1
|
Kong S, Zhang J, Ding B, He C, Zhang X. Nanoplatform-based synergistic cancer Immuno-Chemodynamic therapy. Int J Pharm 2024; 667:124956. [PMID: 39550012 DOI: 10.1016/j.ijpharm.2024.124956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Immunotherapy has made excellent breakthroughs in the field of cancer treatments, but faces challenges with low immunogenicity of tumor cells and an immunosuppressive tumor microenvironment (ITME). The emerging chemodynamic therapy (CDT) based on the Fenton/Fenton-like reaction can induce immunogenic cell death (ICD) to enhance tumor immunogenicity, facilitating the transition from immune-cold to immune-hot tumors. Synergistic CDT and immunotherapy based on advanced nanotechnology have shown immense promise for improving therapeutic efficacy while minimizing side effects in cancer treatment. This review summarizes and discusses recent advances in the field, with the goal of designing a high-quality nanoplatform to enhance synergistic CDT in combination with immunotherapy and lay the foundation for its future clinical translation.
Collapse
Affiliation(s)
- Shuaizhi Kong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China; Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Jie Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
| | - Chuanchuan He
- Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, PR China.
| | - Xiaojuan Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
2
|
Wu J, Hao X, Qi L, Xu W, Yin C, Tang Y, Sun P, Liao D, Hu X, Tang T, Tu C, Xiang D, Li Z. Assembly of a biomimetic copper-based nanocomplex for alleviating hypoxia to enhance cuproptosis against osteosarcoma and lung metastasis. Acta Biomater 2024:S1742-7061(24)00768-2. [PMID: 39710219 DOI: 10.1016/j.actbio.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Osteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol. Simultaneously, we integrated catalase (CAT) to alleviate tumor hypoxia, thereby inducing a greater reliance of tumor cells on aerobic respiration and enhancing cuproptosis sensitivity. In vitro analyses revealed that the nanocomplex exhibited potent cytotoxicity and displayed hallmark characteristics of cuproptosis. In vivo trials further validated targeted tumor accumulation, resulting in the suppression of tumor growth and lung metastasis. An augmentation in the proportion of activated immune cells in both tumor and draining lymph nodes was observed. The improvement of immunosuppressive microenvironment facilitated a synergistic antitumor effect with cuproptosis. The therapeutic efficacy was further evidenced in two osteosarcoma models, highlighting the potential as a safe and effective strategy against osteosarcoma and lung metastasis. STATEMENT OF SIGNIFICANCE: Osteosarcoma tissues exhibit a marked increase in the expression of proteins FDX1 and DLAT, which are crucial for cuproptosis. Moreover, cells that depend on mitochondrial respiration are more susceptible to cuproptosis. Here we developed a biomimetic copper-based nanocomplex to trigger cuproptosis against osteosarcoma and lung metastases. The nanocomplex demonstrated excellent biocompatibility and tumor targeting. Catalase incorporating facilitated oxygen generation within tumor microenvironment and alleviated hypoxia, thereby inducing a greater reliance of tumor cells on aerobic respiration and enhancing cuproptosis sensitivity. Simultaneously, the released Cu-elesclomol complexes induced proteotoxic stress responses and efficiently elicited cuproptosis, leading to increased release of proinflammatory factors and triggering anti-tumor immune activation. Our strategy holds promise for osteosarcoma treatment by inducing cuproptosis and achieving potent tumor suppression.
Collapse
Affiliation(s)
- Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Chi Yin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Pengcheng Sun
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha 410031, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital Central South University Changsha 410011, China; Institute of Clinical Pharmacy, Central South University Changsha 410011, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| |
Collapse
|
3
|
Chen X, Tian P, Chai W, Zhang L, Qin M, Fan M, Liang N, Kim J, Wang Y, Lu WW, Wang D, Cui X, Pan H. A Multisynergistic Strategy for Bone Tumor Treatment: Orchestrating Oxidative Stress and Autophagic Flux Inhibition by Environmental-Response Nanoparticle. Adv Healthc Mater 2024:e2402872. [PMID: 39663711 DOI: 10.1002/adhm.202402872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Tumor therapy has advanced significantly in recent years, but tumor cells can still evade and survive the treatment through various mechanisms. Notably, tumor cells use autophagy to sustain viability by removing impaired mitochondria and clearing excess reactive oxygen species (ROS). In this study, the aim is to amplify intracellular oxidative stress by inhibiting mitochondrial autophagic flux. Multisynergistic environmental-response nanoparticles (ERNs) are engineered by integrating gold nanoparticles and copper peroxide with borosilicate bioactive glass. The controlled release of copper and inhibition of autophagy flux triggered an overabundance and accumulation of oxidative stress within the tumor cells. This stress triggered immunogenic tumor cell death, believed to initiate a systemic immune response. The tumor microenvironment (TME) transitioned back to a normal physiological state as tumor cells are ablated. ERNs responded to the microenvironment changes by depositing hydroxyapatite on the surface and spontaneously enhancing bone regeneration. This innovative formulation facilitates the functional transition of ERNs from "anti-tumor therapy" to "biomineralization" that kills cancers and induces new bone formation. Overall, it is shown that the ERNs effectively eradicate cancers by utilizing chemodynamic therapy, starvation therapy, and immunotherapy.
Collapse
Affiliation(s)
- Xiaochen Chen
- School of materials science and engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Pengfei Tian
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Wenwen Chai
- School of materials science and engineering, Tongji University, Shanghai, 201804, P.R. China
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Liyan Zhang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Muyan Qin
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Mengke Fan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Na Liang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Jua Kim
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150070, P.R. China
| | - Weijia William Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, P.R. China
| | - Deping Wang
- School of materials science and engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
- Shenzhen Healthemes Biotechnology Co. Ltd., Shenzhen, 518120, P.R. China
| |
Collapse
|
4
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
5
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Wang S, Bai X, Wang X, Wang J, Tao W, Gao Y, Ning J, Hao J, Gao M. Metal Polyphenol Nanoparticle-Based Chemo/Ferroptosis Synergistic Therapy for the Treatment of Oral Squamous Cell Carcinoma. Bioconjug Chem 2024; 35:1835-1842. [PMID: 39450626 DOI: 10.1021/acs.bioconjchem.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Despite the use of surgical resection and chemotherapy in the clinical treatment of oral squamous cell carcinoma (OSCC), the 5-year survival rates of advanced patients are low. Therefore, more efficient strategies are urgently needed. Herein, a chemo/ferroptosis synergistic therapeutic system-DMEFe nanoparticles (NPs) is established for the treatment of OSCC. To create this system, the chemotherapeutic agent doxorubicin (DOX) was loaded into mesoporous silica nanoparticles and further coated with a pH-sensitive metal polyphenol (iron ion and epigallocatechin gallate). These nanoparticles displayed excellent pH-sensitive drug-control release properties, and the release ratio of DOX at pH 5.5 was twice as high than that at pH 7.4. Additionally, DMEF NPs were effectively taken up by the OSCC cell line SSC-25, which greatly impeded the proliferation of these cells. Notably, these nanoparticles increased the intracellular level of reactive oxygen species and effectively exhibited cytotoxity effects. The mechanistic results proved that DMEFe NPs regulated the expression of ferroptosis-related genes to induce ferroptosis of SSC-25 cells. Eventually, this chemo/ferroptosis therapeutic system exhibited remarkable antitumor effects and provided a novel strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Shoujun Wang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xinwei Bai
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300071, P.R. China
| | - Xiaoya Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300071, P.R. China
| | - Jinmiao Wang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Weijie Tao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Ying Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, P. R. China
| | - Junya Ning
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, P. R. China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, P. R. China
| |
Collapse
|
7
|
