1
|
Cao X, Yu T, Sun Z, Chen M, Xie W, Pang Q, Deng H. Engineered phages in anti-infection and anti-tumor fields: A review. Microb Pathog 2025; 198:107052. [PMID: 39442821 DOI: 10.1016/j.micpath.2024.107052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The abuse of antibiotics has led to the widespread emergence of multi-drug resistant bacteria. Phage therapy holds promise for enhancing anti-bacterial and anti-infection strategies. Traditional phage therapy employs phage preparations as an alternative to antibiotics for the eradication of bacteria, aiming to achieve the desired clinical outcomes. Modification of phage by transgene or chemical modification overcomes the limitations of traditional phage therapy, including host spectrum modification, bacterial resistance reversal, antigen presentation, and drug targeted delivery, and thus broadens the application field of phages. This article summarizes the progress of engineered phages in the fields of anti-bacterial, anti-infective and anti-tumor therapy. It emphasizes the advantages of engineered phages in anti-bacterial and anti-tumor treatment, and discusses the widespread potential of phage-based modular design as multifunctional biopharmaceuticals, drug carriers, and other applications.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Tong Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Zhe Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Mengge Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Wenhai Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China; Shandong Jiuyi Biotechnology Co., Ltd, Zibo, 255000, China.
| |
Collapse
|
2
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2024. [PMID: 39680919 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
4
|
Wang L, Tkhilaishvili T, Jiang Z, Pirlar RF, Ning Y, Millán Laleona A, Wang J, Tang J, Wang Q, Trampuz A, Gonzalez Moreno M, Zhang X. Phage-liposome nanoconjugates for orthopedic biofilm eradication. J Control Release 2024; 376:949-960. [PMID: 39384150 DOI: 10.1016/j.jconrel.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Infection by multidrug-resistant (MDR) bacteria has become one of the biggest threats to public health worldwide. One reason for the difficulty in treatment is the lack of proper delivery strategies into MDR bacterial biofilms, where the thick extracellular polymeric substance (EPS) layer impedes the penetration of antibiotics and nanoparticles. Here, we propose a novel bioactive nanoconjugate of drug-loaded liposomes and bacteriophages for targeted eradication of the MDR biofilms in orthopedic infections. Phage Sb-1, which has the ability to degrade EPS, was conjugated with antibiotic-loaded liposomes. Upon encountering the biofilm, phage Sb-1 degrades the EPS structure, thereby increasing the sensitivity of bacteria to antibiotics and allowing the antibiotics to penetrate deeply into the biofilm. As a result, effective removal of MDR bacterial biofilm was achieved with low dose of antibiotics, which was proved in this study by both in vitro and in vivo investigations. Notably, in the rat prosthetic joint infection (PJI) model, we found that the liposome-phage nanoconjugates could effectively decrease the bacterial load in the infected area and significantly promote osteomyelitis recovery. It is therefore believed that the conjugation of bacteriophage and liposomes could open new possibilities for the treatment of orthopedic infections, possibly other infections in the deep tissues.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, China
| | - Tamta Tkhilaishvili
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), 13353 Berlin, Germany
| | - Zheng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, China
| | - Rima Fanaei Pirlar
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), 13353 Berlin, Germany
| | - Yu Ning
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), 13353 Berlin, Germany
| | - Adrián Millán Laleona
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, China
| | - Qiaojie Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, China
| | - Andrej Trampuz
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), 13353 Berlin, Germany.
| | - Mercedes Gonzalez Moreno
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), 13353 Berlin, Germany.
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, China.
| |
Collapse
|
5
|
Costantini PE, Saporetti R, Iencharelli M, Flammini S, Montrone M, Sanità G, De Felice V, Mattioli EJ, Zangoli M, Ulfo L, Nigro M, Rossi T, Di Giosia M, Esposito E, Di Maria F, Tino A, Tortiglione C, Danielli A, Calvaresi M. Phage-Templated Synthesis of Targeted Photoactive 1D-Thiophene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405832. [PMID: 39498689 DOI: 10.1002/smll.202405832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Thiophene-based nanoparticles (TNPs) are promising therapeutic and imaging agents. Here, using an innovative phage-templated synthesis, a strategy able to bypass the current limitations of TNPs in nanomedicine applications is proposed. The phage capsid is decorated with oligothiophene derivatives, transforming the virus in a 1D-thiophene nanoparticle (1D-TNP). A precise control of the shape/size of the nanoparticles is obtained exploiting the well-defined morphology of a refactored filamentous M13 phage, engineered by phage display to selectively recognize the Epidermal Growth Factor Receptor (EGFR). The tropism of the phage is maintained also after the bioconjugation of the thiophene molecules on its capsid. Moreover, the 1D-TNP proved highly fluorescent and photoactive, generating reactive oxygen species through both type I and type II mechanisms. The phototheranostic properties of this platform are investigated on biosystems presenting increasing complexity levels, from in vitro cancer cells in 2D and 3D architectures, to the in vivo tissue-like model organism Hydra vulgaris. The phage-templated 1D-TNP showed photocytotoxicity at picomolar concentrations, and the ability to deeply penetrate 3D spheroids and Hydra tissues. Collectively the results indicate that phage-templated synthesis of organic nanoparticles represents a general strategy, exploitable in many diagnostic and therapeutic fields based on targeted imaging and light mediated cell ablation.
Collapse
Affiliation(s)
- Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Marika Iencharelli
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Soraia Flammini
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, Bologna, 40129, Italy
| | - Maria Montrone
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Gennaro Sanità
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Vittorio De Felice
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Edoardo Jun Mattioli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, Bologna, 40129, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
| | - Tommaso Rossi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
| | - Matteo Di Giosia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| | - Emanuela Esposito
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Francesca Di Maria
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, Bologna, 40129, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi 3, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Matteo Calvaresi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dipartimento di Chimica "Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, Bologna, 40126, Italy
| |
Collapse
|
6
|
Zhang D, Bie S, Anas Tomeh M, Zhang X, Zhao X. Synergistic bactericidal effect of antimicrobial peptides and copper sulfide-loaded zeolitic imidazolate framework-8 nanoparticles with photothermal therapy. Eur J Pharm Biopharm 2024; 204:114516. [PMID: 39349074 DOI: 10.1016/j.ejpb.2024.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a significant threat to human health. Antimicrobial peptides (AMPs) have proven to be an effective strategy against antibiotic-resistant bacteria, given their capacity to swiftly disrupt microorganism membranes and alter cell morphology. A common limitation, however, lies in the inherent toxicity of many AMPs and their vulnerability to protease degradation within the body. Photothermal therapy (PTT) stands out as a widely utilized approach in combating antibiotic-resistant bacterial infections, boasting high efficiency and non-invasive benefits. To enhance the stability and antibacterial efficacy of AMPs, a novel approach involving the combination of AMPs and PTT has been proposed. This study focuses on the encapsulation of At10 (an AMP designed by our group), and copper sulfide nanoparticles (CuS NPs) within zeolitic imidazolate framework-8 (ZIF-8) to form nanocomposites (At10/CuS@ZIF-8). The encapsulated CuS NPs exhibit notable photothermal properties upon exposure to near-infrared radiation. This induces the cleavage of ZIF-8, facilitating the release of At10, which effectively targets bacterial membranes to exert its antibacterial effects. Bacteria treated with At10/CuS@ZIF-8 under light radiation exhibited not only membrane folding and intracellular matrix outflow but also bacterial fracture. This synergistic antibacterial strategy, integrating the unique properties of AMPs, CuS NPs, and pH responsiveness of ZIF-8, holds promising potential for widespread application in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Duoduo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shiyue Bie
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Xinyu Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Luo X, Dai W, Lin T, Li L, Zhang Y. Role of Deoxyribonucleic Acid Origami for Alleviating Kidney and Liver Injury in Diabetic Sepsis. J Proteome Res 2024; 23:4626-4636. [PMID: 39264033 DOI: 10.1021/acs.jproteome.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Treating diabetic sepsis (DS) can be challenging because of the persistent infection of multiple organs. To address this complicated pathological condition, it is necessary to develop advanced materials and gain a better understanding of their roles. In this study, we developed a two-dimensional planar material with a rectangular deoxyribonucleic acid origami nanostructure (termed Rec-DON). Rec-DON was used to improve liver and renal function in DS mice, as it preferentially accumulates in these organs, and has superior anti-inflammatory activity and the ability to scavenge reactive oxygen species. The role of Rec-DON in the treatment of DS mice was investigated via quantitative proteomics. This study revealed that Rec-DON can regulate key proteins located primarily in the cytoplasm and mitochondrion, involved in protein transport, antigen processing and presentation, and steroid metabolic process, and can also bind to various proteins to restore liver and renal function in DS mice. This study presented Rec-DON as a liver and kidney targeting material and revealed its role in alleviating multiorgan injury in DS.
