1
|
Chen K, Zhang L, Ding Y, Sun Z, Meng J, Luo R, Zhou X, Liu L, Yang S. Activity-based protein profiling in drug/pesticide discovery: Recent advances in target identification of antibacterial compounds. Bioorg Chem 2024; 151:107655. [PMID: 39032407 DOI: 10.1016/j.bioorg.2024.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Given the escalating incidence of bacterial diseases and the challenge posed by pathogenic bacterial resistance, it is imperative to identify appropriate methodologies for conducting proteomic investigations on bacteria, and thereby promoting the target-based drug/pesticide discovery. Interestingly, a novel technology termed "activity-based protein profiling" (ABPP) has been developed to identify the target proteins of active molecules. However, few studies have summarized advancements in ABPP for identifying the target proteins in antibacterial-active compounds. In order to accelerate the discovery and development of new drug/agrochemical discovery, we provide a concise overview of ABPP and its recent applications in antibacterial agent discovery. Diversiform cases were cited to demonstrate the potential of ABPP for target identification though highlighting the design strategies and summarizing the reported target protein of antibacterial compounds. Overall, this review is an excellent reference for probe design towards antibacterial compounds, and offers a new perspective of ABPP in bactericide development.
Collapse
Affiliation(s)
- Kunlun Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ling Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rongshuang Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Liu R, Dang JN, Lee R, Lee JJ, Kesavamoorthy N, Ameri H, Rao N, Eoh H. Mycobacterium dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis. Microbiol Spectr 2024; 12:e0078824. [PMID: 38916325 PMCID: PMC11302011 DOI: 10.1128/spectrum.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can also lead to multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within the ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in protection from antibiotic effects, making them an anatomical niche for invading M. tuberculosis. RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography-mass spectrometry metabolomics were used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance antibiotic tolerance. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing the poor visual outcomes of OTB patients. Unfortunately, the efficacy of current methods is highly limited. Thus, the results will lead to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis and laying the foundation for a new, innovative regimen for treating OTB. IMPORTANCE Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with Mycobacterium tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure ocular tuberculosis. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug-tolerant state, thereby blunting the efficacy of anti-tuberculosis chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that the intracellular environment within RPE cells is enriched with a greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.
Collapse
Affiliation(s)
- Rachel Liu
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua N. Dang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rhoeun Lee
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Jin Lee
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Niranjana Kesavamoorthy
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hossein Ameri
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Narsing Rao
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hyungjin Eoh
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Goss AL, Shudick RE, Johnson RJ. Shifting Mycobacterial Serine Hydrolase Activity Visualized Using Multi-Layer In-Gel Activity Assays. Molecules 2024; 29:3386. [PMID: 39064965 PMCID: PMC11279797 DOI: 10.3390/molecules29143386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity.
Collapse
Affiliation(s)
| | | | - R. Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| |
Collapse
|
4
|
Verma RK, Roman-Reyna V, Raanan H, Coaker G, Jacobs JM, Teper D. Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range. PLoS Pathog 2024; 20:e1012380. [PMID: 39028765 PMCID: PMC11290698 DOI: 10.1371/journal.ppat.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/31/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| | - Veronica Roman-Reyna
- Dept. Of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hagai Raanan
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Gilat Research Center, Negev, Israel
| | - Gitta Coaker
- Dept. of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jonathan M. Jacobs
- Dept. of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Doron Teper
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
5
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
6
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
7
|
Liu R, Dang JN, Lee R, Lee JJ, Kesavamoorthy N, Ameri H, Rao N, Eoh H. Mycobacterium dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585612. [PMID: 38562751 PMCID: PMC10983995 DOI: 10.1101/2024.03.18.585612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can lead to a multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing poor visual outcomes of OTB patients. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in the protection from the antibiotic effects, making them an anatomical niche for invading M. tuberculosis . RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography mass spectrometry (LC-MS) metabolomics was used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance the antibiotic tolerance. The results have led to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis , thus laying the foundation for a new, innovative regimen for treating OTB. Importance Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with M. tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure OTB. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug tolerant state, thereby blunting the efficacy of anti-TB chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that intracellular environment within RPE cells is enriched with greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.
Collapse
|
8
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Staphylococcus aureus Infections. J Am Chem Soc 2024; 146:6880-6892. [PMID: 38411555 DOI: 10.1021/jacs.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ki Wan Park
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nichole J Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
9
|
Lin H, Xing J, Wang H, Wang S, Fang R, Li X, Li Z, Song N. Roles of Lipolytic enzymes in Mycobacterium tuberculosis pathogenesis. Front Microbiol 2024; 15:1329715. [PMID: 38357346 PMCID: PMC10865251 DOI: 10.3389/fmicb.2024.1329715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that can endure for long periods in an infected patient, without causing disease. There are a number of virulence factors that increase its ability to invade the host. One of these factors is lipolytic enzymes, which play an important role in the pathogenic mechanism of Mtb. Bacterial lipolytic enzymes hydrolyze lipids in host cells, thereby releasing free fatty acids that are used as energy sources and building blocks for the synthesis of cell envelopes, in addition to regulating host immune responses. This review summarizes the relevant recent studies that used in vitro and in vivo models of infection, with particular emphasis on the virulence profile of lipolytic enzymes in Mtb. A better understanding of these enzymes will aid the development of new treatment strategies for TB. The recent work done that explored mycobacterial lipolytic enzymes and their involvement in virulence and pathogenicity was highlighted in this study. Lipolytic enzymes are expected to control Mtb and other intracellular pathogenic bacteria by targeting lipid metabolism. They are also potential candidates for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hong Lin
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
10
|
Ahuja A, Singh S, Murti Y. Chemical Probes Review: Choosing the Right Path Towards Pharmacological Targets in Drug Discovery, Challenges and Future Perspectives. Comb Chem High Throughput Screen 2024; 27:2544-2564. [PMID: 38083882 DOI: 10.2174/0113862073283304231118155730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 09/27/2024]
Abstract
Chemical probes are essential for academic research and target validation for disease identification. They facilitate drug discovery, target function investigation, and translation studies. A chemical probe provides starting material that can accelerate therapeutic values and safety measures for identifying any biological target in drug discovery. Essential read outs depend on their versatility in biochemical testing, proving the hypothesis, selectivity, specificity, affinity towards the target site, and valuable in new therapeutic approaches. Disease management will depend upon chemical probes as a primitive tool to ascertain the physicochemical stability for in vivo and in vitro studies useful for clinical trials and industrial application in the future. For cancer research, bacterial infection, and neurodegenerative disorders, chemical probes are integrated circuits which are on pipeline for the drug discovery process Furthermore, pharmacological modulators incorporate activators, crosslinkers, degraders, and inhibitors. Reports accessed depend on their structural, mechanical, biochemical, and pharmacological characterization in drug discovery research. The perspective for designing any chemical probes concludes with the utilization of drug discovery and identification of the potential target. It focuses mainly on evidence-based studies and produces promising results in successfully delivering novel therapeutics to treat cancers and other disorders at the target site. Moreover, natural product pharmacophores like rapamycin, cephalosporin, and α-lactamase are utilized for drug discovery. Chemical probes revolutionize computational-based study design depending on identifying novel targets within the database framework. Chemical probes are the clinical answers for drug development and goforward tools in solving other riddles for scientists and researchers working in this industries.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, India, UP, 281406
