1
|
Wang R, Jiao J, Liu D, He Y, Yang Y, Sun D, Pan H, Fang F, Wu R. High-Entropy Metal Nitride Embedded in Concave Porous Carbon Enabling Polysulfide Conversion in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405148. [PMID: 38978436 DOI: 10.1002/smll.202405148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/10/2024]
Abstract
The practical implementation of lithium-sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high-entropy metal nitride nanocrystals (HEMN) embedded within nitrogen-doped concave porous carbon (N-CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)-driven adsorption-nitridation process toward this challenge. The configuration of high-entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d-band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N-CPC composites-based sulfur cathode can deliver a high specific capacity of 1274 mAh g-1 at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm-2, the areal capacity of 5.0 mAh cm-2 can still be achieved. The present work may provide a new avenue for the design of high-performance cathodes in Li-S batteries.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jihuang Jiao
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Da Liu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yufei He
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Honge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Mei H, Zhang Y, Zhang P, Ricciardulli AG, Samorì P, Yang S. Entropy Engineering of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409404. [PMID: 39443829 DOI: 10.1002/advs.202409404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Entropy, a measure of disorder or uncertainty in the thermodynamics system, has been widely used to confer desirable functions to alloys and ceramics. The incorporation of three or more principal elements into a single sublattice increases the entropy to medium and high levels, imparting these materials a mélange of advanced mechanical and catalytic properties. In particular, when scaling down the dimensionality of crystals from bulk to the 2D space, the interplay between entropy stabilization and quantum confinement offers enticing opportunities for exploring new fundamental science and applications, since the structural ordering, phase stability, and local electronic states of these distorted 2D materials get significantly reshaped. During the last few years, the large family of high-entropy 2D materials is rapidly expanding to host MXenes, hydrotalcites, chalcogenides, metal-organic frameworks (MOFs), and many other uncharted members. Here, the recent advances in this dynamic field are reviewed, elucidating the influence of entropy on the fundamental properties and underlying elementary mechanisms of 2D materials. In particular, their structure-property relationships resulting from theoretical predictions and experimental findings are discussed. Furthermore, an outlook on the key challenges and opportunities of such an emerging field of 2D materials is also provided.
Collapse
Affiliation(s)
- Hao Mei
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Sheng Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Deng C, Liu R, Wu P, Wang T, Xi S, Tao D, He Q, Chao Y, Zhu W, Dai S. Thermally Stable High-Entropy Layered Double Hydroxides for Advanced Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406685. [PMID: 39385649 DOI: 10.1002/smll.202406685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Layered double hydroxides (LDHs), especially high-entropy LDHs (HE-LDHs), have gained increasing attention. However, HE-LDHs often possess poor thermal stability, restricting their applications in thermo-catalysis. Herein, a novel complexing nucleation method is proposed for engineering HE-LDHs with enhanced thermal stability. This approach precisely controls the nucleation of metal ions with different solubility products, achieving homogeneous nucleation and effectively mitigating phase segregation and transformation at elevated temperatures. The prepared HE-LDH sample demonstrated exceptional thermal stability at temperatures up to 300 °C, outperforming all previously reported LDHs. Importantly, these HE-LDHs preserve both Lewis and Brønsted acidic sites, enabling the 100% removal of aromatic sulfides and alkaline nitrogen compounds from fuel oils in thermo-catalytic oxidation reactions. Experimental and characterization findings reveal that the metal-hydroxide bonds in the prepared HE-LDHs are strengthened by associated hydroxyl groups, inducing negative thermal expansion and augmenting the presence of acidic sites, thereby ensuring structural stability and enhancing catalytic activity. This study not only proposes a strategy for engineering HE-LDHs with remarkable thermal stability but also highlights potential applications of LDHs in thermo-catalysis.
Collapse
Affiliation(s)
- Chang Deng
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - Ruoyu Liu
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Peiwen Wu
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shibo Xi
- Agency for Science, Technology, and Research (A*STAR), Pesek Road Jurong Island, Singapore, 627833, Singapore
| | - Duanjian Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - Yanhong Chao
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
4
|
Xu H, Wang X, Tian G, Fan F, Wen X, Liu P, Shu C. Manipulating Electron Delocalization of Metal Sites via a High-Entropy Strategy for Accelerating Oxygen Electrode Reactions in Lithium-Oxygen Batteries. ACS NANO 2024; 18:27804-27816. [PMID: 39348091 DOI: 10.1021/acsnano.4c11909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
High-entropy perovskite oxides, in which the B-type metal site of perovskite oxides (ABO3) is occupied by over five kinds of transition metal ions, show promising applications in energy storage and conversion fields. Herein, high-entropy perovskite oxides (LaSr(5TM)O3) composed of Cr, Mn, Fe, Co, and Ni at the B-type metal site are prepared as oxygen electrocatalysts for Li-O2 batteries. The presence of compressive strain in LaSr(5TM)O3 effectively regulates the 3d orbit occupancy of the active Co site (Co2+ → Co3+) and lifts the energy level of the Co d-band center, thus leading to enhanced adsorption toward the LiO2 intermediate on Co sites. Furthermore, the high electron-drawing capability of Cr sites ensures sufficient electron exchange and further strengthens the adsorption of LiO2. As expected, the Li-O2 battery with a LaSr(5TM)O3 electrode delivers a low overpotential (0.79 V) and superior cyclability (226 cycles). This study provides a meaningful strain strategy to improve the electrocatalytic activity of multicomponent oxides via fabricating high-entropy materials.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
5
|
Li D, Liu C, Tao S, Cai J, Zhong B, Li J, Deng W, Hou H, Zou G, Ji X. High-Entropy Electrode Materials: Synthesis, Properties and Outlook. NANO-MICRO LETTERS 2024; 17:22. [PMID: 39331215 PMCID: PMC11436529 DOI: 10.1007/s40820-024-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024]
Abstract
High-entropy materials represent a new category of high-performance materials, first proposed in 2004 and extensively investigated by researchers over the past two decades. The definition of high-entropy materials has continuously evolved. In the last ten years, the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage, electrocatalysis, and related domains, accompanied by a rise in techniques for fabricating high-entropy electrode materials. Recently, the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches. However, the current definition of high-entropy materials remains relatively vague, and the preparation method of high-entropy materials is based on the preparation method of single metal/low- or medium-entropy materials. It should be noted that not all methods applicable to single metal/low- or medium-entropy materials can be directly applied to high-entropy materials. In this review, the definition and development of high-entropy materials are briefly reviewed. Subsequently, the classification of high-entropy electrode materials is presented, followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods. Finally, an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided, along with a proposal for potential future development directions for high-entropy materials.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, People's Republic of China.
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jieming Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Biao Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
6
|
Chang L, Jing H, Liu C, Qiu C, Ling X. High-Entropy Materials for Prospective Biomedical Applications: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406521. [PMID: 39248345 DOI: 10.1002/advs.202406521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Indexed: 09/10/2024]
Abstract
With their unique structural characteristics, customizable chemical composition, and adjustable functional characteristics, high-entropy materials (HEMs) have triggered a wide range of interdisciplinary research, especially in the biomedical field. In this paper, the basic concept, core properties, and preparation methods of HEMs are first summarized, and then the application and development of HEMs in the field of biomedical are briefly described. Subsequently, based on the diverse and comprehensive properties of HEMs and a few reported cases, the possible application scenarios of HEMs in biological fields such as biosensors, antibacterial materials, therapeutics, bioimaging, and tissue engineering are prospectively predicted and discussed. Finally, their potential advantages and major challenges is summarized, which may provide useful guidance and principles for researchers to develop and optimize novel HEMs.
