1
|
Yin Y, Qin S, Deng S, Li Z, Tang A, Li Q, Liao D, Liu Y. Thermoresponsive lignin-based polyelectrolyte complexes for the preparation of spherical nanoparticles: Application in pesticide encapsulation. Int J Biol Macromol 2025; 288:138623. [PMID: 39667469 DOI: 10.1016/j.ijbiomac.2024.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Lignin-based nanoparticles hold tremendous potential for various applications. This study proposes an innovative and straightforward method for the synthesis of spherical hybrid lignin nanoparticles (hy-LNPs) with a tunable pore structure. The approach involves blending lignin with 20 wt% polyamide-epichlorohydrin, resulting in the formation of thermoresponsive lignin-based polyelectrolyte complexes. Upon heating to 80 °C, the complexes undergo self-assembly into uniform spherical nanoparticles, achieving a minimum polydispersity index (PDI) as low as 0.08. The study reveals that nanoparticle formation involves simultaneous collapse and growth. During collapse, hy-LNPs become more compact, increasing their elastic behavior and inhibiting particle coalescence, which is critical for the formation of stable, low-dispersibility nanoparticles. Contrary to the expectation that collapse would reduce pore size, the average pore size of the hy-LNPs increases from 24.9 nm to 35.8 nm, likely due to the coalescence of smaller pores into larger ones. Furthermore, this straightforward method was applied to encapsulation β-cypermethrin, achieving an encapsulation efficiency of up to 95 % and reducing the release rate in an ethanol-water solution from 90.6 % to 63.1 % over 5 h. The thermoresponsive lignin-based polyelectrolyte complexes provide a new pathway for the controlled preparation of lignin-based nanoparticles. These nanoparticles demonstrate promising potential for applications such as drug encapsulation.
Collapse
Affiliation(s)
- Yaqing Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Centre Nanoenergy Research, School of Physical Phys Science and & Technology, Guangxi University, Nanning 530004, China
| | - Shanjia Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuai Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Barker-Rothschild D, Chen J, Wan Z, Renneckar S, Burgert I, Ding Y, Lu Y, Rojas OJ. Lignin-based porous carbon adsorbents for CO 2 capture. Chem Soc Rev 2025; 54:623-652. [PMID: 39526409 DOI: 10.1039/d4cs00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A major driver of global climate change is the rising concentration of atmospheric CO2, the mitigation of which requires the development of efficient and sustainable carbon capture technologies. Solid porous adsorbents have emerged as promising alternatives to liquid amine counterparts due to their potential to reduce regeneration costs. Among them, porous carbons stand out for their high surface area, tailorable pore structure, and exceptional thermal and mechanical properties, making them highly robust and efficient in cycling operations. Moreover, porous carbons can be synthesized from readily available organic (waste) streams, reducing costs and promoting circularity. Lignin, a renewable and abundant by-product of the forest products industry and emerging biorefineries, is a complex organic polymer with a high carbon content, making it a suitable precursor for carbon-based adsorbents. This review explores lignin's sources, structure, and thermal properties, as well as traditional and emerging methods for producing lignin-based porous adsorbents. We examine the physicochemical properties, CO2 adsorption mechanisms, and performance of lignin-derived materials. Additionally, the review highlights recent advances in lignin valorization and provides critical insights into optimizing the design of lignin-based adsorbents to enhance CO2 capture efficiency. Finally, it addresses the prospects and challenges in the field, emphasizing the significant role that lignin-derived materials could play in advancing sustainable carbon capture technologies and mitigating climate change.
Collapse
Affiliation(s)
- Daniel Barker-Rothschild
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Scott Renneckar
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Yong Ding
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
3
|
Liu Q, Lu J, He L, Wang J, Guo H, Long J, Chen L, Qiu X. New Insight into Industrial Lignin Intermolecular Force Heterogeneity Mitigation: Monodispersed Lignin Colloidal Sphere Synthesis and Full Biomass Photonic Material Preparation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27787-27796. [PMID: 39625851 DOI: 10.1021/acs.jafc.4c07164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Industrial lignin is an underutilized resource from the pulping industry due to its high heterogeneity. The transformation of industrial lignin into monodispersed lignin colloidal spheres (LCSs) for the preparation of advanced biomass photonic materials is particularly appealing, because of their unique biocompatibility. However, the LCSs synthesized from industrial lignin generally show a wide size distribution and thus limit this specific application. To address the issue, selective functionalization was carried out to convert phenolic and aliphatic -OH groups into ester groups, decreasing the LCS size distribution to a monodispersing degree. Simulation analysis revealed that the functionalization had narrowed the difference of C-O linkage electron cloud distribution and led to a lignin polarity decrease. Additionally, atomic force microscopy (AFM) quantification of lignin proved a force distribution index (FDI) decrease from 0.38 to 0.11, which was consistent with the LCS polymer dispersity index (PDI) decrease from 0.182 to 0.05. The photonic materials can be readily prepared from monodispersed LCSs with the color precisely adjusted by controlling LCS particle sizes.
Collapse
Affiliation(s)
- Qiyu Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayue Lu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| | - Lili He
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyu Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haiping Guo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Long
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Fan Y, Ji H, Ji X, Tian Z, Chen J. Preparation of Alkali-Resistant Lignin Nanospheres Loaded with Silver Nanoparticles and Their Applications Toward Antibiosis and Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405754. [PMID: 39314048 DOI: 10.1002/smll.202405754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Lignin nanoparticles (LNPs) loaded with silver nanoparticles have exhibited significant application potential in antibacterial and catalytic fields. However, the high solubility of LNPs in silver ammonia solution makes it difficult to achieve the reduction of Ag+ and the adsorption of silver nanoparticles. In this study, a protecting agent, terephthalic aldehyde (TA) is used to block lignin condensation and introduce aldehyde groups onto the lignin molecular backbone during lignin extraction. Furthermore, the TA stabilized lignin (TASL) is cross-linked with bisphenol A diglycidyl ether (BADGE) to enhance its alkali resistance performance and subsequently prepared into alkali-resistance BADGE- TASL hybrid LNPs (BADGE- TASL hy-LNPs) by anti-solvent precipitation and self-assembly. Because the presence of a large number of aldehyde groups in TASL compensates for the loss of phenolic hydroxyl groups caused by crosslinking reactions, a high loading of silver nanoparticles of 54.00% is obtained after redox reaction and adsorption in silver ammonia solution. When the BADGE-TASL hy-LNPs@Ag is used as an antibacterial agent, its inhibition efficiency reached ≈99%. Besides, the BADGE-TASL hy-LNPs@Ag can serve as a printing material for the preparation of conductive printing ink. Therefore, this study provides a strategy for lignin functionalization and application in printed electronics and antimicrobial fields.