Collapse
Affiliation(s)
- Xinmei Luo
- Health Management Center, General Practice Medical Center and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshu Dai
- Health Management Center, General Practice Medical Center and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Health Management Center, General Practice Medical Center and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Zhao C, Yang J, Chen W, Lu C, Zeng Z, Jiang T, Liu W. Gelatin/Dopamine/Zinc-Doped Ceria/Curcumin nanocomposite hydrogels for repair of chronic refractory wounds. Int J Pharm 2024; 663:124575. [PMID: 39134289 DOI: 10.1016/j.ijpharm.2024.124575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Chronic wound healing is a common clinical challenge, characterized by bacterial infection, protracted inflammatory response, oxidative stress, and insufficient neovascularization. Nanozymes have emerged as a promising solution for treating skin wounds due to their antioxidant, antibacterial, and angiogenic properties. In recent years, combining nanozymes with hydrogels to jointly promote wound healing has attracted increasing research interest. However, most of the current nanocomposite hydrogels are still not effective in simultaneously controlling inflammatory, oxidative stress and bacterial invasion in wound healing. Improving the therapeutic functional diversity and efficacy of nanocomposite hydrogels remains a problem that needs to be addressed. In this study, we prepared nanocomposite hydrogels (GelMD-Cur@ZHMCe) by combining methylacrylated gelatin modified with dopamine (GelMD) with Zinc-doped hollow mesoporous cerium oxide nanoparticles loaded with curcumin (Cur@ZHMCe). The resulting hydrogels exhibited excellent water absorption, adhesion, and biocompatibility. In vitro and in vivo studies have demonstrated that GelMD-Cur@ZHMCe has excellent antioxidant, antibacterial, anti-inflammatory and vasculature-promoting properties, which enable it to rapidly promote wound repair. The wound healing rate of the rat total skin defect infection model treated with GelMD-Cur@ZHMCe reached 98.5±4.9 % after 14 days of treatment. It was demonstrated that this multifunctional nanocomposite hydrogel provides a promising therapeutic strategy for skin repair.
Collapse
Affiliation(s)
- Chuanxi Zhao
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou 510095, China; Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
| | - Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, China
| | - Weijian Chen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, China
| | - Chao Lu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou 510095, China; Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
| | - Ziquan Zeng
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou 510095, China; Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
| | - Tao Jiang
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou 510095, China; Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China.
| | - Wengang Liu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou 510095, China; Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China.
| |
Collapse
|
9
|
Chen B, Wang W, Hu M, Liang Y, Wang N, Li C, Li Y. "Photo-Thermo-Electric" Dental Implant for Anti-Infection and Enhanced Osteoimmunomodulation. ACS NANO 2024; 18:24968-24983. [PMID: 39192736 DOI: 10.1021/acsnano.4c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The dental implant market has experienced explosive growth, owing to the widespread acceptance of implants as the core of oral rehabilitation. Clinically, achieving simultaneous anti-infective effects and rapid osseointegration is a crucial but challenging task for implants. The demand for implants with long-term broad-spectrum antibacterial and immune-osteogenic properties is growing. Existing methods are limited by a lack of safety, efficiency, short-lasting anti-infective ability, and inadequate consideration of the immunomodulatory effects on osteogenesis. Herein, a ZnO/black TiO2-x heterojunction surface structure was designed as a near-infrared (NIR) light-responsive nanofilm immobilized on a titanium (Ti) implant surface. This nanofilm introduces abundant oxygen vacancies and heterojunctions, which enhance the photothermal and photoelectric abilities of Ti implants under NIR illumination by narrowing the band gap and improving interfacial charge transfer. The "photo-thermo-electric" implant exhibits excellent broad-spectrum antibacterial efficacy against three dental pathogenic bacteria (Porphyromonas gingivalis, Fusobacterium nucleatum, and Staphylococcus aureus, >99.4%) by destroying the bacterial membrane and increasing the production of intracellular reactive oxygen species. Additionally, the implant can effectively eliminate mature multispecies biofilms and kill bacteria inside the biofilms under NIR irradiation. Meanwhile, this implant can also induce the pro-regenerative transformation of macrophages and promote osteoblast proliferation and differentiation. Moreover, in vivo results confirmed the superior antibacterial and osteoimmunomodulatory properties of this dental implant. RNA sequencing revealed that the underlying osteogenic mechanisms involve activation of the Wnt/β-catenin signaling pathway and bone development. Overall, this versatile "photo-thermo-electric" platform endows implants with anti-infection and bone integration performance simultaneously, which holds great potential for dental implants.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Wanmeng Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Meilin Hu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Yunkai Liang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Ning Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| |
Collapse
|
10
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
11
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
12
|
Li A, Zhang Y, Wan L, Peng R, Zhang X, Guo Q, Xu S, Qiao D, Zheng P, Li N, Zhu W, Pan Q. Coordination-Driven Self-Assembly of Metal Ion-Antisense Oligonucleotide Nanohybrids for Chronic Bacterial Infection Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28041-28055. [PMID: 38767982 DOI: 10.1021/acsami.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacterial infection poses a significant challenge to wound healing and skin regeneration, leading to substantial economic burdens on patients and society. Therefore, it is crucial to promptly explore and develop effective methodologies for bacterial infections. Herein, we propose a novel approach for synthesizing nanostructures based on antisense oligonucleotides (ASOs) through the coordination-driven self-assembly of Zn2+ with ASO molecules. This approach aims to provide effective synergistic therapy for chronic wound infections caused by Staphylococcus aureus (S. aureus). The resulting hybrid nanoparticles successfully preserve the structural integrity and biological functionalities of ASOs, demonstrating excellent ASO encapsulation efficiency and bioaccessibility. In vitro antibacterial experiments reveal that Zn-ASO NPs exhibit antimicrobial properties against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. This antibacterial ability is attributed to the high concentration of metal zinc ions and the generation of high levels of reactive oxygen species. Additionally, the ftsZ-ASO effectively inhibits the expression of the ftsZ gene, further enhancing the antimicrobial effect. In vivo antibacterial assays demonstrate that the Zn-ASO NPs promote optimal skin wound healing and exhibit favorable biocompatibility against S. aureus infections, resulting in a residual infected area of less than 8%. This combined antibacterial strategy, which integrates antisense gene therapy and metal-coordination-directed self-assembly, not only achieves synergistic and augmented antibacterial outcomes but also expands the horizons of ASO coordination chemistry. Moreover, it addresses the gap in the antimicrobial application of metal-coordination ASO self-assembly, thereby advancing the field of ASO-based therapeutic approaches.
