1
|
Wang J, Xu E, Wang H, Ding N, Liu C, Wang X, Liu C. Carbon Nanodots-Integrated Multifunctional Nanomedicine Establishes a Regenerative Feedback Loop between Vascular-Immune-Muscle Systems for Comprehensive Therapy of Critical Limb Ischemia. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40244804 DOI: 10.1021/acsami.5c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Critical limb ischemia (CLI) remains a major clinical challenge, with high amputation and mortality rates. Dysregulated intercellular interactions among vascular, immune, and muscle systems in CLI undermine the body's repair processes. Herein, a multiactive nanomedicine, CDs@Zn@l-Arg, was developed by integrating Panax notoginseng saponin-derived carbon nanodots (CDs-PNS), zinc ions, and l-arginine to induce a mutually supportive cycle of angiogenesis, macrophage reprogramming, and muscle regeneration. CDs-PNS, first identified for their potent antioxidative, angiogenic, and macrophage-reprogramming properties in CLI therapy, are further enhanced by leveraging zeolitic imidazolate frameworks as mediators to physically encapsulate them, while l-arginine is incorporated through electrostatic binding and Schiff base reactions. Individual cell culture experiments demonstrate that, through the integration of various bioactive components, CDs@Zn@l-Arg effectively promotes endothelial tube formation and myosatellite cell proliferation and reduces inflammation and oxidative stress. More importantly, cell coculture models further reveal that CDs@Zn@l-Arg successfully reverses the detrimental intercellular interactions typical of CLI, thereby enhancing the positive crosstalk between endothelial cells, macrophages, and myosatellite cells. In a CLI mouse model, treatment with CDs@Zn@l-Arg significantly improves blood perfusion, reduces inflammation, and accelerates limb function recovery. Altogether, by establishing a regenerative feedback loop among the vascular-immune-muscle system, this multiactive nanomedicine holds promise for overcoming the multifaceted challenges of CLI, providing a breakthrough strategy for integrated therapy.
Collapse
Affiliation(s)
- Jianyuan Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Erwei Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haoran Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ning Ding
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunlei Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Chen Z, Wang Y, Zhang S, Qiao H, Zhang S, Wang H, Zhang XD. Advances in the Treatment of Spinal Cord Injury with Nanozymes. Bioconjug Chem 2025; 36:627-651. [PMID: 40163781 DOI: 10.1021/acs.bioconjchem.5c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spinal cord injury (SCI) with increasing incidence can lead to severe disability. The pathological process involves complex mechanisms such as oxidative stress, inflammation, and neuron apoptosis. Current treatment strategies focusing on the relief of oxidative stress and inflammation have achieved good effects, while many problems and challenges remain such as the side effect and short half-life of the therapeutic agents. Nanozymes exhibiting good biocatalytic activities can sustainably scavenge free radicals, inhibit neuroinflammation, and protect the neurons. With high stability in physiological conditions and cost-effectiveness, the nanozymes provide a new strategy for SCI treatment. In this Review, we outline the advances of nanozymes and their enzyme-mimicking activities and highlight the progress in the intervention of SCI-adopting nanozymes. We also propose future directions and clinical translation for the nanozyme strategy against SCI.
Collapse
Affiliation(s)
- Zuohong Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuquan Zhang
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Luo F, Wang X, Tian W, Zhu B, Hu J. Multifunctional CuTax nanozyme-based chitosan edible coatings for fruit preservation. Int J Biol Macromol 2025; 310:143204. [PMID: 40246091 DOI: 10.1016/j.ijbiomac.2025.143204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The preservation of fresh fruits is critically challenged by oxidative degradation and microbial contamination, which lead to quality deterioration and reduced shelf life. In this study, we took advantage of the multiple benefits of Taxfolin (Tax) and copper to develop CuTax nanozymes, and which were showed to have excellent free radical scavenging ability, as evidenced by 90.3 % ± 0.2 % DPPH and 85.61 % ± 0.08 % ABTS free radical scavenging rates. Additionally, the CuTax exhibited peroxidase-like (POD-like) activity and effective glutathione (GSH) depletion. Moreover, the CuTax were found to effectively suppress the colony formation of E. coli and S. aureus, reduce bacterial viability, and disrupt bacterial structures. Ultimately, a CuTax/CS composite coating/films for food preservation was successfully developed using chitosan (CS) as a carrier and the protective efficacy against food spoilage was evaluated using bananas and apples as representative fruits. These findings suggest that CuTax/CS composite coatings offer a multifunctional approach to active food packaging that effectively extend the shelf life and preserve the quality of fresh fruits.
Collapse
Affiliation(s)
- Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinchuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
5
|
Yang M, Deng Z, Zhu Y, Xu C, Ding C, Zhang Y, Zhang M, Zhang M. Advancements in herbal medicine-based nanozymes for biomedical applications. Chin Med J (Engl) 2025:00029330-990000000-01500. [PMID: 40169370 DOI: 10.1097/cm9.0000000000003584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 04/03/2025] Open
Abstract
ABSTRACT Nanozymes are a distinct category of nanomaterials that exhibit catalytic properties resembling those of enzymes such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Nanozymes derived from Chinese herbal medicines exhibit the catalytic functions of their enzyme mimics, while retaining the specific medicinal properties of the herb (termed "herbzymes"). These nanozymes can be categorized into three main groups based on their method of synthesis: herb carbon dot nanozymes, polyphenol-metal nanozymes, and herb extract nanozymes. The reported catalytic activities of herbzymes include POD, SOD, CAT, and GPx. This review presents an overview of the catalytic activities and potential applications of nanozymes, introduces the novel concept of herbzymes, provides a comprehensive review of their classification and synthesis, and discusses recent advances in their biomedical applications. Furthermore, we also discuss the significance of research into herbzymes, including the primary challenges faced and future development directions.
Collapse
Affiliation(s)
- Mei Yang
- Department of Organ Procurement and Allocation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chenguang Ding
- Department of Organ Procurement and Allocation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
6
|
Ji J, Zhou J, Li X, Zhang Y, Gu L, Wang Y, Zheng X, Li Y, He J, Yang C, Xiao K, Gong Q, Xu C, Luo K. Tailoring the dendronized structures of cyclodextrin-based supramolecular nanoassemblies for enhanced tumor paraptosis via disrupting endoplasmic reticulum homeostasis. Acta Biomater 2025; 195:436-450. [PMID: 39933641 DOI: 10.1016/j.actbio.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Bioactive nanomaterials have been extensively utilized in medical applications. There are, however, very few reports on clinical applications of methylated β-cyclodextrin-derived supramolecular bioactive nanoagents, particularly in relation to the chemical features and biological properties. Herein, we designed and fabricated supramolecular bioactive nanoassemblies derived from permethyl β-cyclodextrin (PMCD) with increased proportions of PMCD on their dendronized side chains and further investigated the impact of chemical structures on their antitumor efficacy. Importantly, enhanced antitumor efficacy was observed with an increase in the proportion of PMCD on the dendronized side chains. Notably, pHPMA-co-(dendron Permethyl-β-CD4) (P4), which was featured with the highest PMCD proportion on its side chains, demonstrated the greatest potency in disrupting endoplasmic reticulum (ER) homeostasis, thus achieving conspicuous tumor cell paraptosis and promising antitumor efficacy in vivo without obvious side effects. Mechanistically, P4 colocalized with the ER, disrupted ER homeostasis, and triggered ER stress through the upregulation of proteins associated with the unfolded protein response, thus provoking abundant cytoplasmic vacuoles through the dilation of ER and resultant tumor paraptosis, a non-apoptotic mode of cell death. Overall, this study lays the groundwork for the precise design and synthesis of supramolecular bioactive agents derived from methylated β-cyclodextrin by precisely modulating their chemical structures. STATEMENT OF SIGNIFICANCE: Cyclodextrin-based supramolecular bioactive nanoagents could be employed for tumor management. However, there are challenges in developing β-cyclodextrin-derived bioactive nanoagents and tuning their structure-activity relationship to enhance their antitumor effects. Herein, we synthesized several bioactive nanoagents utilizing HPMA and PMCD by meticulously modulating their dendronized structures. It was revealed that P4, which was featured with the highest proportion of PMCD on its side chains, could distinctly interact with the ER. This enhanced interaction disrupted ER homeostasis, resulting in pronounced ER stress and paraptosis in tumor cells. Additionally, P4 exhibited efficient tumor retention and effective antitumor activity in vivo. This study demonstrated that biological function of β-cyclodextrin-derived bioactive nanoagents could be enhanced through optimization of the PMCD proportion on their side chains.