Collapse
Affiliation(s)
- Yufei Fan
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hairui Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhongjian Tian
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiachuan Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
5
|
Yu C, Chen Y, Zhu Y, Wang Z, Bian R, Liu P, Li R, Lyu Y, Li J, Li J. Dynamic covalent bonds enabled recyclable chitosan oligosaccharide-based wood adhesive with high adhesion and anti-mildew performances. Int J Biol Macromol 2024; 282:137434. [PMID: 39522904 DOI: 10.1016/j.ijbiomac.2024.137434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Biomass wood adhesives have emerged as a promising alternative to traditional synthetic resins due to their ability to address issues related to formaldehyde pollution and reliance on petrochemical resources. However, these adhesives are generally not recyclable and require high curing temperatures. Herein, a novel eco-friendly, strong, and recyclable chitosan oligosaccharide (CS)-based wood adhesive named CS-PB was developed using CS, lignin-derived 3,4-dihydroxybenzaldehyde, and 1,4-phenylenediboronic acid. The cohesive strength and recyclability of the adhesive were significantly enhanced by the dynamic borate ester and imine networks formed through catalyst-free covalent cross-linking. The adhesive exhibited a maximum bonding strength of 5.60 MPa, surpassing many synthetic and biomass adhesives. Moreover, the recycled adhesive retained 88 % of its original strength. Even under extreme conditions such as 100 °C, -196 °C the CS-PB adhesive can still maintain high bonding strength. Notably, the CS-PB adhesive demonstrated low-temperature curing properties, achieving a high bonding strength of 5.21 MPa when cured at 90 °C, since imine bonds can be formed under mild conditions. Furthermore, the adhesive displayed excellent mildew resistance attributed to the synergistic effects of amino, boronic acid, and benzene rings. The proposed straightforward design strategy provides valuable insights for constructing high-strength and recyclable biomass adhesives.
Collapse
Affiliation(s)
- Caizhi Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ying Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Zhiqin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ruohong Bian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Pu Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Renjie Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yan Lyu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; Key Laboratory of Wood Materials Science and Application, Beijing Forestry University, Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China.
| | - Jiongjiong Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China.
| |
Collapse
|
6
|
Tan J, He Y, Wang T, Tang Y, Zhang T, Cui X. Study on the green extraction of lignin and its crosslinking and solidification properties by geopolymer pretreatment. Int J Biol Macromol 2024; 282:137172. [PMID: 39489231 DOI: 10.1016/j.ijbiomac.2024.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Different delignification processes lead to significant differences in the structure and activity of lignin. Consequently, complex modifications are necessary before lignin to be applied. In this paper, a green process for the selective catalytic extraction of lignin by geopolymer is proposed based on biomass refining. This process can obtain lignin with ideal performance on activity, crosslink ability and curability. Taking eucalyptus, fir and bagasse as examples, the optimal lignin yields reach 46.5 %, 34.8 % and 48.7 % respectively (mFiber/mGeopolymer = 3, 120 min, and 130 °C). Moreover, lignin isolated with geopolymer (GL) shows a similar narrow molecular weight distribution range to that of Milled Wood Lignin (MWL). Studies on crosslinking solidification mechanisms have demonstrated that the phenolic hydroxyl groups of GL participate in the formation of a multi-stage amine crosslinking and solidification network structure. GL does not rely on flexible chains in the crosslinking and solidification of wood adhesives. Since highly active lignin can condense with phenolic hydroxyl groups on the surface of wood, it provides the adhesive with higher bonding strength (3.8 MPa). This study presents a novel approach to fabricating lignin-based formaldehyde-free wood adhesives.
Collapse
Affiliation(s)
- Jianli Tan
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yan He
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Tao Wang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yexuan Tang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Ting Zhang
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Xuemin Cui
- School of Chemistry & Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Yin Y, Wu J, Qin S, Tang A, Li Q, Liao D, Tang Y, Liu Y. Study on Thermally Induced Lignin Aggregation Kinetics for the Preparation of Uniformly Sized Lignin Nanoparticles in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21152-21160. [PMID: 39264391 DOI: 10.1021/acs.langmuir.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Lignin nanoparticles (LNPs) present a potential avenue for the high-value utilization of lignin. However, the simple and ecofriendly method of thermally induced self-assembly for the preparation of LNPs has been overlooked due to a lack of sufficient understanding of the lignin aggregation mechanism. Therefore, this study focuses on the kinetics of thermally induced lignin aggregation. It was found that lignin aggregates formed at lower temperatures exhibit poor stability and are more prone to continuous growth through coalescence. This apparent contradiction with the conventional understanding of thermoresponsive polymers could be attributed to changes in the viscoelasticity of the lignin aggregates during phase separation. Based on this finding, we worked out strategies to optimize the preparation of LNPs in water through thermally induced self-assembly. Pure LNPs with well-defined interfaces and a minimum polydispersity index (PDI) of 0.12 were obtained by increasing the temperature to 125-150 °C. Furthermore, combined with noncovalent modification, LNPs with a PDI of 0.08 would even be formed at 80 °C. Notably, the resulting pure LNPs show potential for application in photonic crystal products that require excellent monodispersity. This study provides a new approach for the environmentally friendly preparation of LNPs with a controllable morphology.