Collapse
Affiliation(s)
- Ling Chang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Chuantian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
7
|
Guo H, Fu X, Peng L, Wang C, Zhuang Y, Chong H, Chen Z, Gong W, Yan M, Wang Q, Cui W. Rare-Earth (R) In-Plane Ordering in Novel (Mo, R, Nb) 4AlC 3 Quinary o-MAX Nanolaminates and their 2D Derivatives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404466. [PMID: 39072903 DOI: 10.1002/adma.202404466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Nanolamellar transition metal carbides are gaining increasing attentions because of the promising application in energy storage of their 2D derivatives. There are in-plane and out-of-plane atomic ordered occupations, which is thought to only be formed in separated systems due to totally different origins and crystallographic structure. In present work, starting from (Mo, Nb)4AlC3 o-MAX phase where out-of-plane ordered occupation is experimentally and theoretically proved for Mo/Nb atoms, rare-earth elements (R = Y, Gd-Tm, Lu) are introduced, and the novel Mo3.33- xR0.67NbxAlC3 (x = 1, 1.25, 1.5, 1.75, 2, 2.25, and 2.5) super-ordered (s-) MAX phase is synthesized, where R is ordered at the outer layer in the strict stoichiometry meanwhile Mo/Nb maintains the out-of-plane ordered occupation. By R introduction, s-MAX is easier to be delaminated to obtain the s-MXene with the topochemical ordered vacancies, leading into the enhanced supercapacitance of 114.9 F g-1 in Mo1.33Nb2C3 s-MXene compared with 95.1 F g-1 in Mo2Nb2C3 o-MXene. By Pt anchoring, very low overpotential of 22 mV at a current density of 10 mA cm-2 is achieved for HER applications. This study demonstrates a novel variety of s-MAX phase and seeks to inspire further exploration of the ordered MAX and MXene families.
Collapse
Affiliation(s)
- Hongyun Guo
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Xiaoxiao Fu
- International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Chaobo Wang
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yujuan Zhuang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - He Chong
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Zhaohui Chen
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Weijiang Gong
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Weibin Cui
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
8
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
9
|
Michałowski PP. Unraveling the composition of each atomic layer in the MXene/MAX phase structure - identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of MXenes. NANOSCALE HORIZONS 2024; 9:1493-1497. [PMID: 39072410 DOI: 10.1039/d4nh00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision. The newly established protocol of deconvolution and calibration of the SIMS data enables layer-by-layer characterization of MAX phase and MXene samples with ±1% accuracy. Such precision is particularly important for samples that consist of several different transition metals in their structure. This confirms that most MXenes contain a substantial amount of oxygen in the X layers, thus enabling the identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of these materials. It can also be applied for under- and over-etched samples and to determine the exact composition of termination layers. Generally, the SIMS technique may provide invaluable support in the synthesis and optimization of MAX phase and MXene studies.
Collapse
|
10
|
Sen S, Palabathuni M, Ryan KM, Singh S. High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas: Focus Review. ACS ENERGY LETTERS 2024; 9:3694-3718. [PMID: 39144813 PMCID: PMC11320657 DOI: 10.1021/acsenergylett.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
High-entropy materials (HEMs) are typically crystalline, phase-pure and configurationally disordered materials that contain at least five elements evenly blended into a solid-solution framework. The discovery of high-entropy alloys (HEAs) and high-entropy oxides (HEOs) disrupted traditional notions in materials science, providing avenues for the exploration of new materials, property optimization, and the pursuit of advanced applications. While there has been significant research on HEAs, the creative breakthroughs in HEOs are still being revealed. This focus review aims at developing a structured framework for expressing the concept of HEM, with special emphasis on the crystal structure and functional properties of HEOs. Insights into the recent synthetic advances, that foster prospective outcomes and their current applications in electrocatalysis, and battery, are comprehensively discussed. Further, it sheds light on the existing constraints in HEOs, highlights the adoption of theoretical and experimental tools to tackle challenges, while delineates potential directions for exploration in energy application.
Collapse
Affiliation(s)
- Suvodeep Sen
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Manoj Palabathuni
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Kevin M. Ryan
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Shalini Singh
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
11
|
Khazaei M, Maleki I, Koshi NA, Ranjbar A, Miao N, Wang J, Khaledialidusti R, Kühne TD, Lee SC, Bhattacharjee S, Hosano H, Mehdi Vaez Allaei S, Esfarjani K, Ohno K. Beyond metals: theoretical discovery of semiconducting MAX phases and their potential application in thermoelectrics. Phys Chem Chem Phys 2024; 26:18907-18917. [PMID: 38949654 DOI: 10.1039/d4cp01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
MAX phase is a family of ceramic compounds, typically known for their metallic properties. However, we show here that some of them may be narrow bandgap semiconductors. Using a series of first-principles calculations, we have investigated the electronic structures of 861 dynamically stable MAX phases. Notably, Sc2SC, Y2SC, Y2SeC, Sc3AuC2, and Y3AuC2 have been identified as semiconductors with band gaps ranging from 0.2 to 0.5 eV. Furthermore, we have assessed the thermodynamic stability of these systems by generating ternary phase diagrams utilizing evolutionary algorithm techniques. Their dynamic stabilities are confirmed by phonon calculations. Additionally, we have explored the potential thermoelectric efficiencies of these materials by combining Boltzmann transport theory with first-principles calculations. The relaxation times are estimated using scattering theory. The zT coefficients for the aforementioned systems fall within the range of 0.5 to 2.5 at temperatures spanning from 300 to 700 K, indicating their suitability for high-temperature thermoelectric applications.
Collapse
Affiliation(s)
- Mohammad Khazaei
- Department of Physics, University of Tehran, North Kargar Ave., Tehran 14395-547, Iran.
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Iraj Maleki
- Department of Physics, University of Tehran, North Kargar Ave., Tehran 14395-547, Iran.
| | - Namitha Anna Koshi
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru 560064, India
- Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Ahmad Ranjbar
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Nanxi Miao
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.
| | - Rasoul Khaledialidusti
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
- Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, D-02826 Görlitz, Germany
| | - Seung-Cheol Lee
- Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Satadeep Bhattacharjee
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru 560064, India
- Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Japan
| | - S Mehdi Vaez Allaei
- Department of Physics, University of Tehran, North Kargar Ave., Tehran 14395-547, Iran.
- New Uzbekistan University, Movarounnahr Street 1, Tashkent 100000, Uzbekistan
| | - Keivan Esfarjani
- Department of Materials Science and Engineering and Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Kaoru Ohno
- Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| |
Collapse
|
12
|
Bolar S, Ito Y, Fujita T. Future prospects of high-entropy alloys as next-generation industrial electrode materials. Chem Sci 2024; 15:8664-8722. [PMID: 38873068 PMCID: PMC11168093 DOI: 10.1039/d3sc06784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
The rapid advancement of electrochemical processes in industrial applications has increased the demand for high-performance electrode materials. High-entropy alloys (HEAs), a class of multicomponent alloys with unique properties, have emerged as potential electrode materials owing to their enhanced catalytic activity, superior stability, and tunable electronic structures. This review explores contemporary developments in HEA-based electrode materials for industrial applications and identifies their advantages and challenges as compared to conventional commercial electrode materials in industrial aspects. The importance of tuning the composition, crystal structure, different phase formations, thermodynamic and kinetic parameters, and surface morphology of HEAs and their derivatives to achieve the predicted electrochemical performance is emphasized in this review. Synthetic procedures for producing potential HEA electrode materials are outlined, and theoretical discussions provide a roadmap for recognizing the ideal electrode materials for specific electrochemical processes in an industrial setting. A comprehensive discussion and analysis of various electrochemical processes (HER, OER, ORR, CO2RR, MOR, AOR, and NRR) and electrochemical applications (batteries, supercapacitors, etc.) is included to appraise the potential ability of HEAs as an electrode material in the near future. Overall, the design and development of HEAs offer a promising pathway for advancing industrial electrode materials with improved performance, selectivity, and stability, potentially paving the way for the next generation of electrochemical technology.