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, India, UP, 281406
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, India, UP, 281406
| |
Collapse
|
11
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of S. aureus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571116. [PMID: 38168396 PMCID: PMC10760020 DOI: 10.1101/2023.12.11.571116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here we describe the development of oxadiazolonebased activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologs in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling and mouse models of infection we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes (ABPs) and validate FphE as a target for development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ki Wan Park
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulio A. Valdez
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Mokrousov I, Vinogradova T, Dogonadze M, Zabolotnykh N, Vyazovaya A, Vitovskaya M, Solovieva N, Ariel B. A multifaceted interplay between virulence, drug resistance, and the phylogeographic landscape of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0139223. [PMID: 37768091 PMCID: PMC10581221 DOI: 10.1128/spectrum.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Latin-American Mediterranean (LAM) family is one of the most significant and global genotypes of Mycobacterium tuberculosis. Here, we used the murine model to study the virulence and lethality of the genetically and epidemiologically distinct LAM strains. The pathobiological characteristics of the four LAM strains (three drug resistant and one drug susceptible) and the susceptible reference strain H37Rv were studied in the C57BL/6 mouse model. The whole-genome sequencing was performed using the HiSeq Illumina platform, followed by bioinformatics and phylogenetic analysis. The susceptible strain H37Rv showed the highest virulence. Drug-susceptible LAM strain (spoligotype SIT264) was more virulent than three multidrug-resistant (MDR) strains (SIT252, SIT254, and SIT266). All three MDR isolates were low lethal, while the susceptible isolate and H37Rv were moderately/highly lethal. Putting the genomic, phenotypic, and virulence features of the LAM strains/spoligotypes in the context of their dynamic phylogeography over 20 years reveals three types of relationships between virulence, resistance, and transmission. First, the most virulent and more lethal drug-susceptible SIT264 increased its circulation in parts of Russia. Second, moderately virulent and pre-XDR SIT266 was prevalent in Belarus and continues to be visible in North-West Russia. Third, the low virulent and MDR strain SIT252 previously considered as emerging has disappeared from the population. These findings suggest that strain virulence impacts the transmission, irrespective of drug resistance properties. The increasing circulation of susceptible but more virulent and lethal strains implies that personalized TB treatment should consider not only resistance but also the virulence of the infecting M. tuberculosis strains. IMPORTANCE The study is multidisciplinary and investigates the epidemically/clinically important and global lineage of Mycobacterium tuberculosis, named Latin-American-Mediterranean (LAM), yet insufficiently studied with regard to its pathobiology. We studied different LAM strains (epidemic vs endemic and resistant vs susceptible) in the murine model and using whole-genome analysis. We also collected long-term, 20-year data on their prevalence in Eurasia. The findings are both expected and unexpected. (i) We observe that a drug-susceptible but highly virulent strain increased its prevalence. (ii) By contrast, the multidrug-resistant (MDR) but low-virulent, low-lethal strain (that we considered as emerging 15 years ago) has almost disappeared. (iii) Finally, an intermediate case is the MDR strain with moderate virulence that continues to circulate. We conclude that (i) the former and latter strains are the most hazardous and require close epidemiological monitoring, and (ii) personalized TB treatment should consider not only drug resistance but also the virulence of the infecting strains and development of anti-virulence drugs is warranted.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Tatiana Vinogradova
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Zabolotnykh
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Anna Vyazovaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Maria Vitovskaya
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Boris Ariel
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
13
|
Capela R, Félix R, Clariano M, Nunes D, Perry MDJ, Lopes F. Target Identification in Anti-Tuberculosis Drug Discovery. Int J Mol Sci 2023; 24:10482. [PMID: 37445660 DOI: 10.3390/ijms241310482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Félix
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Clariano
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diogo Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria de Jesus Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Schemenauer D, Pool EH, Raynor SN, Ruiz GP, Goehring LM, Koelper AJ, Wilson MA, Durand AJ, Kourtoglou EC, Larsen EM, Lavis LD, Esteb JJ, Hoops GC, Johnson RJ. Sequence and Structural Motifs Controlling the Broad Substrate Specificity of the Mycobacterial Hormone-Sensitive Lipase LipN. ACS OMEGA 2023; 8:13252-13264. [PMID: 37065048 PMCID: PMC10099132 DOI: 10.1021/acsomega.3c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Mycobacterium tuberculosis has a complex life cycle transitioning between active and dormant growth states depending on environmental conditions. LipN (Rv2970c) is a conserved mycobacterial serine hydrolase with regulated catalytic activity at the interface between active and dormant growth conditions. LipN also catalyzes the xenobiotic degradation of a tertiary ester substrate and contains multiple conserved motifs connected with the ability to catalyze the hydrolysis of difficult tertiary ester substrates. Herein, we expanded a library of fluorogenic ester substrates to include more tertiary and constrained esters and screened 33 fluorogenic substrates for activation by LipN, identifying its unique substrate signature. LipN preferred short, unbranched ester substrates, but had its second highest activity against a heteroaromatic five-membered oxazole ester. Oxazole esters are present in multiple mycobacterial serine hydrolase inhibitors but have not been tested widely as ester substrates. Combined structural modeling, kinetic measurements, and substitutional analysis of LipN showcased a fairly rigid binding pocket preorganized for catalysis of short ester substrates. Substitution of diverse amino acids across the binding pocket significantly impacted the folded stability and catalytic activity of LipN with two conserved motifs (HGGGW and GDSAG) playing interconnected, multidimensional roles in regulating its substrate specificity. Together this detailed substrate specificity profile of LipN illustrates the complex interplay between structure and function in mycobacterial hormone-sensitive lipase homologues and indicates oxazole esters as promising inhibitor and substrate scaffolds for mycobacterial hydrolases.
Collapse
Affiliation(s)
- Daniel
E. Schemenauer
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Emily H. Pool
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Stephanie N. Raynor
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Gabriela P. Ruiz
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Leah M. Goehring
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Andrew J. Koelper
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Madeleine A. Wilson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Anthony J. Durand
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Elexi C. Kourtoglou
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Erik M. Larsen
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Luke D. Lavis
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - John J. Esteb
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Geoffrey C. Hoops
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - R. Jeremy Johnson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| |
Collapse
|
16
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
17
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
18
|
Benzoic Acid Derivatives as Prodrugs for the Treatment of Tuberculosis. Pharmaceuticals (Basel) 2022; 15:ph15091118. [PMID: 36145340 PMCID: PMC9502840 DOI: 10.3390/ph15091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
One interesting approach to fight tuberculosis is the use of prodrugs that often have shown improved biological activities over drugs with poor absorption or difficulty to cross membranes. Previous studies demonstrate that weak acids such as benzoic acid, present antimycobacterial activity. Moreover, esters of those acids revealed to be a viable alternative since they may diffuse more easily through the cell membranes. Previously we showed that mycobacteria can easily activate benzoic acid esters by conversion to the corresponding acid. Since Zhang postulated that the activity of the acids can be dependent on their pKa, we set up to synthesize a library of benzoates with different electron withdrawing groups (4-chloro, 2,6-dichloro, 3,5-dichloro, 4-nitro, and 3,5 dinitro), to modulate pKa of the liberated acid and different alkoxy substituents (propyl, hexyl, and phenyl) to modulate their lipophilicity, and tested the activity of the esters and the corresponding free acids against mycobacteria. We also studied the activation of the esters by mycobacterial enzymes and the stability of the compounds in buffer and plasma. We concluded that all the benzoates in our study can be activated by mycobacterial enzymes and that the phenyl and hexyl esters presented higher activity than the corresponding free acids, with the nitrobenzoates, and especially the dinitrobenzoates, showing very interesting antitubercular activity that deserve further exploration. Our results did not show a correlation between the activity and the pKa of the acids.