Collapse
Affiliation(s)
- Yaqing Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centre Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jingzhi Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centre Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Shanjia Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingyun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Moreno A, Sipponen MH. Overcoming Challenges of Lignin Nanoparticles: Expanding Opportunities for Scalable and Multifunctional Nanomaterials. Acc Chem Res 2024; 57:1918-1930. [PMID: 38965046 PMCID: PMC11256356 DOI: 10.1021/acs.accounts.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
ConspectusThe increasing demand for polymeric materials derived from petroleum resources, along with rising concerns about climate change and global plastic pollution, has driven the development of biobased polymeric materials. Lignin, which is the second most abundant biomacromolecule after cellulose, represents a promising renewable raw material source for the preparation of advanced materials. The lucrative properties of lignin include its high carbon content (>60 atom %), high thermal stability, biodegradability, antioxidant activity, absorbance of ultraviolet radiation, and slower biodegradability compared to other wood components. Moreover, the advent of lignin nanoparticles (LNPs) over the last ten years has circumvented many well-known shortcomings of technical lignins, such as heterogeneity and poor compatibility with polymers, thereby unlocking the great potential of lignin for the development of advanced functional materials.LNPs stand out owing to their well-defined spherical shape and excellent colloidal stability, which is due to the electrostatic repulsion forces of carboxylic acid and phenolic hydroxyl groups enriched on their surface. These forces prevent their aggregation in aqueous dispersions (pH 3-9) and provide a high surface area to mass ratio that has been exploited to adsorb positively charged compounds such as enzymes or polymers. Consequently, it is not surprising that LNPs have become a prominent player in applied research in areas such as biocatalysis and polymeric composites, among others. However, like all ventures of life, LNPs also face certain challenges that limit their potential end-uses. Solvent instability remains the most challenging aspect due to the tendency of these particles to dissolve or aggregate in organic solvents and basic or acidic pH, thus limiting the window for their chemical functionalization and applications. In addition, the need for organic solvent during their preparation, the poor miscibility with hydrophobic polymeric matrices, and the nascent phase regarding their use in smart materials have been identified as important challenges that need to be addressed.In this Account, we recapitulate our efforts over the past years to overcome the main limitations mentioned above. We begin with a brief introduction to the fundamentals of LNPs and a detailed discussion of their associated challenges. We then highlight our work on: (i) Preparation of lignin-based nanocomposites with improved properties through a controlled dispersion of LNPs within a hydrophobic polymeric matrix, (ii) Stabilization of LNPs via covalent (intraparticle cross-linking) and noncovalent (hydration barrier) approaches, (iii) The development of an organic-solvent-free method for the production of LNPs, and (iv) The development of LNPs toward smart materials with high lignin content. Finally, we also offer our perspectives on this rapidly growing field.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Rovira i Virgili University, Tarragona 43007, Spain
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
- Wallenberg
Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
9
|
Trinh TA, Nguyen TL, Kim J. Lignin-Based Antioxidant Hydrogel Patch for the Management of Atopic Dermatitis by Mitigating Oxidative Stress in the Skin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33135-33148. [PMID: 38900923 DOI: 10.1021/acsami.4c05523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Atopic dermatitis (AD), a chronic skin condition characterized by itching, redness, and inflammation, is closely associated with heightened levels of endogenous reactive oxygen species (ROS) in the skin. ROS can contribute to the onset and progression of AD through oxidative stress, which leads to the release of proinflammatory cytokines, T-cell differentiation, and the exacerbation of skin symptoms. In this study, we aim to develop a therapeutic antioxidant hydrogel patch for the potential treatment of AD using lignin, a biomass waste material. Lignin contains polyphenol groups that enable it to scavenge ROS and exhibit antioxidant properties. The lignin hydrogel patches, possessing optimized mechanical properties through the control of the lignin and cross-linker ratio, demonstrated high ROS-scavenging capabilities. Furthermore, the lignin hydrogel demonstrated excellent biocompatibility with the skin, exhibiting beneficial properties in protecting human keratinocytes under high oxidative conditions. When applied to an AD mouse model, the hydrogel patch effectively reduced epidermal thickness in inflamed regions, decreased mast cell infiltration, and regulated inflammatory cytokine levels. These findings collectively suggest that lignin serves as a therapeutic hydrogel patch for managing AD by modulating oxidative stress through its ROS-scavenging ability.
Collapse
Affiliation(s)
- Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
11
|
Wang H, Tan S, Su Z, Li M, Hao X, Peng F. Perforin-Mimicking Molecular Drillings Enable Macroporous Hollow Lignin Spheres for Performance-Configurable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311073. [PMID: 38199249 DOI: 10.1002/adma.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Despite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin-mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance-configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin-induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.
Collapse
Affiliation(s)
- Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Shujun Tan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing, 100102, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
12
|
Chuzeville L, Aissani A, Manisekaran A, Fleming Y, Grysan P, Contal S, Chary A, Duday D, Couture O, Anand R, Thomann JS. Size and phase preservation of amorphous calcium carbonate nanoparticles in aqueous media using different types of lignin for contrast-enhanced ultrasound imaging. J Colloid Interface Sci 2024; 658:584-596. [PMID: 38134667 DOI: 10.1016/j.jcis.2023.12.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
HYPOTHESIS Calcium carbonate (CaCO3) nanoparticles could have great potential for contrast-enhanced ultrasound imaging (CEUS) due to their gas-generating properties and sensitivity to physiological conditions. However, the use of nano CaCO3 for biomedical applications requires the assistance of stabilizers to control the size and avoid the fast dissolution/recrystallization of the particles when exposed to aqueous conditions. EXPERIMENTS Herein, we report the stabilization of nano CaCO3 using lignin, and synthesized core-shell amorphous CaCO3-lignin nanoparticles (LigCC NPs) with a diameter below 100 nm. We have then investigated the echogenicity of the LigCC NPs by monitoring the consequent generation of contrast in vitro for 90 min in linear and non-linear B-mode imaging. FINDINGS This research explores how lignin type and structure affect stabilization efficiency, lignin structuration around CaCO3 cores, and particle echogenicity. Interestingly, by employing lignin as the stabilizer, it becomes possible to maintain the echogenic properties of CaCO3, whereas the use of lipid coatings prevents the production of signal generation in ultrasound imaging. This work opens new avenue for CEUS imaging of the vascular and extravascular space using CaCO3, as it highlights the potential to generate contrast for extended durations at physiological pH by utilizing the amorphous phase of CaCO3.
Collapse
Affiliation(s)
- Lauriane Chuzeville
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg; University of Luxembourg, Department of Physics & Materials Science, 162a Avenue de la Faïencerie, 1511 Luxembourg city, Luxembourg
| | - Abderrahmane Aissani
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, 15 rue de l'école de médecine, 75006 Paris, France
| | - Ahilan Manisekaran
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg; University of Luxembourg, Department of Physics & Materials Science, 162a Avenue de la Faïencerie, 1511 Luxembourg city, Luxembourg
| | - Yves Fleming
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Patrick Grysan
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - David Duday
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Olivier Couture
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, 15 rue de l'école de médecine, 75006 Paris, France
| | - Resmi Anand
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Jean-Sébastien Thomann
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg.
| |
Collapse
|
13
|
Fang X, Zhang D, Chang Z, Li R, Meng S. Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress. ENVIRONMENTAL RESEARCH 2024; 243:117816. [PMID: 38056614 DOI: 10.1016/j.envres.2023.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Efficacious phosphate removal is essential for mitigating eutrophication in aquatic ecosystems and complying with increasingly stringent phosphate emission regulations. Chemical adsorption, characterized by simplicity, prominent treatment efficiency, and convenient recovery, is extensively employed for profound phosphorus removal. Metal-organic frameworks (MOFs)-derived metal/carbon composites, surpassing the limitations of separate components, exhibit synergistic effects, rendering them tremendously promising for environmental remediation. This comprehensive review systematically summarizes MOFs-based materials' properties and their structure-property relationships tailored for phosphate adsorption, thereby enhancing specificity towards phosphate. Furthermore, it elucidates the primary mechanisms influencing phosphate adsorption by MOFs-based composites. Additionally, the review introduces strategies for designing and synthesizing efficacious phosphorus capture and regeneration materials. Lastly, it discusses and illuminates future research challenges and prospects in this field. This summary provides novel insights for future research on superlative MOFs-based adsorbents for phosphate removal.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Black Soil Protection and Restoration, Harbin, Heilongjiang, 150030, China.