Collapse
Affiliation(s)
- Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Rujue Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Na Li
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
13
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
14
|
Tu Z, Liu M, Xu C, Wei Y, Lu T, Xiao Y, Li H, Zhang S, Xie X, Li J, Wen W. Functional 2D Nanoplatforms Alleviate Eosinophilic Chronic Rhinosinusitis by Modulating Eosinophil Extracellular Trap Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307800. [PMID: 38477549 PMCID: PMC11109617 DOI: 10.1002/advs.202307800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The therapeutic outcomes of patients with eosinophilic chronic rhinosinusitis (ECRS) remain unsatisfactory, largely because the underlying mechanisms of eosinophilic inflammation are uncertain. Here, it is shown that the nasal secretions of ECRS patients have high eosinophil extracellular trap (EET) and cell-free DNA (cfDNA) levels. Moreover, the cfDNA induced EET formation by activating toll-like receptor 9 (TLR9) signaling. After demonstrating that DNase I reduced eosinophilic inflammation by modulating EET formation, linear polyglycerol-amine (LPGA)-coated TiS2 nanosheets (TLPGA) as functional 2D nanoplatforms with low cytotoxicity, mild protein adsorption, and increased degradation rate is developed. Due to the more flexible linear architecture, TLPGA exhibited higher cfDNA affinity than the TiS2 nanosheets coated with dendritic polyglycerol-amine (TDPGA). TLPGA reduced cfDNA levels in the nasal secretions of ECRS patients while suppressing cfDNA-induced TLR9 activation and EET formation in vitro. TLPGA displayed exceptional biocompatibility, preferential nasal localization, and potent inflammation modulation in mice with eosinophilic inflammation. These results highlight the pivotal feature of the linear molecular architecture and 2D sheet-like nanostructure in the development of anti-inflammation nanoplatforms, which can be exploited for ECRS treatment.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Ming Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Changyi Xu
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yi Wei
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Tong Lu
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yongqiang Xiao
- ENT instituteEye & ENT HospitalFudan UniversityShanghai201114China
| | - Hongxia Li
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Shuaiyin Zhang
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Xinran Xie
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Jian Li
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Weiping Wen
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| |
Collapse
|
15
|
Zhang X, Huang Y, Wang J, Tang J, Mei Y, Zhu N, Li Z, Li L, Wang Y. Facet-dependent transformation and toxicity of nanoscale zinc oxide in the synthetic saliva. J Environ Sci (China) 2024; 139:170-181. [PMID: 38105045 DOI: 10.1016/j.jes.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 12/19/2023]
Abstract
The nanoscale zinc oxide (n-ZnO) was used in food packages due to its superior antibacterial activity, resulting in potential intake of n-ZnO through the digestive system, wherein n-ZnO interacted with saliva. In recent, facet engineering, a technique for controlling the exposed facets, was applied to n-ZnO, whereas risk of n-ZnO with specific exposed facets in saliva was ignored. ZnO nanoflakes (ZnO-0001) and nanoneedles (ZnO-1010) with the primary exposed facets of {0001} and {1010} respectively were prepared in this study, investigating stability and toxicity of ZnO-0001 and ZnO-1010 in synthetic saliva. Both ZnO-0001 and ZnO-1010 partially transformed into amorphous Zn3(PO4)2 within 1 hr in the saliva even containing orgnaic components, forming a ZnO-Zn3(PO4)2 core-shell structure. Nevertheless, ZnO-1010 relative to ZnO-0001 would likely transform into Zn3(PO4)2, being attributed to superior dissolution of {1010} facet due to its lower vacancy formation energy (1.15 eV) than {0001} facet (3.90 eV). The toxicity of n-ZnO to Caco-2 cells was also dependent on the primary exposed facet; ZnO-0001 caused cell toxicity through oxidative stress, whereas ZnO-1010 resulted in lower cells viability than ZnO-0001 through oxidative stress and membrane damage. Density functional theory calculations illustrated that ·O2- was formed and released on {1010} facet, yet O22- instead of ·O2- was generated on {0001} facet, leading to low oxidative stress from ZnO-0001. All findings demonstrated that stability and toxicity of n-ZnO were dependent on the primary exposed facet, improving our understanding of health risk of nanomaterials.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jikun Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104, USA
| | - Jie Tang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yang Mei
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
17
|
Tu Z, Zhu Y, Gao W, Liu M, Wei Y, Xu C, Xiao Y, Wen Y, Li J, Leong KW, Wen W. Tackling Severe Neutrophilic Inflammation in Airway Disorders with Functionalized Nanosheets. ACS NANO 2024; 18:7084-7097. [PMID: 38377352 DOI: 10.1021/acsnano.3c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Severe airway inflammatory disorders impose a significant societal burden, and the available treatments are unsatisfactory. High levels of neutrophil extracellular trap (NET) and cell-free DNA (cfDNA) were detected in the inflammatory microenvironment of these diseases, which are closely associated with persistent uncontrolled neutrophilic inflammation. Although DNase has proven to be effective in mitigating neutrophilic airway inflammation in mice by reducing cfDNA and NET levels, its clinical use is hindered by severe side effects. Here, we synthesized polyglycerol-amine (PGA) with a series of hydroxyl/amine ratios and covered them with black phosphorus (BP) nanosheets. The BP nanosheets functionalized with polyglycerol-50% amine (BP-PGA50) efficiently lowered cfDNA levels, suppressed toll-like receptor 9 (TLR9) activation and inhibited NET formation in vitro. Importantly, BP-PGA50 nanosheets demonstrated substantial accumulation in inflamed airway tissues, excellent biocompatibility, and potent inflammation modulation ability in model mice. The 2D sheet-like structure of BP-PGA50 was identified as a crucial factor for the therapeutic efficacy, and the hydroxyl/amine ratio was revealed as a significant parameter to regulate the protein resistance, cfDNA-binding efficacy, and cytotoxicity. This study shows the promise of the BP-PGA50 nanosheet for tackling uncontrolled airway inflammation, which is also significant for the treatment of other neutrophilic inflammatory diseases. In addition, our work also highlights the importance of proper surface functionalization, such as hydroxyl/amine ratio, in therapeutic nanoplatform construction for inflammation modulation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenlong Gao
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Ming Liu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Changyi Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yongqiang Xiao
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai 201114, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| |
Collapse
|
18
|
Wang W, Xu W, Zhang J, Xu Y, Shen J, Zhou N, Li Y, Zhang M, Tang BZ. One-Stop Integrated Nanoagent for Bacterial Biofilm Eradication and Wound Disinfection. ACS NANO 2024; 18:4089-4103. [PMID: 38270107 DOI: 10.1021/acsnano.3c08054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To meet the requirements of biomedical applications in the antibacterial realm, it is of great importance to explore nano-antibiotics for wound disinfection that can prevent the development of drug resistance and possess outstanding biocompatibility. Therefore, we attempted to synthesize an atomically dispersed ion (Fe) on phenolic carbon quantum dots (CQDs) combined with an organic photothermal agent (PTA) (Fe@SAC CQDs/PTA) via a hydrothermal/ultrasound method. Fe@SAC CQDs adequately exerted peroxidase-like activity while the PTA presented excellent photothermal conversion capability, which provided enormous potential in antibacterial applications. Based on our work, Fe@SAC CQDs/PTA exhibited excellent eradication of Escherichia coli (>99% inactivation efficiency) and Staphylococcus aureus (>99% inactivation efficiency) based on synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT). Moreover, in vitro experiments demonstrated that Fe@SAC CQDs/PTA could inhibit microbial growth and promote bacterial biofilm destruction. In vivo experiments suggested that Fe@SAC CQDs/PTA-mediated synergistic CDT and PTT exhibited great promotion to wound disinfection and recovery effects. This work indicated that Fe@SAC CQDs/PTA could serve as a broad-spectrum antimicrobial nano-antibiotic, which was simultaneously beneficial for bacterial biofilm eradication, wound disinfection, and wound healing.