Collapse
|
19
|
Nikitushkin V, Shleeva M, Loginov D, Dyčka F. F, Sterba J, Kaprelyants A. Shotgun proteomic profiling of dormant, ‘non-culturable’ Mycobacterium tuberculosis. PLoS One 2022; 17:e0269847. [PMID: 35944020 PMCID: PMC9362914 DOI: 10.1371/journal.pone.0269847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dormant cells of Mycobacterium tuberculosis, in addition to low metabolic activity and a high level of drug resistance, are characterized by ‘non-culturability’–a specific reversible state of the inability of the cells to grow on solid media. The biochemical characterization of this physiological state of the pathogen is only superficial, pending clarification of the metabolic processes that may exist in such cells. In this study, applying LC-MS proteomic profiling, we report the analysis of proteins accumulated in dormant, ‘non-culturable’ M. tuberculosis cells in an in vitro model of self-acidification of mycobacteria in the post-stationary phase, simulating the in vivo persistence conditions—the raw data are available via ProteomeXchange with identifier PXD028849. This approach revealed the preservation of 1379 proteins in cells after 5 months of storage in dormancy; among them, 468 proteins were statistically different from those in the actively growing cells and bore a positive fold change (FC). Differential analysis revealed the proteins of the pH-dependent regulatory system PhoP and allowed the reconstruction of the reactions of central carbon/glycerol metabolism, as well as revealing the salvaged pathways of mycothiol and UMP biosynthesis, establishing the cohort of survival enzymes of dormancy. The annotated pathways mirror the adaptation of the mycobacterial metabolic machinery to life within lipid-rich macrophages: especially the involvement of the methyl citrate and glyoxylate pathways. Thus, the current in vitro model of M. tuberculosis self-acidification reflects the biochemical adaptation of these bacteria to persistence in vivo. Comparative analysis with published proteins displaying antigenic properties makes it possible to distinguish immunoreactive proteins among the proteins bearing a positive FC in dormancy, which may include specific antigens of latent tuberculosis. Additionally, the biotransformatory enzymes (oxidoreductases and hydrolases) capable of prodrug activation and stored up in the dormant state were annotated. These findings may potentially lead to the discovery of immunodiagnostic tests for early latent tuberculosis and trigger the discovery of efficient drugs/prodrugs with potency against non-replicating, dormant populations of mycobacteria.
Collapse
Affiliation(s)
- Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
- * E-mail: (VN); (FDF)
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Loginov
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- BioCeV—Institute of Microbiology of the CAS, Vestec, Czech Republic
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Filip Dyčka F.
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- * E-mail: (VN); (FDF)
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Feng L, Deng Y, Song S, Sun Y, Cui J, Ma X, Jin L, Wang Y, James TD, Wang C. Visual Identification of Trichosporon asahii, a Gut Yeast Associated with Obesity, Using an Enzymatic NIR Fluorescent Probe. Anal Chem 2022; 94:11216-11223. [PMID: 35920602 PMCID: PMC9386680 DOI: 10.1021/acs.analchem.2c01691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lipase found in the gut microbiota participates in the
digestion
and absorption of dietary fats. As such, the gut microbiota is involved
in the regulation of the host metabolism, affecting the levels of
lipids and free fatty acids, ultimately resulting in obesity. In this
study, an enzymatic activatable near-infrared fluorescent probe, DDAO-C6, was developed for visually sensing endogenous lipase
from gut microbes. Using DDAO-C6, a cultivated intestinal
yeast strain was rapidly identified from human feces that exhibited
high lipase expression and was identified as Trichosporon
asahii Y2. We then determined that the colonization
of the gut of mice with T. asahii Y2
increased lipase activity in the digestive tract and promoted obesity
and hyperlipidemia when the mice were fed high fat diets. Above all,
the present research resulted in a fluorescence visualization tool
for the functional investigation of gut microbiota associated with
obesity and disorders of lipid metabolism.
Collapse
Affiliation(s)
- Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ying Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shufan Song
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yanqiu Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lingling Jin
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
21
|
Babin BM, Keller LJ, Pinto Y, Li VL, Eneim AS, Vance SE, Terrell SM, Bhatt AS, Long JZ, Bogyo M. Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism. Cell Chem Biol 2022; 29:897-909.e7. [PMID: 34599874 PMCID: PMC9252067 DOI: 10.1016/j.chembiol.2021.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
The increasing incidence of antibiotic-resistant Mycobacterium tuberculosis infections is a global health threat necessitating the development of new antibiotics. Serine hydrolases (SHs) are a promising class of targets because of their importance for the synthesis of the mycobacterial cell envelope. We screen a library of small molecules containing serine-reactive electrophiles and identify narrow-spectrum inhibitors of M. tuberculosis growth. Using these lead molecules, we perform competitive activity-based protein profiling and identify multiple SH targets, including enzymes with uncharacterized functions. Lipidomic analyses of compound-treated cultures reveal an accumulation of free lipids and a substantial decrease in lipooligosaccharides, linking SH inhibition to defects in cell envelope biogenesis. Mutant analysis reveals a path to resistance via the synthesis of mycocerates, but not through mutations to SH targets. Our results suggest that simultaneous inhibition of multiple SH enzymes is likely to be an effective therapeutic strategy for the treatment of M. tuberculosis infections.
Collapse
Affiliation(s)
- Brett M Babin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura J Keller
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yishay Pinto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Andrew S Eneim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Summer E Vance
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Li M, Patel HV, Cognetta AB, Smith TC, Mallick I, Cavalier JF, Previti ML, Canaan S, Aldridge BB, Cravatt BF, Seeliger JC. Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling. Cell Chem Biol 2022; 29:883-896.e5. [PMID: 34599873 PMCID: PMC8964833 DOI: 10.1016/j.chembiol.2021.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The identification and validation of a small molecule's targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule's targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here, we study the effects of 1,2,3-triazole ureas on Mycobacterium tuberculosis (Mtb). After screening ∼200 compounds, we focus on 4 compounds that form a structure-activity series. The compound with negligible activity reveals targets, the inhibition of which is functionally less relevant for Mtb growth and viability, an aspect not addressed in other ABPP studies. Biochemistry, computational docking, and morphological analysis confirms that active compounds preferentially inhibit serine hydrolases with cell wall and lipid metabolism functions and that disruption of the cell wall underlies biological activity. Our findings show that ABPP identifies the targets most likely relevant to a compound's antibacterial activity.