| | - Zhenfeng Chang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ruoyan Li
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shuangshuang Meng
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
14
|
Huo M, Chen J, Jin C, Huo S, Liu G, Kong Z. Preparation, characterization, and application of waterborne lignin-based epoxy resin as eco-friendly wood adhesive. Int J Biol Macromol 2024; 259:129327. [PMID: 38219939 DOI: 10.1016/j.ijbiomac.2024.129327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A series of novel waterborne lignin-based epoxy resin emulsions (WLEPs) were successfully synthesized, and then the WLEPs were cured with polyamide (PA) to give formaldehyde-free wood adhesives with high-performance. The chemical structures and properties of WLEP emulsions were determined. The effects of the emulsifiers on thermal and mechanical properties of the adhesives were investigated, and the potential application of WLEPs in the formulation of plywood were also evaluated. The results demonstrated that the WLEP dispersions presented excellent storage stability (>180 days) with their viscosities range from 110 mPa·s to 470 mPa·s and particle sizes in the range of 321-696 nm, which were beneficial for the fluidity and permeability of the wood adhesives. Furthermore, the thermal and mechanical properties of adhesives could be tuned effectively by controlling the length of PEG chains. The adhesive bearing PEG 6000 exhibited the highest tensile strength of 24.0 MPa and Young's modulus of 1439 MPa. Notably, the plywood prepared with the resulting adhesives displayed good bonding performance, especially water resistance, which were much higher than the national standard requirement for exterior-grade plywood type I. These results indicated that the WLEPs could be used as sustainable alternatives for traditional formaldehyde-based wood adhesives in practical applications.
Collapse
Affiliation(s)
- Meiyu Huo
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Jian Chen
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China.
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| |
Collapse
|
15
|
Zhang H, Johnson AM, Hua Q, Wu J, Liang Y, Karaaslan MA, Saddler JN, Renneckar S. Size-controlled synthesis of xylan micro / nanoparticles by self-assembly of alkali-extracted xylan. Carbohydr Polym 2023; 315:120944. [PMID: 37230607 DOI: 10.1016/j.carbpol.2023.120944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Valorization of underutilized biobased feedstocks like hetero-polysaccharides is critical for the development of the biorefinery concept. Towards this goal, highly uniform xylan micro/nanoparticles with a particle size ranging from 400 nm to 2.5 μm in diameter were synthesized by a facile self-assembly method in aqueous solutions. Initial concentration of the insoluble xylan suspension was utilized to control the particle size. The method utilized supersaturated aqueous suspensions formed at standard autoclaving conditions without any other chemical treatments to create the resulting particles as solutions cooled to room temperature. Processing parameters of the xylan micro/nanoparticles were systematically studied and correlated with both the morphology and size of xylan particles. By adjusting the crowding of the supersaturated solutions, highly uniform dispersions of xylan particles were synthesized of defined size. The xylan micro/nanoparticles prepared by self-assembly have a quasi-hexagonal shape, like a tile, and depending upon solution concentrations xylan nanoparticles with a thickness of <100 nm were achieved at high concentrations. Based on the usefulness of polysaccharide nanoparticles, like cellulose nanocrystals, these particles have potential for unique structures for hydrogels, aerogels, drug delivery, and photonic materials. This study highlights the formation of a diffraction grating film for visible light with these size-controlled particles.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Amanda M Johnson
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Muzaffer A Karaaslan
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
16
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
17
|
Moreno A, Pylypchuk I, Okahisa Y, Sipponen MH. Urushi as a Green Component for Thermally Curable Colloidal Lignin Particles and Hydrophobic Coatings. ACS Macro Lett 2023; 12:759-766. [PMID: 37212611 PMCID: PMC10286546 DOI: 10.1021/acsmacrolett.3c00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Colloidal lignin nanoparticles are promising building blocks for sustainable functional materials. However, their instability in organic solvents and aqueous alkali limits their applicability. Current stabilization methods require nonrenewable and toxic reagents or tedious workup procedures. Here we show a method to prepare hybrid nanoparticles using only natural components. Urushi, a form of black oriental lacquer, and lignin are coaggregated to form hybrid particles, with Urushi acting as a sustainable component that stabilizes the particles via hydration barrier effect and thermally triggered internal cross-linking. The weight fractions of the two components can be adjusted to achieve the desired level of stabilization. Hybrid particles with Urushi content >25 wt % undergo interparticle cross-linking that produces multifunctional hydrophobic protective coatings that improve the water resistance of wood. This approach provides a sustainable and efficient method for stabilizing lignin nanoparticles and opens up neoteric possibilities for the development of lignin-based advanced functional materials.
Collapse
Affiliation(s)
- Adrian Moreno
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106
91 Stockholm, Sweden
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Rovira i Virgili University, Tarragona 43007, Spain
| | - Ievgen Pylypchuk
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106
91 Stockholm, Sweden
| | - Yoko Okahisa
- Faculty
of Fiber Science and Engineering, Kyoto
Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106
91 Stockholm, Sweden
- Wallenberg
Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
18
|
Ruwoldt J, Blindheim FH, Chinga-Carrasco G. Functional surfaces, films, and coatings with lignin - a critical review. RSC Adv 2023; 13:12529-12553. [PMID: 37101953 PMCID: PMC10123495 DOI: 10.1039/d2ra08179b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023] Open
Abstract
Lignin is the most abundant polyaromatic biopolymer. Due to its rich and versatile chemistry, many applications have been proposed, which include the formulation of functional coatings and films. In addition to replacing fossil-based polymers, the lignin biopolymer can be part of new material solutions. Functionalities may be added, such as UV-blocking, oxygen scavenging, antimicrobial, and barrier properties, which draw on lignin's intrinsic and unique features. As a result, various applications have been proposed, including polymer coatings, adsorbents, paper-sizing additives, wood veneers, food packaging, biomaterials, fertilizers, corrosion inhibitors, and antifouling membranes. Today, technical lignin is produced in large volumes in the pulp and paper industry, whereas even more diverse products are prospected to be available from future biorefineries. Developing new applications for lignin is hence paramount - both from a technological and economic point of view. This review article is therefore summarizing and discussing the current research-state of functional surfaces, films, and coatings with lignin, where emphasis is put on the formulation and application of such solutions.
Collapse
Affiliation(s)
- Jost Ruwoldt
- RISE PFI AS Høgskoleringen 6B Trondheim 7491 Norway
| | | | | |
Collapse
|
19
|
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chem Rev 2023; 123:2200-2241. [PMID: 36720130 PMCID: PMC9999428 DOI: 10.1021/acs.chemrev.2c00492] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.