Cui G, Sun Y, Wang S, Meng F, Zhong Z. Muramyl Dipeptide-Presenting Polymersomes as Artificial Nanobacteria to Boost Systemic Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61655-61663. [PMID: 39498882 DOI: 10.1021/acsami.4c13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The clinical efficacy of cancer vaccines is closely related to immunoadjuvants that play a crucial role in magnifying and prolonging the immune response. Muramyl dipeptide (MDP), a minimal and conserved peptidoglycan found in almost all bacteria, can trigger robust immune activation by uniquely antagonizing the nucleotide-binding oligomerization domain 2 (NOD2) pathway. However, its effectiveness has been hindered by limited solubility, poor membrane penetration, and rapid clearance from the body. Here, we introduce MDP-presenting polymersomes as artificial nanobacteria (NBA) to boost the antitumor immune response. The NBA, featuring abundant MDP molecules, induces superior stimulation of immune cells including macrophages and bone marrow-derived dendritic cells (BMDCs) compared to free MDP, likely via facilitating immune cell uptake and cooperatively stimulating systemic NOD2 signaling. Importantly, systemic administration of NBA significantly enhances the chemo-immunotherapy of B16-F10 melanoma-bearing mice pretreated with doxorubicin by reversing the immunosuppressive tumor microenvironment. Furthermore, NBA carrying ovalbumin and B16-F10 cell lysates induces robust OVA-IgG antibody production and effectively inhibit tumor growth, respectively. The artificial nanobacteria hold great promise as a potent systemic immunoadjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
8
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024; 53:10800-10826. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
9
|
Li L, Pan J, Huang M, Sun J, Wang C, Xu H. Metal-Phenolic Networks: A Promising Frontier in Cancer Theranostics. Int J Nanomedicine 2024; 19:11379-11395. [PMID: 39524920 PMCID: PMC11550784 DOI: 10.2147/ijn.s491421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The burgeoning field of cancer theranostics has been significantly advanced by the development of Metal-Phenolic Networks (MPNs), a new class of supramolecular architectures that integrate the advantages of metals and polyphenols. This review focuses on MPNs and their promising applications in cancer theranostics. Through a systematic literature search spanning from 2010 to 2023 in databases including PubMed, Scopus, and Web of Science. The period of search was justified by the rapid evolution of nanomaterials in cancer therapy, with MPNs emerging as a significant player in biomedical applications within the specified timeframe. This review discusses the classification and structure of polyphenolic compounds, as well as their mechanisms of action in cancer treatment. The applications of MPNs in chemotherapy drug delivery, photothermal therapy, chemodynamic therapy, biomedical imaging, and synergistic therapy are especially detailed. The authors emphasize the significance of MPNs in cancer nanomedicine and look forward to their future development directions.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Mengwei Huang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiamin Sun
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
10
|
Zhan M, Xu Y, Jia L, Yu H, Wang H, Shen M, Shi X. Biomimetic copper-containing nanogels for imaging-guided tumor chemo-chemodynamic-immunotherapy. Acta Biomater 2024; 189:491-504. [PMID: 39322041 DOI: 10.1016/j.actbio.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment and enhance diagnostic and therapeutic outcomes still remains a great challenge. Here, we report the facile construction of a multivariate nanoplatform based on cancer cell membrane (CM)-encapsulated redox-responsive poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) co-loaded with Cu(II) and chemotherapeutic drug toyocamycin (Toy) for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. We show that redox-responsive PVCL NGs formed through precipitation polymerization can be aminated, conjugated with 3,4-dihydroxyhydrocinnamic acid for Cu(II) complexation, physically loaded with Toy, and finally camouflaged with CMs. The created ADCT@CM NGs with an average size of 113.0 nm are stable under physiological conditions and can efficiently release Cu(II) and Toy under tumor microenvironment with a high level of glutathione. Meanwhile, the developed NGs are able to enhance cancer cell oxidative stress and endoplasmic reticulum stress by synergizing the effects of chemodynamic therapy mediated by Cu-based Fenton-like reaction and Toy-mediated chemotherapy, thereby triggering significant immunogenic cell death (ICD). In a melanoma mouse model, the NGs show potent immune activation effects to reinforce tumor therapeutic efficacy through ICD induction and immune modulation including high levels of immune cytokine secretion, increased tumor infiltration of CD8+ cytotoxic T cells, and reduced tumor infiltration of regulatory T cells. With the CM coating and Cu(II) loading, the developed NG platform demonstrates homologous tumor targeting and T1-weighted MR imaging, hence providing a general biomimetic NG platform for ICD-facilitated tumor theranostic nanoplatform. STATEMENT OF SIGNIFICANCE: Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment (TME) and enhance theranostic outcomes remains a challenge. Here, a cancer cell membrane (CM)-camouflaged nanoplatform based on aminated poly(N-vinylcaprolactam) nanogels (NGs) co-loaded with Cu(II) and toyocamycin (Toy) was prepared for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. The tumor targeting specificity and efficient TME-triggered release of Cu(II) and Toy could enhance tumor cell oxidative stress and endoplasmic reticulum stress by synergizing the effects of chemodynamic therapy mediated by Cu-based Fenton-like reaction and Toy-mediated chemotherapy, respectively, thereby leading to significant immunogenic cell death (ICD) and immune response. With the CM coating and Cu(II) loading, the developed NG platform also demonstrates good T1-weighted tumor MR imaging performance. Hence, this study provides a general biomimetic NG platform for ICD-facilitated tumor theranostics.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Liang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Wang Y, Wang Q, Zhong Q, Xu Y, Zheng C, Li M, Tao Y, Ju E. Immunomodulatory microneedle patch for enhanced Ferroptosis and immunogenic cell death in postoperative tumor therapy. J Control Release 2024; 376:766-776. [PMID: 39437964 DOI: 10.1016/j.jconrel.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Microneedle technologies have emerged as a promising transdermal drug delivery platform for postoperative tumor therapy. Despite their potential, enhancing intracellular drug delivery to tumor cells and boosting the therapeutic efficiency of microneedles pose significant challenges. Herein, we develop a nanomedicine-loaded microneedle to enhance the induction of ferroptosis and immunogenic cell death for postoperative tumor therapy. This advancement is achieved by pre-formulating small molecule drugs with transition metal and protein templates into nanomedicine. Upon insertion into the tumors, the microneedle rapidly dissolves, facilitating the release and subsequent cellular uptake of the nanomedicine by tumor cells. Notably, the nanomedicine can release Mn ions and ferroptosis-inducer sulfasalazine (SAS) under acidic conditions. Furthermore, the released Mn ions can produce reactive oxygen species, which decrease the levels of glutathione (GSH) and glutathione peroxidase 4 (GPX4) with increased lipid peroxidation and enhanced induction of ferroptosis. Besides, the treatment stimulates immunogenic cell death through the cell surface exposure of calreticulin (CRT) and release of high-mobility group box 1 (HMGB1), which further stimulates dendric cell maturation, T cell infiltration, and macrophage polarization towards the M1 phenotype. Consequently, this strategy significantly inhibits postoperative tumor regrowth and extends overall survival. Our study indicates the potential of the combination of nanomedicine and microneedle to improve postoperative therapeutic efficiency.
Collapse
Affiliation(s)
- Yuqin Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Quanmin Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
12
|
Hsu FT, Chen YT, Chin YC, Chang LC, Chiang SC, Yang LX, Liu HS, Yueh PF, Tu HL, He RY, Jeng LB, Shyu WC, Hu SH, Chiang IT, Liu YC, Chiu YC, Wu GC, Yu CC, Su WP, Huang CC. Harnessing the Power of Sugar-Based Nanoparticles: A Drug-Free Approach to Enhance Immune Checkpoint Inhibition against Glioblastoma and Pancreatic Cancer. ACS NANO 2024; 18:28764-28781. [PMID: 39383310 DOI: 10.1021/acsnano.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Cancer cells have a high demand for sugars and express diverse carbohydrate receptors, offering opportunities to improve delivery with multivalent glycopolymer materials. However, effectively delivering glycopolymers to tumors while inhibiting cancer cell activity, altering cellular metabolism, and reversing tumor-associated macrophage (TAM) polarization to overcome immunosuppression remains a challenging area of research due to the lack of reagents capable of simultaneously achieving these objectives. Here, the glycopolymer-like condensed nanoparticle (∼60 nm) was developed by a one-pot carbonization reaction with a single precursor, promoting multivalent interactions for the galactose-related receptors of the M2 macrophage (TAM) and thereby regulating the STAT3/NF-κB pathways. The subsequently induced M2-to-M1 transition was increased with the condensed level of glycopolymer-like nanoparticles. We found that the activation of the glycopolymer-like condensed galactose (CG) nanoparticles influenced monocarboxylate transporter 4 (MCT-4) function, which caused inhibited lactate efflux (similar to inhibitor effects) from cancer cells. Upon internalization via galactose-related endocytosis, CG NPs induced cellular reactive oxygen species (ROS), leading to dual functionalities of cancer cell death and M2-to-M1 macrophage polarization, thereby reducing the tumor's acidic microenvironment and immunosuppression. Blocking the nanoparticle-MCT-4 interaction with antibodies reduced their toxicity in glioblastoma (GBM) and affected macrophage polarization. In orthotopic GBM and pancreatic cancer models, the nanoparticles remodeled the tumor microenvironment from "cold" to "hot", enhancing the efficacy of anti-PD-L1/anti-PD-1 therapy by promoting macrophage polarization and activating cytotoxic T lymphocytes (CTLs) and dendritic cells (DCs). These findings suggest that glycopolymer-like nanoparticles hold promise as a galactose-elicited adjuvant for precise immunotherapy, particularly in targeting hard-to-treat cancers.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Ying-Tzu Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Li-Chan Chang