Collapse
Affiliation(s)
- Saikat Bolar
- School of Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba Tsukuba 305-8573 Japan
| | - Takeshi Fujita
- School of Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| |
Collapse
|
13
|
Wang P, You Q, Liu Y, Miao H, Dong WF, Li L. Combating infections from drug-resistant bacteria: Unleashing synergistic broad-spectrum antibacterial power with high-entropy MXene/CDs. Colloids Surf B Biointerfaces 2024; 238:113874. [PMID: 38581833 DOI: 10.1016/j.colsurfb.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| |
Collapse
|
14
|
Dai Y, Zhao X, Zheng D, Zhao Q, Feng J, Feng Y, Ge X, Chen X. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal. J Colloid Interface Sci 2024; 660:628-636. [PMID: 38266344 DOI: 10.1016/j.jcis.2024.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Exploring highly active electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has become a growing interest in recent years. Herein, an efficient pathway for designing MXene-based ORR/OER catalysts is proposed. It involves introducing non-noble metals into Vo (vacancy site), H1 and H2 (the hollow sites on top of C and the metal atom, respectively) sites on M2CO2 surfaces, named TM-VO/H1/H2-M2CO2 (TM = Fe, Co, Ni, M = V, Nb, Ta). Among these recombination catalysts, Co-H1-V2CO2 and Ni-H1-V2CO2 exhibit the most promising ORR catalytic activities, with low overpotential values of 0.35 and 0.37 V, respectively. Similarly, Fe-H1-V2CO2, Co-VO-Nb2CO2, and Ni-H2-Nb2CO2 possess low OER overpotential values of 0.29, 0.39, and 0.44 V, respectively, suggesting they have enormous potential as effective catalysts for OER. Notably, Co-H2-Ta2CO2 possesses the lowest potential gap value of 0.53 V, demonstrating it has an extraordinary bifunctional catalytic activity. The excellent catalytic performance of these recombination catalysts can be elucidated through an electronic structure analysis, which primarily relies on the electron-donating capacity and synergistic effects between transition metals and sub-metals. These results provide theoretical guidance for designing new ORR and OER catalysts using 2D MXene materials.
Collapse
Affiliation(s)
- Yu Dai
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Desheng Zheng
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Qingrui Zhao
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jing Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
15
|
Teplonogova MA, Kozlova AA, Yapryntsev AD, Baranchikov AE, Ivanov VK. Synthesis and Thermal Decomposition of High-Entropy Layered Rare Earth Hydroxychlorides. Molecules 2024; 29:1634. [PMID: 38611913 PMCID: PMC11013826 DOI: 10.3390/molecules29071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis of multicomponent and high-entropy compounds has become a rapidly developing field in advanced inorganic chemistry, making it possible to combine the properties of multiple elements in a single phase. This paper reports on the synthesis of a series of novel high-entropy layered rare earth hydroxychlorides, namely, (Sm,Eu,Gd,Y,Er)2(OH)5Cl, (Eu,Gd,Tb,Y,Er)2(OH)5Cl, (Eu,Gd,Dy,Y,Er)2(OH)5Cl, and (Eu,Gd,Y,Er,Yb)2(OH)5Cl, using a homogeneous hydrolysis technique under hydrothermal conditions. Elemental mapping proved the even distribution of rare earth elements, while luminescence spectroscopy confirmed efficient energy transfer between europium and other rare earth cations, thus providing additional evidence of the homogeneous distribution of rare earth elements within the crystal lattice. The average rare earth cation radii correlated linearly with the unit cell parameters (0.868 < R2 < 0.982) of the high-entropy layered rare earth hydroxychlorides. The thermal stability of the high-entropy layered rare earth hydroxychlorides was similar to that of individual hydroxychlorides and their binary solid solutions.
Collapse
Affiliation(s)
- Maria A. Teplonogova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anfisa A. Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey D. Yapryntsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
16
|
Kumar S, Hojamberdiev M, Chakraborty A, Mitra R, Chaurasiya R, Kwoka M, Tiwary CS, Biswas K, Kumar M. Quasicrystal Nanosheet/α-Fe 2O 3 Heterostructure-Based Low Power NO 2 Sensors: Experimental and DFT Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16687-16698. [PMID: 38517362 DOI: 10.1021/acsami.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Industrial emissions, environmental monitoring, and medical fields have put forward huge demands for high-performance and low power consumption sensors. Two-dimensional quasicrystal (2D QC) nanosheets of metallic multicomponent Al70Co10Fe5Ni10Cu5 have emerged as a promising material for gas sensors due to their excellent catalytic and electronic properties. Herein, we demonstrate highly sensitive and selective NO2 sensors developed by low-cost and scalable fabrication techniques using 2D QC nanosheets and α-Fe2O3 nanoparticles. The sensitivity (ΔR/R%) of the optimal amount of 2D QC nanosheet-loaded α-Fe2O3 sensor was 32%, which is significantly larger about 3.5 times than bare α-Fe2O3 sensors for 1 ppm of NO2 at 150 °C operating temperature. The sensors exhibited p-type conduction, and resistance was reduced when exposed to NO2, an oxidizing gas. The enhanced sensing characteristics are a result of the formation of nanoheterojunctions between 2D QC and α-Fe2O3, which improved the charge transport and provided a large sensing signal. In addition, the heterojunction sensor demonstrated excellent NO2 selectivity over other oxidizing and reducing gases. Furthermore, density functional theory calculation examines the adsorption energy and charge transfer between NO2 molecules on the α-Fe2O3(110) and QC/α-Fe2O3(110) heterostructure surfaces, which coincides well with the experimental results.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India
| | - Mirabbos Hojamberdiev
- Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, Berlin 10623, Germany
| | - Anyesha Chakraborty
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rahul Mitra
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rajneesh Chaurasiya
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai 601103, India
| | - Monika Kwoka
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishanu Biswas
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
17
|
Yola BB, Kotan G, Akyıldırım O, Atar N, Yola ML. Electrochemical determination of fenitrothion pesticide based on ultrathin manganese oxide nanowires/molybdenum titanium carbide MXene ionic nanocomposite and molecularly imprinting polymer. Mikrochim Acta 2024; 191:230. [PMID: 38565804 PMCID: PMC10987362 DOI: 10.1007/s00604-024-06320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
A novel molecularly imprinted electrochemical sensor is presented based on one-dimensional ultrathin manganese oxide nanowires/two-dimensional molybdenum titanium carbide MXene (MnO2NWs@Mo2TiC2 MXene) for fenitrothion (FEN) determination. After the synthesis of MnO2NWs@Mo2TiC2 MXene ionic nanocomposite was successfully completed with a facile hydrothermal and the pillaring methods, a new type molecular imprinted electrochemical sensor based on MnO2NWs@Mo2TiC2 MXene was constructed with cyclic voltammetry (CV) polymerization including pyrrole monomer and FEN target molecule. After the characterization studies including spectroscopic, electrochemical and microscopic methods, the analytical applications of the prepared sensor were performed. A linearity of 1.0×10-9-2.0×10-8 mol L-1 was obtained and the values of the quantification limit (LOQ) and the detection limit (LOD) were 1.0×10-9 mol L-1 and 3.0×10-10 mol L-1, respectively. The studies of selectivity, stability and reproducibility of the constructed sensor based on MnO2NWs@Mo2TiC2 nanocomposite and molecularly imprinting polymer (MIP) were carried out in detail. Finally, the developed sensor was applied to white flour samples with the values close to 100%.
