cichlids to test the hypothesis that response properties of olfactory neurons differ with social status. Dominant males had a high percentage of neurons that responded to several odor types, suggesting broad tuning or differential sensitivity when males are reproductively active and defending a territory. A greater percentage of neurons in dominant males also responded to sex- and food-related odors, while a greater percentage of neurons in subordinate males responded to complex odors collected from behaving dominant males, possibly as a mechanism to mediate social suppression and allow subordinates to identify opportunities to rise in rank. Odor-evoked LFP spectral densities, indicative of synaptic inputs, were also 2-3-fold greater in dominant males, demonstrating status-dependent differences in processing possibly linking olfactory and other neural inputs to goal-directed behaviors. For the first time we reveal social and reproductive-state plasticity in olfactory processing neurons in the vertebrate forebrain that are associated with status-specific lifestyles.
Collapse
Affiliation(s)
- Alexandre A Nikonov
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA, 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA, 70803, USA.
| |
Collapse
|