Collapse
Affiliation(s)
- Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wang Xu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianquan Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
19
|
Li Y, Yang KD, Kong DC, Li XM, Duan HY, Ye JF. Harnessing filamentous phages for enhanced stroke recovery. Front Immunol 2024; 14:1343788. [PMID: 38299142 PMCID: PMC10829096 DOI: 10.3389/fimmu.2023.1343788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Stroke poses a critical global health challenge, leading to substantial morbidity and mortality. Existing treatments often miss vital timeframes and encounter limitations due to adverse effects, prompting the pursuit of innovative approaches to restore compromised brain function. This review explores the potential of filamentous phages in enhancing stroke recovery. Initially antimicrobial-centric, bacteriophage therapy has evolved into a regenerative solution. We explore the diverse role of filamentous phages in post-stroke neurological restoration, emphasizing their ability to integrate peptides into phage coat proteins, thereby facilitating recovery. Experimental evidence supports their efficacy in alleviating post-stroke complications, immune modulation, and tissue regeneration. However, rigorous clinical validation is essential to address challenges like dosing and administration routes. Additionally, genetic modification enhances their potential as injectable biomaterials for complex brain tissue issues. This review emphasizes innovative strategies and the capacity of filamentous phages to contribute to enhanced stroke recovery, as opposed to serving as standalone treatment, particularly in addressing stroke-induced brain tissue damage.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-meng Li
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Bagchi D. Electron Microscopy Methods for Phage-Based Study. Methods Mol Biol 2024; 2793:163-174. [PMID: 38526730 DOI: 10.1007/978-1-0716-3798-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electron microscopy (EM) techniques play a vital role in virology research including phage discovery and their identification. The use of different staining protocols based on the concept of negative staining is one of the most important steps in the EM processing. This chapter will summarize the widely used EM protocols in phage research, their advantages, and limitations. Phage-based therapy, especially recently developed nanoparticle-phage conjugates, are expected to find clinical significance in the antimicrobial resistance (AMR) epidemic. EM techniques are important to characterize these conjugates and we will also discuss the methods here.
Collapse
Affiliation(s)
- Damayanti Bagchi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Peng H, Chen IA. Preparation of Bioconjugates of Chimeric M13 Phage and Gold Nanorods. Methods Mol Biol 2024; 2793:131-141. [PMID: 38526728 PMCID: PMC11371271 DOI: 10.1007/978-1-0716-3798-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named "phanorods," without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.
Collapse
Affiliation(s)
- Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Yang Y, Chen IA. Visualization of Engineered M13 Phages Bound to Bacterial Targets by Transmission Electron Microscopy. Methods Mol Biol 2024; 2793:175-183. [PMID: 38526731 PMCID: PMC11296667 DOI: 10.1007/978-1-0716-3798-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The filamentous phage M13 is one of the most well-studied and characterized phages, particularly since it was introduced as a scaffold for phage display, a technique to express and evolve fusion proteins on the M13 phage's coat to study protein or peptide binding interactions. Since phages can be engineered or evolved to specifically bind to a variety of targets, engineered M13 phages have been explored for applications such as drug delivery, biosensing, and cancer therapy, among others. Specifically, with the rising challenge of antimicrobial resistance among bacteria, chimeric M13 phages have been explored both as detection and therapeutic agents due to the flexibility in tuning target specificity. Transmission electron microscopy (TEM) is a powerful tool enabling researchers to directly visualize and characterize binding of phages to bacterial surfaces. However, the filamentous phage structure poses a challenge for this technique, as the phages have similar morphology to bacterial structures such as pili. In order to differentiate between bacterial structures and the filamentous phages, here we describe a protocol to prepare TEM samples of engineered M13 phages bound to bacterial cells, in which the phage virions have been specifically labeled by decoration of the major capsid proteins with gold nanoparticles. This protocol enables clear visualization and unambiguous identification of attached filamentous phages within the context of bacterial cells expressing numerous pili.
Collapse
Affiliation(s)
- Yanxi Yang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Fadaie M, Dianat-Moghadam H, Ghafouri E, Naderi S, Darvishali MH, Ghovvati M, Khanahmad H, Boshtam M, Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. ENVIRONMENTAL RESEARCH 2023; 238:117132. [PMID: 37714365 DOI: 10.1016/j.envres.2023.117132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.
Collapse
Affiliation(s)
- Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Darvishali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
24
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
25
|
Li R, Wang C, Gou L, Zhou Y, Peng L, Liu F, Zhang Y. Potential mechanism of the AgNCs-hydrogel in promoting the regeneration of diabetic infectious wounds. Analyst 2023; 148:5873-5881. [PMID: 37908193 DOI: 10.1039/d3an01569f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diabetic infectious wound treatment is challenging due to insistent wound infections. To treat such complicated pathological diabetic infectious wounds, multifunctional materials need to be developed, and their mechanisms need to be understood. Here, we developed a material termed AgNCs-hydrogel, which is a multifunctional DNA hydrogel used as dressings by integrating it with antibacterial silver nanoclusters. The AgNCs-hydrogel was applied to promote the regeneration of diabetic infectious wounds in mice because it exhibited superior antibacterial activity and effective ROS-scavenging properties. Based on skin proteomics, we explored the potential mechanism of the AgNCs-hydrogel in treating mouse skin wounds. We found that the AgNCs-hydrogel can regulate some key proteins located primarily in the extracellular exosomes, involved in the negative regulation of the apoptotic process, and perform ATP binding to accelerate diabetic infected wound closure. Therefore, this study provided a multifunctional AgNCs-hydrogel and revealed its potential mechanism in promoting the regeneration of diabetic infectious wounds.
Collapse
Affiliation(s)
- Ruoqing Li
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
| | - Chengshi Wang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linrui Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Zhang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Liu L, Zou Y, Xia T, Zhang J, Xiong M, Long L, Wang K, Hao N. A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti 3C 2 MXene-Au NPs as a coreactant accelerator. Biosens Bioelectron 2023; 240:115651. [PMID: 37666010 DOI: 10.1016/j.bios.2023.115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti3C2 MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs.