Collapse
Affiliation(s)
- Michael Li
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Hiren V Patel
- Department of Microbiology and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Armand B Cognetta
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever C Smith
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Ivy Mallick
- Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13402 Marseille, France
| | | | - Mary L Previti
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13402 Marseille, France
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
23
|
Environment dependent expression of mycobacterium hormone sensitive lipases: expression pattern under ex-vivo and individual in-vitro stress conditions in M. tuberculosis H37Ra. Mol Biol Rep 2022; 49:4583-4593. [PMID: 35301657 DOI: 10.1007/s11033-022-07305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hormone-sensitive lipase (HSL) is a neutral lipase capable of hydrolysing various kinds of lipids. In comparison to single human Hormone Sensitive Lipase (hHSL), that is induced under nutritional stress, twelve serine hydrolases are annotated as HSL in Mycobacterium tuberculosis (mHSL). Mycobacterium is exposed to multiple stresses inside the host. Therefore, the present study was carried out to investigate if mHSL are also expressed under stress condition and if there is any correlation between various stress conditions and expression pattern of mHSL. METHODS AND RESULTS The expression pattern of mHSL under different environmental conditions (in-vitro and ex-vivo) were studied using qRT-PCR in M. tuberculosis H37Ra strain with 16 S rRNA as internal control. Out of 12, only two genes (lipU and lipY) were expressed at very low level in mid log phase culture under aerobic conditions, while 9 genes were expressed at stationary phase of growth. Ten mHSLs were expressed post-infection under ex-vivo conditions in time dependent manner. LipH and lipQ did not express at any time point under ex-vivo condition. The relative expression of most of the genes under individual stress was much higher than observed in ex-vivo conditions. The expression pattern of genes varied with change in stress condition. CONCLUSIONS Different sets of mHSL genes were expressed under different individual stress conditions pointing towards the requirement of different mHSL to combat different stress conditions. Overall, most of the mHSLs have demonstrated stress dependent expression pointing towards their role in intracellular survival of mycobacteria.
Collapse
|
24
|
Hegde PV, Howe MD, Zimmerman MD, Boshoff HIM, Sharma S, Remache B, Jia Z, Pan Y, Baughn AD, Dartois V, Aldrich CC. Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). Eur J Med Chem 2022; 232:114201. [PMID: 35219151 PMCID: PMC8941652 DOI: 10.1016/j.ejmech.2022.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is one of the world's most deadly infectious diseases resulting in nearly 1.3 million deaths annually and infecting nearly one-quarter of the population. para-Aminosalicylic acid (PAS), an important second-line agent for treating drug-resistant Mycobacterium tuberculosis, has moderate bioavailability and rapid clearance that necessitate high daily doses of up to 12 g per day, which in turn causes severe gastrointestinal disturbances presumably by disruption of gut microbiota and host epithelial cells. We first synthesized a series of alkyl, acyloxy and alkyloxycarbonyloxyalkyl ester prodrugs to increase the oral bioavailability and thereby prevent intestinal accumulation as well as undesirable bioactivation by the gut microbiome to non-natural folate species that exhibit cytotoxicity. The pivoxyl prodrug of PAS was superior to all of the prodrugs examined and showed nearly quantitative absorption. While the conceptually simple prodrug approach improved the oral bioavailability of PAS, it did not address the intrinsic rapid clearance of PAS mediated by N-acetyltransferase-1 (NAT-1). Thus, we next modified the PAS scaffold to reduce NAT-1 catalyzed inactivation by introduction of groups to sterically block N-acetylation and fluorination of the aryl ring of PAS to attenuate N-acetylation by electronically deactivating the para-amino group. Among the mono-fluorinated analogs prepared, 5-fluoro-PAS, exhibited the best activity and an 11-fold decreased rate of inactivation by NAT-1 that translated to a 5-fold improved exposure as measured by area-under-the-curve (AUC) following oral dosing to CD-1 mice. The pivoxyl prodrug and fluorination at the 5-position of PAS address the primary limitations of PAS and have the potential to revitalize this second-line TB drug.
Collapse
Affiliation(s)
- Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Howe
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Remache
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Ziyi Jia
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Anthony D Baughn
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Activation of Tenofovir Alafenamide and Sofosbuvir in the Human Lung and Its Implications in the Development of Nucleoside/Nucleotide Prodrugs for Treating SARS-CoV-2 Pulmonary Infection. Pharmaceutics 2021; 13:pharmaceutics13101656. [PMID: 34683949 PMCID: PMC8540046 DOI: 10.3390/pharmaceutics13101656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
ProTide technology is a powerful tool for the design of nucleoside/nucleotide analog prodrugs. ProTide prodrug design improves cell permeability and enhances intracellular activation. The hydrolysis of the ester bond of a ProTide is a determinant of the intracellular activation efficiency and final antiviral efficacy of the prodrug. The hydrolysis is dictated by the catalytic activity and abundance of activating enzymes. The antiviral agents tenofovir alafenamide (TAF) and sofosbuvir (SBV) are typical ProTides. Both TAF and SBV have also been proposed to treat patients with COVID-19. However, the mechanisms underlying the activation of the two prodrugs in the lung remain inconclusive. In the present study, we profiled the catalytic activity of serine hydrolases in human lung S9 fractions using an activity-based protein profiling assay. We evaluated the hydrolysis of TAF and SBV using human lung and liver S9 fractions and purified enzymes. The results showed that CatA and CES1 were involved in the hydrolysis of the two prodrugs in the human lung. More specifically, CatA exhibited a nearly 4-fold higher hydrolytic activity towards TAF than SBV, whereas the CES1 activity on hydrolyzing TAF was slightly lower than that for SBV. Overall, TAF had a nearly 4-fold higher hydrolysis rate in human lung S9 than SBV. We further analyzed protein expression levels of CatA and CES1 in the human lung, liver, and primary cells of the two tissues using proteomics data extracted from the literature. The relative protein abundance of CatA to CES1 was considerably higher in the human lung and primary human airway epithelial cells than in the human liver and primary human hepatocytes. The findings demonstrated that the high susceptivity of TAF to CatA-mediated hydrolysis resulted in efficient TAF hydrolysis in the human lung, suggesting that CatA could be utilized as a target activating enzyme when designing antiviral ester prodrugs for the treatment of respiratory virus infection.