- Institute of Clinical Medicine College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Shu-Chin Chiang
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Po-Fu Yueh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- School of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Woei-Cheang Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, R.O.C
- Department of Occupational Therapy, Asia University, Taichung 413, Taiwan, R.O.C
- Translational Medicine Research Center and Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
- Medical Administrative Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Yangming Branch, Taipei City Hospital, Taipei 111, Taiwan, R.O.C
- Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
- Department of Exercise and Health Sciences, University of Taipei, Taipei 111, Taiwan, R.O.C
| | - Guan-Chun Wu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Ching-Ching Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Wen-Pin Su
- Institute of Clinical Medicine College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
13
|
Huang H, Fu J, Peng H, He Y, Chang A, Zhang H, Hao Y, Xu X, Li S, Zhao J, Ni J, Dong X. Co-delivery of polyphyllin II and IR780 PLGA nanoparticles induced pyroptosis combined with photothermal to enhance hepatocellular carcinoma immunotherapy. J Nanobiotechnology 2024; 22:647. [PMID: 39434141 PMCID: PMC11495104 DOI: 10.1186/s12951-024-02887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
The clinical efficacy of immunotherapy for hepatocellular carcinoma (HCC) is significantly limited by the low immunogenicity of the tumor. Recent studies have revealed that both pyroptosis and photothermal therapy can effectively induce tumor immunogenic cell death (ICD) in liver cancer cells. Polyphyllin II (PPII), the major active component of Rhizoma Paridis, has been demonstrated for the first time to induce pyroptosis in tumor cells, while IR780 is activated by 808 nm laser to transform light energy into heat energy, effectively eliminating tumor cells. However, both PPII and IR780 are afflicted with challenges such as low solubility and poor targeting, significantly limiting their utilization. To address these problems, the pyroptosis inducer PPII and photosensitizer IR780 were co-loaded in PLGA nanoparticles by precipitation method, and the aptamer AS1411 was modified on the surface of nanoparticles to construct the targeting nanoparticles (Apt/PPII/IR780-NPs). The nanoparticles exhibit a pH/NIR dual-response intelligent release feature, which realizes the targeted and controlled release of drugs in tumor site. Furthermore, it can rapidly release PPII to induce cell pyroptosis under laser irradiation, combining with IR780-based photothermal therapy exert a significant synergistic anti-tumor effect in vitro and in vivo. This process not only promotes maturation of DCs and activates effector T cells, thereby initiating adaptive immunity, but also generates enduring and effective immune memory. In addition, Apt/PPII/IR780-NPs significantly improved the Anti-PD-1 efficacy. In summary, chemo-photothermal therapy based on Apt/PPII/IR780-NPs can significantly enhance tumor ICD, which provides a promising new strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Huating Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Fu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hulinyue Peng
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuanyuan He
- Department of Radiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Aqian Chang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huizhong Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Hao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130015, China
| | - Xiaohan Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shiman Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingxia Zhao
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jian Ni
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaoxv Dong
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
14
|
Guo Y, Li Y, Zhang M, Ma R, Wang Y, Weng X, Zhang J, Zhang Z, Chen X, Yang W. Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy. Nat Commun 2024; 15:8586. [PMID: 39362879 PMCID: PMC11450208 DOI: 10.1038/s41467-024-53010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
The limited efficacy of cancer immunotherapy occurs due to the lack of spatiotemporal orchestration of adaptive immune response stimulation and immunosuppressive tumor microenvironment modulation. Herein, we report a nanoplatform fabricated using a pH-sensitive triblock copolymer synthesized by reversible addition-fragmentation chain transfer polymerization enabling in situ tumor vaccination and tumor-associated macrophages (TAMs) polarization. The nanocarrier itself can induce melanoma immunogenic cell death (ICD) via tertiary amines and thioethers concentrating on mitochondria to regulate metabolism in triggering endoplasmic reticulum stress and upregulating gasdermin D for pyroptosis as well as some features of ferroptosis and apoptosis. After the addition of ligand cyclic arginine-glycine-aspartic acid (cRGD) and mannose, the mixed nanocarrier with immune adjuvant resiquimod encapsulation can target B16F10 cells for in situ tumor vaccination and TAMs for M1 phenotype polarization. In vivo studies indicate that the mixed targeting nanoplatform elicits tumor ICD, dendritic cell maturation, TAM polarization, and cytotoxic T lymphocyte infiltration and inhibits melanoma volume growth. In combination with immune checkpoint blockade, the survival time of mice is markedly prolonged. This study provides a strategy for utilizing immunoactive materials in the innate and adaptive immune responses to augment cancer therapy.
Collapse
Affiliation(s)
- Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongjuan Li
- The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinjie Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, Singapore.
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
15
|
Li J, Wu T, Wang W, Gong Y, Lu M, Zhang M, Lu W, Zhou Y, Yang Y. Hybrid nanoparticle-mediated simultaneous ROS scavenging and STING activation improve the antitumor immunity of in situ vaccines. SCIENCE ADVANCES 2024; 10:eadn3002. [PMID: 39292792 PMCID: PMC11409974 DOI: 10.1126/sciadv.adn3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
In situ vaccine (ISV) is a versatile and personalized local immunotherapeutic strategy. However, the compromised viability and function of dendritic cells (DCs) in a tumor microenvironment (TME) largely limit the therapeutic efficacy. We designed a hybrid nanoparticle-based ISV, which accomplished superior cancer immunotherapy via simultaneously scavenging reactive oxygen species (ROS) and activating the stimulator of interferon genes (STING) pathway in DCs. This ISV was constructed by encapsulating a chemodrug, SN38, into diselenide bond-bridged organosilica nanoparticles, followed by coating with a Mn2+-based metal phenolic network. We show that this ISV can activate the STING pathway through Mn2+ and SN38 comediated signaling and simultaneously scavenge preexisting H2O2 in the TME and Mn2+-catalyzed •OH by leveraging the antioxidant property of diselenide and polyphenol. This ISV effectively activated DCs and protected them from oxidative damage, leading to remarkable downstream T cell activation and systemic antitumor immunity. This work highlights a nanoparticle design that manipulates DCs in the TME for improving the ISV.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Tianze Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Weidong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yimin Gong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingzhu Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China
- South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
16
|
Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci 2024; 12:4607-4629. [PMID: 39115141 DOI: 10.1039/d3bm02133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chemodynamic therapy (CDT), as a new type of therapy, has received more and more attention in the field of tumor therapy in recent years. By virtue of the characteristics of weak acidity and excess H2O2 in the tumor microenvironment, CDT uses the Fenton or Fenton-like reactions to catalyze the transformation of H2O2 into strongly oxidizing ˙OH, resulting in increased intracellular oxidative stress for lipid oxidation, protein inactivation, or DNA damage, and finally inducing apoptosis of cancer cells. In particular, CDT has the advantage of tumor specificity. However, the therapeutic efficacy of CDT frequently depends on the catalytic efficiency of the Fenton reaction, which needs the presence of sufficient H2O2 and catalytic metal ions. Relatively low concentrations of H2O2 and the lack of catalytic metal ions usually limit the final therapeutic effect. The combination of CDT with immunotherapy will be an effective means to improve the therapeutic effect. In this review paper, the recent progress related to nanomedicine for the combination of CDT and immunotherapy is summarized. Immunogenic death of tumor cells, immune checkpoint inhibitors, and stimulator of interferon gene (STING) activation as the main immunotherapy strategies to combine with CDT are discussed. Finally, the challenges and prospects for the clinical translation and future development direction are discussed.