Collapse
Affiliation(s)
- Liqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
27
|
Du M, Zhang J, Jin J, Jiang W. Constructing a Photothermal and Quaternary Ammonium Cation Bactericidal Platform onto SEBS for Synergistic Therapy. ACS Biomater Sci Eng 2023; 9:6103-6111. [PMID: 37874178 DOI: 10.1021/acsbiomaterials.3c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) with eminent elasticity, thermoplastic ability, and biological stability has aroused great interest in the medical area. However, bacteria can easily adhere to the hydrophobic SEBS surface to cause medical device-related infections. In this work, SEBS is modified to prepare the SEBS-polydopamine (PDA)-poly(lysine) quaternary ammonium derivative (PLQ) antibacterial surface by PDA deposition and surface grafting techniques to solve bacterial infections. PDA is used as an intermediate layer and presents an excellent photothermal effect. The grafted polymer PLQ has antimicrobial quaternary ammonium cation groups, which plays synergistic bactericidal therapy with PDA. The SEBS-PDA-PLQ surface almost totally suppresses the growth of bacteria with a surface bacterial survival rate of 0.05% under laser irradiation. The outstanding antibacterial activity of the SEBS-PDA-PLQ surface is attributed to the synergistic effects of the photothermal performance of PDA and quaternary ammonium cationic functional groups of PLQ. In addition, the membrane SEBS-PDA-PLQ shows good hydrophilicity, antiprotein adsorption ability, chemical stability, and biocompatibility. This antibiotic-free antimicrobial approach has great potential for practical application in solving infections associated with medical devices.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
28
|
He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. Photothermal antibacterial materials to promote wound healing. J Control Release 2023; 363:180-200. [PMID: 37739014 DOI: 10.1016/j.jconrel.2023.09.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Wound healing is a crucial process that restores the integrity and function of the skin and other tissues after injury. However, external factors, such as infection and inflammation, can impair wound healing and cause severe tissue damage. Therefore, developing new drugs or methods to promote wound healing is of great significance. Photothermal therapy (PTT) is a promising technique that uses photothermal agents (PTAs) to convert near-infrared radiation into heat, which can eliminate bacteria and stimulate tissue regeneration. PTT has the advantages of high efficiency, controllability, and low drug resistance. Hence, nanomaterial-based PTT and its related strategies have been widely explored for wound healing applications. However, a comprehensive review of PTT-related strategies for wound healing is still lacking. In this review, we introduce the physiological mechanisms and influencing factors of wound healing, and summarize the types of PTAs commonly used for wound healing. Then, we discuss the strategies for designing nanocomposites for multimodal combination treatment of wounds. Moreover, we review methods to improve the therapeutic efficacy of PTT for wound healing, such as selecting the appropriate wound dressing form, controlling drug release, and changing the infrared irradiation window. Finally, we address the challenges of PTT in wound healing and suggest future directions.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinhui Chu
- Wuya College of innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
29
|
Hajfathalian M, de Vries CR, Hsu JC, Amirshaghaghi A, Dong YC, Ren Z, Liu Y, Huang Y, Li Y, Knight SA, Jonnalagadda P, Zlitni A, Grice EA, Bollyky PL, Koo H, Cormode DP. Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models. J Clin Invest 2023; 133:e168485. [PMID: 37651187 PMCID: PMC10617778 DOI: 10.1172/jci168485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we described a complex structure of a dextran-coated gold-in-gold cage nanoparticle that enabled photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser could selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections, respectively. These effects were over 100 times greater than those seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We concluded that photothermal ablation using theranostic nanoparticles is a rapid, precise, and nontoxic method to detect and treat biofilm-associated infections.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California, USA
| | - Christiaan R. de Vries
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California, USA
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Zhi Ren
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Yuan Liu
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Yue Huang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Yong Li
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Simon A.B. Knight
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Aimen Zlitni
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering
| |
Collapse
|
30
|
Petrosino A, Saporetti R, Starinieri F, Sarti E, Ulfo L, Boselli L, Cantelli A, Morini A, Zadran SK, Zuccheri G, Pasquini Z, Di Giosia M, Prodi L, Pompa PP, Costantini PE, Calvaresi M, Danielli A. A modular phage vector platform for targeted photodynamic therapy of Gram-negative bacterial pathogens. iScience 2023; 26:108032. [PMID: 37822492 PMCID: PMC10563061 DOI: 10.1016/j.isci.2023.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Growing antibiotic resistance has encouraged the revival of phage-inspired antimicrobial approaches. On the other hand, photodynamic therapy (PDT) is considered a very promising research domain for the protection against infectious diseases. Yet, very few efforts have been made to combine the advantages of both approaches in a modular, retargetable platform. Here, we foster the M13 bacteriophage as a multifunctional scaffold, enabling the selective photodynamic killing of bacteria. We took advantage of the well-defined molecular biology of M13 to functionalize its capsid with hundreds of photo-activable Rose Bengal sensitizers and contemporarily target this light-triggerable nanobot to specific bacterial species by phage display of peptide targeting moieties fused to the minor coat protein pIII of the phage. Upon light irradiation of the specimen, the targeted killing of diverse Gram(-) pathogens occurred at subnanomolar concentrations of the phage vector. Our findings contribute to the development of antimicrobials based on targeted and triggerable phage-based nanobiotherapeutics.
Collapse
Affiliation(s)
- Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Edoardo Sarti
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Boselli
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cantelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Morini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
31
|
Huang Y, Chen Y, Lu Z, Yu B, Zou L, Song X, Han H, Jin Q, Ji J. Facile Synthesis of Self-Targeted Zn 2+ -Gallic acid Nanoflowers for Specific Adhesion and Elimination of Gram-Positive Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302578. [PMID: 37376855 DOI: 10.1002/smll.202302578] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Transition metal ions are served as disinfectant thousand years ago. However, the in vivo antibacterial application of metal ions is strongly restricted due to its high affinity with proteins and lack of appropriate bacterial targeting method. Herein, for the first time, Zn2+ -gallic acid nanoflowers (ZGNFs) are synthesized by a facile one-pot method without additional stabilizing agents. ZGNFs are stable in aqueous solution while can be easily decomposed in acidic environments. Besides, ZGNFs can specifically adhere onto Gram-positive bacteria, which is mediated by the interaction of quinone from ZGNFs and amino groups from teichoic acid of Gram-positive bacteria. ZGNFs exhibit high bactericidal effect toward various Gram-positive bacteria in multiple environments, which can be ascribed to the in situ Zn2+ release on bacterial surface. Transcriptome studies reveal that ZGNFs can disorder basic metabolic processes of Methicillin-resistant Staphylococcus aureus (MRSA). Moreover, in a MRSA-induced keratitis model, ZGNFs exhibit long-term retention in the infected corneal site and prominent MRSA elimination efficacy due to the self-targeting ability. This research not only reports an innovative method to prepare metal-polyphenol nanoparticles, but also provides a novel nanoplatform for targeted delivery of Zn2+ in combating Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhouyu Lu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaohui Song
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
32
|
Wei S, Wang Z, Liang X, Xiong T, Kang Z, Lei S, Wu B, Cheng B. A composite hydrogel with antibacterial and promoted cell proliferation dual properties for healing of infected wounds. Am J Transl Res 2023; 15:4467-4486. [PMID: 37560210 PMCID: PMC10408500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Wound infection remains a major challenge for health professionals, because it delays wound healing and increases the overall cost and morbidity. Therefore, the development of new biomaterials with new antibacterial properties and healing effects remains a dire clinical need. To solve this problem, we developed silver nanoparticles embedded in γ-cyclodextrin metal-organic frameworks (Ag@MOF) and platelet-rich plasma (PRP)-loaded hydrogel systems based on methacrylated silk fibroin (SFMA) and methacrylate hyaluronic acid (HAMA) as Ag+ ion and growth factor delivery vehicles for inhibiting the growth of drug-resistant bacteria and promoting wound healing. The prepared SFMA/HAMA hydrogel demonstrated good rheological properties, swelling capability, appropriate mechanical properties and controllable biodegradability. The SFMA/HAMA/Ag@MOF/PRP hydrogel showed sustained release profiles of Ag+ ions and EGF. The SFMA/HAMA/Ag@MOF hydrogel have good inherent antibacterial properties against both gram-negative bacteria and gram-positive bacteria. The prepared hydrogel showed excellent cytocompatibility and could stimulate the growth and proliferation rate of NIH-3T3 cells. In vivo experiments showed that SFMA/HAMA/Ag@MOF/PRP hydrogel treatment enhanced the healing of full-thickness wounds, reduced inflammatory cell infiltration, and promoted re-epithelialization and collagen synthesis. All results indicated that the prepared hydrogel has tremendous potential to reduce wound infections and improve wound healing.