Collapse
Affiliation(s)
- Jiecheng Ji
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujia Wang
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuli Zheng
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunkun Li
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Kai Xiao
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR
| | - Kui Luo
- Department of Radiology, Department of Pharmacy, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Institute of Breast Health Medicine, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Precision Cancer Therapeutics, and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
7
|
Zhao Y, Li Y, Li D, Yuan H, Shen C. Eco-Friendly Synthesized Carbon Dots from Chinese Herbal Medicine: A Review. Int J Nanomedicine 2025; 20:3045-3065. [PMID: 40098722 PMCID: PMC11912022 DOI: 10.2147/ijn.s497892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025] Open
Abstract
Chinese herbal medicines and their extracts will produce nano-components of charcoal drugs after high-temperature carbonization, and the process is similar to that of carbon dots (CDs). Chinese herbal medicine-derived CDs (CHM-CDs) are a new carbon-based nanomaterial with a particle size of less than 10 nm discovered in charcoal drugs in recent years. CHM-CDs possess a range of beneficial traits, such as minimal toxicity, strong water solubility, superior biocompatibility, and remarkable photoluminescence capabilities. Additionally, they exhibit multifaceted pharmacological activity in the absence of drug loading. Over the past half-decade, numerous publications have presented evidence suggesting that CHM-CDs exhibit a wide array of pharmacological effects. These primarily encompass hemostatic capabilities, neuroprotection, anti-infective, antitumor, immunomodulatory effects and hypoglycemic activity. Notably, they have been associated with circulatory system, digestive system, nervous system, immune system, endocrine system, urinary system and skeletal system. This article systematically reviews the modern pharmacological effects and potential mechanisms of CHM-CDs, offering insights into current challenges and proposing directions for future advancements. As such, it serves as a vital reference for the clinical application of CHM-CDs.
Collapse
Affiliation(s)
- Yusheng Zhao
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Yucong Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Dawei Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Huageng Yuan
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Chuanan Shen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
8
|
Zhu Q, Zhang R, Zhao Z, Xie T, Sui X. Harnessing phytochemicals: Innovative strategies to enhance cancer immunotherapy. Drug Resist Updat 2025; 79:101206. [PMID: 39933438 DOI: 10.1016/j.drup.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment, but therapeutic ineffectiveness-driven by the tumor microenvironment and immune evasion mechanisms-continues to limit its clinical efficacy. This challenge underscores the need to explore innovative approaches, such as multimodal immunotherapy. Phytochemicals, bioactive compounds derived from plants, have emerged as promising candidates for overcoming these barriers due to their immunomodulatory and antitumor properties. This review explores the synergistic potential of phytochemicals in enhancing immunotherapy by modulating immune responses, reprogramming the tumor microenvironment, and reducing immunosuppressive factors. Integrating phytochemicals with conventional immunotherapy strategies represents a novel approach to mitigating resistance and enhancing therapeutic outcomes. For instance, nab-paclitaxel has shown the potential in overcoming resistance to immune checkpoint inhibitors, while QS-21 synergistically enhances the efficacy of tumor vaccines. Furthermore, we highlight recent advancements in leveraging nanotechnology to engineer phytochemicals for improved bioavailability and targeted delivery. These innovations hold great promise for optimizing the clinical application of phytochemicals. However, further large-scale clinical studies are crucial to fully integrate these compounds into immunotherapeutic regimens effectively.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
9
|
Wang J, Gu X, Gao X, Chen J, Lv Z, Zhang S, Ni S, Shi F, Chen X, Cao L, Wang Z, Xiao W. Formulation and optimization of glycyrrhetinic acid-modified pH-sensitive curcumin liposomes for anti-hepatocellular carcinoma. Pharm Dev Technol 2025; 30:233-245. [PMID: 39935270 DOI: 10.1080/10837450.2025.2465549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
In order to enhance the therapeutic value of curcumin in liver cancer treatment, glycyrrhetinic acid-modified pH-sensitive curcumin liposomes (GA-pH-Lip@Cur) was developed.GA-pH-Lip@Cur was prepared using a thin film dispersion ultrasonication method, and the optimal formulation process was selected through single-factor experiments and a Box-Behnken design-response surface methodology. The liposomes were evaluated for their morphological appearance, particle size, in vitro release at different pH levels, and biocompatibility. The anti-tumor effect of GA-pH-Lip@Cur was assessed using cell viability assays (CCK-8). The in vivo hepatic targeting and anti-liver tumor efficacy of GA-pH-Lip@Cur were evaluated through pharmacokinetic and pharmacological experiments. The results indicated that optimized GA-pH-Lip@Cur exhibited uniform particle size distribution, good stability, pH-sensitive in vitro release with sustained behavior. Compared to conventional liposomes, GA-pH-Lip@Cur showed prolonged average retention time in vivo and significantly increased curcumin distribution in liver tissues, indicating excellent liver targeting. Both in vitro and in vivo evaluations demonstrated the effectiveness of GA-pH-Lip@Cur in inhibiting liver cancer cell proliferation and suppressing liver tumor growth in tumor-bearing mice. In conclusion, GA-pH-Lip@Cur, by leveraging the acidic tumor microenvironment and overexpression of glycyrrhetinic acid receptors in liver cells, encapsulates curcumin to improve its bioavailability, and target its delivery to the liver tumor sites.
Collapse
Affiliation(s)
- Jie Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Xuemei Gu
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Xia Gao
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Jing Chen
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Zhiyang Lv
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyu Zhang
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Siyu Ni
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Fei Shi
- Hanlin College of Nanjing University of Chinese Medicine, Taizhou, China
| | - Xialin Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Liang Cao
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Zhenzhong Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| | - Wei Xiao
- Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| |
Collapse
|
10
|
Xie E, Yuan Z, Chen Q, Hu J, Li J, Li K, Wang H, Ma J, Meng B, Zhang R, Mao H, Liang T, Wang L, Liu C, Li B, Han F. Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409683. [PMID: 39840502 PMCID: PMC11904992 DOI: 10.1002/advs.202409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study. The GH-MCD can intelligently release MCDs responding to the acidic microenvironment to scavenge intracellular ROS and exhibit good antibacterial activity by inducing the production of ROS in bacteria and inhibiting the expression of secA2. Moreover, it has high osteogenesis and long-lasting antimicrobial activity during bone repair. RNA-seq results reveal that the hydrogels promote the repair of infected bone healing by enhancing cellular resistance to bacteria, balancing osteogenesis and osteoclastogenesis, and regulating the immune microenvironment. In conclusion, the GH-MCD can promote the repair of infectious bone defects through the programmed transformation of the microenvironment, providing a novel strategy for infectious bone defects.