Collapse
Affiliation(s)
- Waqas Ahmad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wasim Sajjad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
17
|
Tian Y, He X, Yuan Y, Zhang S, Wang C, Dong J, Liu Z, Jing H. TME-Responsive Nanoplatform with Glutathione Depletion for Enhanced Tumor-Specific Mild Photothermal/Gene/Ferroptosis Synergistic Therapy. Int J Nanomedicine 2024; 19:9145-9160. [PMID: 39258005 PMCID: PMC11386068 DOI: 10.2147/ijn.s475698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Background Triple negative breast cancer (TNBC) is one of the worst prognosis types of breast cancer that urgently needs effective therapy methods. However, cancer is a complicated disease that usually requires multiple treatment modalities. Methods A tumor microenvironment (TME)-responsive PFC/TRIM37@Fe-TA@HA (abbreviated as PTFTH) nanoplatform was constructed by coating Fe3+ and tannic acid (TA) on the surface of TRIM37-siRNA loaded phase-transition perfluorocarbon (PFC) nanodroplets and further modifying them with hyaluronic acid (HA) to achieve tumor-specific mild photothermal/gene/ferroptosis synergistic therapy (MPTT/GT/ Ferroptosis) in vitro. Once internalized into tumor cells through CD44 receptor-mediated active targeting, the HA shell of PTFTH would be preliminarily disassembled by hyaluronidase (HAase) to expose the Fe-TA metal-phenolic networks (MPNs), which would further degrade in response to an acidic lysosomal environment, leading to HAase/pH dual-responsive release of Fe3+ and PFC/TRIM37. Results PTFTH showed good biocompatibility in vitro. On the one hand, the released Fe3+ could deplete the overexpressed glutathione (GSH) through redox reactions and produce Fe2+, which in turn converts endogenous H2O2 into highly cytotoxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT). On the other hand, the local hyperthermia generated by PTFTH under 808 nm laser irradiation could not only improve CDT efficacy through accelerating the Fe2+-mediated Fenton reaction, but also enhance TRIM37-siRNA delivery for gene therapy (GT). The consumption of GSH and accumulation of •OH synergistically augmented intracellular oxidative stress, resulting in substantial tumor cell ferroptosis. Moreover, PTFTH possessed outstanding contrast enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) ability. Conclusion This PTFTH based multiple-mode therapeutic strategy has successfully achieved a synergistic anticancer effect in vitro and has the potential to be translated into clinical application for tumor therapy in future.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Shijie Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Jialin Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| |
Collapse
|
18
|
Girma WM, Zhu Z, Guo Y, Xiao X, Wang Z, Mekuria SL, Hameed MMA, El-Newehy M, Guo R, Shen M, Shi X. Synthesis and Characterization of Copper-Crosslinked Carbon Dot Nanoassemblies for Efficient Macrophage Manipulation. Macromol Rapid Commun 2024:e2400511. [PMID: 39154350 DOI: 10.1002/marc.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Nanomedicines loaded in macrophages (MAs) can actively target tumors without dominantly relying on the enhanced permeability and retention (EPR) effect, making them effective for treating EPR-deficient malignancies. Herein, copper-crosslinked carbon dot clusters (CDCs) are synthesized with both photodynamic and chemodynamic functions to manipulate MAs, aiming to direct the MA-mediated tumor targeting. First, green fluorescent CDs (g-CDs) are prepared by a one-step hydrothermal method. Subsequently, the g-CDs are complexed with divalent copper ions to form copper-crosslinked CDCs (g-CDCs/Cu), which are incubated with MAs for their manipulation. Experimental results revealed that the prepared g-CDCs/Cu displayed good aqueous dispersibility and fluorescent emission properties. The nanoassemblies can be activated to deplete the overexpressed glutathione (GSH) and generate reactive oxygen species (ROS) in the presence of laser irradiation through the combined Cu-mediated chemodynamic therapy and CD-mediated photodynamic therapy. Furthermore, the ROS produced in MAs enabled polarization of MAs to antitumor M1 phenotype, suggesting the future potential use to reverse the immunosuppressive tumor microenvironment. These results obtained from the current study suggest a significant potential to develop g-CDCs/Cu for GSH depletion, ROS generation, and MA M1 polarization as a theransotic agent to tackle cancer.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Department of Chemistry, College of Natural Science, Wollo University, Dessie, 1000, Ethiopia
| | - Zewen Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xianghao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
19
|
Wang H, Zhang Z, Wang X, Jin X, Gao X, Yu L, Han Q, Wang Z, Song J. Copper Single-Atom-Based Metal-Organic Framework for Ultrasound-Enhanced Nanocatalytic Therapy. NANO LETTERS 2024; 24:9700-9710. [PMID: 39052427 DOI: 10.1021/acs.nanolett.4c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Chemodynamic therapy (CDT) is an emerging therapeutic modality triggered by endogenous substances in the tumor microenvironment (TME) to generate reactive oxygen species. However, the mild acid pH, low H2O2 concentration, and overexpressed glutathione can suppress the CDT efficiency. Herein, ultrasound (US)-triggered Cu2+-based single-atom nanoenzymes (FA-NH2-UiO-66-Cu, FNUC) are constructed with the performance of target and glutathione depletion. In the TME, the single-atom Cu sites of FNUC consume glutathione and the FNUC:Cu+ generates •OH via peroxidase-like activity. The US-activated FNUC exhibits a fast •OH generation rate, a low Michaelis constant, and a large •OH concentration, indicating the cavitation effect of US promotes the •OH generation. Meanwhile, the tumor target of FNUC is confirmed by NIR-II fluorescence imaging, in which it is modified with IR-1061. Combined with the antitumor performance of FNUC in vitro and in vivo, the novel Cu-based SAzymes can achieve efficient and precise cancer treatment.
Collapse
Affiliation(s)
- He Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Zhiping Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xiao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xinxin Jin
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Lei Yu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Quanxiang Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Zhao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
20
|
Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024; 57:e13644. [PMID: 38594879 PMCID: PMC11294428 DOI: 10.1111/cpr.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.
Collapse
Affiliation(s)
- Li Yu
- Health Science CenterYangtze UniversityJingzhouHubeiChina
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Ke Huang
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| | - Yixiang Liao
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Lingzhi Wang
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
21
|
Hou W, Mao W, Sun J, Liu Z, Shen W, Lee HK, Tang S. Targeting Hydrogel for Intelligent Recognition and Spatiotemporal Control in Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404172. [PMID: 38874481 PMCID: PMC11321622 DOI: 10.1002/advs.202404172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Smart drug platforms based on spatiotemporally controlled release and integration of tumor imaging are expected to overcome the inefficiency and uncertainty of traditional theranostic modes. In this study, a composite consisting of a thermosensitive hydrogel (polyvinyl alcohol-carboxylic acid hydrogel (PCF)) and a multifunctional nanoparticle (Fe3O4@Au/Mn(Zn)-4-carboxyphenyl porphyrin/polydopamine (FAMxP)) is developed to combine tumor immunogenic cell death (ICD)/immune checkpoint blockade (ICB) therapy under the guidance of magnetic resonance imaging (MRI) and fluorescence imaging (FI). It can not only further recognize the target cells through the folate receptor of tumor cells, but also produce thermal dissolution after exposure to near-infrared light to slowly release FAMxP in situ, thereby prolonging the treatment time and avoiding tumor recurrence. As FAMxP entered the tumor cells, it released FAMx in a pH-dependent manner. Chemodynamic, photothermal and photodynamic therapy can cause significant ICD in cancer cells. ICB can thus be further enhanced by injecting anti-programmed cell death ligand 1, improving the effectiveness of tumor treatment. The developed PCF-FAMxP composite hydrogel may represent an updated drug design approach with simple compositions for cooperative MRI/FI-guided targeted therapeutic pathways for tumors.
Collapse
Affiliation(s)
- Weilin Hou
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| | - Wei Mao
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
- Central‐Southern Safety and Environmental Technology Institute Co. Ltd.Wuhan430071P. R. China
| | - Jun Sun
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
| | - Zhiqiang Liu
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| | - Wei Shen
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Sheng Tang
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| |
Collapse
|
22
|
Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond) 2024; 19:1821-1840. [PMID: 39011582 PMCID: PMC11418288 DOI: 10.1080/17435889.2024.2374230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
This review highlights the significant role of nanodrug delivery systems (NDDS) in enhancing the efficacy of tumor immunotherapy. Focusing on the integration of NDDS with immune regulation strategies, it explores their transformative impacts on the tumor microenvironment and immune response dynamics. Key advancements include the optimization of drug delivery through NDDS, targeting mechanisms like immune checkpoint blockade and modulating the immunosuppressive tumor environment. Despite the progress, challenges such as limited clinical efficacy and complex manufacturing processes persist. The review emphasizes the need for further research to optimize these systems, potentially revolutionizing cancer treatment by improving delivery efficiency, reducing toxicity and overcoming immune resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Binbin Hu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| |
Collapse
|
23
|
Huang H, Guo H, Liu J, Ni C, Xia L, Cao X, Xia J, Shi X, Guo R. Dendrimer/metal-phenolic nanocomplexes encapsulating CuO 2 for targeted magnetic resonance imaging and enhanced ferroptosis/cuproptosis/chemodynamic therapy by regulating the tumor microenvironment. Acta Biomater 2024; 183:252-263. [PMID: 38801869 DOI: 10.1016/j.actbio.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The combination of ferroptosis, cuproptosis, and chemodynamic therapy (CDT) would be a potential strategy for tumor diagnosis and enhanced treatment. However, the therapeutic effect was severely limited by the lack of specific delivery of catalytic ions and the low Fenton reaction efficiency in tumor microenvironment (TME) with excess glutathione, limited acidity and insufficient endogenous hydrogen peroxide. In this work, p-carboxybenzenesulfonamide (BS), a carbonic anhydrase IX (CA IX) inhibitor, was modified on the surface of generation-5 poly(amidoamine) dendrimer to load copper peroxide nanoparticles, which were complexed with iron (Fe)-tannic acid (TF) networks for targeted magnetic resonance (MR) imaging and enhanced ferroptosis/cuproptosis/CDT by regulating TME. The formed CuO2@G5-BS/TF nanocomplexes with an average size of 39.4 nm could be specifically accumulated at tumor site and effectively internalized by metastatic 4T1 cells via the specific interaction between BS and CA IX over-expressed on tumor cells. Meanwhile, the inhibition of CA IX activity could not only decrease the intracellular pH to accelerate Fe3+/Cu2+ release, H2O2 self-supply and Fenton reaction, but also suppress tumor metastasis by alleviating the extracellular acidity in TME. Moreover, the reduction of Fe3+/Cu2+ by intracellular glutathione (GSH) could further amplify ROS generation and enhance CDT efficacy, and the GSH depletion could in turn inhibit GPX-4 mediated antioxidant reaction to induce ferroptosis, resulting in effective therapeutic efficacy. In vivo experimental results demonstrated that CuO2@G5-BS/TF could provide better tumor MR imaging, effectively inhibit the growth and metastasis of 4T1 breast tumors, and be metabolized without significant systemic toxicity. Thus, CuO2@G5-BS/TF nanocomplexes provided a new approach for targeted MR imaging and enhanced ferroptosis/cuproptosis/CDT of triple-negative breast cancer. STATEMENT OF SIGNIFICANCE: Taking the advantage of dendrimer and metal-phenolic system, stable CuO2@G5-BS/TF nanocomplexes with an average size of 39.4 nm were synthesized to efficiently load Fe3+ and CuO2 nanoparticles for TNBC treatment and MR imaging. CuO2@G5-BS/TF nanocomplexes could target tumor cells overexpressing CAIX via the specific binding with BS, and the inhibition of CAIX activity could not only decrease the intracellular pH to accelerate Fe3+/Cu2+ release, H2O2 self-supply and Fenton reaction, but also suppress tumor metastasis by alleviating the extracellular acidity. The reduction of Fe3+/Cu2+ by intracellular GSH could further amplify ·OH generation, and the GSH depletion could in turn inhibit GPX-4 mediated antioxidant reaction to induce ferroptosis, resulting in effective therapeutic efficacy by enhanced ferroptosis/cuproptosis/CDT via tumor microenvironment regulation.