Collapse
|
26
|
Khan SS, Sudasinghe TD, Landgraf AD, Ronning DR, Sucheck SJ. Total Synthesis of Tetrahydrolipstatin, Its Derivatives, and Evaluation of Their Ability to Potentiate Multiple Antibiotic Classes against Mycobacterium Species. ACS Infect Dis 2021; 7:2876-2888. [PMID: 34478259 PMCID: PMC8630808 DOI: 10.1021/acsinfecdis.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/β hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-β-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/β hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 μM) and Ag85C (66 ± 8 μM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 μM (25 μg/mL) and 16 μM (8.4 μg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 μg/mL; however, the MIC was lowered to 0.25 μg/mL in the presence of 2.1 μg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Saniya S Khan
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Thanuja D Sudasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alexander D Landgraf
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven J Sucheck
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
27
|
Grininger C, Leypold M, Aschauer P, Pavkov-Keller T, Riegler-Berket L, Breinbauer R, Oberer M. Structural Changes in the Cap of Rv0183/mtbMGL Modulate the Shape of the Binding Pocket. Biomolecules 2021; 11:1299. [PMID: 34572512 PMCID: PMC8472722 DOI: 10.3390/biom11091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis continues to be a major threat to the human population. Global efforts to eradicate the disease are ongoing but are hampered by the increasing occurrence of multidrug-resistant strains of Mycobacterium tuberculosis. Therefore, the development of new treatment, and the exploration of new druggable targets and treatment strategies, are of high importance. Rv0183/mtbMGL, is a monoacylglycerol lipase of M. tuberculosis and it is involved in providing fatty acids and glycerol as building blocks and as an energy source. Since the lipase is expressed during the dormant and active phase of an infection, Rv0183/mtbMGL is an interesting target for inhibition. In this work, we determined the crystal structures of a surface-entropy reduced variant K74A Rv0183/mtbMGL in its free form and in complex with a substrate mimicking inhibitor. The two structures reveal conformational changes in the cap region that forms a major part of the substrate/inhibitor binding region. We present a completely closed conformation in the free form and semi-closed conformation in the ligand-bound form. These conformations differ from the previously published, completely open conformation of Rv0183/mtbMGL. Thus, this work demonstrates the high conformational plasticity of the cap from open to closed conformations and provides useful insights into changes in the substrate-binding pocket, the target of potential small-molecule inhibitors.
Collapse
Affiliation(s)
- Christoph Grininger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (C.G.); (P.A.); (T.P.-K.); (L.R.-B.)
| | - Mario Leypold
- Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria; (M.L.); (R.B.)
| | - Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (C.G.); (P.A.); (T.P.-K.); (L.R.-B.)
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (C.G.); (P.A.); (T.P.-K.); (L.R.-B.)
- BioHealth Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Lina Riegler-Berket
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (C.G.); (P.A.); (T.P.-K.); (L.R.-B.)
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria; (M.L.); (R.B.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (C.G.); (P.A.); (T.P.-K.); (L.R.-B.)
- BioHealth Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
28
|
Babin B, Fernandez-Cuervo G, Sheng J, Green O, Ordonez AA, Turner ML, Keller LJ, Jain SK, Shabat D, Bogyo M. Chemiluminescent Protease Probe for Rapid, Sensitive, and Inexpensive Detection of Live Mycobacterium tuberculosis. ACS CENTRAL SCIENCE 2021; 7:803-814. [PMID: 34079897 PMCID: PMC8161474 DOI: 10.1021/acscentsci.0c01345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Tuberculosis (TB) is a top-ten cause of death worldwide. Successful treatment is often limited by insufficient diagnostic capabilities, especially at the point of care in low-resource settings. The ideal diagnostic must be fast, be cheap, and require minimal clinical resources while providing high sensitivity, selectivity, and the ability to differentiate live from dead bacteria. We describe here the development of a fast, luminescent, and affordable sensor of Hip1 (FLASH) for detecting and monitoring drug susceptibility of Mycobacterium tuberculosis (Mtb). FLASH is a selective chemiluminescent substrate for the Mtb protease Hip1 that, when processed, produces visible light that can be measured with a high signal-to-noise ratio using inexpensive sensors. FLASH is sensitive to fmol of recombinant Hip1 enzyme in vitro and can detect as few as thousands of Mtb cells in culture or in human sputum samples within minutes. The probe is highly selective for Mtb compared to other nontuberculous mycobacteria and can distinguish live from dead cells. Importantly, FLASH can be used to measure antibiotic killing of Mtb in culture with greatly accelerated timelines compared to traditional protocols. Overall, FLASH has the potential to enhance both TB diagnostics and drug resistance monitoring in resource-limited settings.
Collapse
Affiliation(s)
- Brett
M. Babin
- Department
of Pathology, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Gabriela Fernandez-Cuervo
- Department
of Pathology, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Jessica Sheng
- Department
of Pathology, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Ori Green
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alvaro A. Ordonez
- Center
for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21287, United States
- Department
of Pediatrics, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Mitchell L. Turner
- Center
for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21287, United States
- Department
of Pediatrics, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Laura J. Keller
- Department
of Chemical and Systems Biology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Sanjay K. Jain
- Center
for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21287, United States
- Department
of Pediatrics, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Matthew Bogyo
- Department
of Pathology, Stanford University School
of Medicine, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
29
|
Ignacio BJ, Bakkum T, Bonger KM, Martin NI, van Kasteren SI. Metabolic labeling probes for interrogation of the host-pathogen interaction. Org Biomol Chem 2021; 19:2856-2870. [PMID: 33725048 DOI: 10.1039/d0ob02517h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial infections are still one of the leading causes of death worldwide; despite the near-ubiquitous availability of antibiotics. With antibiotic resistance on the rise, there is an urgent need for novel classes of antibiotic drugs. One particularly troublesome class of bacteria are those that have evolved highly efficacious mechanisms for surviving inside the host. These contribute to their virulence by immune evasion, and make them harder to treat with antibiotics due to their residence inside intracellular membrane-limited compartments. This has sparked the development of new chemical reporter molecules and bioorthogonal probes that can be metabolically incorporated into bacteria to provide insights into their activity status. In this review, we provide an overview of several classes of metabolic labeling probes capable of targeting either the peptidoglycan cell wall, the mycomembrane of mycobacteria and corynebacteria, or specific bacterial proteins. In addition, we highlight several important insights that have been made using these metabolic labeling probes.
Collapse
Affiliation(s)
- Bob J Ignacio
- Institute for Molecules and Materials, Radbout Universiteit, Nijmegen, Gelderland, Netherlands
| | | | | | | | | |
Collapse
|
30
|
Levine SR, Beatty KE. Investigating β-Lactam Drug Targets in Mycobacterium tuberculosis Using Chemical Probes. ACS Infect Dis 2021; 7:461-470. [PMID: 33470787 DOI: 10.1021/acsinfecdis.0c00809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb), infects 10 million people a year. An estimated 25% of humans harbor latent TB infections, an asymptomatic form of the disease. In both active and latent infections, Mtb relies on cell wall peptidoglycan for viability. In the current work, we synthesized fluorescent analogues of β-lactam antibiotics to study two classes of enzymes that maintain Mtb's peptidoglycan: penicillin-binding proteins (PBPs) and l,d-transpeptidases (LDTs). This set of activity-based probes included analogues of three classes of β-lactams: a monobactam (aztreonam-Cy5), a cephalosporin (cephalexin-Cy5), and a carbapenem (meropenem-Cy5). We used these probes to profile enzyme activity in protein gel-resolved lysates of Mtb. All three out-performed the commercial reagent Bocillin-FL, a penam. Meropenem-Cy5 was used to identify β-lactam targets by mass spectrometry, including PBPs, LDTs, and the β-lactamase BlaC. New probes were also used to compare PBP and LDT activity in two metabolic states: dormancy and active replication. We provide the first direct evidence that Mtb dynamically regulates the enzymes responsible for maintaining peptidoglycan in dormancy. Lastly, we profiled drug susceptibility in lysates and found that meropenem inhibits PBPs, LDTs, and BlaC.