Collapse
Affiliation(s)
- En Xie
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Zhangqin Yuan
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qianglong Chen
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jie Hu
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kexin Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Jinjin Ma
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bin Meng
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Ruoxi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, P. R. China
| | - Ting Liang
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Lijie Wang
- Sanitation & Environment Technology Institute of Soochow University Ltd., Suzhou, Jiangsu, 215000, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
11
|
Cordani M, Fernández-Lucas J, Khosravi A, Zare EN, Makvandi P, Zarrabi A, Iravani S. Carbon-based nanozymes for cancer therapy and diagnosis: A review. Int J Biol Macromol 2025; 297:139704. [PMID: 39793785 DOI: 10.1016/j.ijbiomac.2025.139704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Carbon-based nanozymes (CNs) have emerged as a significant innovation in targeted cancer therapy, demonstrating great potential for advancing cancer diagnosis and treatment. With exceptional catalytic properties, remarkable biocompatibility, and the ability to precisely target cancer cells, CNs provide a promising avenue for the development of novel oncological therapies. By functionalizing their surfaces with targeting ligands, such as antibodies or peptides, CNs can specifically recognize and bind to cancer cells. This targeted approach ensures that therapeutic agents are delivered directly to the tumor site, minimizing off-target effects, and reducing systemic toxicity. Additionally, the enzyme-like activities of CNs, when combined with conventional therapies such as chemotherapeutics, photothermal therapy, and photodynamic therapy, or other modalities can enhance therapeutic outcomes. Integrating CNs into clinical practice could significantly improve therapeutic efficacy, reduce probable side effects, enhance patient outcomes, and drive a shift towards more personalized cancer care. Besides, CNs can also be employed in biosensors and diagnostic nanomaterials, enabling rapid, selective, and highly accurate detection of specific biomarkers. Their versatile functionalities open new avenues for refining imaging techniques, ultimately contributing to early diagnosis and better clinical decision-making. This review consolidates recent studies exploring CNs in cancer targeting, highlighting both their diagnostic and therapeutic potential in oncology.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Jesús Fernández-Lucas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain; Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 #55 - 66, 080002 Barranquilla, Colombia
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| |
Collapse
|
12
|
Zhao M, Zhong W, Chen J, He Y, Zhou Z, Deng D, Lin S, Cheng H, Hu X, Wang X. A Fluorescence/Colorimetric Synergistic-Enhanced Type-I Heterostructured MOF@QDs for Both Multi-Depth Food-Freshness Prediction and Extra Preservation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410401. [PMID: 39945076 DOI: 10.1002/smll.202410401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Indexed: 03/20/2025]
Abstract
Spoiled food has significantly impacted the global economy and public health, which increases worldwide concern about monitoring and preserving food freshness. Herein, a multi-functional type-I heterojunction (Eu@ZMC) is designed by europium metal-organic framework (EuMOF), zinc oxide quantum dots (ZnO QDs), and chlorogenic acid (CGA). Eu@ZMC achieves ratiometric fluorescent/colorimetric sensing of pH and biogenic amines to detect freshness. Besides, a paper-based platform (PEu@ZMC) is prepared and can detect histamine with the LOD of 0.0142 and 0.0136 µg mL-1 in fluorescent and colorimetric modes, respectively. An advanced OR/NOT-gate logic device is further constructed to distinguish freshness into three levels (fresh, less fresh, and spoiled). This dual-mode sensor is synergistic-enhanced by the energy transfer triggered by ZnO QDs-promoted colorimetry and the type-I heterostructure of fluorescent EuMOF and ZnO QDs. The release of low-toxic zinc ions inhibits various bacterial growth, including Salmonella typhimurium. According to raw fish evaluation, Eu@ZMC not only effectively monitors spoilage externally and internally aligning with a commercial kit, but also reduces spoilage speed, which cannot be achieved through the classical detection strategy. This original work provides a simple, convenient, and reliable method for multi-depth and real-time visual food monitoring with extract freshness preservation, contributing to economic benefits and human health assurance.
Collapse
Affiliation(s)
- Mengzhen Zhao
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies of Nanchang University, Institute of Translational Medicine of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Wen Zhong
- Huankui Academy of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Jiaheng Chen
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Yuqing He
- School of Instrumentation and Optoelectronic Engineering of Beihang University, Beihang University, Beijing, 100191, P. R. China
| | - Zhibin Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies of Nanchang University, Institute of Translational Medicine of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Dan Deng
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Suai Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies of Nanchang University, Institute of Translational Medicine of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Haoxin Cheng
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Xiaotian Hu
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies of Nanchang University, Institute of Translational Medicine of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| |
Collapse
|
13
|
Lai CM, Xiao XS, Chen JY, He WY, Wang SS, Qin Y, He SH. Revolutionizing nanozymes: The synthesis, enzyme-mimicking capabilities of carbon dots, and advancements in catalytic mechanisms. Int J Biol Macromol 2025; 293:139284. [PMID: 39736288 DOI: 10.1016/j.ijbiomac.2024.139284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities. This review explores the methodologies used for synthesizing CDs with enzyme mimicking capabilities, highlighting potential avenues such as doping and hybrid nanozymes to enhance their catalytic efficacy. Moreover, a comprehensive overview of CDs that mimick the activities of various oxidoreductases-like peroxidase, catalase, oxidase/laccase, and superoxide dismutase-like is provided. The focus is on the in-depth exploration of the mechanisms, advancements and practical applications of each oxidoreductase-like function exhibited by CD nanozymes. Drawing upon these exhaustive summaries and analyses, the review identifies the prevailing challenges that hinder the seamless integration of CDs into real-world applications and offers forward-looking perspectives for future directions.
Collapse
Affiliation(s)
- Chun-Mei Lai
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Shan Xiao
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Jing-Yi Chen
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Wen-Yun He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Si-Si Wang
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China.
| | - Shao-Hua He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China.
| |
Collapse
|
14
|
Li Z, Li H, Tang Z, Tang Q, Liao C, Tang H, Wang D. Design of acidic activation-responsive charge-switchable carbon dots and validation of their antimicrobial activity. RSC Adv 2025; 15:5413-5425. [PMID: 39967894 PMCID: PMC11833602 DOI: 10.1039/d5ra00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Bacterial biofilms play a crucial role in the emergence of antibiotic resistance and the persistence of chronic infections. The challenge of effectively eradicating bacterial biofilms while ensuring minimal toxicity to normal cells persists. Carbon-based artificial nanoenzymes have attracted considerable attention as emerging nanotheranostic agents, owing to their biocompatibility, cost-effectiveness, and straightforward synthesis. In this study, we have developed a multifunctional carbon dots (CDs) system, specifically CDs functionalized with 1-(3-aminopropyl) imidazole (API), termed CDs-API. This system demonstrates acid-activated antibiofilm activity. The CDs-API were synthesized from chlorogenic acid (ChA), a bioactive compound naturally occurring in coffee, and subsequently functionalized with API to achieve charge-switchable properties under acidic conditions. This distinctive feature enables CDs-API to efficiently penetrate bacterial biofilms and selectively target the colonized bacteria. The enzyme-like activity of CDs-API effectively consumes high levels of glutathione (GSH) within the biofilm, leading to the accumulation of reactive oxygen species (ROS). Consequently, this process degrades the extracellular polymeric substance (EPS) matrix, damages bacterial DNA and protein structures, and disrupts the redox balance, ultimately leading to bacterial cell death. Experimental results demonstrated that CDs-API effectively inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAE) while promoting wound healing with minimal damage to healthy tissues. The acid-activated charge-switchable capability of CDs-API provides superior antibacterial efficacy compared to traditional antibiotics, rendering it a promising candidate for the treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Zhuo Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Hui Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Qingxia Tang
- Clinical Laboratory, The People's Hospital of Rongchang District Chongqing 402460 China
| | - Chang Liao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Dan Wang
- Post-Doctoral Research Center, The People's Hospital of Rongchang District Chongqing 402460 China
| |
Collapse
|
15
|
Wang J, Tian N, Tian T, Xiao L, Zhou X, Liu G, Zhang Z, Zhao Y, Guo J, Lin Q, Jiang Y. Low toxicity ginsenoside Rg1-carbon nanodots as a potential therapeutic agent for human non-small cell lung cancer. Colloids Surf B Biointerfaces 2025; 246:114392. [PMID: 39579497 DOI: 10.1016/j.colsurfb.2024.114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Here ginsenoside Rg1 was used to synthesise Rg1 carbon nanodots via a one-step hydrothermal method. The surface of the Rg1 carbon nanodots is rich in hydrophilic functional groups with good water solubility and biocompatibility. The Rg1 carbon nanodots exhibited a high inhibitory effect on the proliferation, migration, and proapoptotic ability of non-small cell lung cancer A549 cells. The changes in the levels of ROS, Ca2+, and MMP in A549 cells after the administration of Rg1 carbon nanodots were evaluated and further correlated with relevant proteins in the caspase apoptotic pathway. Proteomic screening revealed that the Rg1 carbon nanodots could regulate A549 cell apoptosis by activating the expression of MAPK pathway-related proteins. In the in vivo experiment, the therapeutic efficacy of the Rg1 carbon nanodots in inhibiting tumour growth was much higher than that of commonly used chemotherapy drugs, with negligible toxicity and side effects. Immunohistochemical staining showed that the expression of caspase- and MAPK pathway-related proteins in mouse tumour tissues was consistent with that at the cellular level. The results suggest that Rg1 carbon nanodots can promote tumour apoptosis and represent a potential therapeutic agent for human non-small-cell lung cancer.