Collapse
Affiliation(s)
- Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Gül Kotan
- Department of Chemistry and Chemical Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
18
|
Kumar S. Fluorine-Free MXenes: Recent Advances, Synthesis Strategies, and Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308225. [PMID: 38054781 DOI: 10.1002/smll.202308225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
MXenes, an exceptional class of 2D materials, possess high conductivity, adaptable surface chemistry, mechanical strength, and tunable bandgaps, making them attractive for diverse applications. Unlocking the potential of MXenes requires precise control over synthesis methods and surface functionality. Conventionally, fluorine-based etchants are used in MXenes synthesis, posing both environmental concerns and alterations to surface properties, along with the introduction of certain defects. This prompts the exploration of innovative fluorine-free strategies for MXenes synthesis. This review focuses on environmentally friendly, fluorine-free techniques for MXene synthesis, emphasizing mechanisms and recent breakthroughs in alternative etching strategies. The comprehensive coverage includes electrochemical etching, Lewis acid-driven molten salt etching, alkaline/hydrothermal techniques, chemical vapor deposition (CVD), and recent innovative methods. Fluorine-free MXenes synthesis yields terminations such as ─O, ─OH, ─Cl, etc., influencing surface chemistry and improving their properties. The presence of ─OH groups in NaOH etched MXenes boosts their energy storage, while ─Cl functionality from Lewis acidic salts optimizes electrochemical performance. Fluorine-free methods mitigate adverse effects of ─F terminations on MXene conductivity, improving electronic properties and broadening their applications. In addition to traditional approaches, this review delves into novel fluorine-free methods for tailoring MXenes properties. It comprehensively addresses challenges, opportunities, and future perspectives in fluorine-free MXenes.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
19
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
20
|
Kawai K, Ando Y, Okubo M. Machine Learning-Assisted Survey on Charge Storage of MXenes in Aqueous Electrolytes. SMALL METHODS 2024:e2400062. [PMID: 38530036 DOI: 10.1002/smtd.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Pseudocapacitance is capable of both high power and energy densities owing to its fast chemical adsorption with substantial charge transfer. 2D transition-metal carbides/nitrides (MXenes) are an emerging class of pseudocapacitive electrode materials. However, the factors that dominate the physical and chemical properties of MXenes are intercorrelated with each other, giving rise to challenges in the quantitative assessment of their discriminating importance. In this perspective, literature data on the specific capacitance of MXene electrodes in aqueous electrolytes is comprehensively surveyed and analyzed using machine-learning techniques. The specific capacitance of MXene electrodes shows strong dependency on their interlayer spacing, where confined H2O in the interlayer space should play a key role in the charge storage mechanism. The electrochemical behavior of MXene electrodes is overviewed based on atomistic insights obtained from data-driven approaches.
Collapse
Affiliation(s)
- Kosuke Kawai
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yasunobu Ando
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568, Japan
| | - Masashi Okubo
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
21
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
22
|
Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, Khan A, Shaheen I, Sajjad U, Mohana Rani G, Javed MS, Khan K, Hanif MB, Assiri MA, Sahoo S, Al Zoubi W, Mohapatra D, Zhang K. Mo-based MXenes: Synthesis, properties, and applications. Adv Colloid Interface Sci 2024; 324:103077. [PMID: 38219341 DOI: 10.1016/j.cis.2023.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| | - Umay Amara
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Irfan Ali Soomro
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Amjad Khan
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, South Korea
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei 10607, Taiwan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| |
Collapse
|
23
|
Tanaka K, Zaid H, Aoki T, Deshpande A, Hojo K, Ciobanu CV, Kodambaka S. Growth of Highly Oriented (VNbMoTaW)S 2 Layers. NANO LETTERS 2024; 24:493-500. [PMID: 38148179 DOI: 10.1021/acs.nanolett.3c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Compositional tunability, an indispensable parameter for modifying the properties of materials, can open up new applications for van der Waals (vdW) layered materials such as transition-metal dichalcogenides (TMDCs). To date, multielement alloy TMDC layers are obtained via exfoliation from bulk polycrystalline powders. Here, we demonstrate direct deposition of high-entropy alloy disulfide, (VNbMoTaW)S2, layers with controllable thicknesses on free-standing graphene membranes and on bare and hBN-covered Al2O3(0001) substrates via ultra-high-vacuum reactive dc magnetron sputtering of the VNbMoTaW target in Kr and H2S gas mixtures. Using a combination of density functional theory calculations, Raman spectroscopy, X-ray diffraction, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we determine that the as-deposited layers are single-phase, 2H-structured, and 0001-oriented (V0.10Nb0.16Mo0.19Ta0.28W0.27)S2.44. Our synthesis route is general and applicable for heteroepitaxial growth of a wide variety of TMDC alloys and potentially other multielement alloy vdW compounds with the desired compositions.
Collapse
Affiliation(s)
- Koichi Tanaka
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Hicham Zaid
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Toshihiro Aoki
- Irvine Materials Research Institute (IMRI), University of California, Irvine, 644 Engineering Tower, Irvine, California 92697, United States
| | - Aditya Deshpande
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Koki Hojo
- Graduate Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Cristian V Ciobanu
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Suneel Kodambaka
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
24
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Zhou J, Dahlqvist M, Björk J, Rosen J. Atomic Scale Design of MXenes and Their Parent Materials─From Theoretical and Experimental Perspectives. Chem Rev 2023; 123:13291-13322. [PMID: 37976459 PMCID: PMC10722466 DOI: 10.1021/acs.chemrev.3c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
More than a decade after the discovery of MXene, there has been a remarkable increase in research on synthesis, characterization, and applications of this growing family of two-dimensional (2D) carbides and nitrides. Today, these materials include one, two, or more transition metals arranged in chemically ordered or disordered structures of three, five, seven, or nine atomic layers, with a surface chemistry characterized by surface terminations. By combining M, X, and various surface terminations, it appears that a virtually endless number of MXenes is possible. However, for the design and discovery of structures and compositions beyond current MXenes, one needs suitable (stable) precursors, an assessment of viable pathways for 3D to 2D conversion, and utilization or development of corresponding synthesis techniques. Here, we present a critical and forward-looking review of the field of atomic scale design and synthesis of MXenes and their parent materials. We discuss theoretical methods for predicting MXene precursors and for assessing whether they are chemically exfoliable. We also summarize current experimental methods for realizing the predicted materials, listing all verified MXenes to date, and outline research directions that will improve the fundamental understanding of MXene processing, enabling atomic scale design of future 2D materials, for emerging technologies.