Collapse
Affiliation(s)
- Samantha R. Levine
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92617, United States
| | - Kimberly E. Beatty
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92617, United States
| |
Collapse
|
31
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
32
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
33
|
Madani A, Mallick I, Guy A, Crauste C, Durand T, Fourquet P, Audebert S, Camoin L, Canaan S, Cavalier JF. Dissecting the antibacterial activity of oxadiazolone-core derivatives against Mycobacterium abscessus. PLoS One 2020; 15:e0238178. [PMID: 32946441 PMCID: PMC7500638 DOI: 10.1371/journal.pone.0238178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/12/2020] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium abscessus (M. abscessus), a rapidly growing mycobacterium, is an emergent opportunistic pathogen responsible for chronic bronchopulmonary infections in individuals with respiratory diseases such as cystic fibrosis. Most treatments of M. abscessus pulmonary infections are poorly effective due to the intrinsic resistance of this bacteria against a broad range of antibiotics including anti-tuberculosis agents. Consequently, the number of drugs that are efficient against M. abscessus remains limited. In this context, 19 oxadiazolone (OX) derivatives have been investigated for their antibacterial activity against both the rough (R) and smooth (S) variants of M. abscessus. Several OXs impair extracellular M. abscessus growth with moderated minimal inhibitory concentrations (MIC), or act intracellularly by inhibiting M. abscessus growth inside infected macrophages with MIC values similar to those of imipenem. Such promising results prompted us to identify the potential target enzymes of the sole extra and intracellular inhibitor of M. abscessus growth, i.e., compound iBpPPOX, via activity-based protein profiling combined with mass spectrometry. This approach led to the identification of 21 potential protein candidates being mostly involved in M. abscessus lipid metabolism and/or in cell wall biosynthesis. Among them, the Ag85C protein has been confirmed as a vulnerable target of iBpPPOX. This study clearly emphasizes the potential of the OX derivatives to inhibit the extracellular and/or intracellular growth of M. abscessus by targeting various enzymes potentially involved in many physiological processes of this most drug-resistant mycobacterial species.
Collapse
Affiliation(s)
- Abdeldjalil Madani
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
| | - Ivy Mallick
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
- IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Alexandre Guy
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Céline Crauste
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Patrick Fourquet
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
| | - Jean François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
- * E-mail:
| |
Collapse
|
34
|
Fluorescent probes for investigating peptidoglycan biosynthesis in mycobacteria. Curr Opin Chem Biol 2020; 57:50-57. [DOI: 10.1016/j.cbpa.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 02/02/2023]
|
35
|
Abrahams KA, Hu W, Li G, Lu Y, Richardson EJ, Loman NJ, Huang H, Besra GS. Anti-tubercular derivatives of rhein require activation by the monoglyceride lipase Rv0183. ACTA ACUST UNITED AC 2020; 6:100040. [PMID: 32743152 PMCID: PMC7389528 DOI: 10.1016/j.tcsw.2020.100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023]
Abstract
The emergence and perseverance of drug resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of tuberculosis research. There are numerous different approaches that can be employed to lead to the discovery of anti-tubercular agents. In this work, we endeavored to optimize the anthraquinone chemical scaffold of a known drug, rhein, converting it from a compound with negligible activity against Mtb, to a series of compounds with potent activity. Two compounds exhibited low toxicity and good liver microsome stability and were further progressed in attempts to identify the biological target. Whole genome sequencing of resistant isolates revealed inactivating mutations in a monoglyceride lipase. Over-expression trials and an enzyme assay confirmed that the designed compounds are prodrugs, activated by the monoglyceride lipase. We propose that rhein is the active moiety of the novel compounds, which requires chemical modifications to enable access to the cell through the extensive cell wall structure. This work demonstrates that re-engineering of existing antimicrobial agents is a valid method in the development of new anti-tubercular compounds.
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wei Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Emily J Richardson
- MicrobesNG, Units 1-2 First Floor, The BioHub, Birmingham Research Park, 97 Vincent Drive, Birmingham B15 2SQ, UK
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Haihong Huang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Keller LJ, Babin BM, Lakemeyer M, Bogyo M. Activity-based protein profiling in bacteria: Applications for identification of therapeutic targets and characterization of microbial communities. Curr Opin Chem Biol 2019; 54:45-53. [PMID: 31835131 DOI: 10.1016/j.cbpa.2019.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Activity-based protein profiling (ABPP) is a robust chemoproteomic technique that uses activity-based probes to globally measure endogenous enzymatic activity in complex proteomes. It has been utilized extensively to characterize human disease states and identify druggable targets in diverse disease conditions. ABPP has also recently found applications in microbiology. This includes using activity-based probes (ABPs) for functional studies of pathogenic bacteria as well as complex communities within a microbiome. This review will focus on recent advances in the use of ABPs to profile enzyme activity in disease models, screen for selective inhibitors of key enzymes, and develop imaging tools to better understand the host-bacterial interface.
Collapse
Affiliation(s)
- Laura J Keller
- Department of Chemical & Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Brett M Babin
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Markus Lakemeyer
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
37
|
Madani A, Ridenour JN, Martin BP, Paudel RR, Abdul Basir A, Le Moigne V, Herrmann JL, Audebert S, Camoin L, Kremer L, Spilling CD, Canaan S, Cavalier JF. Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of Mycobacterium abscessus. ACS Infect Dis 2019; 5:1597-1608. [PMID: 31299146 DOI: 10.1021/acsinfecdis.9b00172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Twelve new Cyclophostin and Cyclipostins analogues (CyC19-30) were synthesized, thus extending our series to 38 CyCs. Their antibacterial activities were evaluated against four pathogenic mycobacteria (Mycobacterium abscessus, Mycobacterium marinum, Mycobacterium bovis BCG, and Mycobacterium tuberculosis) and two Gram negative bacteria. The CyCs displayed very low toxicity toward host cells and were only active against mycobacteria. Importantly, several CyCs were active against extracellular M. abscessus (CyC17/CyC18β/CyC25/CyC26) or intramacrophage residing mycobacteria (CyC7(α,β)/CyC8(α,β)) with minimal inhibitory concentrations (MIC50) values comparable to or better than those of amikacin or imipenem, respectively. An activity-based protein profiling combined with mass spectrometry allowed identification of the potential target enzymes of CyC17/CyC26, mostly being involved in lipid metabolism and/or in cell wall biosynthesis. Overall, these results strengthen the selective activity of the CyCs against mycobacteria, including the most drug-resistant M. abscessus, through the cumulative inhibition of a large number of Ser- and Cys-enzymes participating in key physiological processes.