Collapse
Affiliation(s)
- Jifeng Wang
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Ning Tian
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Tenghui Tian
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xuechun Zhou
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Guancheng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhe Zhang
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yu Zhao
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Jiajuan Guo
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yingnan Jiang
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
16
|
Li T, Cao B, Su T, Lin L, Wang D, Liu X, Wan H, Ji H, He Z, Chen Y, Feng L, Zhang TY. Machine Learning-Engineered Nanozyme System for Synergistic Anti-Tumor Ferroptosis/Apoptosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408750. [PMID: 39679771 DOI: 10.1002/smll.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Nanozymes with multienzyme-like activity have sparked significant interest in anti-tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe-Arg-CDs@ZIF-8/HAD, FZH) is shown, which enhances synergistic anti-tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree-Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide-and-conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme-based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti-tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme-based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
Collapse
Affiliation(s)
- Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Bin Cao
- Guangzhou Municipal Key Laboratory of Materials Informatics, Sustainable Energy and Environment Thrust, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Tianhao Su
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Xinting Liu
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Haoyu Wan
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yingying Chen
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai, 200444, China
| | - Tong-Yi Zhang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, Sustainable Energy and Environment Thrust, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| |
Collapse
|
17
|
Lu Z, Li H, Song N, Wang Z, Wang H, Rehman A, Han L, Zeng KW. Therapeutic Potential of Carbon Dots Derived from Phytochemicals as Nanozymes Exhibiting Superoxide Dismutase Activity for Anemia. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4562-4578. [PMID: 39792367 DOI: 10.1021/acsami.4c17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process. In this work, we present a carbon dot (CP-CDs) derived from phytochemicals that significantly promotes the self-renewal of erythroblast progenitors for anemia therapy. As a superoxide dismutase (SOD)-like nanozyme, CP-CDs significantly activate the hypoxia response and JAK/STAT3 pathways in erythroid cells by reprogramming the oxidative stress state. This results in unique erythropoiesis-enhancing properties by promoting the generation of erythroid progenitor cells. Moreover, CP-CDs protect mature red blood cells by inhibiting oxidative stress-induced damage and improving the immune-inflammatory microenvironment. In vivo, CP-CDs showed a promising therapeutic effect in mouse and zebrafish models of anemia with minimal adverse effects, indicating significant translational medical value. Collectively, this study not only illustrates a successful approach for nanomedicine-enhanced anemia therapy but also enhances our understanding of the interaction between nanomedicine and the self-renewal of erythroblast progenitors.
Collapse
Affiliation(s)
- Zhiyuan Lu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haojia Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Nannan Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zhiwei Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hua Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Asma Rehman
- National Institute for Biotechnology & Genetic Engineering College Pakistan Institute of Engineering & Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Liwen Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Wang C, Li J, Liu K, Li J, Zhang F, Ma X, Li Y, Zhang C, Liu X, Qu Y, Zhao M, Li W, Huang W, Li YQ. Donkey-Hide Gelatin-Derived Carbon Dots Activate Erythropoiesis and Eliminate Oxidative Stress for Aplastic Anemia Treatment. ACS NANO 2025; 19:2922-2935. [PMID: 39772431 DOI: 10.1021/acsnano.4c16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aplastic anemia (AA) is a life-threatening hematologic disease with limited therapeutic options. Stalled erythropoiesis and oxidative stress-induced hemocyte apoptosis are the main pathological features of AA, yet therapeutic agents that address these issues remain elusive. In this study, we report distinctive donkey-hide gelatin-derived carbon dots (G-CDs) that enable erythropoiesis activation and oxidative stress elimination to tackle refractory AA. We demonstrate that G-CDs can promote the proliferation and erythroid differentiation of hematopoietic stem cells as well as erythrocyte maturation, activating the whole process of erythropoiesis. Moreover, G-CDs display multienzyme-like activities and dramatically alleviate the oxidative stress of bone marrow and peripheral blood via catalytic scavenging of multiple reactive oxygen species, reconstructing the hematopoietic microenvironment. Intravenously or orally administered to AA mice induced by chemotherapy drugs, G-CDs significantly boost the level of red blood cells and hemoglobin and lead to the complete recovery of hematopoietic function, showing better therapeutic performance than clinically approved erythropoietin (EPO) without adverse effects. By collaboratively addressing the issues of stalled erythropoiesis and oxidative stress, the G-CDs-based intervention strategy may offer a powerful paradigm for clinical AA management.
Collapse
Affiliation(s)
- Chunzhen Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Jinghui Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Kehan Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Junjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Fan Zhang
- Gastroenterology ICU, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaomin Ma
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Yuezheng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan 250012, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| | - Weimin Huang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan 250031, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Sun M, Chen Q, Ren Y, Zhuo Y, Xu S, Rao H, Wu D, Feng B, Wang Y. CoNiCoNC tumor therapy by two-ways producing H 2O 2 to aggravate energy metabolism, chemokinetics, and ferroptosis. J Colloid Interface Sci 2025; 678:925-937. [PMID: 39270392 DOI: 10.1016/j.jcis.2024.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The effectiveness of chemokinetic therapy nanozymes is severely constrained because of the low H2O2 levels in the tumor microenvironment. Unlike other self-produced H2O2 nanozymes, the N-CNTs-encapsulated CoNi alloy (CoNiCoNC) with glucose oxidase and lactate oxidase activities has two ways to produce H2O2. It can facilitate the transformation of glucose and lactic acid into H2O2 simultaneously. First, the H2O2 generation pathway is favorable for aggravating energy metabolism. Second, some produced H2O2 can be decomposed by CoNiCoNC to H2O and O2 with the 4e- pathway to alleviate the TME hypoxia. Third, H2O2 can be catalyzed to form OH to enhance reactive oxygen species (ROS) content. Through proteomic analysis, nanozymes substantially impact the metabolic pathways of cancer cells because of their aggravating energy metabolism. The high levels of ROS can cause mitochondrial lipid peroxidation and cellular ferroptosis. Consequently, the two-way H2O2-selective nanoenzymatic platform realizes the synergistic effect of starvation therapy and chemokinetics.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Qiushu Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yingying Ren
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
20
|
Wen J, Wang J, Wang S, Zhou X, Fu Y. Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer. Front Bioeng Biotechnol 2025; 12:1526877. [PMID: 39877268 PMCID: PMC11772348 DOI: 10.3389/fbioe.2024.1526877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.0% and the luminescence position remained basically unchanged, caused by the unchanged surface light-emitting structure of the CDs, due to the existence of electrostatic repulsion between the CDs and the hydrogel. Moreover, the tensile-stress of the fluorescent film with 1.0 wt.% of the CDs was increased by 200% to 10.3 Mpa, and the strain was increased from 117% to 153%. The above experimental results are attributed to the hydrogen bonding between the CDs and the sodium alginate-gelatin hydrogel from analyses of the FT-IR spectra. Interestingly, Fe3+ exerted a great quenching effect on this fluorescent film in the concentration range of 0-1.8 μM. The film can be basically used recyclically to detect Fe3+ in solution with a detection limit as low as 0.043 μM. In a word, this work demonstrated an enormous potential of carbon dots in fabricating mechanical and fluorescent properties of the hydrogel and proposed a new detection platform for Fe3+. In view of the promising Fe3+ detection capacity, this hydrogel film can also be applied in oral bacteria surveillance and semi-quantification of ferroptosis in oral cancer.
Collapse
Affiliation(s)
- Jinxi Wen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jian Wang
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Siqi Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - You Fu
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
21
|
Wang Y, Du M, Wang J, Bai Z, Cui C, Tong J, Liu Y, Guo S, Zhang W, Wu X, Li B. Carbon dots-cisplatin nano drug delivery system induces the death of oral tongue squamous cell under self-targeting chemical/photodynamic combined therapy. Colloids Surf A Physicochem Eng Asp 2025; 704:135511. [DOI: 10.1016/j.colsurfa.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Mo Y, Zou Z, Chen E. [Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:715-725. [PMID: 39694527 PMCID: PMC11726010 DOI: 10.3724/zdxbyxb-2024-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China.
| | - Zhilin Zou
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
23
|
Zhao D, Deng Y, Jiang X, Bai Y, Qian C, Shi H, Wang J. Advances in Carbon Dot Based Enhancement of Photodynamic Therapy of Tumors. ACS APPLIED BIO MATERIALS 2024; 7:8149-8162. [PMID: 39526921 DOI: 10.1021/acsabm.4c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy has advantages of high selectivity, less invasiveness, and high lethality for cancer cells compared with traditional treatment methods. However, some problems have hindered the development of photodynamic therapy, such as limited penetration depth, lack of oxygen, and toxicity. Carbon dots are widely used in the imaging and treatment of tumors due to their excellent optical and physicochemical properties, so effective methods have been explored to address the issues in photodynamic therapy via carbon dots. This review aims to elucidate the role of carbon dots in photodynamic therapy of cancer. Moreover, we summarize and discuss some strategies to harness carbon dots to enhance photodynamic therapy. Finally, we summarize many cancer synergistic therapeutic modalities involving carbon dots such as chemodynamic therapy, photothermal therapy, and immunotherapy in combination with photodynamic therapy to achieve more effective and safer treatments.