Collapse
Affiliation(s)
- Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - K Alexander Henn
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
20
|
Moreno A, Delgado-Lijarcio J, Ronda JC, Cádiz V, Galià M, Sipponen MH, Lligadas G. Breathable Lignin Nanoparticles as Reversible Gas Swellable Nanoreactors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205672. [PMID: 36478382 DOI: 10.1002/smll.202205672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2 -responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2 /N2 bubbling, increasing their size - ≈35% by volume - and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Javier Delgado-Lijarcio
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, SE-106 91, Sweden
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| |
Collapse
|
21
|
Kumar A, Kumar V. A Comprehensive Review on Application of Lignocellulose Derived Nanomaterial in Heavy Metals Removal from Wastewater. CHEMISTRY AFRICA 2023; 6:39-78. [DOI: 10.1007/s42250-022-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2025]
|
22
|
Wang J, Chen W, Yang D, Fang Z, Liu W, Xiang T, Qiu X. Photonic Lignin with Tunable and Stimuli-Responsive Structural Color. ACS NANO 2022; 16:20705-20713. [PMID: 36480448 DOI: 10.1021/acsnano.2c07756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the growing sustainability and health requirements, structural color materials fabricated with functional natural polymers have attracted increasing attention in advanced optical and biomedical fields. Lignin has many attractive features such as great biocompatibility, ultraviolet resistance, antioxidant property, and thermostability, making it a promising natural resource to be fabricated as functional structural color materials. However, to date, the utilization of lignin as the building block for structural color materials is still a challenge due to its disordered structure. Herein, we present a strategy to transform disordered lignin into ordered "photonic lignin", in which monodisperse lignin colloidal spheres are prepared via solvent/antisolvent self-assembly, and then the periodic structure is constructed by centrifugal effect. The photonic lignin exhibits structural colors that are tunable by modulating the diameter of lignin colloidal spheres. We further demonstrate the application of photonic lignin as a natural polymer-based coating that shows bright, angle-independent, and stimuli-responsive structural colors. Moreover, the cytotoxicity assay indicates the excellent biocompatibility of photonic lignin with human skin, blood vessels, digestive systems, and other tissues, which demonstrates the great potential of photonic lignin in the applications such as implanted/wearable optical devices, advanced cosmetics, and smart food packaging.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Wenhao Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhiqiang Fang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Ting Xiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
23
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
24
|
Morsali M, Moreno A, Loukovitou A, Pylypchuk I, Sipponen MH. Stabilized Lignin Nanoparticles for Versatile Hybrid and Functional Nanomaterials. Biomacromolecules 2022; 23:4597-4606. [PMID: 36237172 DOI: 10.1021/acs.biomac.2c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spherical lignin nanoparticles are emerging biobased nanomaterials, but instability and dissolution in organic solvents and aqueous alkali restrict their applicability. Here, we report the synthesis of hydroxymethylated lignin nanoparticles and their hydrothermal curing to stabilize the particles by internal cross-linking reactions. These colloidally stable particles contain a high biobased content of 97% with a tunable particle size distribution and structural stability in aqueous media (pH 3 to 12) and organic solvents such as acetone, ethanol, dimethylformamide, and tetrahydrofuran. We demonstrate that the free phenolic hydroxyl groups that are preserved in the cured particles function as efficient reducing sites for silver ions, giving rise to hybrid lignin-silver nanoparticles that can be used for quick and facile sensing of hydrogen peroxide. The stabilized lignin particles can also be directly modified using base-catalyzed reactions such as the ring-opening of cationic epoxides that render the particles with pH-dependent agglomeration and redispersion properties. Combining scalable synthesis, solvent stability, and reusability, this new class of lignin nanoparticles shows potential for its use in circular biobased nanomaterials.
Collapse
Affiliation(s)
- Mohammad Morsali
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91Stockholm, Sweden
| | - Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91Stockholm, Sweden
| | - Andriana Loukovitou
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91Stockholm, Sweden
| | - Ievgen Pylypchuk
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91Stockholm, Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91Stockholm, Sweden
| |
Collapse
|
25
|
Chen Y, Lyu Y, Yuan X, Ji X, Zhang F, Li X, Li J, Zhan X, Li J. A biomimetic adhesive with high adhesion strength and toughness comprising soybean meal, chitosan, and condensed tannin-functionalized boron nitride nanosheets. Int J Biol Macromol 2022; 219:611-625. [PMID: 35952812 DOI: 10.1016/j.ijbiomac.2022.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/19/2022]
Abstract
Soybean meal (SM)-based adhesive can solve the issues of formaldehyde emission and over-reliance of aldehyde-based resins but suffers from poor water resistance, weak adhesion strength, and high brittleness. Herein, a high-performance adhesive inspired by lobster cuticular sclerotization was developed using catechol-rich condensed tannin-functionalized boron nitride nanosheets (CT@BNNSs), amino-containing chitosan (CS), and SM (CT@BNNSs/CS/SM). The oxidative crosslinking between the catechol and amino, initiated by oxygen at high temperatures, formed a strengthened and water-resistant interior network. These strong intermolecular interactions induced by phenol-amine synergy accompanied by the reinforcement of uniformly dispersed BNNSs improved the load transfer and energy dissipation capacity, endowing the adhesive with great cohesion strength. Given these synergistic effects, the biomimetic CT@BNNSs/CS/SM adhesive caused noticeable improvements in water tolerance, mechanical strength, and toughness over the neat SM adhesive, e.g., enhanced wet shear strength (1.46 vs. 0.66 MPa, respectively), boiling water shear strength (0.92 vs. 0.43 MPa, respectively), and debonding work (0.368 vs. 0.113 J, respectively). Thus, this study provided a green and low-cost bionic strategy for the preparation of high-performance biomass adhesives.
Collapse
Affiliation(s)
- Yinuo Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yan Lyu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Ximing Yuan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Xinyu Ji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Fudong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Xiaona Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; Key Laboratory of Wood Materials Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Xianxu Zhan
- DeHua TB New Decoration Materials Co., Ltd., Enterprise of Graduate Research Station of Jiangsu Province, Huzhou, Zhejiang 313200, China
| | - Jiongjiong Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; DeHua TB New Decoration Materials Co., Ltd., Enterprise of Graduate Research Station of Jiangsu Province, Huzhou, Zhejiang 313200, China.
| |
Collapse
|
26
|
Lv Z, Zheng Y, Zhou H, Pan Z, Li C, Dai L, Zhang M, Si C. Hydrothermal method-assisted synthesis of self-crosslinked all-lignin-based hydrogels. Int J Biol Macromol 2022; 216:670-675. [PMID: 35817238 DOI: 10.1016/j.ijbiomac.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
Lignin, as the most abundant aromatic biopolymer, is being widely studied to replace phenol and some other petroleum-based materials in the polymer industry. However, the low substitution of lignin and high levels of additives greatly limited the applications of lignin-based materials. Herein, we first propose a simple but effective hydrothermal method assisted synthesis for the fabrication of self-crosslinked lignin-based hydrogels (Lig-Scgel) with super-high-contents (75 wt%) of lignin and controllable mechanical properties. The self-crosslink mechanism was inspired by the repolymerization of lignins under a hydrothermal environment. The employment of self-condensation of lignin subunits in the synthesis of Lig-Scgel can significantly improve the degree of crosslinking, thereby greatly reducing the addition of toxic crosslinkers. The appearances, microstructures, crosslink densities, and mechanical properties of Lig-Scgels can be well controlled by simply altering the hydrothermal temperatures. This strategy not only promotes green and large-scale applications of lignin but also provides insights in the development of environment-friendly polymeric materials.