Collapse
Affiliation(s)
- Shikun Wei
- Department of Orthopedics, The Second People’s Hospital of Panyu DistrictGuangzhou 511400, Guangdong, China
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLAGuangzhou 510010, Guangdong, China
| | - Zhongshan Wang
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLAGuangzhou 510010, Guangdong, China
| | - Xiaoyan Liang
- The Affiliated Hexian Memorial Hospital of Southern Medical UniversityGuangzhou 511400, Guangdong, China
| | - Tingliang Xiong
- Department of Orthopedics, The Second People’s Hospital of Panyu DistrictGuangzhou 511400, Guangdong, China
| | - Zhengyang Kang
- Department of Orthopedics, The Second People’s Hospital of Panyu DistrictGuangzhou 511400, Guangdong, China
| | - Sheng Lei
- Department of Orthopedics, The Second People’s Hospital of Panyu DistrictGuangzhou 511400, Guangdong, China
| | - Bin Wu
- Department of Orthopedics, The Second People’s Hospital of Panyu DistrictGuangzhou 511400, Guangdong, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLAGuangzhou 510010, Guangdong, China
| |
Collapse
|
33
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
34
|
Borg RE, Ozbakir HF, Xu B, Li E, Fang X, Peng H, Chen IA, Mukherjee A. Genetically engineered filamentous phage for bacterial detection using magnetic resonance imaging. SENSORS & DIAGNOSTICS 2023; 2:948-955. [PMID: 38405385 PMCID: PMC10888512 DOI: 10.1039/d3sd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Detecting bacterial cells with high specificity in deep tissues is challenging. Optical probes provide specificity, but are limited by the scattering and absorption of light in biological tissues. Conversely, magnetic resonance imaging (MRI) allows unfettered access to deep tissues, but lacks contrast agents for detecting specific bacterial strains. Here, we introduce a biomolecular platform that combines both capabilities by exploiting the modularity of M13 phage to target bacteria with tunable specificity and allow deep-tissue imaging using T1-weighted MRI. We engineered two types of phage probes: one for detecting the phage's natural host, viz., F-pilus expressing E. coli; and the other for detecting a different (F-negative) bacterial target, V. cholerae. We show that these phage sensors generate 3-9-fold stronger T1 relaxation upon recognizing target cells relative to non-target bacteria. We further establish a preliminary proof-of-concept for in vivo applications, by demonstrating that phage-labeled bacteria can be detected in mice using MRI. The framework developed in this study may have potential utility in a broad range of applications, from basic biomedical research to in situ diagnostics, which require methods to detect and track specific bacteria in the context of intact living systems.
Collapse
Affiliation(s)
- Raymond E Borg
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Harun F Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Binzhi Xu
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Eugene Li
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Xiwen Fang
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
35
|
Chang C, Guo W, Yu X, Guo C, Zhou N, Guo X, Huang RL, Li Q, Zhu Y. Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: From tissue regeneration to cancer therapy. Mater Today Bio 2023; 20:100612. [PMID: 37063776 PMCID: PMC10102448 DOI: 10.1016/j.mtbio.2023.100612] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Bacteriophages (phages) are nanostructured viruses with highly selective antibacterial properties that have gained attention beyond eliminating bacteria. Specifically, M13 phages are filamentous phages that have recently been studied in various aspects of nanomedicine due to their biological advantages and more compliant engineering capabilities over other phages. Having nanofiber-like morphology, M13 phages can reach varied target sites and self-assemble into multidimensional scaffolds in a relatively safe and stable way. In addition, genetic modification of the coat proteins enables specific display of peptides and antibodies on the phages, allowing for precise and individualized medicine. M13 phages have also been subjected to novel engineering approaches, including phage-based bionanomaterial engineering and phage-directed nanomaterial combinations that enhance the bionanomaterial properties of M13 phages. In view of these features, researchers have been able to utilize M13 phages for therapeutic applications such as drug delivery, biodetection, tissue regeneration, and targeted cancer therapy. In particular, M13 phages have been utilized as a novel bionanomaterial for precisely mimicking natural tissue environment in order to overcome the shortage in tissue and organ donors. Hence, in this review, we address the recent studies and advances of using M13 phages in the field of nanomedicine as therapeutic agents based upon their characteristics as novel bionanomaterial with biomolecules displayed. This paper also emphasizes the novel engineering approach that enhances M13 phage's bionanomaterial capabilities. Current limitations and future approaches are also discussed to provide insight in further progress for M13 phage-based clinical applications.
Collapse
Affiliation(s)
- Cheng Chang
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Wennan Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Xinbo Yu
- Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Chaoyi Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Nan Zhou
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Xiaokui Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author.
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Corresponding author.
| | - Yongzhang Zhu
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
- Corresponding author.
| |
Collapse
|
36
|
Chen L, Guo Y, Chen L, Hu K, Ruan L, Li P, Cai X, Li B, Shou Q, Jiang G. Injectable Zn 2+ and Paeoniflorin Release Hydrogel for Promoting Wound Healing. ACS APPLIED BIO MATERIALS 2023. [PMID: 37155159 DOI: 10.1021/acsabm.3c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As more and more superbugs emerge, wounds are struggling to heal due to the inflammation that accompanies infection. Therefore, there is an urgent need to reduce the abuse of antibiotics and find nonantibiotic antimicrobial methods to counter infections to accelerate wound healing. In addition, common wound dressings struggle to cover irregular wounds, causing bacterial invasion or poor drug release, which reduces the wound healing rate. In this study, Chinese medicinal monomer paeoniflorin which can inhibit inflammation is loaded in mesoporous zinc oxide nanoparticles (mZnO), while Zn2+ released from mZnO degradation can kill bacteria and facilitate wound healing. The drug-loaded mZnO was encapsulated by a hydrogel formed from oxidized konjac glucomannan and carboxymethyl chitosan via rapid Schiff base reaction to obtain an injectable drug-releasing hydrogel wound dressing. The immediate-formation hydrogel allows the dressing to cover any wound shape. In vitro and in vivo studies have demonstrated that the dressing has good biocompatibility and superior antibacterial properties, which can promote wound healing and tissue regeneration by promoting angiogenesis and collagen production, providing a promising perspective for the further development of multifunctional wound dressings.