Collapse
Affiliation(s)
- Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yunhao Deng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chen Qian
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
24
|
Zhang S, Shen L, Xu P, Yang J, Song P, Li L, Li Y, Zhang Y, Wu S. Advancements of carbon dots: From the perspective of medicinal chemistry. Eur J Med Chem 2024; 280:116931. [PMID: 39369486 DOI: 10.1016/j.ejmech.2024.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Carbon dots (CDs) exhibit great potential in medicinal chemistry due to its excellent optical properties, biocompatibility and scalability, which have attracted significant interest. Based on their specific synthesis and modification, this review provided an overview of the evolution of the synthesis of CDs and reviewed the discovery and development of their optical properties. This review examines recent advances of CDs in medicinal chemistry, with a particular focus on the use of CDs as drugs and carriers for photodynamic and photothermal therapies in the field of neurological disorders, cancer, bacterial, viral, and further in combination with imaging for diagnostic and therapeutic integration. Finally, this review addresses the challenges and limitations of CDs in medicinal chemistry. This review provides a comprehensive overview of the development process of CDs and their applications in various aspects of medicinal chemistry, thereby offers insights to the development of CDs in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Li Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402, Hangzhou, PR China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Jiali Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Pengliang Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Lifang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, PR China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR, 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, PR China.
| |
Collapse
|
25
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
26
|
Nie X, Fu L, Guo AP, Zhang L, Huo SH, Zhang W, Chen ZL, Zhan X, Tang LQ, Wang F. Fe-based nanozyme with photothermal activity prepared from polymerization-induced self-assembly assays boosts the recovery of bacteria-infected wounds. Acta Biomater 2024:S1742-7061(24)00657-3. [PMID: 39521314 DOI: 10.1016/j.actbio.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Nowadays, the overuse of antibiotics has escalated bacterial infections into an increasingly severe global health threat. Developing non-antibiotic treatments has emerged as a promising strategy for treating bacterial infections. Notably, nanozyme-based composite materials have garnered growing interest. Therefore, the efficient preparation of nanozyme is important. Herein, we have presented an efficient method to prepare Fe-based nanozyme through polymerization-induced self-assembly assay to kill bacteria efficiently, which could significantly enhance the healing of infected wounds. Through polymerization-induced self-assembly assay, a large number of uniformly sized micelles, bearing imidazole groups, could be efficiently prepared. These nanoparticles subsequently chelate with Fe ions, followed by pyrolysis and etching processes, resulting in the production of uniformly small-sized nanozymes with high adsorption activity in the near-infrared region. The composite materials could effectively eradicate bacteria via a synergistic strategy of photothermal and catalytic therapies under infected microenvironments. In vivo animal models with full-thickness wounds showed that combination therapy not only eradicates 98 % of the bacteria but also significantly accelerates wound healing. This work underscores the utility of polymerization-induced self-assembly in the preparation of nanozymes and reveals promising applications of nanozymes in wound healing. STATEMENT OF SIGNIFICANCE: This research introduces a functional nanozyme with photothermal activity, synthesized through polymerization-induced self-assembly, offering a promising non-antibiotic strategy to combat bacterial infections. This strategy enhances wound healing by combining photothermal and catalytic therapies, effectively eradicating drug-resistant bacteria while minimizing damage to healthy tissue. Our findings hold significant implications for the development of advanced antibacterial treatments and offer a robust assay to prepare nanozyme with small sizes. The prepared functional nanoparticles have a potential in wound healing, addressing a critical need in the face of rising antibiotic resistance.
Collapse
Affiliation(s)
- Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Ling Fu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University Hefei, Anhui 230022, China
| | - An-Pin Guo
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Shao-Hu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University Hefei, Anhui 230022, China.
| | - Wen Zhang
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Zhao-Lin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Xiang Zhan
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Province, Hefei, Anhui 230601, China.
| | - Li-Qin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China.
| | - Fei Wang
- The Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
27
|
Zhao M, Yang J, Liang J, Shi R, Song W. Emerging nanozyme therapy incorporated into dental materials for diverse oral pathologies. Dent Mater 2024; 40:1710-1728. [PMID: 39107224 DOI: 10.1016/j.dental.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Nanozyme materials combine the advantages of natural enzymes and artificial catalysis, and have been widely applied in new technologies for dental materials and oral disease treatment. Based on the role of reactive oxygen species (ROS) and oxidative stress pathways in the occurrence and therapy of oral diseases, a comprehensive review was conducted on the methods and mechanisms of nanozymes and their dental materials in treating different oral diseases. METHODS This review is based on literature surveys from PubMed and Web of Science databases, as well as reviews of relevant researches and publications on nanozymes in the therapy of oral diseases and oral tumors in international peer-reviewed journals. RESULTS Given the unique function of nanozymes in the generation and elimination of ROS, they play an important role in the occurrence, development, and treatment of different oral diseases. The application of nanozymes in dental materials and oral disease treatment was introduced, including the latest advances in their use for dental caries, pulpitis, jaw osteomyelitis, periodontitis, oral mucosal diseases, temporomandibular joint disorders, and oral tumors. Future approaches were also summarized and proposed based on the characteristics of these diseases. SIGNIFICANCE This review will guide biomedical researchers and oral clinicians to understand the mechanisms and applications of nanozymes in the therapy of oral diseases, promoting further development in the field of dental materials within the oral medication. It is anticipated that more suitable therapeutic agents or dental materials encapsulating nanozymes, specifically designed for the oral environment and simpler for clinical utilization, will emerge in the forthcoming future.
Collapse
Affiliation(s)
- Menghan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China; Department of Orthodontics, School and Hospital of Stomatology, Jilin University, China
| | - Jin Yang
- College of Basic Medical Sciences, Jilin University, China
| | - Jiangyi Liang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, China
| | - Ruixin Shi
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, China.
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China.
| |
Collapse
|
28
|
Li Y, Xu Z, Qi Z, Huang X, Li M, Liu S, Yan Y, Gao M. Application of Carbon Nanomaterials to Enhancing Tumor Immunotherapy: Current Advances and Prospects. Int J Nanomedicine 2024; 19:10899-10915. [PMID: 39479174 PMCID: PMC11524014 DOI: 10.2147/ijn.s480799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advances in tumor immunotherapy have highlighted the pivotal role of carbon nanomaterials, such as carbon dots, graphene quantum dots, and carbon nanotubes. This review examines the unique benefits of these materials in cancer treatment, focusing on their mechanisms of action within immunotherapy. These include applications in immunoregulation, recognition, and enhancement. We explore how these nanomaterials when combined with specific biomolecules, can form immunosensors. These sensors are engineered for highly sensitive and specific detection of tumor markers, offering crucial support for early diagnosis and timely therapeutic interventions. This review also addresses significant challenges facing carbon nanomaterials in clinical settings, such as issues related to long-term biocompatibility and the hurdles of clinical translation. These challenges require extensive ongoing research and discussion. This review is of both theoretical and practical importance, aiming to promote using carbon nanomaterials in tumor immunotherapy, potentially transforming clinical outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingyu Li
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, People’s Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
30
|
Xin J, Song M, Liu X, Zou H, Wang J, Xiao L, Jia Y, Zhang G, Jiang W, Lei M, Yang Y, Jiang Y. A new strategy of using low-dose caffeic acid carbon nanodots for high resistance to poorly differentiated human papillary thyroid cancer. J Nanobiotechnology 2024; 22:571. [PMID: 39294724 PMCID: PMC11409714 DOI: 10.1186/s12951-024-02792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Thyroid cancer is one of the most common endocrine malignancies in clinical practice. Traditional surgery and radioactive iodine ablation have poor treatment results for poorly differentiated thyroid cancer, and there is a risk of metastasis and recurrence. In this study, caffeic acid, a natural herbal extract with certain biological activity, has been as precursor to prepare new caffeic acid carbon nanodots via a one-step hydrothermal method. The caffeic acid carbon nanodots retains part of the structure and biological activity of caffeic acid, and have good biocompatibility, water solubility and stability. The construction of the carbon nanodots could effectively improve their bio-absorption rate and the efficacy. In vitro cell experiments showed that low-dose caffeic acid carbon nanodots had a significant inhibitory effect on poorly differentiated papillary thyroid carcinoma BCPAP cells. At low concentrations of 16 µg/mL, the inhibition rate of human thyroid cancer cells BCPAP was ~ 79%. The anti-tumor mechanism was predicted and verified by transcriptome, real-time quantitative PCR and western blot experiments. The caffeic acid carbon nanodots showed to simultaneously downregulate the expression of KRAS, p-BRAF, p-MEK1 and p-ERK1/2, the four continuous key proteins in a MAPK classical signaling pathway. In vivo experiments further confirmed the caffeic acid carbon nanodots could significantly inhibit the tumorigenicity of xenografts in papillary thyroid carcinoma at quite low doses. This piece of work provides a new nanomedicine and therapeutic strategy for highly resistant poorly differentiated papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Jingwei Xin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Meiwei Song
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangling Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hongrui Zou
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jifeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunxiao Jia
- Department Gynecol & Obstet, Changchun Obstet Gynecol Hospital, Changchun Women and Children Health Hospital, Changchun, 130042, China.