Collapse
Affiliation(s)
- Jie Zhou
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Martin Dahlqvist
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Jonas Björk
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Johanna Rosen
- Materials Design Division,
Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
26
|
Sun J, Liu B, Zhao Q, Kirk CH, Wang J. MAX, MXene, or MX: What Are They and Which One Is Better? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306072. [PMID: 37875430 DOI: 10.1002/adma.202306072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Indexed: 10/26/2023]
Abstract
The fast ever-growing interest in transition metal carbonitrides (MXenes) for energy and catalysis is undermined by the undesirable multi-surficial terminations, which severely limit their applications. In contrast, considering the intriguing and tunable electronic structure, rich surface active sites, and high thermal durability, termination-free MXene (MX) hosts a huge possibility for catalysis. As such, recent advances in the evolution from MAX to MXene, and then to MX are overviewed and compared briefly, before concentrating on the unique future of MX in multi-heterogeneous catalysis. This work also looks beyond the fundamental properties of MX and discusses the potential of such materials for applications in multi-electron redox reactions. It is convinced that the potential success of MX in future catalysis is promising. Further extension toward high entropy and single-atom modifications will consolidate the leading position of MX in catalysis.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Binbin Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Qi Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Chin Ho Kirk
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| |
Collapse
|
27
|
Li K, Hao P, Zhang Q, Zhang J, Dmytro S, Zhou Y. First-principles calculation on the lithium storage properties of high-entropy MXene Ti 3C 2(N 0.25O 0.25F 0.25S 0.25) 2. Dalton Trans 2023. [PMID: 37997912 DOI: 10.1039/d3dt02869k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Experimental studies had shown that a variety of surface functional groups exist simultaneously on the surface of Ti3C2Tx MXenes. However, current theoretical calculations on MXenes, used as anode materials for lithium-ion batteries, consider only one surface functional group, which fails to take into account the actual situation. In this study, combining the characteristics of high-entropy materials and two-dimensional MXene material, a model of MXene with multiple surface functional groups was constructed, and its electrochemical performance as an anode material for lithium-ion batteries was further explored. The Ti3C2(N0.25O0.25F0.25S0.25)2 monolayer exhibited metallic properties. Meanwhile, Li atoms could be stably adsorbed on the surface and the diffusion energy barrier of Li on the surface was only 0.17 eV. First-principles calculation showed that Ti3C2(N0.25O0.25F0.25S0.25)2 monolayer had good rate performance and low open-circuit voltage (1 V), corresponding to a lithium storage capacity of 385.38 mA h g-1. The results of our work might inspire further studies on the Li storage performance of high-entropy MXenes experimentally and theoretically.
Collapse
Affiliation(s)
- Kechen Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Pengju Hao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Qian Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Jianbo Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Sydorov Dmytro
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Yang Zhou
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| |
Collapse
|
28
|
Bagheri S, Lipatov A, Vorobeva NS, Sinitskii A. Interlayer Incorporation of A-Elements into MXenes Via Selective Etching of A' from M n+1A' 1-xA″ xC n MAX Phases. ACS NANO 2023; 17:18747-18757. [PMID: 37748108 DOI: 10.1021/acsnano.3c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
MXenes are a large family of two-dimensional materials with a general formula Mn+1XnTz, where M is a transition metal, X = C and/or N, and Tz represents surface functional groups. MXenes are synthesized by etching A-elements from layered MAX phases with a composition of Mn+1AXn. As over 20 different chemical elements were shown to form A-layers in various MAX phases, we propose that they can provide an abundant source of very diverse MXene-based materials. The general strategy for A-modified MXenes relies on the synthesis of Mn+1A'1-xA″xXn MAX phase, in which the higher reactivity of the A'-element compared to that of A″ enables its selective etching, resulting in A″-modified Mn+1XnTz. In general, the A″-element could modify the interlayer spaces of MXene flakes in a form of metallic or oxide species, depending on its chemical identity and synthetic conditions. We demonstrate this strategy by synthesizing Sn-modified Ti3C2Tz MXene from the Ti3Al0.75Sn0.25C2 MAX phase, which was used as a model system. Although the incorporation of Sn in the A-layer of Ti3AlC2 decreases the MAX phase reactivity, we developed an etching procedure to completely remove Al and produce Sn-modified Ti3C2Tz MXene. The resulting MXene sheets were of very high quality and exhibited improved environmental stability, which we attribute to the effect of a uniform Sn modification. Finally, we demonstrate a peculiar electrostatic expansion of Sn-modified Ti3C2Tz accordions, which may find interesting applications in MXene-based nano-electromechanical systems. Overall, these results demonstrate that in addition to different combinations of M and X elements in MAX phases, an A-layer also provides opportunities for the synthesis of MXene-based materials.
Collapse
Affiliation(s)
- Saman Bagheri
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexey Lipatov
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Nataliia S Vorobeva
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
29
|
Das P, Dong Y, Wu X, Zhu Y, Wu ZS. Perspective on high entropy MXenes for energy storage and catalysis. Sci Bull (Beijing) 2023; 68:1735-1739. [PMID: 37482447 DOI: 10.1016/j.scib.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Affiliation(s)
- Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfeng Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanyuan Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
30
|
Kubitza N, Büchner C, Sinclair J, Snyder RM, Birkel CS. Extending the Chemistry of Layered Solids and Nanosheets: Chemistry and Structure of MAX Phases, MAB Phases and MXenes. Chempluschem 2023; 88:e202300214. [PMID: 37500596 DOI: 10.1002/cplu.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
MAX phases are layered solids with unique properties combining characteristics of ceramics and metals. MXenes are their two-dimensional siblings that can be synthesized as van der Waals-stacked and multi-/single-layer nanosheets, which possess chemical and physical properties that make them interesting for a plethora of applications. Both families of materials are highly versatile in terms of their chemical composition and theoretical studies suggest that many more members are stable and can be synthesized. This is very intriguing because new combinations of elements, and potentially new structures, can lead to further (tunable) properties. In this review, we focus on the synthesis science (including non-conventional approaches) and structure of members less investigated, namely compounds with more exotic M-, A-, and X-elements, for example nitrides and (carbo)nitrides, and the related family of MAB phases.
Collapse
Affiliation(s)
- Niels Kubitza
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287, Darmstadt, Germany
| | - Carina Büchner
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287, Darmstadt, Germany
| | - Jordan Sinclair
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Rose M Snyder
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Christina S Birkel
- Department of Chemistry and Biochemistry, Technische Universitaet Darmstadt, 64287, Darmstadt, Germany
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
31
|
Guo R, Chen C, Bannenberg LJ, Wang H, Liu H, Yu M, Sofer Z, Lei Z, Wang X. Interfacial Designs of MXenes for Mild Aqueous Zinc-Ion Storage. SMALL METHODS 2023; 7:e2201683. [PMID: 36932899 DOI: 10.1002/smtd.202201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Limited Li resources, high cost, and safety risks of using organic electrolytes have stimulated a strong motivation to develop non-Li aqueous batteries. Aqueous Zn-ion storage (ZIS) devices offer low-cost and high-safety solutions. However, their practical applications are at the moment restricted by their short cycle life arising mainly from irreversible electrochemical side reactions and processes at the interfaces. This review sums up the capability of using 2D MXenes to increase the reversibility at the interface, assist the charge transfer process, and thereby improve the performance of ZIS. First, they discuss the ZIS mechanism and irreversibility of typical electrode materials in mild aqueous electrolytes. Then, applications of MXenes in different ZIS components are highlighted, including as electrodes for Zn2+ intercalation, protective layers of Zn anode, hosts for Zn deposition, substrates, and separators. Finally, perspectives are put forward on further optimizing MXenes to improve the ZIS performance.
Collapse
Affiliation(s)
- Rui Guo
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Chaofan Chen
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Lars J Bannenberg
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Hao Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haozhe Liu
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden Technische Universität Dresden Modulgebäude, 01217, Dresden, Germany
| | - Zdenek Sofer
- Institute of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 16628, Czech Republic
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| |
Collapse
|
32
|
Chen L, Li Y, Liang K, Chen K, Li M, Du S, Chai Z, Naguib M, Huang Q. Two-Dimensional MXenes Derived from Medium/High-Entropy MAX Phases M 2 GaC (M = Ti/V/Nb/Ta/Mo) and their Electrochemical Performance. SMALL METHODS 2023; 7:e2300054. [PMID: 37086114 DOI: 10.1002/smtd.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) transition metal carbides and/or nitrides, MXenes, are prepared by selective etching of the A-site atomically thin metal layers from their MAX phase precursors. High entropy MXenes, the most recent subfamily of MXenes, are in their infancy and have attracted great interest recently. They are currently synthesized mainly through wet chemical etching of Al-containing MAX phases, while various MAX phases with A-sites elements other than Al have not been explored. It is important to embody non-Al MAX phases as precursors for the high entropy MXenes synthesis to allow for new compositions. In this work, it is reported on the design and synthesis of Ga-containing medium/high entropy MAX phases and then their corresponding medium/high entropy MXenes. Gallium atomic layer etching is carried out using a Lewis acid molten salt (CuCl2). The as-prepared (Ti1/4 V1/4 Nb1/4 Ta1/4 )2 CTx exhibits a Li+ specific capacity of ≈400 mAh g-1 . For (Ti1/5 V1/5 Nb1/5 Ta1/5 Mo1/5 )2 CTx a specific capacity of 302 mAh g-1 is achieved after 300 cycles, and high cycling stability is observed at high current densities. This work is of great significance for expanding the family members of MXenes with tunable chemistries and structures.