Collapse
Affiliation(s)
- Zilu Lv
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yong Zheng
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Zhou
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zheng Pan
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Chenyu Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| | - Meng Zhang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| |
Collapse
|
27
|
Extraction of lignin from corncob residue via a deep eutectic solvent for the preparation of nanoparticles by self-assembly. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Fan Q, Ou R, Hao X, Deng Q, Liu Z, Sun L, Zhang C, Guo C, Bai X, Wang Q. Water-Induced Self-Assembly and In Situ Mineralization within Plant Phenolic Glycol-Gel toward Ultrastrong and Multifunctional Thermal Insulating Aerogels. ACS NANO 2022; 16:9062-9076. [PMID: 35653439 DOI: 10.1021/acsnano.2c00755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biopolymer/silica nanocomposite aerogels are highly attractive as thermally insulating materials for prevailing energy-saving engineering but are usually plagued by their lack of mechanical strength and environmental stability. Lignin is an appealing plant phenolic biopolymer due to its natural abundance, high stiffness, water repellency, and thermostability. However, integrating lignin and silica into high-performance 3D hybrid aerogels remains a substantial challenge due to the unstable co-sol process. In diatoms, the silicic acid stabilization prior to the condensation reaction is enhanced by the intervention of biomolecules in noncovalent interactions. Inspired by this mechanism, we herein rationally design an ultrastrong silica-mineralized lignin nanocomposite aerogel (LigSi) with an adjustable multilevel micro/nanostructure and arbitrary machinability through an unusual water-induced self-assembly and in situ mineralization based on ethylene glycol-stabilized lignin/siloxane colloid. The optimized LigSi exhibits an ultrahigh stiffness (a specific modulus of ∼376.3 kN m kg-1) and can support over 5000 times its own weight without obvious deformation. Moreover, the aerogel demonstrates a combination of outstanding properties, including superior and humidity-tolerant thermal insulation (maintained at ∼0.04 W m-1 K-1 under a relative humidity of 33-94%), excellent fire resistance withstanding an ∼1200 °C flame without disintegration, low near-infrared absorption (∼9%), and intrinsic self-cleaning/superhydrophobic performance (158° WCA). These advanced properties make it an ideal thermally insulating material for diversified applications in harsh environments. As a proof of concept, a dual-mode LigSi thermal device was designed to demonstrate the application prospect of combining passive heat-trapping and active heating in the building.
Collapse
Affiliation(s)
- Qi Fan
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Rongxian Ou
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Xiaolong Hao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Qianyun Deng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Liu
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Lichao Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Chuigen Guo
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Xiaojing Bai
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qingwen Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
29
|
Yang J, Dai J, Liu X, Fu S, Zong E, Song P. A lignin-based epoxy/TiO 2 hybrid nanoparticle for multifunctional bio-based epoxy with improved mechanical, UV absorption and antibacterial properties. Int J Biol Macromol 2022; 210:85-93. [PMID: 35525492 DOI: 10.1016/j.ijbiomac.2022.04.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Lignin, as a natural polymer material, has the advantages of green safety, renewable, and pollution-free. It has a wide application prospect in the field of thermosetting. However, it has been attractive but a huge challenge to design high performance and high added-value lignin-based epoxy resin. Herein, lignin-based epoxy (LEP) was synthesized from moso bamboo-derived lignin, and then lignin-based epoxy/titanium dioxide (LEP/TiO2) hybrid nanoparticle was synthesized via liquid deposition method for modifying lignin-based epoxy resin to prepare multifunctional bio-based epoxy. The results show that the LEP/TiO2 hybrid nanoparticle exhibits a stable topological surface shape and good dispersion and uniformity. By adding 10 wt% LEP/TiO2 hybrid nanoparticles, the multifunctional bio-based epoxy exhibits good mechanical strength and toughness, and the tensile strength and fracture toughness reach 36 MPa and 1.26 MPa·m1/2, respectively. In addition, the thermal stability, UV absorption and antibacterial properties of the multifunctional bio-based epoxy are further improved. This study provides a facile and efficient method for the preparation of high-performance multifunctional bio-based epoxy composite and a novel solution for the utilization of lignin.
Collapse
Affiliation(s)
- Jiayao Yang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Jinfeng Dai
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Xiaohuan Liu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China; College of Life Science, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China.
| | - Shenyuan Fu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China.
| | - Enmin Zong
- College of Life Science, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central 4300, Australia.
| |
Collapse
|
30
|
Agrawal R, Kumar A, Singh S, Sharma K. Recent advances and future perspectives of lignin biopolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Wang J, Chen W, Yang D, Fang Z, Liu W, Xiang T, Qiu X. Monodispersed Lignin Colloidal Spheres with Tailorable Sizes for Bio-Photonic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200671. [PMID: 35388977 DOI: 10.1002/smll.202200671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Lignin colloidal spheres (LCSs) are promising biomaterials for application in drug storage and delivery, pollutant adsorption, and ultraviolet protection due to their biocompatibility, amphiphilicity, and conjugated structure. However, wide size distribution of LCSs greatly limits their performances, especially in many precise and advanced applications. Herein, the fabrication of monodispersed LCSs with tailorable sizes ranging from the nanoscale to microscale is reported. Lignin raw materials are first fractionated by solvent extraction, and then the lignin fraction is used to fabricate monodispersed LCSs by solvent/antisolvent self-assembly. The underlying mechanism for the formation of monodispersed LCS is primarily ascribed to the improved homogeneity of long-range intermolecular forces, especially the electrostatic forces and hydrophobic forces, between lignin molecules. Moreover, by manipulating the short-range order of LCSs, an innovative application of lignin as bio-photonic materials with tunable structural colorations (e.g., red, green, or blue) is demonstrated. This work not only provides deep insight and an effective strategy to eliminate the serious inhomogeneity of LCSs, but also makes lignin resources have great potential as biodegradable and biocompatible photonic materials in diverse advanced optical application fields such as photonic devices, anti-counterfeiting labels, and structural color pigments.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wenhao Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiqiang Fang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ting Xiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
32
|
Xu J, Zhou H, Zheng Y, Li C, Dai L, Xu C, Si C. A Rapid and Reversible pH Control Process for the Formation and Dissociation of Lignin Nanoparticles. CHEMSUSCHEM 2022; 15:e202200449. [PMID: 35286763 DOI: 10.1002/cssc.202200449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a new and green type of nanomaterials, lignin nanoparticles (LNPs) have been considered as high-value renewable materials for application in many fields. However, the industrialization of LNPs faces many challenges, such as high manufacturing costs and small-scale production. Here, a simple but rapid and reversible approach for the fabrication of LNPs was provided via switching pH environments. The LNPs were regularly shaped in the acetonitrile/water system, and their size appeared to be very homogeneous. The alternation of forming and dissolving of LNPs could be repeated many times simply by alternately adding acid and alkaline solutions. There was little difference in the molecular structures between the original and regenerated LNPs. In addition, the consumption of solvents for LNPs production was only 200 mL g-1 , reduced by more than 10 times compared with conventional solvent exchange methods. The concentration of LNPs in the solution also improved to 5.0 g L-1 . This study not only provides a new, simple, and effective strategy for the fabrication of LNPs but also paves the way towards their real green production and application.