Collapse
Affiliation(s)
- Abdeldjalil Madani
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| | - Jeremy N. Ridenour
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Benjamin P. Martin
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Rishi R. Paudel
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Anosha Abdul Basir
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Vincent Le Moigne
- APHP, GHU PIFO, Hôpital Raymond-Poincaré−Hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
| | - Jean-Louis Herrmann
- APHP, GHU PIFO, Hôpital Raymond-Poincaré−Hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
- 2I, UVSQ, INSERM UMR 1173, Université Paris-Saclay, 78035 Versailles, France
| | - Stéphane Audebert
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13273 Marseille Cedex 09, France
| | - Luc Camoin
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, 13273 Marseille Cedex 09, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293 Montpellier, France
- IRIM, INSERM, 34293 Montpellier, France
| | - Christopher D. Spilling
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| | - Jean-François Cavalier
- Aix-Marseille Université, CNRS, LISM, Institut de Microbiologie de la Méditerranée, Marseille, France 13402 Cedex 20
| |
Collapse
|
38
|
Patel HV, Li M, Seeliger JC. Opportunities and Challenges in Activity-Based Protein Profiling of Mycobacteria. Curr Top Microbiol Immunol 2019; 420:49-72. [PMID: 30178262 DOI: 10.1007/82_2018_125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Mycobacteria, from saprophytic to pathogenic species, encounter diverse environments that demand metabolic versatility and rapid adaptation from these bacteria for their survival. The human pathogen Mycobacterium tuberculosis, for example, can enter a reversible state of dormancy in which it is metabolically active, but does not increase in number, and which is believed to enable its survival in the human host for years, with attendant risk for reactivation to active tuberculosis. Driven by the need to combat mycobacterial diseases like tuberculosis, efforts to understand such adaptations have benefitted in recent years from application of activity-based probes. These studies have been inspired by the potential of these chemical tools to uncover protein function for previously unannotated proteins, track shifts in protein activity as a function of environment, and provide a streamlined method for screening and developing inhibitors. Here we seek to contextualize progress thus far with achieving these goals and highlight the unique challenges and opportunities for activity-based probes to further our understanding of protein function and regulation, bacterial physiology, and antibiotic development.
Collapse
Affiliation(s)
- Hiren V Patel
- Department of Molecular Genetics and Microbiology, Stony Brook University, 11794, Stony Brook, NY, USA
| | - Michael Li
- Department of Pharmacological Sciences, Stony Brook University, 11794, Stony Brook, NY, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, 11794, Stony Brook, NY, USA.
| |
Collapse
|
39
|
Yang D, Vandenbussche G, Vertommen D, Evrard D, Abskharon R, Cavalier JF, Berger G, Canaan S, Khan MS, Zeng S, Wohlkönig A, Prévost M, Soumillion P, Fontaine V. Methyl arachidonyl fluorophosphonate inhibits Mycobacterium tuberculosis thioesterase TesA and globally affects vancomycin susceptibility. FEBS Lett 2019; 594:79-93. [PMID: 31388991 DOI: 10.1002/1873-3468.13555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 11/11/2022]
Abstract
Phthiocerol dimycocerosates and phenolic glycolipids (PGL) are considered as major virulence elements of Mycobacterium tuberculosis, in particular because of their involvement in cell wall impermeability and drug resistance. The biosynthesis of these waxy lipids involves multiple enzymes, including thioesterase A (TesA). We observed that purified recombinant M. tuberculosis TesA is able to dimerize in the presence of palmitoyl-CoA and our 3D structure model of TesA with this acyl-CoA suggests hydrophobic interaction requirement for dimerization. Furthermore, we identified that methyl arachidonyl fluorophosphonate, which inhibits TesA by covalently modifying the catalytic serine, also displays a synergistic antimicrobial activity with vancomycin further warranting the development of TesA inhibitors as valuable antituberculous drug candidates.
Collapse
Affiliation(s)
- Dong Yang
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Damien Evrard
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.,VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | | | - Mohammad Shahneawz Khan
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Sheng Zeng
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Martine Prévost
- Laboratory for the Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Patrice Soumillion
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
40
|
Wang C, Abegg D, Dwyer BG, Adibekian A. Discovery and Evaluation of New Activity‐Based Probes for Serine Hydrolases. Chembiochem 2019; 20:2212-2216. [DOI: 10.1002/cbic.201900126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Wang
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Brendan G. Dwyer
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| |
Collapse
|
41
|
Menon D, Singh K, Pinto SM, Nandy A, Jaisinghani N, Kutum R, Dash D, Prasad TSK, Gandotra S. Quantitative Lipid Droplet Proteomics Reveals Mycobacterium tuberculosis Induced Alterations in Macrophage Response to Infection. ACS Infect Dis 2019; 5:559-569. [PMID: 30663302 PMCID: PMC6466475 DOI: 10.1021/acsinfecdis.8b00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Growing
evidence suggests the importance of lipid metabolism in pathogenesis
of tuberculosis. Neutral lipids form the majority of lipids in a caseous
granuloma, a pathology characteristic of tuberculosis. Cytosolic lipid
droplets (LDs) of macrophages form the store house of these lipids
and have been demonstrated to contribute to the inflammatory response
to infection. The proteome of lipid droplets reflects the mechanisms
of lipid metabolism active under a condition. However, infection induced
changes in the proteome of these dynamic organelles remains elusive.
Here, we employed quantitative proteomics to identify alterations
induced upon infection with live Mycobacterium tuberculosis (Mtb) in comparison with heat killed bacilli or uninfected macrophages.
We found increased abundance of proteins coupled with lipid metabolism,
protein synthesis, and vesicular transport function in LDs upon infection
with live Mtb. Using biochemical methods and microscopy, we validated
ADP-ribosyltransferase (Arf)-like 8 (ARL8B) to be increased on the
lipid droplet surface of live Mtb infected macrophages and that ARL8B
is a bonafide LD protein. This study provides the first proteomic
evidence that the dynamic responses to infection also encompass changes
at the level of LDs. This information will be important in understanding
how Mtb manipulates lipid metabolism and defense mechanisms of the
host macrophage.
Collapse
Affiliation(s)
- Dilip Menon
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaurab Singh
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sneha M. Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ananya Nandy
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neetika Jaisinghani
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rintu Kutum
- Informatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Dash
- Informatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sheetal Gandotra
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Biosynthetic and Synthetic Strategies for Assembling Capuramycin-Type Antituberculosis Antibiotics. Molecules 2019; 24:molecules24030433. [PMID: 30691073 PMCID: PMC6384614 DOI: 10.3390/molecules24030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has recently surpassed HIV/AIDS as the leading cause of death by a single infectious agent. The standard therapeutic regimen against tuberculosis (TB) remains a long, expensive process involving a multidrug regimen, and the prominence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) strains continues to impede treatment success. An underexplored class of natural products—the capuramycin-type nucleoside antibiotics—have been shown to have potent anti-TB activity by inhibiting bacterial translocase I, a ubiquitous and essential enzyme that functions in peptidoglycan biosynthesis. The present review discusses current literature concerning the biosynthesis and chemical synthesis of capuramycin and analogs, seeking to highlight the potential of the capuramycin scaffold as a favorable anti-TB therapeutic that warrants further development.
Collapse
|
43
|
Santucci P, Dedaki C, Athanasoulis A, Gallorini L, Munoz A, Canaan S, Cavalier J, Magrioti V. Synthesis of Long‐Chain β‐Lactones and Their Antibacterial Activities against Pathogenic Mycobacteria. ChemMedChem 2019; 14:349-358. [DOI: 10.1002/cmdc.201800720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre Santucci
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | - Christina Dedaki
- Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis Athens 15771 Greece
| | - Alexandros Athanasoulis
- Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis Athens 15771 Greece
| | - Laura Gallorini
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | - Anaïs Munoz
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | - Stéphane Canaan
- Aix-Marseille UniversitéCNRS, LISM, IMM FR3479 Marseille France
| | | | - Victoria Magrioti
- Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis Athens 15771 Greece
| |
Collapse
|
44
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
45
|
Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorg Chem 2018; 81:414-424. [PMID: 30212765 DOI: 10.1016/j.bioorg.2018.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.