Collapse
Affiliation(s)
- Lu Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Youbing Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Kun Liang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Ke Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Mian Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315336, P. R. China
| |
Collapse
|
33
|
Pattan-Siddappa G, Ko HU, Kim SY. Active site rich MXene as a sensing interface for brain neurotransmitter's and pharmaceuticals: One decade, many sensors. Trends Analyt Chem 2023; 164:117096. [DOI: 10.1016/j.trac.2023.117096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
34
|
Zhu M, Lu C, Liu L. Progress and challenges of emerging MXene based materials for thermoelectric applications. iScience 2023; 26:106718. [PMID: 37234091 PMCID: PMC10206441 DOI: 10.1016/j.isci.2023.106718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
To realize sustainable development, more and more countries forwarded carbon neutrality goal. Accordingly, improving the utilization efficiency of traditional fossil fuel is an effective strategy for this great goal. Keeping this in mind, developing thermoelectric devices to recover waste heat energy resulted in the consumption process of fuel is demonstrated to be promising. High performance thermoelectric devices require advanced materials. MXenes are a kind of 2D materials with a layered structure, which demonstrate excellent thermoelectric performance owing to their unique physical, mechanical, and chemical properties. Also, substantial achievement has been gained during the past few years in synthesizing MXene based materials for thermoelectric devices. In this review, the mainstream synthetic routes of MXene from etching MAX were summarized. Significantly, the current state and challenges of research on improving the performance of MXene based thermoelectrics are explored, including pristine MXene and MXene based composites.
Collapse
Affiliation(s)
- Maiyong Zhu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Congcong Lu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lingran Liu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
35
|
Rasyotra A, Thakur A, Mandalia R, Ranganathan R, Jasuja K. Nitrogen adsorption via charge transfer on vacancies created during surfactant assisted exfoliation of TiB 2. NANOSCALE 2023; 15:8204-8216. [PMID: 36967617 DOI: 10.1039/d2nr06676a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Titanium diboride (TiB2), a layered ceramic material, comprised of titanium atoms sandwiched in between honeycomb planes of boron atoms, exhibits a promising structure to utilize the rich chemistry offered by the synergy of titanium and boron. TiB2 has been primarily investigated and applied in its bulk form. This perspective is, however, fast evolving with a number of efforts aimed at exfoliating TiB2. Here, we show that it is possible to delaminate TiB2 into ultrathin, minimally functionalized nanosheets with the aid of surfactants. These nanosheets exhibit crystalline nature and their chemical analysis reveals vacant sites within the nanosheets. These vacancies facilitate the chemisorption of N2 onto the TiB2 nanosheets under ambient conditions without the aid of any energy, this finding was unexpected. This remarkable activity of TiB2 nanosheets is attributed to vacancies and the Ti-B synergy, which enhance the adsorption and activation of N2. We obtained supplemental insights into the N2 adsorption by Density Functional Theory (DFT) studies, which reveal how charge transfer among Ti, B, and N2 results in N2 adsorption. The DFT studies also show that nanosheets having more vacancies result in increased adsorption when compared with nanosheets having less vacancies and bulk TiB2.
Collapse
Affiliation(s)
- Anshul Rasyotra
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India.
| | - Anupma Thakur
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India.
| | - Raviraj Mandalia
- Discipline of Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Raghavan Ranganathan
- Discipline of Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Kabeer Jasuja
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India.
| |
Collapse
|
36
|
Oliveira FM, Azadmanjiri J, Wang X, Yu M, Sofer Z. Structure Design and Processing Strategies of MXene-Based Materials for Electromagnetic Interference Shielding. SMALL METHODS 2023:e2300112. [PMID: 37129581 DOI: 10.1002/smtd.202300112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The development of new materials for electromagnetic interference (EMI) shielding is an important area of research, as it allows for the creation of more effective and high-efficient shielding solutions. In this sense, MXenes, a class of 2D transition metal carbides and nitrides have exhibited promising performances as EMI shielding materials. Electric conductivity, low density, and flexibility are some of the properties given by MXene materials, which make them very attractive in the field. Different processing techniques have been employed to produce MXene-based materials with EMI shielding properties. This review summarizes processes and the role of key parameters like the content of fillers and thickness in the desired EMI shielding performance. It also discusses the determination of power coefficients in defining the EMI shielding mechanism and the concept of green shielding materials, as well as their influence on the real application of a produced material. The review concludes with a summary of current challenges and prospects in the production of MXene materials as EMI shields.
Collapse
Affiliation(s)
- Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Centre for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| |
Collapse
|
37
|
He X, Qian Y, Wu C, Feng J, Sun X, Zheng Q, Li X, Shen J. Entropy-Mediated High-Entropy MXenes Nanotherapeutics: NIR-II-Enhanced Intrinsic Oxidase Mimic Activity to Combat Methicillin-Resistant Staphylococcus Aureus Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211432. [PMID: 36941204 DOI: 10.1002/adma.202211432] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Bacterial infections, such as bacterial keratitis (BK) and subcutaneous abscess, pose significant challenges to global healthcare. Innovative and new antibacterial agents and antibacterial strategies are in demand to control infections in this era of high drug resistance. Nanotechnology is gradually emerging as an economically feasible and effective anti-infection treatment. High-entropy MXenes (HE MXenes) are used to confer desirable properties with exposed active sites to high-entropy atomic layers, whose potential application in the field of biomedicine remains to be explored. Herein, monolayer HE MXenes are fabricated by implementing transition metals with high entropy and low Gibbs free energy to fill the gap in the biocatalytic performance of non-high-entropy MXenes. HE MXenes are endowed with extremely strong oxidase mimic activity (Km = 0.227 mm) and photothermal conversion efficiency (65.8%) in the second near-infrared (NIR-II) biowindow as entropy increases. Subsequently, HE MXenes realize NIR-II-enhanced intrinsic oxidase mimic activity for killing methicillin-resistant Staphylococcus aureus and rapidly removing the biofilm. Furthermore, HE MXenes can effectively treat BK and subcutaneous abscess infection induced by methicillin-resistant Staphylococcus aureus as nanotherapeutic agents with minuscule side effects. Overall, monolayer HE MXenes demonstrate promising clinical application potential in the treatment of drug-resistant bacterial infections and promote the healing of infected tissues.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Chenglin Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayao Feng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qinxiang Zheng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
38
|
Gao Y, Qiu Z, Lu Y, Zhou H, Zhu R, Liu Z, Pang H. Rational Design and General Synthesis of High-Entropy Metallic Ammonium Phosphate Superstructures Assembled by Nanosheets. Inorg Chem 2023; 62:3669-3678. [PMID: 36789454 DOI: 10.1021/acs.inorgchem.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Three-dimensional (3D) superstructure nanomaterials with special morphologies and novel properties have attracted considerable attention in the fields of optics, catalysis, and energy storage. The introduction of high entropy into ammonium phosphate (NPO·nH2O) has not yet attracted much attention in the field of energy storage materials. Herein, we systematically synthesize a series of 3D superstructures of NPOs·nH2O ranging from unitary, binary, ternary, and quaternary to high-entropy by a simple chemical precipitation method. These materials have similar morphology, crystallinity, and synthesis routes, which eliminates the performance difference caused by the interference of physical properties. Subsequently, cobalt-nickel ammonium phosphate (CoxNiy-NPO·nH2O) powders with different cobalt-nickel molar ratios were synthesized to predict the promoting effect of mixed transition metals in supercapacitors. It is found that the CoxNiy-NPO·nH2O 3D superstructures with a Co/Ni ratio of 1:1 show the best electrochemical performance for energy storage. The aqueous device shows a high energy density of 36.18 W h kg-1 at a power density of 0.71 kW kg-1, and when the power density is 0.65 kW kg-1, the energy density of the solid-state device is 13.83 W h kg-1. The work displays a facile method for the fabrication of 3D superstructures assembled by 2D nanosheets that can be applied in energy storage.