Collapse
Affiliation(s)
- Jiayun Xu
- Tianjin Key Laboratory of Pulp and Paper School of Light Industry Science and Engineering, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- Research Group of Wood and Paper Chemistry, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, FI-20500, Finland
| | - Hao Zhou
- Tianjin Key Laboratory of Pulp and Paper School of Light Industry Science and Engineering, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Yong Zheng
- Tianjin Key Laboratory of Pulp and Paper School of Light Industry Science and Engineering, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Chenyu Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, No. 1 at Dali road, Tianjin, 300050, P. R. China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper School of Light Industry Science and Engineering, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Chunlin Xu
- Research Group of Wood and Paper Chemistry, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, FI-20500, Finland
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper School of Light Industry Science and Engineering, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| |
Collapse
|
33
|
Zhang J, Guo Z, Ma J, Song L, Yang G, Ao Y, Shang L, Li M. Imidazole substituted benzothiadiazole derivatives as latent curing agent for epoxy thermosetting resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Zhang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Zongwei Guo
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Jinpeng Ma
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Lingxiao Song
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Guorui Yang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Yuhui Ao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Lei Shang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Ming Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| |
Collapse
|
34
|
Zou T, Nonappa N, Khavani M, Vuorte M, Penttilä P, Zitting A, Valle-Delgado JJ, Elert AM, Silbernagl D, Balakshin M, Sammalkorpi M, Österberg M. Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles. J Phys Chem B 2021; 125:12315-12328. [PMID: 34723534 PMCID: PMC8591612 DOI: 10.1021/acs.jpcb.1c05319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spherical lignin
nanoparticles (LNPs) fabricated via nanoprecipitation
of dissolved lignin are among the most attractive
biomass-derived nanomaterials. Despite various studies exploring the
methods to improve the uniformity of LNPs or seeking more application
opportunities for LNPs, little attention has been given to the fundamental
aspects of the solvent effects on the intrinsic properties of LNPs.
In this study, we employed a variety of experimental techniques and
molecular dynamics (MD) simulations to investigate the solvent effects
on the intrinsic properties of LNPs. The LNPs were prepared from softwood
Kraft lignin (SKL) using the binary solvents of aqueous acetone or
aqueous tetrahydrofuran (THF) via nanoprecipitation.
The internal morphology, porosity, and mechanical properties of the
LNPs were analyzed with electron tomography (ET), small-angle X-ray
scattering (SAXS), atomic force microscopy (AFM), and intermodulation
AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs
with higher uniformity compared to aqueous THF, mainly ascribing to
stronger solvent–lignin interactions as suggested by MD simulation
results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl
sulfoxide (DMSO). More importantly, we report that both LNPs were
compact particles with relatively homogeneous density distribution
and very low porosity in the internal structure. The stiffness of
the particles was independent of the size, and the Young’s
modulus was in the range of 0.3–4 GPa. Overall, the fundamental
understandings of LNPs gained in this study are essential for the
design of LNPs with optimal performance in applications.
Collapse
Affiliation(s)
- Tao Zou
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Nonappa Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland
| | - Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Maisa Vuorte
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Aleksi Zitting
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Anna Maria Elert
- Division 6.6, Physical and Chemical Analysis of Polymers, Bundesanstalt für Materialforschung und - prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dorothee Silbernagl
- Division 6.6, Physical and Chemical Analysis of Polymers, Bundesanstalt für Materialforschung und - prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland.,Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| |
Collapse
|
35
|
Gao S, Qi J, Jiang S, Wu T, Wang W, Cai Y, Ma C, Zhang B, Huang J, Yan Y. Green Wood Adhesives from One-Pot Coacervation of Folic Acid and Branched Poly(ethylene imine). ACS APPLIED BIO MATERIALS 2021; 4:7314-7321. [PMID: 35006960 DOI: 10.1021/acsabm.1c00825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adhesives are extensively used in furniture manufacture, and most currently utilized furniture glues are formaldehyde-based chemicals, which emit formaldehyde throughout the entire life of the furniture. With increasing concerns about formaldehyde emission effects on human health, formaldehyde-free and environmentally friendly wood adhesives from bio-based resources are highly desired. In this study, we developed an eco-friendly, high-strength, and water-based wood adhesive from one-pot coacervation of the hierarchical self-assembly of folic acid (FA, a biomolecule, vitamin B9) with a commercially available biocompatible polymer-branched poly(ethylene imine) (b-PEI). The coacervation is caused by multiple hydrogen bonds between b-PEI and the stacks of FA quartets, which demonstrates a continuous robust 3D network, thus realizing adhesion and cohesion behaviors. This coacervate has the strongest adhesion toward wood compared with other substrates. The long-lasting shear bonding strength is up to 3.68 MPa, which is much higher than that of commercial super glue, but without releasing any toxic components. Since all the fabrication and application processes are under ambient conditions without any heating and high-pressure procedures, this work provides a facile yet powerful strategy to develop formaldehyde-free, eco-friendly, and high-performance bio-based waterborne adhesives for wood bonding.
Collapse
Affiliation(s)
- Shuitao Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinwan Qi
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shasha Jiang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongyue Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yiteng Cai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D. Multifunctional lignin-based nanocomposites and nanohybrids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6698-6760. [PMID: 34671223 PMCID: PMC8452181 DOI: 10.1039/d1gc01684a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Significant progress in lignins valorization and development of high-performance sustainable materials have been achieved in recent years. Reports related to lignin utilization indicate excellent prospects considering green chemistry, chemical engineering, energy, materials and polymer science, physical chemistry, biochemistry, among others. To fully realize such potential, one of the most promising routes involves lignin uses in nanocomposites and nanohybrid assemblies, where synergistic interactions are highly beneficial. This review first discusses the interfacial assembly of lignins with polysaccharides, proteins and other biopolymers, for instance, in the synthesis of nanocomposites. To give a wide perspective, we consider the subject of hybridization with metal and metal oxide nanoparticles, as well as uses as precursor of carbon materials and the assembly with other biobased nanoparticles, for instance to form nanohybrids. We provide cues to understand the fundamental aspects related to lignins, their self-assembly and supramolecular organization, all of which are critical in nanocomposites and nanohybrids. We highlight the possibilities of lignin in the fields of flame retardancy, food packaging, plant protection, electroactive materials, energy storage and health sciences. The most recent outcomes are evaluated given the importance of lignin extraction, within established and emerging biorefineries. We consider the benefit of lignin compared to synthetic counterparts. Bridging the gap between fundamental and application-driven research, this account offers critical insights as far as the potential of lignin as one of the frontrunners in the uptake of bioeconomy concepts and its application in value-added products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU) Bilbao 48013 Spain
- BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia Strada di Pentima 4 05100 Terni Italy
| |
Collapse
|
37
|
Greca LG, De France KJ, Majoinen J, Kummer N, Luotonen OIV, Campioni S, Rojas OJ, Nyström G, Tardy BL. Chitin-amyloid synergism and their use as sustainable structural adhesives. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:19741-19753. [PMID: 34589225 PMCID: PMC8439147 DOI: 10.1039/d1ta03215a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 05/28/2023]
Abstract
Structural adhesives are relevant to many engineering applications, especially those requiring load-bearing joints with high lap shear strength. Typical adhesives are synthesized from acrylics, epoxies, or urethanes, which may pose a burden to sustainability and the environment. In nature, the interfacial interactions between chitin and proteins are used for structural purposes and as a bio-cement, resulting in materials with properties unmatched by their man-made counterparts. Herein, we show that related supramolecular interactions can be harnessed to develop high strength green adhesives based on chitin nanocrystals (ChNCs), isolated from shrimp shells, and hen egg white lysozyme (HEWL) used in its monomeric or amyloid forms. Consolidation of the bicomponent suspensions, placed between glass substrates, results in long-range ordered superstructures. The formation of these structures is evaluated by surface energy considerations, followed by scanning electron, atomic force, and polarized microscopies of the consolidated materials. For 0.8 mg of bio-adhesive (lysozyme, ChNCs or their composites), lap shear loads of over 300 N are reached. Such remarkable adhesion reaches maximum values at protein-to-ChNC ratios below 1 : 4, reflecting the synergy established between the components (ca. 25% higher load compared to ChNCs, the strongest single component). We put the observed adhesive performance in perspective by comparing the lap-shear performance with current research on green supramolecular adhesives using natural biopolymers. The results are discussed in the context of current efforts to standardize the measurement of adhesive strength and bond preparation. The latter is key to formalizing the metrology and materials chemistry of bio-based adhesives. The proposed all-green system is expected to expand current developments in the design of bio-based adhesives.