Collapse
|
46
|
White A, Koelper A, Russell A, Larsen EM, Kim C, Lavis LD, Hoops GC, Johnson RJ. Fluorogenic structure activity library pinpoints molecular variations in substrate specificity of structurally homologous esterases. J Biol Chem 2018; 293:13851-13862. [PMID: 30006352 DOI: 10.1074/jbc.ra118.003972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Indexed: 01/08/2023] Open
Abstract
Cellular esterases catalyze many essential biological functions by performing hydrolysis reactions on diverse substrates. The promiscuity of esterases complicates assignment of their substrate preferences and biological functions. To identify universal factors controlling esterase substrate recognition, we designed a 32-member structure-activity relationship (SAR) library of fluorogenic ester substrates and used this library to systematically interrogate esterase preference for chain length, branching patterns, and polarity to differentiate common classes of esterase substrates. Two structurally homologous bacterial esterases were screened against this library, refining their previously broad overlapping substrate specificity. Vibrio cholerae esterase ybfF displayed a preference for γ-position thioethers and ethers, whereas Rv0045c from Mycobacterium tuberculosis displayed a preference for branched substrates with and without thioethers. We determined that this substrate differentiation was partially controlled by individual substrate selectivity residues Tyr-119 in ybfF and His-187 in Rv0045c; reciprocal substitution of these residues shifted each esterase's substrate preference. This work demonstrates that the selectivity of esterases is tuned based on transition state stabilization, identifies thioethers as an underutilized functional group for esterase substrates, and provides a rapid method for differentiating structural isozymes. This SAR library could have multifaceted future applications, including in vivo imaging, biocatalyst screening, molecular fingerprinting, and inhibitor design.
Collapse
Affiliation(s)
- Alex White
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Andrew Koelper
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Arielle Russell
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Erik M Larsen
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Charles Kim
- the Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147-2439
| | - Luke D Lavis
- the Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147-2439
| | - Geoffrey C Hoops
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - R Jeremy Johnson
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| |
Collapse
|
47
|
Aschauer P, Zimmermann R, Breinbauer R, Pavkov-Keller T, Oberer M. The crystal structure of monoacylglycerol lipase from M. tuberculosis reveals the basis for specific inhibition. Sci Rep 2018; 8:8948. [PMID: 29895832 PMCID: PMC5997763 DOI: 10.1038/s41598-018-27051-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/25/2018] [Indexed: 01/20/2023] Open
Abstract
Monoacylglycerol lipases (MGLs) are enzymes that hydrolyze monoacylglycerol into a free fatty acid and glycerol. Fatty acids can be used for triacylglycerol synthesis, as energy source, as building blocks for energy storage, and as precursor for membrane phospholipids. In Mycobacterium tuberculosis, fatty acids also serve as precursor for polyketide lipids like mycolic acids, major components of the cellular envelope associated to resistance for drug. We present the crystal structure of the MGL Rv0183 from Mycobacterium tuberculosis (mtbMGL) in open conformation. The structure reveals remarkable similarities with MGL from humans (hMGL) in both, the cap region and the α/β core. Nevertheless, mtbMGL could not be inhibited with JZL-184, a known inhibitor of hMGL. Docking studies provide an explanation why the activity of mtbMGL was not affected by the inhibitor. Our findings suggest that specific inhibition of mtbMGL from Mycobacterium tuberculosis, one of the oldest recognized pathogens, is possible without influencing hMGL.
Collapse
Affiliation(s)
- Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Rolf Breinbauer
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria.,Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria. .,BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| |
Collapse
|
48
|
Bassett B, Waibel B, White A, Hansen H, Stephens D, Koelper A, Larsen EM, Kim C, Glanzer A, Lavis LD, Hoops GC, Johnson RJ. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates. ACS Infect Dis 2018; 4:904-911. [PMID: 29648787 PMCID: PMC5993602 DOI: 10.1021/acsinfecdis.7b00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Among the proteins required for lipid metabolism in Mycobacterium tuberculosis are a significant number of uncharacterized serine hydrolases, especially lipases and esterases. Using a streamlined synthetic method, a library of immolative fluorogenic ester substrates was expanded to better represent the natural lipidomic diversity of Mycobacterium. This expanded fluorogenic library was then used to rapidly characterize the global structure activity relationship (SAR) of mycobacterial serine hydrolases in M. smegmatis under different growth conditions. Confirmation of fluorogenic substrate activation by mycobacterial serine hydrolases was performed using nonspecific serine hydrolase inhibitors and reinforced the biological significance of the SAR. The hydrolases responsible for the global SAR were then assigned using gel-resolved activity measurements, and these assignments were used to rapidly identify the relative substrate specificity of previously uncharacterized mycobacterial hydrolases. These measurements provide a global SAR of mycobacterial hydrolase activity, a picture of cycling hydrolase activity, and a detailed substrate specificity profile for previously uncharacterized hydrolases.
Collapse
Affiliation(s)
- Braden Bassett
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Brent Waibel
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Alex White
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Heather Hansen
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Dominique Stephens
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Andrew Koelper
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Erik M. Larsen
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Charles Kim
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Dr., Ashburn, VA 20147-2439 (USA)
| | - Adam Glanzer
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - Luke D. Lavis
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Dr., Ashburn, VA 20147-2439 (USA)
| | - Geoffrey C. Hoops
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| | - R. Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208-3443 (USA)
| |
Collapse
|
49
|
Lentz CS, Sheldon JR, Crawford LA, Cooper R, Garland M, Amieva MR, Weerapana E, Skaar EP, Bogyo M. Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat Chem Biol 2018; 14:609-617. [PMID: 29769740 PMCID: PMC6202179 DOI: 10.1038/s41589-018-0060-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Serine hydrolases play diverse roles in regulating host-pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA-J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.
Collapse
Affiliation(s)
- Christian S Lentz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica R Sheldon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Rachel Cooper
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel R Amieva
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
50
|
Kolbe K, Veleti SK, Johnson EE, Cho YW, Oh S, Barry CE. Role of Chemical Biology in Tuberculosis Drug Discovery and Diagnosis. ACS Infect Dis 2018; 4:458-466. [PMID: 29364647 DOI: 10.1021/acsinfecdis.7b00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of chemical techniques to study biological systems (often referred to currently as chemical biology) has become a powerful tool for both drug discovery and the development of novel diagnostic strategies. In tuberculosis, such tools have been applied to identifying drug targets from hit compounds, matching high-throughput screening hits against large numbers of isolated protein targets and identifying classes of enzymes with important functions. Metabolites unique to mycobacteria have provided important starting points for the development of innovative tools. For example, the unique biology of trehalose has provided both novel diagnostic strategies as well as probes of in vivo biological processes that are difficult to study any other way. Other mycobacterial metabolites are potentially valuable starting points and have the potential to illuminate new aspects of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sri Kumar Veleti
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Emma E. Johnson
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Young-Woo Cho
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|