Collapse
Affiliation(s)
- Yidan Gao
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Yao Lu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| |
Collapse
|
39
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H. Synthesis of Fe-THC MOFs and functionalizing MOFs by MXenes for the selective removal of lead(ii) ions from wastewater. RSC Adv 2023; 13:5643-5655. [PMID: 36816064 PMCID: PMC9930097 DOI: 10.1039/d2ra08102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The elimination of heavy metals, especially lead, from wastewater is vital for the environment and human health and using a proper adsorbent to achieve this goal is highly desirable. Initially, Fe-THC MOF was prepared using a simple method and functionalized using MXene for efficient, rapid, and selective elimination of lead. Different characterization tools demonstrated that Fe-THC MOF and its composite Fe-THC/MXene were successfully prepared. The adsorption outcomes showed that the maximum sorption capability was 674 mg g-1 at 305 K and pH 4.5. The sorption kinetics obeys the pseudo-second-order kinetic model, and the sorption isotherms fit the Langmuir isotherm model. This finding suggests monolayer sorption on Fe-THC/MXene, and the rate-controlling step is chemisorption. Thermodynamic findings exhibit that sorption was a spontaneous and exothermic process. The sorption process can selectively adsorb Pb ions from aqueous media. After five adsorption-desorption tests, the adsorption efficiency of Fe-THC/MXene was still high. The sorption mechanism of lead on Fe-THC was mainly due to the interaction of lead ions with -F and -O ions and porosity of the Fe-THC/MXene composite. The -O and -F ions were derived from MXene, while the porosity was derived from the MOFs of composites. These findings confirmed that Fe-THC/MXene enables rapid, efficient, and selective elimination of lead from wastewater, which is of practical importance.
Collapse
Affiliation(s)
- Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Hina Zain
- Department of Allied Health Sciences, Superior University LahoreLahore 54700Pakistan
| |
Collapse
|
40
|
Wyatt BC, Thakur A, Nykiel K, Hood ZD, Adhikari SP, Pulley KK, Highland WJ, Strachan A, Anasori B. Design of Atomic Ordering in Mo 2Nb 2C 3T x MXenes for Hydrogen Evolution Electrocatalysis. NANO LETTERS 2023; 23:931-938. [PMID: 36700844 DOI: 10.1021/acs.nanolett.2c04287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The need for novel materials for energy storage and generation calls for chemical control at the atomic scale in nanomaterials. Ordered double-transition-metal MXenes expanded the chemical diversity of the family of atomically layered 2D materials since their discovery in 2015. However, atomistic tunability of ordered MXenes to achieve ideal composition-property relationships has not been yet possible. In this study, we demonstrate the synthesis of Mo2+αNb2-αAlC3 MAX phases (0 ≤ α ≤ 0.3) and confirm the preferential ordering behavior of Mo and Nb in the outer and inner M layers, respectively, using density functional theory, Rietveld refinement, and electron microscopy methods. We also synthesize their 2D derivative Mo2+αNb2-αC3Tx MXenes and exemplify the effect of preferential ordering on their hydrogen evolution reaction electrocatalytic behavior. This study seeks to inspire further exploration of the ordered double-transition-metal MXene family and contribute composition-behavior tools toward application-driven design of 2D materials.
Collapse
Affiliation(s)
- Brian C Wyatt
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Anupma Thakur
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kat Nykiel
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zachary D Hood
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shiba P Adhikari
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Krista K Pulley
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Wyatt J Highland
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Babak Anasori
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Perera A, Madhushani K, Punchihewa BT, Kumar A, Gupta RK. MXene-Based Nanomaterials for Multifunctional Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1138. [PMID: 36770145 PMCID: PMC9920486 DOI: 10.3390/ma16031138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
MXene is becoming a "rising star" material due to its versatility for a wide portfolio of applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical applications, membranes, flexible and wearable devices, etc. As these applications promote increased interest in MXene research, summarizing the latest findings on this family of materials will help inform the scientific community. In this review, we first discuss the rapid evolutionary change in MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chemistry, etc., will be further discussed in the next section. Then, we review the applications of MXenes and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors, electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible and wearable devices. More importantly, we notice that its excellent metallic conductivity with its hydrophilic nature distinguishes MXene from other materials, and its properties and applications can be further modified by surface functionalization. MXene composites/hybrids outperform pristine MXenes in many applications. In addition, a summary of the latest findings using MXene-based materials to overcome application-specific drawbacks is provided in the last few sections. We hope that the information provided in this review will help integrate lab-scale findings into commercially viable products.
Collapse
Affiliation(s)
- A.A.P.R. Perera
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| | - K.A.U. Madhushani
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| |
Collapse
|
42
|
Tsounis C, Kumar PV, Masood H, Kulkarni RP, Gautam GS, Müller CR, Amal R, Kuznetsov DA. Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability. Angew Chem Int Ed Engl 2023; 62:e202210828. [PMID: 36278885 PMCID: PMC10099934 DOI: 10.1002/anie.202210828] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/05/2022]
Abstract
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.
Collapse
Affiliation(s)
- Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia.,Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Hassan Masood
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Rutvij Pankaj Kulkarni
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
43
|
Sarkar A, Wang D, Kante MV, Eiselt L, Trouillet V, Iankevich G, Zhao Z, Bhattacharya SS, Hahn H, Kruk R. High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207436. [PMID: 36383029 DOI: 10.1002/adma.202207436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25 La0.25 Nd0.25 Sm0.25 )1- x Srx MnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.
Collapse
Affiliation(s)
- Abhishek Sarkar
- KIT-TUD Joint Research Laboratory Nanomaterials - Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mohana V Kante
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Luis Eiselt
- KIT-TUD Joint Research Laboratory Nanomaterials - Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Vanessa Trouillet
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Applied Materials (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gleb Iankevich
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhibo Zhao
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Subramshu S Bhattacharya
- Nanofunctional Materials Technology Centre (NFMTC), Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Horst Hahn
- KIT-TUD Joint Research Laboratory Nanomaterials - Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Robert Kruk
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Yang Y, Li K, Wang Y, Wu Z, Russell TP, Shi S. MXene-Based Porous Monoliths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3792. [PMID: 36364567 PMCID: PMC9654234 DOI: 10.3390/nano12213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
45
|
Ward-O’Brien B, McNaughter PD, Cai R, Chattopadhyay A, Flitcroft JM, Smith CT, Binks DJ, Skelton JM, Haigh SJ, Lewis DJ. Quantum Confined High-Entropy Lanthanide Oxysulfide Colloidal Nanocrystals. NANO LETTERS 2022; 22:8045-8051. [PMID: 36194549 PMCID: PMC9614967 DOI: 10.1021/acs.nanolett.2c01596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
We have synthesized the first reported example of quantum confined high-entropy (HE) nanoparticles, using the lanthanide oxysulfide, Ln2SO2, system as the host phase for an equimolar mixture of Pr, Nd, Gd, Dy, and Er. A uniform HE phase was achieved via the simultaneous thermolysis of a mixture of lanthanide dithiocarbamate precursors in solution. This was confirmed by powder X-ray diffraction and high-resolution scanning transmission electron microscopy, with energy dispersive X-ray spectroscopic mapping confirming the uniform distribution of the lanthanides throughout the particles. The nanoparticle dispersion displayed a significant blue shift in the absorption and photoluminescence spectra relative to our previously reported bulk sample with the same composition, with an absorption edge at 330 nm and a λmax at 410 nm compared to the absorption edge at 500 nm and a λmax at 450 nm in the bulk, which is indicative of quantum confinement. We support this postulate with experimental and theoretical analysis of the bandgap energy as a function of strain and surface effects (ligand binding) as well as calculation of the exciton Bohr radiii of the end member compounds.