Collapse
Affiliation(s)
- Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| | - Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Johanna Majoinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Department of Health Science and Technology, ETH Zürich 8092 Zürich Switzerland
| | - Otso I V Luotonen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Department of Health Science and Technology, ETH Zürich 8092 Zürich Switzerland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| |
Collapse
|
38
|
Moreno A, Liu J, Gueret R, Hadi SE, Bergström L, Slabon A, Sipponen MH. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid‐ and Base‐Catalyzed Functionalization in Dispersion State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Jinrong Liu
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Robin Gueret
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Mika H. Sipponen
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| |
Collapse
|
39
|
Moreno A, Liu J, Gueret R, Hadi SE, Bergström L, Slabon A, Sipponen MH. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid- and Base-Catalyzed Functionalization in Dispersion State. Angew Chem Int Ed Engl 2021; 60:20897-20905. [PMID: 34196470 PMCID: PMC8518943 DOI: 10.1002/anie.202106743] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Lignin nanoparticles (LNPs) are promising renewable nanomaterials with applications ranging from biomedicine to water purification. However, the instability of LNPs under acidic and basic conditions severely limits their functionalization for improved performance. Here, we show that controlling the degree of esterification can significantly improve the stability of lignin oleate nanoparticles (OLNPs) in acidic and basic aqueous dispersions. The high stability of OLNPs is attributed to the alkyl chains accumulated in the shell of the particle, which delays protonation/deprotonation of carboxylic acid and phenolic hydroxyl groups. Owing to the enhanced stability, acid‐ and base‐catalyzed functionalization of OLNPs at pH 2.0 and pH 12.0 via oxirane ring‐opening reactions were successfully performed. We also demonstrated these new functionalized particles as efficient pH‐switchable dye adsorbents and anticorrosive particulate coatings.
Collapse
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Jinrong Liu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Robin Gueret
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| |
Collapse
|
40
|
Gao S, Wang W, Wu T, Jiang S, Qi J, Zhu Z, Zhang B, Huang J, Yan Y. Folic Acid-Based Coacervate Leading to a Double-Sided Tape for Adhesion of Diverse Wet and Dry Substrates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34843-34850. [PMID: 34254772 DOI: 10.1021/acsami.1c06844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adhesives are crucial both in nature and in diversified artificial fields, and developing environment-friendly adhesives with economic procedures remains a great challenge. We report that folic acid-based coacervates can be a new category of excellent adhesives for all kinds of surfaces with long-lasting adhesiveness. Aided by the electrostatic interaction between the π-π stacked folic acid quartets and polycations, the resultant coacervates are able to interact with diversified substrates via a polyvalent hydrogen bond, coordination, and electrostatic interactions. The adhesivity to wood is superior to the strong commercial glues, but without releasing any toxic components. Upon evaporating water, the coacervate can be casted into a non-adhesive flexible self-supporting film, which restores the adhesive coacervate immediately on contacting water with original adhesive ability. In this way, the coacervate can be facilely tailored into a double-sided tape (DST), which is convenient for storage and application under ambient conditions. Given its excellent adhesive performance, release of nontoxic gases, and convenience in storage and application, the folic acid-based DST is very promising as a new adhesive material.
Collapse
Affiliation(s)
- Shuitao Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongyue Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shasha Jiang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinwan Qi
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiyang Zhu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Zhu JY, Agarwal UP, Ciesielski PN, Himmel ME, Gao R, Deng Y, Morits M, Österberg M. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:114. [PMID: 33957955 PMCID: PMC8101122 DOI: 10.1186/s13068-021-01963-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/23/2021] [Indexed: 05/03/2023]
Abstract
Plant-biomass-based nanomaterials have attracted great interest recently for their potential to replace petroleum-sourced polymeric materials for sustained economic development. However, challenges associated with sustainable production of lignocellulosic nanoscale polymeric materials (NPMs) need to be addressed. Producing materials from lignocellulosic biomass is a value-added proposition compared with fuel-centric approach. This report focuses on recent progress made in understanding NPMs-specifically lignin nanoparticles (LNPs) and cellulosic nanomaterials (CNMs)-and their sustainable production. Special attention is focused on understanding key issues in nano-level deconstruction of cell walls and utilization of key properties of the resultant NPMs to allow flexibility in production to promote sustainability. Specifically, suitable processes for producing LNPs and their potential for scaled-up production, along with the resultant LNP properties and prospective applications, are discussed. In the case of CNMs, terminologies such as cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) used in the literature are examined. The term cellulose nano-whiskers (CNWs) is used here to describe a class of CNMs that has a morphology similar to CNCs but without specifying its crystallinity, because most applications of CNCs do not need its crystalline characteristic. Additionally, progress in enzymatic processing and drying of NPMs is also summarized. Finally, the report provides some perspective of future research that is likely to result in commercialization of plant-based NPMs.
Collapse
Affiliation(s)
- J Y Zhu
- USDA Forest Products Laboratory, One Gifford Pinchot Dr, Madison, WI, USA.
| | - Umesh P Agarwal
- USDA Forest Products Laboratory, One Gifford Pinchot Dr, Madison, WI, USA
| | | | | | - Runan Gao
- Renewable Bioproducts Institute, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yulin Deng
- Renewable Bioproducts Institute, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maria Morits
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|