Collapse
Affiliation(s)
- Haoyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, PR China
| | - Junjie Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Li Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China.
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
24
|
Xia L, Ni C, Sun H, Guo H, Huang H, Cao X, Xia J, Shi X, Guo R. Dual drug-loaded metal-phenolic networks for targeted magnetic resonance imaging and synergistic chemo-chemodynamic therapy of breast cancer. J Mater Chem B 2024; 12:6480-6491. [PMID: 38867551 DOI: 10.1039/d4tb00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The development of nanomedicines with simplified compositions and synergistic theranostic functionalities remains a great challenge. Herein, we develop a simple method to integrate both atovaquone (ATO, a mitochondrial inhibitor) and cisplatin within tannic acid (TA)-iron (Fe) networks coated with hyaluronic acid (HA) for targeted magnetic resonance (MR) imaging-guided chemo-chemodynamic synergistic therapy. The formed TFP@ATO-HA displayed good colloidal stability with a mean size of 95.5 nm, which could accumulate at tumor sites after circulation and be specifically taken up by metastatic 4T1 cells overexpressing CD44 receptors. In the tumor microenvironment, TFP@ATO-HA could release ATO/cisplatin and Fe3+ in a pH-responsive manner, deplete glutathione, and generate reactive oxygen species with endogenous H2O2 for chemodynamic therapy (CDT). Additionally, ATO could enhance chemotherapeutic efficacy by inhibiting mitochondrial respiration, relieving hypoxia, and amplifying the CDT effect by decreasing intracellular pH and elevating Fenton reaction efficiency. In vivo experiments demonstrated that TFP@ATO-HA could effectively inhibit tumor growth and suppress lung metastases without obvious systemic toxicity. Furthermore, TFP@ATO-HA exhibited a r1 relaxivity of 2.6 mM-1 s-1 and targeted MR imaging of 4T1 tumors. Dual drug-loaded metal-phenolic networks can be easily prepared and act as effective theranostic nanoplatforms for targeted MR imaging and synergistic chemo-chemodynamic therapy.
Collapse
Affiliation(s)
- Li Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Honghua Guo
- Department of Radiology, Songjiang Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, P. R. China
| | - Haoyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jindong Xia
- Department of Radiology, Songjiang Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
25
|
Guo S, Li Z, Zhou R, Feng J, Huang L, Ren B, Zhu J, Huang Y, Wu G, Cai H, Zhang Q, Ke Y, Guan T, Chen P, Xu Y, Yan C, Ou C, Shen Z. MRI-Guided Tumor Therapy Based on Synergy of Ferroptosis, Immunosuppression Reversal and Disulfidptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309842. [PMID: 38431935 DOI: 10.1002/smll.202309842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Ruilong Zhou
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Bin Ren
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Ya Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Guochao Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Haobin Cai
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Qianqian Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yushen Ke
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Tianwang Guan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Peier Chen
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
26
|
Wang K, Jiang M, Li T, Liu Y, Zong Q, Xu Q, Ullah I, Chen Y, Xue W, Yuan Y. A Synergistic Chemoimmunotherapy System Leveraging PD-L1 Blocking and Bioorthogonal Prodrug Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402322. [PMID: 38718226 DOI: 10.1002/adma.202402322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/05/2024] [Indexed: 05/15/2024]
Abstract
Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. An antitumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy is proposed. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Furthermore, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the antitumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Tao Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ye Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qingyu Zong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qing Xu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Yahui Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
28
|
Su Y, Liu B, Wang B, Chan L, Xiong C, Lu L, Zhang X, Zhan M, He W. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310342. [PMID: 38221682 DOI: 10.1002/smll.202310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.
Collapse
Affiliation(s)
- Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Binghan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Chan Xiong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
29
|
Wang M, Yu A, Han W, Chen J, Lu C, Tu X. Self-assembled metal-phenolic nanocomplexes comprised of green tea catechin for tumor-specific ferroptosis. Mater Today Bio 2024; 26:101040. [PMID: 38590984 PMCID: PMC10999486 DOI: 10.1016/j.mtbio.2024.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Ferroptosis, a newly discovered form of regulated cell death, has garnered significant attention in the field of tumor therapy. However, the presence of overexpressed glutathione (GSH) and insufficient levels of H2O2 in the tumor microenvironment (TME) hinders the occurrence of ferroptosis. In response to these challenges, here we have constructed the self-assembled nanocomplexes (FeE NPs) utilizing epigallocatechin-3-gallate (EGCG) from green tea polyphenols and metal ions (Fe3+) as components. After grafting PEG, the nanocomplexes (FeE@PEG NPs) exhibit good biocompatibility and synergistically enhanced tumor-inhibitory properties. FeE@PEG NPs can be disassembled by H2O2 in the TME, leading to the rapid release of Fe3+ and EGCG. The released Fe3+ produces large amounts of toxic •OH by the Fenton reactions while having minimal impact on normal cells. The generated •OH effectively induces lipid peroxidation, which leads to ferroptosis in tumor cells. Meanwhile, the released EGCG can autoxidize to produce H2O2, which further promotes the production of •OH radicals and increases lipid peroxide levels. Moreover, EGCG also depletes the high levels of intracellular GSH, leading to an intracellular redox imbalance and triggering ferroptosis. This study provides new insights into advancing anticancer ferroptosis through rational material design, offering promising avenues for future research.
Collapse
Affiliation(s)
- Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Aoling Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wen Han
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jingyi Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgery Research Institute of Fujian Province, Fuzhou, Fujian, 350001, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Xiankun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgery Research Institute of Fujian Province, Fuzhou, Fujian, 350001, China
| |
Collapse
|
30
|
Luo Z, Wan Z, Ren P, Zhang B, Huang Y, West RE, Huang H, Chen Y, Nolin TD, Xie W, Wang J, Li S, Sun J. In Situ Formation of Fibronectin-Enriched Protein Corona on Epigenetic Nanocarrier for Enhanced Synthetic Lethal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307940. [PMID: 38482976 PMCID: PMC11109615 DOI: 10.1002/advs.202307940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Indexed: 05/23/2024]
Abstract
PARP inhibitors (PARPi)-based synthetic lethal therapy demonstrates limited efficacy for most cancer types that are homologous recombination (HR) proficient. To potentiate the PARPi application, a nanocarrier based on 5-azacytidine (AZA)-conjugated polymer (PAZA) for the codelivery of AZA and a PARP inhibitor, BMN673 (BMN) is developed. AZA conjugation significantly decreased the nanoparticle (NP) size and increased BMN loading. Molecular dynamics simulation and experimental validations shed mechanistic insights into the self-assembly of effective NPs. The small PAZA NPs demonstrated higher efficiency of tumor targeting and penetration than larger NPs, which is mediated by a new mechanism of active targeting that involves the recruitment of fibronectin from serum proteins following systemic administration of PAZA NPs. Furthermore, it is found that PAZA carrier sensitize the HR-proficient nonsmall cell lung cancer (NSCLC) to BMN, a combination therapy that is more effective at a lower AZA/BMN dosage. To investigate the underlying mechanism, the tumor immune microenvironment and various gene expressions by RNAseq are explored. Moreover, the BMN/PAZA combination increased the immunogenicity and synergized with PD-1 antibody in improving the overall therapeutic effect in an orthotopic model of lung cancer (LLC).