Collapse
Affiliation(s)
- Lianxu Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Yingxue Guo
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
- Jinhua Academy of Zhejiang Chinese Medicine University, Jinhua, Zhejiang 321015, PR China
| | - Lu Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Kang Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Liming Ruan
- Department of Dermatology, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang 315800, PR China
| | - Pengfei Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Xuehong Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Bin Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
- Jinhua Academy of Zhejiang Chinese Medicine University, Jinhua, Zhejiang 321015, PR China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| |
Collapse
|
37
|
Hajfathalian M, de Vries CR, Hsu JC, Amirshaghaghi A, Dong YC, Ren Z, Liu Y, Huang Y, Li Y, Knight S, Jonnalagadda P, Zlitni A, Grice E, Bollyky PL, Koo H, Cormode DP. Theranostic gold in a gold cage nanoparticle for photothermal ablation and photoacoustic imaging of skin and oral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539604. [PMID: 37214850 PMCID: PMC10197567 DOI: 10.1101/2023.05.05.539604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.
Collapse
|
38
|
Liu L, Li S, Yang K, Chen Z, Li Q, Zheng L, Wu Z, Zhang X, Su L, Wu Y, Song J. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. NANO LETTERS 2023; 23:3929-3938. [PMID: 37129144 DOI: 10.1021/acs.nanolett.3c00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Manufacturing heteronanostructures with specific physicochemical characteristics and tightly controllable designs is very appealing. Herein, we reported NIR-II light-driven dual plasmonic (AuNR-SiO2-Cu7S4) antimicrobial nanomotors with an intended Janus configuration through the overgrowth of copper-rich Cu7S4 nanocrystals at only one high-curvature site of Au nanorods (Au NRs). These nanomotors were applied for photoacoustic imaging (PAI)-guided synergistic photothermal and photocatalytic treatment of bacterial infections. Both the photothermal performance and photocatalytic activity of the nanomotors are dramatically improved owing to the strong plasmon coupling between Au NRs and the Cu7S4 component and enhanced energy transfer. The motion behavior of nanomotors promotes transdermal penetration and enhances the matter-bacteria interaction. More importantly, the directional navigation and synergistic antimicrobial activity of the nanomotors could be synchronously driven by NIR-II light. The marriage of active motion and enhanced antibacterial activity resulted in the expected good antibacterial effects in an abscess infection mouse model.
Collapse
Affiliation(s)
- Luntao Liu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuqin Li
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Kaiqiong Yang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zongsheng Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Ma Y, Xu S, Yue P, Cao H, Zou Y, Wang L, Long H, Wu S, Ye Q. Synthesis and evaluation of water-soluble imidazolium salt chitin with broad-spectrum antimicrobial activity and excellent biocompatibility for infected wound healing. Carbohydr Polym 2023; 306:120575. [PMID: 36746566 DOI: 10.1016/j.carbpol.2023.120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Infections caused by bacteria have long constituted a major threat to human health and the economy. Therefore, there is an urgent need to design broad-spectrum antibacterial materials possessing good biocompatibility to treat such infections. Herein, inspired by the good biocompatibility of chitin and antibacterial properties of imidazolium salts, a polysaccharide-based material, imidazolium salt chitin (IMSC), was homogeneously prepared using a facile method with epichlorohydrin as a chemical crosslinker to combine chitin with imidazole to enhance Staphylococcus aureus (S. aureus)-infected wound healing. The characteristics, antimicrobial properties, and biosafety of IMSC were evaluated. The results demonstrated successful grafting of imidazole onto chitin. Furthermore, IMSC exhibited good water solubility, broad-spectrum antimicrobial activity, hemocompatibility, and biocompatibility. Moreover, IMSC enabled complete healing of S. aureus-infected wound in Sprague-Dawley rats within 15 days of application, thus demonstrating that IMSC could reduce wound inflammation and remarkably accelerate wound healing owing to its efficient antibacterial activity and ability to promote collagen deposition in and around the wound area. Therefore, this study provides a promising and potential therapeutic strategy for infected wound healing by synthesizing a water-soluble and broad-spectrum antimicrobial material exhibiting good biocompatibility.
Collapse
Affiliation(s)
- Yongsheng Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Shuyi Xu
- Wuhan University School of Nursing, Wuhan 430071, Hubei, PR China
| | - Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Lizhe Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Haitao Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, Hunan, PR China.
| |
Collapse
|
40
|
Lin J, Shi T, Wang Y, He Z, Mu Z, Cai X, Deng H, Shen J, Liu F. Hybrid Hydrogel Loaded with Chlorhexidine⊂β-CD-MSN Composites as Wound Dressing. Int J Nanomedicine 2023; 18:1725-1740. [PMID: 37025923 PMCID: PMC10072218 DOI: 10.2147/ijn.s401705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background Much attention has been paid to sustained drug release and anti-infection in wound management. Hydrogels, which are biocompatible materials, are promising tools for controlled drug release and infective protection during wound healing. However, hydrogels also demonstrate limitations in the highly efficient treatment of wounds because of the diffusion rate. In this work, we explored pH-sensitive hydrogels that enable ultra-long-acting drug release and sustained antibacterial properties. Methods We constructed a hybrid gelatin methacrylate (GelMA) system with sustainable antibacterial properties combining hyaluronic acid (HA)-coated mesoporous silica nanoparticles (MSN), which loaded host-guest complexes of chlorhexidine (CHX) with β-cyclodextrins (β-CD) (CHX⊂CD-MSN@HA@GelMA). The release mechanism of CHX was explored using UV-vis spectra after intermittent diffusion of CHX. The hybrid hydrogels were characterized, and the drug content in terms of the release profile, bacterial inhibition, and in vivo experiments were investigated. Results Except for dual protection from both hydrogels, MSN in the HA improved the drug loading efficiency to promote the local drug concentration. It showed that complicated CHX-loaded MSN releases CHX more gradually and over a longer duration than CHX-loaded MSNs. This demonstrated a 12-day CHX release time and antibacterial activity, primarily attributable to the capacity of β-CD to form an inclusion complex with CHX. Meanwhile, in vivo experiments revealed that the hydrogels safely promote skin wound healing and enhance therapeutic efficacy. Conclusion We constructed pH-sensitive CHX⊂CD-MSN@HA@GelMA hydrogels that enable ultra-long-acting drug release and sustained antibacterial properties. The combination of β-CD and MSN would be better suited to release a reduced rate of active molecules over time (slow delivery), making them great candidates for wound dressing anti-infection materials.