| | - Guoqi Zhang
- Harvard Medical School, Bonston Children's Hospital, Bonston, 02111, US
| | - Wei Jiang
- Department Gynecol & Obstet, Changchun Obstet Gynecol Hospital, Changchun Women and Children Health Hospital, Changchun, 130042, China
| | - Ming Lei
- Department Gynecol & Obstet, Changchun Obstet Gynecol Hospital, Changchun Women and Children Health Hospital, Changchun, 130042, China
| | - Yanyan Yang
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
31
|
Abdullah KA, Tahir TF, Qader AF, Omer RA, Othman KA. Nanozymes: Classification and Analytical Applications - A Review. J Fluoresc 2024:10.1007/s10895-024-03930-3. [PMID: 39271600 DOI: 10.1007/s10895-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The recent discovery of a new class of nanomaterials called nanozymes, which have the action of enzymes and are thus of tremendous significance, has altered our understanding of these previously believed to be biologically inert nanomaterials. As a significant and exciting class of synthetic enzymes, nanozymes have distinct advantages over natural enzymes. They are less expensive, more stable, and easier to work with and store, making them a viable substitute. This practical advantage of nanozymes over natural enzymes reassures us about the potential of this new technology. Peroxidase-like nanozymes have been investigated for the purpose of creating adaptable biosensors via the use of molecularly imprinted polymers (MIPs) or particular bio recognition ligands, including enzymes, antibodies, and aptamers. This review delves into the distinctions between synthetic and natural enzymes, explaining their structures and analytical applications. It primarily focuses on carbon-based nanozymes, particularly those that contain both carbon and hydrogen, as well as metal-based nanozymes like Fe, Cu, and Au, along with their metal oxide (FeO, CuO), which have applications in many fields today. Analytical chemistry finds great use for nanozymes for sensing and other applications, particularly in comparison with other classical methods in terms of selectivity and sensitivity. Nanozymes, with their unique catalytic capabilities, have emerged as a crucial tool in the early diagnosis of COVID-19. Their application in nanozyme-based sensing and detection, particularly through colorimetric and fluorometric methods, has significantly advanced our ability to detect the virus at an early stage.
Collapse
Affiliation(s)
- Kurdo A Abdullah
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Tara F Tahir
- Department of Medical Microbiology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Aryan F Qader
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq.
| | - Rebaz A Omer
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Iraq
| | - Khdir A Othman
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| |
Collapse
|
32
|
Chen X, Jiang T, Li Y, Zhang Y, Chen J, Zhao X, Yang H. Carrageenan-ferrocene-eicosapentaenoic acid composite hydrogel induce ferroptosis and apoptosis for anti-tumor recurrence and metastasis. Int J Biol Macromol 2024; 276:133942. [PMID: 39025181 DOI: 10.1016/j.ijbiomac.2024.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The immune-suppressive microenvironment of solid tumors is a key factor limiting the effectiveness of immunotherapy, which seriously threatens human life and health. Ferroptosis and apoptosis are key cell-death pathways implicated in cancers, which can synergistically activate tumor immune responses. Here, we developed a multifunctional composite hydrogel (CE-Fc-Gel) based on the self-assembly of poloxamer 407, cystamine-linked ιota-carrageenan (CA)-eicosapentaenoic acid (EPA), and ferrocene (Fc). CE-Fc-Gel improved targeting in tumor microenvironment due to its disulfide bonds. Moreover, CE-Fc-Gel promoted lipid peroxidation, enhanced reactive oxygen species (ROS) production, and decreased glutathione peroxidase 4 (GPX4), inducing ferroptosis by the synergistic effect of Fc and EPA. CE-Fc-Gel induced apoptosis and immunogenic cell death (ICD), thereby promoting dendritic cells (DCs) maturation and T cell infiltration. As a result, CE-Fc-Gel significantly inhibited primary and metastatic tumors in vivo. Our findings provide a novel strategy for enhancing tumor immunotherapy by combining apoptosis, ferroptosis, and ICD.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yantao Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yifei Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianqi Chen
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266042, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Hai Yang
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266042, China.
| |
Collapse
|
33
|
Xu J, Wen Z, She Y, Li M, Shen X, Zhi F, Wang S, Jiang Y. Comprehensive characterization of long QT syndrome-associated genes in cancer and development of a robust prognosis model. J Cell Mol Med 2024; 28:e70094. [PMID: 39317949 PMCID: PMC11421991 DOI: 10.1111/jcmm.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Cancer is the leading public health problem worldwide. However, the side effects accompanying anti-cancer therapies, particularly those pertaining to cardiotoxicity and adverse cardiac events, have been the hindrances to treatment progress. Long QT syndrome (LQTS) is one of the major clinic manifestations of the anti-cancer drug associated cardiac dysfunction. Therefore, elucidating the relationship between the LQTS and cancer is urgently needed. Transcriptomic sequencing data and clinic information of 10,531 patients diagnosed with 33 types of cancer was acquired from TCGA database. A pan-cancer applicative gene prognostic model was constructed based on the LQTS gene signatures. Meanwhile, transcriptome data and clinical information from various cancer types were collected from the GEO database to validate the robustness of the prognostic model. Furthermore, the expression level of transcriptomes and multiple clinical features were integrated to construct a Nomo chart to optimize the prognosis model. The ssGSEA analysis was employed to analysis the correlation between the LQTS gene signatures, clinic features and cancer associated signalling pathways. Our findings revealed that patients with lower LQTS gene signatures enrichment levels exhibit a poorer prognosis. The correlation of enrichment levels with the typical pathways was observed in multiple cancers. Then, based on the 17 LQTS gene signatures, we construct a prognostic model through the machine-learning approaches. The results obtained from the validation datasets and training datasets indicated that our prognostic model can effectively predict patient outcomes across diverse cancer types. Finally, we integrated this model with clinical features into a nomogram, demonstrating its potential as a valuable prognostic tool for cancer patients. Our study sheds light on the intricate relationship between LQTS and cancer pathways. A LQTS feature based clinic decision tool was developed aiming to enhance precision treatment of cancer.