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Zhuoya Wan
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Pengfei Ren
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Bei Zhang
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Yixian Huang
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Raymond E. West
- Department of Pharmacy and TherapeuticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Haozhe Huang
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Yuang Chen
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Thomas D. Nolin
- Department of Pharmacy and TherapeuticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Wen Xie
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening CenterUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Song Li
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Jingjing Sun
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68106USA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68106USA
| |
Collapse
|
31
|
Zhan M, Sun H, Wang Z, Li G, Yang R, Mignani S, Majoral JP, Shen M, Shi X. Nanoparticle-Mediated Multiple Modulation of Bone Microenvironment To Tackle Osteoarthritis. ACS NANO 2024; 18:10625-10641. [PMID: 38563322 DOI: 10.1021/acsnano.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
32
|
Zhou J, Hu Y, Cao Y, Ding S, Zeng L, Zhang Y, Cao M, Duan G, Zhang X, Bian XW, Tian G. A Lactate-Depleting metal organic framework-based nanocatalyst reinforces intratumoral T cell response to boost anti-PD1 immunotherapy. J Colloid Interface Sci 2024; 660:869-884. [PMID: 38277843 DOI: 10.1016/j.jcis.2024.01.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Infiltration and activation of intratumoral T lymphocytes are critical for immune checkpoint blockade (ICB) therapy. Unfortunately, the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME) induced by tumor metabolic reprogramming cooperatively hinder the ICB efficacy. Herein, we engineered a lactate-depleting MOF-based catalytic nanoplatform (LOX@ZIF-8@MPN), encapsulating lactate oxidase (LOX) within zeolitic imidazolate framework-8 (ZIF-8) coupled with a coating of metal polyphenol network (MPN) to reinforce T cell response based on a "two birds with one stone" strategy. LOX could catalyze the degradation of the immunosuppressive lactate to promote vascular normalization, facilitating T cell infiltration. On the other hand, hydrogen peroxide (H2O2) produced during lactate depletion can be transformed into anti-tumor hydroxyl radical (•OH) by the autocatalytic MPN-based Fenton nanosystem to trigger immunogenic cell death (ICD), which largely improved the tumor immunogenicity. The combination of ICD and vascular normalization presents a better synergistic immunopotentiation with anti-PD1, inducing robust anti-tumor immunity in primary tumors and recurrent malignancies. Collectively, our results demonstrate that the concurrent depletion of lactate to reverse the immunosuppressive TME and utilization of the by-product from lactate degradation via cascade catalysis promotes T cell response and thus improves the effectiveness of ICB therapy.
Collapse
Affiliation(s)
- Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China.
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Yu Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China.
| |
Collapse
|
33
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
34
|
Shou Z, Bai Z, Huo K, Zheng S, Shen Y, Zhou H, Huang X, Meng H, Xu C, Wu S, Li N, Chen C. Immobilizing c(RGDfc) on the surface of metal-phenolic networks by thiol-click reaction for accelerating osteointegration of implant. Mater Today Bio 2024; 25:101017. [PMID: 38495914 PMCID: PMC10940948 DOI: 10.1016/j.mtbio.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.
Collapse
Affiliation(s)
- Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Kaiyuan Huo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd, Wenzhou, 325000, People's Republic of China
| | - Yizhe Shen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Han Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xiaojing Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Hongming Meng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chenwei Xu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shaohao Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, Zhejiang, People's Republic of China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
35
|
Yu X, Li X, Chen Q, Wang S, Xu R, He Y, Qin X, Zhang J, Yang W, Shi L, Lu L, Zheng Y, Pang Z, Peng S. High Intensity Focused Ultrasound-Driven Nanomotor for Effective Ferroptosis-Immunotherapy of TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305546. [PMID: 38342612 PMCID: PMC11022700 DOI: 10.1002/advs.202305546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
The heterogeneity of triple-negative breast cancers (TNBC) remains challenging for various treatments. Ferroptosis, a recently identified form of cell death resulting from the unrestrained peroxidation of phospholipids, represents a potential vulnerability in TNBC. In this study, a high intensity focused ultrasound (HIFU)-driven nanomotor is developed for effective therapy of TNBC through induction of ferroptosis. Through bioinformatics analysis of typical ferroptosis-associated genes in the FUSCCTNBC dataset, gambogic acid is identified as a promising ferroptosis drug and loaded it into the nanomotor. It is found that the rapid motion of nanomotors propelled by HIFU significantly enhanced tumor accumulation and penetration. More importantly, HIFU not only actuated nanomotors to trigger effective ferroptosis of TNBC cells, but also drove nanomotors to activate ferroptosis-mediated antitumor immunity in primary and metastatic TNBC models, resulting in effective tumor regression and prevention of metastases. Overall, HIFU-driven nanomotors show great potential for ferroptosis-immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xiangrong Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Xuejing Li
- Key Laboratory of Smart Drug Delivery, School of PharmacyFudan UniversityShanghai201203P.R. China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome InstituteFudan University2005 Songhu RoadShanghai200438P.R. China
| | - Siyu Wang
- Key Laboratory of Smart Drug Delivery, School of PharmacyFudan UniversityShanghai201203P.R. China
| | - Ruizhe Xu
- Key Laboratory of Smart Drug Delivery, School of PharmacyFudan UniversityShanghai201203P.R. China
| | - Ying He
- Key Laboratory of Smart Drug Delivery, School of PharmacyFudan UniversityShanghai201203P.R. China
| | - Xifeng Qin
- Key Laboratory of Smart Drug Delivery, School of PharmacyFudan UniversityShanghai201203P.R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical NeurobiologyFudan University12 Wulumuqi Middle RoadShanghai200040China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome InstituteFudan University2005 Songhu RoadShanghai200438P.R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome InstituteFudan University2005 Songhu RoadShanghai200438P.R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of PharmacyFudan UniversityShanghai201203P.R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| |
Collapse
|
36
|
Liu J, Yu X, Braucht A, Smith S, Wang C. N-Cadherin Targeted Melanin Nanoparticles Reverse the Endothelial-Mesenchymal Transition in Vascular Endothelial Cells to Potentially Slow the Progression of Atherosclerosis and Cancer. ACS NANO 2024; 18:8229-8247. [PMID: 38427686 DOI: 10.1021/acsnano.3c12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Endothelial-mesenchymal transition (EndoMT) of vascular endothelial cells has recently been considered as a key player in the early progression of a variety of vascular and nonvascular diseases, including atherosclerosis, cancer, and organ fibrosis. However, current strategies attempting to identify pharmacological inhibitors to block the regulatory pathways of EndoMT suffer from poor selectivity, unwanted side effects, and a heterogeneous response from endothelial cells with different origins. Furthermore, EndoMT inhibitors focus on preventing EndoMT, leaving the endothelial cells that have already undergone EndoMT unresolved. Here, we report the design of a simple but powerful nanoparticle system (i.e., N-cadherin targeted melanin nanoparticles) to convert cytokine-activated, mesenchymal-like endothelial cells back to their original endothelial phenotype. We term this process "Reversed EndoMT" (R-EndoMT). R-EndoMT allows the impaired endothelial barriers to recover their quiescence and intactness, with significantly reduced leukocyte and cancer cell adhesion and transmigration, which could potentially stop atheromatous plaque formation and cancer metastasis in the early stages. R-EndoMT is achieved on different endothelial cell types originating from arteries, veins, and capillaries, independent of activating cytokines. We reveal that N-cadherin targeted melanin nanoparticles reverse EndoMT by downregulating an N-cadherin dependent RhoA activation pathway. Overall, this approach offers a different prospect to treat multiple EndoMT-associated diseases by designing nanoparticles to reverse the phenotypical transition of endothelial cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Xiao Yu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Annaliese Braucht
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
37
|
Wang Q, He J, Qi Y, Ye Y, Ye J, Zhou M. Ultrasound-enhanced nano catalyst with ferroptosis-apoptosis combined anticancer strategy for metastatic uveal melanoma. Biomaterials 2024; 305:122458. [PMID: 38211370 DOI: 10.1016/j.biomaterials.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Uveal melanoma is the most common primary ocular tumor owing to its highly invasive and metastatic characteristics. Currently, standard clinical treatment has an unsatisfied curative effect due to the lack of an effective approach to inhibit the tumor metastasis. Therefore, it is necessary to develop a new strategy that can both restraint local tumors and suppress the ocular tumor metastasis. Herein, we developed ultrasound-responsive nanoparticles (FeP NPs) that can both hinder the growth of in situ ocular tumor and prevent the tumor metastasis through the ferroptosis-apoptosis combined-anticancer strategy. The FeP NPs were assembling by stimulating gallic acid-Fe (III) and paclitaxel, then could be internalized into tumor cells under the cooperative effect of ultrasound, which further activates the intracellular Fenton reaction and generates high reactive oxygen species levels, ultimately leading to mitochondrial damage, lipid per-oxidation, and apoptosis. The FeP NPs can efficiently inhibit the tumor growth in an orthotopic uveal melanoma model. More importantly, the level of the promoting-metastatic factor nerve growth factor receptor (NGFR) secreted by cancer cells is significantly reduced, further limits cancer metastasis to the cervical lymph node and finally inhibits lung metastasis of uveal melanoma. We believe that these designed ultrasound-enhanced nanoparticles possess potential clinical application for preventing the regeneration and metastasis of uveal melanoma.