Collapse
Affiliation(s)
- Brendan Ward-O’Brien
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Paul D. McNaughter
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Rongsheng Cai
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Amrita Chattopadhyay
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Joseph M. Flitcroft
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Charles T. Smith
- Department
of Physics and Astronomy and the Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Binks
- Department
of Physics and Astronomy and the Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jonathan M. Skelton
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Sarah J. Haigh
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Lewis
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
46
|
Ying T, Yu T, Qi Y, Chen X, Hosono H. High Entropy van der Waals Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203219. [PMID: 36008123 PMCID: PMC9596826 DOI: 10.1002/advs.202203219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
By breaking the restrictions on traditional alloying strategy, the high entropy concept has promoted the exploration of the central area of phase space, thus broadening the horizon of alloy exploitation. This review highlights the marriage of the high entropy concept and van der Waals systems to form a new family of materials category, namely the high entropy van der Waals materials (HEX, HE = high entropy, X = anion clusters) and describes the current issues and next challenges. The design strategy for HEX has integrated the local feature (e.g., composition, spin, and valence states) of structural units in high entropy materials and the holistic degrees of freedom (e.g., stacking, twisting, and intercalating species) in van der Waals materials, and is successfully used for the discovery of high entropy dichalcogenides, phosphorus tri-chalcogenides, halogens, and MXene. The rich combination and random distribution of the multiple metallic constituents on the nearly regular 2D lattice give rise to a flexible platform to study the correlation features behind a range of selected physical properties, e.g., superconductivity, magnetism, and metal-insulator transition. The deliberate design of structural units and their stacking configuration can also create novel catalysts to enhance their performance in a bunch of chemical reactions.
Collapse
Affiliation(s)
- Tianping Ying
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Materials Research Center for Element StrategyTokyo Institute of TechnologyYokohama226‐8503Japan
| | - Tongxu Yu
- Gusu Laboratory of MaterialsJiangsu215123China
| | - Yanpeng Qi
- School of Physical Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Xiaolong Chen
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Hideo Hosono
- Materials Research Center for Element StrategyTokyo Institute of TechnologyYokohama226‐8503Japan
| |
Collapse
|
47
|
Amin I, Brekel HVD, Nemani K, Batyrev E, de Vooys A, van der Weijde H, Anasori B, Shiju NR. Ti 3C 2T x MXene Polymer Composites for Anticorrosion: An Overview and Perspective. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43749-43758. [PMID: 36121119 PMCID: PMC9523612 DOI: 10.1021/acsami.2c11953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 05/25/2023]
Abstract
As the most studied two-dimensional (2D) material from the MXene family, Ti3C2Tx has constantly gained interest from academia and industry. Ti3C2Tx MXene has the highest electrical conductivity (up to 24,000 S cm-1) and one of the highest stiffness values with a Young's modulus of ∼ 334 GPa among water-dispersible conductive 2D materials. The negative surface charge of MXene helps to disperse it well in aqueous and other polar solvents. This solubility across a wide range of solvents, excellent interface interaction, tunable surface functionality, and stability with other organic/polymeric materials combined with the layered structure of Ti3C2Tx MXene make it a promising material for anticorrosion coatings. While there are many reviews on Ti3C2Tx MXene polymer composites for catalysis, flexible electronics, and energy storage, to our knowledge, no review has been published yet on MXenes' anticorrosion applications. In this brief report, we summarize the current progress and the development of Ti3C2Tx polymer composites for anticorrosion. We also provide an outlook and discussion on possible ways to improve the exploitation of Ti3C2Tx polymer composites as anticorrosive materials. Finally, we provide a perspective beyond Ti3C2Tx MXene composition for the development of future anticorrosion coatings.
Collapse
Affiliation(s)
- Ihsan Amin
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hidde van den Brekel
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Kartik Nemani
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Erdni Batyrev
- Tata
Steel Research & Development, P.O. Box 10.000, 1970CA IJmuiden, The Netherlands
| | - Arnoud de Vooys
- Tata
Steel Research & Development, P.O. Box 10.000, 1970CA IJmuiden, The Netherlands
| | - Hans van der Weijde
- Tata
Steel Research & Development, P.O. Box 10.000, 1970CA IJmuiden, The Netherlands
| | - Babak Anasori
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - N. Raveendran Shiju
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
48
|
Zahra SA, Hakim MW, Mansoor MA, Rizwan S. Two-dimensional double transition metal carbides as superior bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Bhargava Reddy MS, Kailasa S, Marupalli BCG, Sadasivuni KK, Aich S. A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sens 2022; 7:2132-2163. [PMID: 35972775 DOI: 10.1021/acssensors.2c01046] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gas sensors, capable of detecting and monitoring trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for numerous applications including diagnosing diseases through breath analysis, environmental and personal safety, food and agriculture, and other fields. The continuous emergence of new materials is one of the driving forces for the development of gas sensors. Recently, 2D materials have been gaining huge attention for gas sensing applications, owing to their superior electrical, optical, and mechanical characteristics. Especially for 2D MXenes, high specific area and their rich surface functionalities with tunable electronic structure make them compelling for sensing applications. This Review discusses the latest advancements in the 2D MXenes for gas sensing applications. It starts by briefly explaining the family of MXenes, their synthesis methods, and delamination procedures. Subsequently, it outlines the properties of MXenes. Then it describes the theoretical and experimental aspects of the MXenes-based gas sensors. Discussion is also extended to the relation between sensing performance and the structure, electronic properties, and surface chemistry. Moreover, it highlights the promising potential of these materials in the current gas sensing applications and finally it concludes with the limitations, challenges, and future prospects of 2D MXenes in gas sensing applications.
Collapse
Affiliation(s)
- M Sai Bhargava Reddy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Saraswathi Kailasa
- Department of Physics, National Institute of Technology, Warangal, 506004, India
| | - Bharat C G Marupalli
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | - Shampa Aich
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
50
|
Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 2022; 6:389-404. [PMID: 37117426 DOI: 10.1038/s41570-022-00384-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
The diverse and tunable surface and bulk chemistry of MXenes affords valuable and distinctive properties, which can be useful across many components of energy storage devices. MXenes offer diverse functions in batteries and supercapacitors, including double-layer and redox-type ion storage, ion transfer regulation, steric hindrance, ion redistribution, electrocatalysts, electrodeposition substrates and so on. They have been utilized to enhance the stability and performance of electrodes, electrolytes and separators. In this Review, we present a discussion on the roles of MXene bulk and surface chemistries across various energy storage devices and clarify the correlations between their chemical properties and the required functions. We also provide guidelines for the utilization of MXene surface terminations to control the properties and improve the performance of batteries and supercapacitors. Finally, we conclude with a perspective on the challenges and opportunities of MXene-based energy storage components towards future practical applications.
Collapse
Affiliation(s)
- Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|