Collapse
Affiliation(s)
- Jincheng Xu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Zhengchao Wen
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yongtao She
- Cardiology DepartmentThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Maohao Li
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Xiuyun Shen
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Fengnan Zhi
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Shu Wang
- Cardiology DepartmentThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yanan Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical SciencesHarbinChina
| |
Collapse
|
34
|
Ma Y, Yang X, Ning K, Guo H. M1/M2 macrophage-targeted nanotechnology and PROTAC for the treatment of atherosclerosis. Life Sci 2024; 352:122811. [PMID: 38862062 DOI: 10.1016/j.lfs.2024.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Macrophages play key roles in atherosclerosis progression, and an imbalance in M1/M2 macrophages leads to unstable plaques; therefore, M1/M2 macrophage polarization-targeted treatments may serve as a new approach in the treatment of atherosclerosis. At present, there is little research on M1/M2 macrophage polarization-targeted nanotechnology. Proteolysis-targeting chimera (PROTAC) technology, a targeted protein degradation technology, mediates the degradation of target proteins and has been widely promoted in preclinical and clinical applications as a novel therapeutic modality. This review summarizes the recent studies on M1/M2 macrophage polarization-targeted nanotechnology, focusing on the mechanism and advantages of PROTACs in M1/M2 macrophage polarization as a new approach for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Haidong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
35
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
36
|
Wu T, Bai X, Zhang Y, Dai E, Ma J, Yu C, He C, Li Q, Yang Y, Kong H, Qu H, Zhao Y. Natural medicines-derived carbon dots as novel oral antioxidant administration strategy for ulcerative colitis therapy. J Nanobiotechnology 2024; 22:511. [PMID: 39187876 PMCID: PMC11348712 DOI: 10.1186/s12951-024-02702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic intestinal inflammation, resulting in a global healthcare challenge with no real specific medicine. Natural medicines are recognized as a potential clinical alternative therapy, but their applications are limited by poor solubility and low bioavailability. RESULTS In this work, inspired by the natural medicines of ancient China, novel functional carbon dots derived from Magnetite and Medicated Leaven (MML-CDs) were synthesized by hydrothermal method, and confirmed their ultrasmall nano-size (3.2 ± 0.6 nm) and Fe doped surface structure, thereby with excellent gastrointestinal stability, remarkable capabilities in eliminating ROS, and highly biocompatibility. With no external stimuli, the oral administration of MML-CDs demonstrated obvious alleviation to UC. Further experiments pointed that MML-CDs could improve hemostasis capability, suppress inflammation reactions and oxidative stress, and up-regulate the expression of tight junction proteins. Furthermore, MML-CDs also showed well regulation in the dysbiosis of intestinal flora. CONCLUSION Overall, above evidence reveals that green-synthesized MML-CDs can significantly alleviate intestinal bleeding, inhibit colon inflammation, and repair colonic barrier damage, further regulating intestinal flora and intestinal inflammation microenvironment. Our findings provide an efficient oral administration of MML-CDs as a novel therapy strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ertong Dai
- Qingdao Eighth People's Hospital, Qingdao, 266100, China
| | - Jinyu Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cai Yu
- Department of Endocrine, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, 100163, China
| | - Chenxin He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiannan Li
- Department of Traditional Chinese Medicine, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, 100163, China
| | - Yingxin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
37
|
Wang L, Zheng S, Liu Y, Ji Y, Liu X, Wang F, Li C. A nanozyme multifunctional platform based on iron doped carbon dots derived from Tibetan Ganoderma lucidum waste for glucose sensing, anti-counterfeiting applications, and anticancer cell effect. Talanta 2024; 276:126262. [PMID: 38761660 DOI: 10.1016/j.talanta.2024.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Implementing the concept of turning waste into treasure, the conversion of biomass waste into high-value carbon materials, especially carbon dots (CDs), has pointed out a new direction for disease diagnosis, tumor treatment, and other aspects. In this work, we have reported the GL-CDs(Fe) via a simple synthesis route exploiting Ganoderma lucidum waste as the precursor. Thanks to their excellent optical property and peroxidase mimetic activity, a novel GL-CDs(Fe)-based ratio fluorescence/colorimetric/smartphone triple mode sensing platform is cleverly fabricated for glucose determination with the LOD of 0.28, 0.37, and 0.52 μΜ separately. Especially, this triple mode biosensor is successfully utilized for glucose detection in serum samples with the relative error of less than ±8 % compared with clinical reports. Surprisingly, the GL-CDs(Fe) also presents immense application prospects in high-level anti-counterfeiting aspects due to their excellent luminescent properties, high water-solubility, and easy availability. Furthermore, GL-CDs(Fe) can catalyze excessive H2O2 inside tumor cells to produce massive hydroxyl radicals (·OH) which break down the redox levels of cancer cells and thereby eliminate tumor cells. Thus, this integrated "Three-in-One" multifunctional platform based on GL-CDs(Fe) unveils enormous research and application prospects for bio-sensing, anti-counterfeiting, cancer treatment.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Shujun Zheng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yan Liu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yang Ji
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Xiaoya Liu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
38
|
Wang H, Chen Q, Liu Q, Luo C. Master regulator: p53's pivotal role in steering NK-cell tumor patrol. Front Immunol 2024; 15:1428653. [PMID: 39185404 PMCID: PMC11344261 DOI: 10.3389/fimmu.2024.1428653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
The p53 protein, encoded by TP53, is a tumor suppressor that plays a critical role in regulating apoptosis, cell cycle regulation, and angiogenesis in tumor cells via controlling various downstream signals. Natural killer (NK) cell-mediated immune surveillance is a vital self-defense mechanism against cancer and other diseases, with NK cell activity regulated by various mechanisms. Among these, p53 plays a significant role in immune regulation by maintaining the homeostasis and functionality of NK cells. It enhances the transcriptional activity of NK cell-activating ligands and downregulates inhibitory ligands to boost NK cell activation and tumor-killing efficacy. Additionally, p53 influences NK cell cytotoxicity by promoting apoptosis, autophagy, and ferroptosis in different tumor cells. p53 is involved in the regulation of NK cell activity and effector functions through multiple pathways. p53 also plays a pivotal role in the tumor microenvironment (TME), regulating the activity of NK cells. NK cells are critical components of the TME and are capable of directly killing tumor cells. And p53 mutates in numerous cancers, with the most common alteration being a missense mutation. These mutations are commonly associated with poor survival rates in patients with cancer. This review details p53's role in NK cell tumor immunosurveillance, summarizing how p53 enhances NK cell recognition and tumor destruction. We also explore the potential applications of p53 in tumor immunotherapy, discussing strategies for modulating p53 to enhance NK cell function and improve the efficacy of tumor immunotherapy, along with the associated challenges. Understanding the interaction between p53 and NK cells within the TME is crucial for advancing NK cell-based immunotherapy and developing p53-related novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
39
|
Jin N, Wang Z, Yin C, Bu W, Jin N, Ou L, Xie W, He J, Lai X, Shao L. Novel Carbon Quantum Dots Precisely Trigger Ferroptosis in Cancer Cells through Antioxidant Inhibition Synergistic Nanocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37456-37467. [PMID: 39007694 DOI: 10.1021/acsami.4c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High levels of glutathione (GSH) are an important characteristic of malignant tumors and a significant cause of ineffective treatment and multidrug resistance. Although reactive oxygen species (ROS) therapy has been shown to induce tumor cell death, the strong clearance effect of GSH on ROS significantly reduces its therapeutic efficacy. Therefore, there is a need to develop new strategies for targeting GSH. In this study, novel carbon quantum dots derived from gentamycin (GM-CQDs) were designed and synthesized. On the basis of the results obtained, GM-CQDs contain sp2 and sp3 carbon atoms as well as nitrogen oxygen groups, which decrease the intracellular levels of GSH by downregulating SLC7A11, thereby disrupting redox balance, mediating lipid peroxidation, and inducing ferroptosis. Transcriptome analysis demonstrated that GM-CQDs downregulated the expression of molecules related to GSH metabolism while significantly increasing the expression of molecules related to ferroptosis. The in vivo results showed that the GM-CQDs exhibited excellent antitumor activity and immune activation ability. Furthermore, because of their ideal biological safety, GM-CQDs are highly promising for application as drugs targeting GSH in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nianqiang Jin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
- School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110002, People's Republic of China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Chengcheng Yin
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, People's Republic of China
- School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Wenhuan Bu
- School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Nuo Jin
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Lingling Ou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Wenqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Jiankang He
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Xuan Lai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China
| |
Collapse
|
40
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
41
|
Shen K, Xia L, Jiao K, Pan F, Xiang B, Zhou W, Shou Y, Gao X, Hu S, Fang H, Xia C, Jiang X, Gao X, Li C, Sun P, Lu G, Fan H, Sun T. Characterization techniques for tobacco and its derivatives: a systematic review. Front Chem 2024; 12:1402502. [PMID: 39036657 PMCID: PMC11257895 DOI: 10.3389/fchem.2024.1402502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Biomass and its derivatives have broad applications in the fields of bio-catalysis, energy storage, environmental remediation. The structure and components of biomass, which are vital parameters affecting corresponding performances of derived products, need to be fully understood for further regulating the biomass and its derivatives. Herein, tobacco is taken as an example of biomass to introduce the typical characterization techniques in unraveling the structural information, chemical components, and properties of biomass and its derivatives. Firstly, the structural information, chemical components and application for biomass are summarized. Then the characterization techniques together with the resultant structural information and chemical components are introduced. Finally, to promote a wide and deep study in this field, the perspectives and challenges concerning structure and composition charaterization in biomass and its derivatives are put forward.