Collapse
Affiliation(s)
- Qingya Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuchen Qi
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Yang Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China; Research Center for Life Science and Human Health Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
38
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
39
|
Hou M, Liu M, Yu H, Kou Y, Jia J, Zhou Q, Zhang F, Zhao D, Zhao T, Li X. Spatially Asymmetric Nanoparticles for Boosting Ferroptosis in Tumor Therapy. NANO LETTERS 2024; 24:1284-1293. [PMID: 38230643 DOI: 10.1021/acs.nanolett.3c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Despite its effectiveness in eliminating cancer cells, ferroptosis is hindered by the high natural antioxidant glutathione (GSH) levels in the tumor microenvironment. Herein, we developed a spatially asymmetric nanoparticle, Fe3O4@DMS&PDA@MnO2-SRF, for enhanced ferroptosis. It consists of two subunits: Fe3O4 nanoparticles coated with dendritic mesoporous silica (DMS) and PDA@MnO2 (PDA: polydopamine) loaded with sorafenib (SRF). The spatial isolation of the Fe3O4@DMS and PDA@MnO2-SRF subunits enhances the synergistic effect between the GSH-scavengers and ferroptosis-related components. First, the increased exposure of the Fe3O4 subunit enhances the Fenton reaction, leading to increased production of reactive oxygen species. Furthermore, the PDA@MnO2-SRF subunit effectively depletes GSH, thereby inducing ferroptosis by the inactivation of glutathione-dependent peroxidases 4. Moreover, the SRF blocks Xc- transport in tumor cells, augmenting GSH depletion capabilities. The dual GSH depletion of the Fe3O4@DMS&PDA@MnO2-SRF significantly weakens the antioxidative system, boosting the chemodynamic performance and leading to increased ferroptosis of tumor cells.
Collapse
Affiliation(s)
- Mengmeng Hou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yufang Kou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jia Jia
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaoyu Zhou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
40
|
Wang R, Hu Q, Huang S, Fang Y, Kong X, Kaur P, Zhang J, Wang Y, Liu D, Wu H, Li Y, Ji J, Yang X, Ye L, Zhai G. Zwitterionic Injectable Hydrogel-Combined Chemo- and Immunotherapy Medicated by Monomolecular Micelles to Effectively Prevent the Recurrence of Tumor Post Operation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4071-4088. [PMID: 38194589 DOI: 10.1021/acsami.3c17017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Surgical resection remains the most common method of tumor treatment; however, the high recurrence and metastasis after surgery need to be solved urgently. Herein, we report an injectable zwitterionic hydrogel based on "thiol-ene" click chemistry containing doxorubicin (DOX) and a macrophage membrane (MM)-coated 1-methyl-tryptophan (1-MT)-loaded polyamide-amine dendrimer (P-DOX/1MT) for preventing the postoperative recurrence of tumors. The results indicated that P-DOX/1MT@MM exhibited enhanced recognition and uptake of the dendrimer by tumor cells and induced the immunogenic cell death. In the mice tumor model, the P-DOX/1MT@MM-Gel exhibited high therapeutic efficiency, which could significantly reduce the recurrence of the tumor, including suppressing tumor growth, promoting dendritic cell maturation, and increasing tumor-infiltrating cytotoxic T lymphocytes. The mechanism analysis revealed that the hydrogel greatly reduces the side effects to normal tissues and significantly improves its therapeutic effect. 1MT in the hydrogel is released more rapidly, improving the tumor suppressor microenvironment and increasing the tumor cell sensitivity to DOX. Then, the DOX in the P-DOX/1MT@MM effectively eliminatedo the residual tumor cells and exerted enhanced toxicity. In conclusion, this novel injectable hydrogel that combines chemotherapy and immunotherapy has the property of sequential drug release and is a promising strategy for preventing the postoperative recurrence of tumors.
Collapse
Affiliation(s)
- Rong Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qiaoying Hu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Susu Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuelin Fang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinru Kong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Prabhleen Kaur
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jicheng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongzhu Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hang Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yingying Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaoye Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Ye
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
41
|
Nie W, Jiang A, Ou X, Zhou J, Li Z, Liang C, Huang LL, Wu G, Xie HY. Metal-polyphenol "prison" attenuated bacterial outer membrane vesicle for chemodynamics promoted in situ tumor vaccines. Biomaterials 2024; 304:122396. [PMID: 38043464 DOI: 10.1016/j.biomaterials.2023.122396] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
As natural adjuvants, the bacterial outer membrane vesicles (OMV) hold great potential in cancer vaccines. However, the inherent immunotoxicity of OMV and the rarity of tumor-specific antigens seriously hamper the clinical translation of OMV-based cancer vaccines. Herein, metal-phenolic networks (MPNs) are used to attenuate the toxicity of OMV, meanwhile, provide tumor antigens via the chemodynamic effect induced immunogenic cell death (ICD). Specifically, MPNs are assembled on the OMV surface through the coordination reaction between ferric ions and tannic acid. The iron-based "prison" is locally collapsed in the tumor microenvironment (TME) with both low pH and high ATP features, and thus the systemic toxicity of OMV is significantly attenuated. The released ferric ions in TME promote the ICD of cancer cells through Fenton reaction and then the generation of abundant tumor antigens, which can be used to fabricate in-situ vaccines by converging with OMV. Together with the immunomodulatory effect of OMV, potent tumor repression on a bilateral tumor model is achieved with good biosafety.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zijin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
42
|
Cai J, Xu X, Saw PE. Nanomedicine targeting ferroptosis to overcome anticancer therapeutic resistance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:19-40. [PMID: 37728804 DOI: 10.1007/s11427-022-2340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 09/21/2023]
Abstract
A potential reason for the failure of tumor therapies is treatment resistance. Resistance to chemotherapy, radiotherapy, and immunotherapy continues to be a major obstacle in clinic, resulting in tumor recurrence and metastasis. The major mechanisms of therapy resistance are inhibitions of cell deaths, like apoptosis and necrosis, through drug inactivation and excretion, repair of DNA damage, tumor heterogeneity, or changes in tumor microenvironment, etc. Recent studies have shown that ferroptosis play a major role in therapies resistance by inducing phospholipid peroxidation and iron-dependent cell death. Some ferroptosis inducers in combination with clinical treatment techniques have been used to enhance the effect in tumor therapy. Notably, versatile ferroptosis nanoinducers exhibit an extensive range of functions in reversing therapy resistance, including directly triggering ferroptosis and feedback regulation. Herein, we provide a detailed description of the design, mechanism, and therapeutic application of ferroptosis-mediated synergistic tumor therapeutics. We also discuss the prospect and challenge of nanomedicine in tumor therapy resistance by regulating ferroptosis and combination therapy.