Collapse
Affiliation(s)
- Jian Lin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tianpeng Shi
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, People’s Republic of China
| | - Yi Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhiqi He
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhixiang Mu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaojun Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Hui Deng; Fen Liu, Email ;
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China
- Department of Regenerative Medicine, Vision, and Brain Health, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, People’s Republic of China
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
41
|
Shen S, Xu W, Lu J, Wang S, Huang Y, Zeng X, Xiao W, Yin J. Recent progress on fluorescent probes for viruses. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
42
|
Huang D, Wang Y, Xiao J, Wang Y, Zhu X, Xu B, Wang M. Scavenging of reactive oxygen species effectively reduces Pseudomonas aeruginosa biofilms through disrupting policing. ENVIRONMENTAL RESEARCH 2023; 220:115182. [PMID: 36586713 DOI: 10.1016/j.envres.2022.115182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Biofilm formation is likely to contribute greatly to antibiotic resistance in bacteria and therefore the efficient removal of bacterial biofilms needs addressing urgently. Here, we reported that the supplement of non-inhibitory concentration of N-acetyl-L-cysteine (NAC), a common reactive oxygen species (ROS) scavenger, can significantly reduce the biomass of mature Pseudomonas aeruginosa biofilms (corroborated by crystal violet assay and laser scanning confocal microscopy). 1 mM NAC increased the cheater (ΔlasR mutant) frequency to 89.4 ± 1.5% in the evolved PAO1 after the 15-day treatment. Scavenging of ROS by NAC induced the collapse of P. aeruginosa biofilms, but it did not alter quorum sensing-regulated genes expression (e.g., hcnC and cioAB) and hydrogen cyanide production. The replenishment of public good protease contributed to the recovery of biofilm biomass, indicating the role of disrupting policing in biofilm inhibition. Furthermore, 7 typical ROS scavengers (e.g., superoxide dismutase, catalase and peroxidase, etc.) also effectively inhibited mature P. aeruginosa biofilms. This study demonstrates that scavenging of ROS can promote the selective control of P. aeruginosa biofilms through policing disruption as a targeted biofilm control strategy in complex water environments.
Collapse
Affiliation(s)
- Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Junwei Xiao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yufan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xinyu Zhu
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
43
|
Pardo-Freire M, Domingo-Calap P. Phages and Nanotechnology: New Insights against Multidrug-Resistant Bacteria. BIODESIGN RESEARCH 2023; 5:0004. [PMID: 37849463 PMCID: PMC10521656 DOI: 10.34133/bdr.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 10/19/2023] Open
Abstract
Bacterial infections are a major threat to the human healthcare system worldwide, as antibiotics are becoming less effective due to the emergence of multidrug-resistant strains. Therefore, there is a need to explore nontraditional antimicrobial alternatives to support rapid interventions and combat the spread of pathogenic bacteria. New nonantibiotic approaches are being developed, many of them at the interface of physics, nanotechnology, and microbiology. While physical factors (e.g., pressure, temperature, and ultraviolet light) are typically used in the sterilization process, nanoparticles and phages (bacterial viruses) are also applied to combat pathogenic bacteria. Particularly, phage-based therapies are rising due to the unparalleled specificity and high bactericidal activity of phages. Despite the success of phages mostly as compassionate use in clinical cases, some drawbacks need to be addressed, mainly related to their stability, bioavailability, and systemic administration. Combining phages with nanoparticles can improve their performance in vivo. Thus, the combination of nanotechnology and phages might provide tools for the rapid and accurate detection of bacteria in biological samples (diagnosis and typing), and the development of antimicrobials that combine the selectivity of phages with the efficacy of targeted therapy, such as photothermal ablation or photodynamic therapies. In this review, we aim to provide an overview of how phage-based nanotechnology represents a step forward in the fight against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Marco Pardo-Freire
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| |
Collapse
|
44
|
Hu J, Feng K, Cong Y, Li X, Jiang Y, Jiao X, Li Y, Zhang Y, Dong X, Lu W, Ding Z, Hong H. Nanosized Shikonin-Fe(III) Coordination Material for Synergistic Wound Treatment: An Initial Explorative Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56510-56524. [PMID: 36516041 DOI: 10.1021/acsami.2c16011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shikonin (Shik), a natural pigment, has received growing interest in various biomedical fields due to its anti-inflammatory, antitumor, antimicrobial, and antioxidant ability. However, some inherent characteristics of Shik, such as its virulence, low bioavailability, and poor solubility, have limited its biomedical applicability. Here, we reported a facile synthetic method to produce the Shik-iron (III) nanoparticles (Shik-Fe NPs), which could overcome these limitations of Shik. The synthesized Shik-Fe NPs possessed a uniform size range of 110 ± 10 nm, negative surface charges, good water dispersity, and high safety. Iron distributed uniformly inside Shik-Fe NPs, and iron constituted 20% of total mass in PEGylated Shik-Fe NPs. When interacting with activated macrophages, Shik-Fe NPs significantly reduced the level of cellular inflammatory factors, for example, iNOS, IL-1β, and TNF-α. Furthermore, the Shik-Fe NPs demonstrated synergistic anti-inflammation and anti-bacterial properties in vivo, since they could release Fe3+ and Shik to eradicate bacteria (Staphylococcus aureus and P. aeruginosa were used as model microbes here) during wound infections and provide full recovery for scald wounds. Collectively, the study established a dual-functional Shik-derived nanoplatform, which could be useful for the treatment of various inflammation-involved diseases.
Collapse
Affiliation(s)
- Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093 China
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yanjun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaodan Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yurong Li
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093 China
| | - Yuqin Zhang
- Key Laboratory of Animal Growth and Development of Henan Province, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, P.R. China, College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Xinying Dong
- Key Laboratory of Animal Growth and Development of Henan Province, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, P.R. China, College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Weifei Lu
- Key Laboratory of Animal Growth and Development of Henan Province, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, P.R. China, College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093 China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
45
|
Sun C, Wang X, Dai J, Ju Y. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects. Int J Mol Sci 2022; 23:11348. [PMID: 36232647 PMCID: PMC9569886 DOI: 10.3390/ijms231911348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The misuse and mismanagement of antibiotics have made the treatment of bacterial infections a challenge. This challenge is magnified when bacteria form biofilms, which can increase bacterial resistance up to 1000 times. It is desirable to develop anti-infective materials with antibacterial activity and no resistance to drugs. With the rapid development of nanotechnology, anti-infective strategies based on metal and metal oxide nanomaterials have been widely used in antibacterial and antibiofilm treatments. Here, this review expounds on the state-of-the-art applications of metal and metal oxide nanomaterials in bacterial infective diseases. A specific attention is given to the antibacterial mechanisms of metal and metal oxide nanomaterials, including disrupting cell membranes, damaging proteins, and nucleic acid. Moreover, a practical antibiofilm mechanism employing these metal and metal oxide nanomaterials is also introduced based on the composition of biofilm, including extracellular polymeric substance, quorum sensing, and bacteria. Finally, current challenges and future perspectives of metal and metal oxide nanomaterials in the anti-infective field are presented to facilitate their development and use.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Animal Bacteriology (Ministry of Agriculture), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
46
|
Wu MY, Wang Y, Wang LJ, Wang JL, Xia FW, Feng S. A novel furo[3,2- c]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chem Commun (Camb) 2022; 58:10392-10395. [PMID: 36039808 DOI: 10.1039/d2cc04084k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Rh-catalyzed tandem reaction was performed to construct an AIE-active furo[2,3-c]pyridine-based photosensitizer, named LIQ-TF. LIQ-TF showed near-infrared emission with high quantum yield, and high 1O2 and ˙OH generation efficiency, and could be used for specific imaging and photodynamic ablation of Gram-positive bacteria in vitro and in vivo, showing great potential for combating multiple drug-resistant bacteria.
Collapse
Affiliation(s)
- Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yun Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|