Collapse
Affiliation(s)
- Kai Shen
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Liwei Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Kaixuan Jiao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Boka Xiang
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Wei Zhou
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Yuedian Shou
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Xuefeng Gao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Shihao Hu
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Haoyu Fang
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Chen Xia
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Xinru Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaoyuan Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Cuiyu Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ping Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Guangzheng Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hu Fan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, Zhejiang, China
| | - Tulai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Fu Q, Liang S, Zhang S, Zhou C, Lv Y, Su X. Boron-doped g-C 3N 4 supporting Cu nanozyme for colorimetric-fluorescent-smartphone detection of α-glucosidase. Anal Chim Acta 2024; 1311:342715. [PMID: 38816154 DOI: 10.1016/j.aca.2024.342715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Due to that the higher activity of nanozymes would bring outstanding performance for the nanozyme-based biosensing strategies, great efforts have been made by researchers to improve the catalytic activity of nanozymes, and novel nanozymes with high catalytic activity are desired. Considering the crucial role in controlling blood glucose level, strategies like colorimetric and chemiluminescence to monitor α-glucosidase are developed. However, multi-mode detection with higher sensitivity was insufficient. Therefore, developing triple-mode detection method for α-glucosidase based on great performance nanozyme is of great importance. RESULTS In this work, a novel nanozyme Cu-BCN was synthesized by loading Cu on boron doped carbon substrate g-C3N4 and applied to the colorimetric-fluorescent-smartphone triple-mode detection of α-glucosidase. In the presence of H2O2, Cu-BCN catalyzed the generation of 1O2 from H2O2, 1O2 subsequently oxidized TMB to blue colored oxTMB. In the presence of hydroquinone (HQ), the ROS produced from H2O2 was consumed, inhibiting the oxidation of TMB, which endows the possibility of colorimetric and visual on-site detection of HQ. Further, due to that the fluorescence of Mg-CQDs at 444 nm could be quenched by oxTMB, HQ could also be quantified through fluorescent mode. Since α-glucosidase could efficiently hydrolyze α-arbutin into HQ, the sensitive detection of α-glucosidase was realized. Further, colorimetric paper-based device (c-PAD) was fabricated for on-site α-glucosidase detection. The LODs for α-glucosidase via three modes were 2.20, 1.62 and 2.83 U/L respectively, high sensitivities were realized. SIGNIFICANCE The nanozyme Cu-BCN possesses higher peroxidase-like activity by doping boron to the substrate than non-doped Cu-CN. The proposed triple-mode detection of α-glucosidase is more sensitive than most previous reports, and is reliable when applied to practical sample. Further, the smartphone-based colorimetric paper-based analytical device (c-PAD) made of simple materials could also detect α-glucosidase sensitively. The smartphone-based on-site detection provided a convenient, instrument-free and sensitive sensing method for α-glucosidase.
Collapse
Affiliation(s)
- Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuang Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Siqi Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
43
|
Zhang BC, Lai CM, Luo BY, Shao JW. Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy. Acta Pharm Sin B 2024; 14:3205-3217. [PMID: 39027252 PMCID: PMC11252477 DOI: 10.1016/j.apsb.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 07/20/2024] Open
Abstract
Combination immunotherapy has shown promising potential for enhancing the objective response rate compared to immune checkpoint blockade (ICB) monotherapy. However, combination therapy with multi-drugs is limited by the different properties of the agents and inconsistent synergistic targeted delivery. Herein, based on a universal triterpene template and the anticancer active agent ursolic acid (UA), a cytomembrane-coated biomimetic delivery nanoplatform (UR@M) prepared by the self-assembly of a PD-L1 targeted CRISPR/Cas9 system and UA was designed for hepatocellular carcinoma (HCC) treatment. UR@M showed enhanced tumor accumulation in vivo with homologous tumor targeting, and CRISPR in the nanosystem exhibited potent gene-editing efficiency of 76.53% in vitro and 62.42% in vivo with no off-target effects. UA activated the natural immune system through the TLR-2-MyD88-TRAF6 pathway, which synergistically enhanced the proliferation of natural killer cells and dendritic cells and realized excellent immune cytotoxic T cell infiltration by combining with the ICB of PD-L1. The strategy of work along both lines based on innate immune and adaptive immunity displayed a significant effect in tumor regression. Overall, the UA-templated strategy "killed three birds with one stone" by establishing a self-assembly nanosystem, inducing tumor cell death, and promoting synergistic immunostimulation for HCC treatment.
Collapse
Affiliation(s)
- Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523058, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- College of Materials and Chemical Engineering, MinjiangUniversity, Fuzhou, 350108, China
| |
Collapse
|
44
|
Guan S, Tang M. Exposure of quantum dots in the nervous system: Central nervous system risks and the blood-brain barrier interface. J Appl Toxicol 2024; 44:936-952. [PMID: 38062852 DOI: 10.1002/jat.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 07/21/2024]
Abstract
Quantum dots currently possess significant importance in the field of biomedical science. Upon introduction into the body, quantum dots exhibit a tendency to accumulate in diverse tissues including the central nervous system (CNS). Consequently, it becomes imperative to devote specific attention to their potential toxic effects. Moreover, the preservation of optimal CNS function relies heavily on blood-brain barrier (BBB) integrity, thereby necessitating its prioritization in neurotoxicological investigations. A more comprehensive understanding of the BBB and CNS characteristics, along with the underlying mechanisms that may contribute to neurotoxicity, will greatly aid researchers in the development of effective design strategies. This article offers an in-depth look at the methods used to reduce the harmful effects of quantum dots on the nervous system, alongside the progression of effective treatments for brain-related conditions. The focal point of this discussion is the BBB and its intricate association with the CNS and neurotoxicology. The discourse commences by recent advancements in the medical application of quantum dots are examined. Subsequently, elucidating the mechanisms through which quantum dots infiltrate the human body and traverse into the brain. Additionally, the discourse delves into the factors that facilitate the passage of quantum dots across the BBB, primarily encompassing the physicochemical properties of quantum dots and the BBB's inherent capacity for self-permeability alteration. Furthermore, a concluding summary is presented, emphasizing existing research deficiencies and identifying promising avenues for further investigation within this field.
Collapse
Affiliation(s)
- Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
45
|
Guo B, Chen F, Liu G, Li W, Li W, Zhuang J, Zhang X, Wang L, Lei B, Hu C, Liu Y. Effects and mechanisms of proanthocyanidins-derived carbon dots on alleviating salt stress in rice by muti-omics analysis. Food Chem X 2024; 22:101422. [PMID: 38756474 PMCID: PMC11096822 DOI: 10.1016/j.fochx.2024.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Carbon dots (CDs) with different structures were prepared by electrolysis (PE-CDs) and hydrothermal (PH-CDs) methods using proanthocyanidins as precursors. The smaller size and lower zeta potential enabled the PE-CDs treated rice seedlings to exhibit greater resistance to salt stress. The fresh weight of rice seedlings under salt stress was significantly increased by spraying CDs every other day for two weeks. PE-CDs treated group exhibited a faster electron transport rate, and the SOD activity and flavonoid content were 2.5-fold and 0.23-fold higher than those of the salt stress-treated group. Furthermore, the metabolomics and transcriptomics analysis revealed that the PsaC gene of photosystem I was significantly up-regulated under PE-CDs treatment, which accelerated electron transfer in photosystem I. The up-regulation of BX1 and IGL genes encoding indole synthesis allowed rice to enhance stress tolerance through tryptophan and benzoxazine biosynthesis pathways. These findings offer help in purposefully synthesizing CDs and boosting food production.
Collapse
Affiliation(s)
- Baoyan Guo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Fengqiong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guo Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wentao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lashuang Wang
- Guangdong Tianzi Natural Inc, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
46
|
Guo W, Song X, Liu J, Liu W, Chu X, Lei Z. Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1088. [PMID: 38998693 PMCID: PMC11243735 DOI: 10.3390/nano14131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties.
Collapse
Affiliation(s)
- Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xueru Song
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| |
Collapse
|
47
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
48
|
Hossein Karami M, Abdouss M. Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil Drug-loaded chitosan nanoparticles. INORG CHEM COMMUN 2024; 164:112430. [DOI: 10.1016/j.inoche.2024.112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Xu J, Huang BB, Lai CM, Lu YS, Shao JW. Advancements in the synthesis of carbon dots and their application in biomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112920. [PMID: 38669742 DOI: 10.1016/j.jphotobiol.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.
Collapse
Affiliation(s)
- Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Bing Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
50
|
Li Y, Tuerxun H, Zhao Y, Liu X, Li X, Wen S, Zhao Y. The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol 2024; 198:104359. [PMID: 38615871 DOI: 10.1016/j.critrevonc.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xi Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|