Collapse
Affiliation(s)
- Jing Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Foshan, 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Foshan, 528200, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Foshan, 528200, China.
| |
Collapse
|
43
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
44
|
Zhang X, Wang T, Zhou Z, Zhao T, Shen Y, Fang W. NIR Light-Activated and RGD-Conjugated Ultrasmall Fe/PPy Nanopolymers for Enhanced Tumor Photothermal Ferrotherapy and MR Imaging. Chemistry 2023; 29:e202302125. [PMID: 37673787 DOI: 10.1002/chem.202302125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Iron-based nanomaterials have shown great promise for tumor ferrotherapy in recent years. However, nanoparticle-induced ferroptosis has low therapeutic efficacy owing to unsatisfactory Fenton reaction activity in a typical tumor microenvironment. In this study, NIR light-activated Fe/PPy-RGD nanopolymers were developed to combine photothermal therapy and ferrotherapy and achieve enhanced antitumor activity. Importantly, Fe/PPy-RGD exhibited excellent therapeutic performance under NIR light activation both in vitro and in vivo. Under irradiation with NIR light, the heat generated by Fe/PPy-RGD not only induced a therapeutic photothermal effect but also enhanced the release of iron ions and the Fenton reaction by inducing ferroptosis. Additionally, by virtue of RGD conjugation and its ultrasmall size, Fe/PPy-RGD could effectively accumulate at tumor sites in living mice after systemic administration and could be monitored via MR imaging. Hence, this study provides a promising approach for integrating ferrotherapy with photothermal therapy to achieve enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Teng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Weijun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
45
|
Guan G, Liu H, Xu J, Zhang Q, Dong Z, Lei L, Zhang C, Yue R, Gao H, Song G, Shen X. Ultrasmall PtMn nanoparticles as sensitive manganese release modulator for specificity cancer theranostics. J Nanobiotechnology 2023; 21:434. [PMID: 37980476 PMCID: PMC10657629 DOI: 10.1186/s12951-023-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Manganese-based nanomaterials (Mn-nanomaterials) hold immense potential in cancer diagnosis and therapies. However, most Mn-nanomaterials are limited by the low sensitivity and low efficiency toward mild weak acidity (pH 6.4-6.8) of the tumor microenvironment, resulting in unsatisfactory therapeutic effect and poor magnetic resonance imaging (MRI) performance. This study introduces pH-ultrasensitive PtMn nanoparticles as a novel platform for enhanced ferroptosis-based cancer theranostics. The PtMn nanoparticles were synthesized with different diameters from 5.3 to 2.7 nm with size-dominant catalytic activity and magnetic relaxation, and modified with an acidity-responsive polymer to create pH-sensitive agents. Importantly, R-PtMn-1 (3 nm core) presents "turn-on" oxidase-like activity, affording a significant enhancement ratio (pH 6.0/pH 7.4) in catalytic activity (6.7 folds), compared with R-PtMn-2 (4.2 nm core, 3.7 folds) or R-PtMn-3 (5.3 nm core, 2.1 folds), respectively. Moreover, R-PtMn-1 exhibits dual-mode contrast in high-field MRI. R-PtMn-1 possesses a good enhancement ratio (pH 6.4/pH 7.4) that is 3 or 3.2 folds for T1- or T2-MRI, respectively, which is higher than that of R-PtMn-2 (1.4 or 1.5 folds) or R-PtMn-3 (1.1 or 1.2 folds). Moreover, their pH-ultrasensitivity enabled activation specifically within the tumor microenvironment, avoiding off-target toxicity in normal tissues during delivery. In vitro studies demonstrated elevated intracellular reactive oxygen species production, lipid peroxidation, mitochondrial membrane potential changes, malondialdehyde content, and glutathione depletion, leading to enhanced ferroptosis in cancer cells. Meanwhile, normal cells remained unaffected by the nanoparticles. Overall, the pH-ultrasensitive PtMn nanoparticles offer a promising strategy for accurate cancer diagnosis and ferroptosis-based therapy.
Collapse
Affiliation(s)
- Guoqiang Guan
- Department of Gastrointestinal Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qingpeng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhe Dong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Renye Yue
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hongchang Gao
- Department of Gastrointestinal Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
46
|
Xie P, Liu P. Formulation of DOX-dimer with bi-functionalized chitooligosaccharide for tumor-specific self-boosted drug release and synergistic chemo/chemodynamic therapy. Carbohydr Polym 2023; 320:121210. [PMID: 37659811 DOI: 10.1016/j.carbpol.2023.121210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 09/04/2023]
Abstract
The toxic side effects and possible drug resistance of the chemotherapeutics hinder their antitumor efficacy. Here, a pH/reactive oxygen species (ROS) dual-triggered nanodrug was developed for the tumor-specific self-boosted drug release and synergistic chemo/chemodynamic therapy, by formulating ROS-cleavable doxorubicin (DOX)-based dimer (DOX-TK-DOX) with bi-functionalized chitooligosaccharide (COS-Fc-TK) with ferrocenecarboxylic acid (Fc) and thioketal (TK). The resultant DOX-TK-DOX/COS-Fc-TK nanoparticles with a high DOX content of 39.70 % showed tumor-specific self-boosted drug release, which was triggered by highly toxic OH generated via Fc-catalyzed Fenton reaction of the endogenous H2O2 in tumor intracellular microenvironment. As a result, a synergistic chemo/chemodynamic therapy with combination index (CI) of 0.94 was achieved for selective treatment of tumors.
Collapse
Affiliation(s)
- Pengwei Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
47
|
Dong X, Xia S, Du S, Zhu MH, Lai X, Yao SQ, Chen HZ, Fang C. Tumor Metabolism-Rewriting Nanomedicines for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2023; 9:1864-1893. [PMID: 37901179 PMCID: PMC10604035 DOI: 10.1021/acscentsci.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/31/2023]
Abstract
Cancer immunotherapy has become an established therapeutic paradigm in oncologic therapy, but its therapeutic efficacy remains unsatisfactory in the majority of cancer patients. Accumulating evidence demonstrates that the metabolically hostile tumor microenvironment (TME), characterized by acidity, deprivation of oxygen and nutrients, and accumulation of immunosuppressive metabolites, promotes the dysfunction of tumor-infiltrating immune cells (TIICs) and thereby compromises the effectiveness of immunotherapy. This indicates the potential role of tumor metabolic intervention in the reinvigoration of antitumor immunity. With the merits of multiple drug codelivery, cell and organelle-specific targeting, controlled drug release, and multimodal therapy, tumor metabolism-rewriting nanomedicines have recently emerged as an attractive strategy to strengthen antitumor immune responses. This review summarizes the current progress in the development of multifunctional tumor metabolism-rewriting nanomedicines for evoking antitumor immunity. A special focus is placed on how these nanomedicines reinvigorate innate or adaptive antitumor immunity by regulating glucose metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism at the tumor site. Finally, the prospects and challenges in this emerging field are discussed.
Collapse
Affiliation(s)
- Xiao Dong
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shu Xia
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shubo Du
- School
of Bioengineering, Dalian University of
Technology, Dalian 116024, China
| | - Mao-Hua Zhu
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Xing Lai
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hong-Zhuan Chen
- Institute
of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chao Fang
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
- Key
Laboratory of Basic Pharmacology of Ministry of Education & Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
48
|
Li L, Gao Y, Zhang Y, Yang R, Ouyang Z, Guo R, Yu H, Shi X, Cao X. A Biomimetic Nanogel System Restores Macrophage Phagocytosis for Magnetic Resonance Imaging-Guided Synergistic Chemoimmunotherapy of Breast Cancer. Adv Healthc Mater 2023; 12:e2300967. [PMID: 37470683 DOI: 10.1002/adhm.202300967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain to be developed to overcome the current limitations of chemotherapy. Herein, a cancer cell membrane (CM)-camouflaged and ultrasmall iron oxide nanoparticles (USIO NPs)-loaded polyethylenimine nanogel (NG) system is reported to co-deliver docetaxel (DTX) and CD47 siRNA (siCD47). The prepared co-delivery system exhibits good colloidal stability, biocompatibility, and r1 relaxivity (1.35 mM-1 s-1 ) and enables redox-responsive release of the loaded DTX in the tumor microenvironment. The NG system realizes homologous targeting delivery of DTX and siCD47 to murine breast cancer cells (4T1 cells) for efficient chemotherapy and gene silencing; thus, inducing immunogenic cell death (ICD) and restoring macrophage phagocytic effect through downregulation of "don't eat me" signals on cancer cells. Likewise, the co-delivery system can also act on macrophages to promote their M1 polarization, which can be combined with DTX-mediated ICD and antibody-mediated immune checkpoint blockade to generate effector T cells for robust chemoimmunotherapy. Further, the USIO NPs-incorporated NG system also allows for magnetic resonance imaging of tumors. The developed biomimetic NG system acting on both cancer cells and macrophages holds a promising potential for macrophage phagocytosis-restored chemoimmunotherapy.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yiming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
49
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
50
|
Gao S, Liu M, Liu D, Kong X, Fang Y, Li Y, Wu H, Ji J, Yang X, Zhai G. Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation. Asian J Pharm Sci 2023; 18:100851. [PMID: 37915760 PMCID: PMC10616143 DOI: 10.1016/j.ajps.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023] Open
Abstract
Growing evidence suggests that the presence of cancer stem cells (CSCs) is a major challenge in current tumor treatments, especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis. Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy. In this work, we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid (ATRA) via biomineralization. This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters, which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration. With the help of CSC differentiation induced by ATRA, IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner. Furthermore, ATRA can boost immunogenic cell death induced by phototherapy, thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells. Taken together, this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation, improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongzhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hang Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|