1
|
Li H, Li P, Zhang J, Lin Z, Bai L, Shen H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. NANOSCALE 2024; 16:21697-21730. [PMID: 39508492 DOI: 10.1039/d4nr03058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Achieving accurate and efficient tumor imaging is crucial in the field of tumor treatment, as it facilitates early detection and precise localization of tumor tissues, thereby informing therapeutic strategies and surgical interventions. The optical imaging technology within the second near-infrared (NIR-II) window has garnered significant interest for its remarkable benefits, such as enhanced tissue penetration depth, superior signal-to-background ratio (SBR), minimal tissue autofluorescence, reduced photon attenuation, and lower tissue scattering. This review explained the design and optimization strategies of nano-agents responsive to the NIR-II window, such as single-walled carbon nanotubes, quantum dots, lanthanum-based nanomaterials, and noble metal nanomaterials. These nano-agents enable non-invasive, deep-tissue imaging with high spatial resolution in the NIR-II window, and their superior optical properties significantly improve the accuracy, efficiency, and versatility of imaging-guided tumor treatments. And we discussed the characteristics and advantages of fluorescence imaging (FL)/photoacoustic imaging (PA) in NIR-II window, providing a comprehensive overview of the latest research progress of different nano-agents in FL/PA imaging-guided tumor therapy. Furthermore, we exhaustively reviewed the latest applications of multifunctional nano-phototherapy technologies carried out by NIR-II light including photothermal therapy (PTT), photodynamic therapy (PDT), and combined modalities like photothermal-chemodynamic therapy (PTT-CDT), photothermal-chemotherapy (PTT-CT), and photothermal- immunotherapy (PTT-IO). These imaging-guided integrated tumor therapy approaches within the NIR-II window have gradually matured over the past decade and are expected to become a safe and effective non-invasive tumor treatment. Finally, we outlined the prospects and challenges of development and innovation of the NIR-II integrated diagnosis and therapy nanoplatform. This review aims to provide insightful perspectives for future advancements in NIR-II optical tumor diagnosis and integrated treatment platforms.
Collapse
Affiliation(s)
- Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lintao Bai
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Zheng N, Liao T, Zhang C, Zhang Z, Yan S, Xi X, Ruan F, Yang C, Zhao Q, Deng W, Huang J, Huang Z, Chen Z, Wang X, Qu Q, Zuo Z, He C. Quantum Dots-caused Retinal Degeneration in Zebrafish Regulated by Ferroptosis and Mitophagy in Retinal Pigment Epithelial Cells through Inhibiting Spliceosome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406343. [PMID: 39420512 PMCID: PMC11633537 DOI: 10.1002/advs.202406343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Quantum dots (QDs) are widely used, but their health impact on the visual system is little known. This study aims to elucidate the effects and mechanisms of typical metallic QDs on retinas using zebrafish. Comprehensive histology, imaging, and bulk RNA sequencing reveal that InP/ZnS QDs cause retinal degeneration. Furthermore, single-cell RNA-seq reveals a reduction in the number of retinal pigment epithelial cells (RPE) and short-wave cone UV photoreceptor cells (PR(UV)), accompanied by an increase in middle- and long-wave cone red, green, and blue photoreceptor cells [PR(RGB)]. Mechanistically, after endocytosis by RPE, InP/ZnS QDs inhibit the expression of splicing factor prpf8, resulting in gpx4b mRNA unsplicing, which finally decrease glutathione and induce ferroptosis and mitophagy. The decrease of RPE fails to engulf the damaged outer segments of PR, possibly promoting the differentiation of PR(UV) to PR(RGB). Knockout prpf8 or gpx4b with CRISPR/Cas9 system, the retinal damage is also observed. Whereas, overexpression of prpf8 or gpx4b, or supplement of glutathione can rescue the retinal degenerative damage caused by InP/ZnS QDs. In conclusion, this study illustrates the potential health risks of InP/ZnS QDs on eye development and provides valuable insights into the underlying mechanisms of InP/ZnS QDs-caused retinal degeneration.
Collapse
Affiliation(s)
- Naying Zheng
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Tingting Liao
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chuchu Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zheyang Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Sen Yan
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaohan Xi
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Fengkai Ruan
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chunyan Yang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamenFujian361005China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health ResearchFujian Province UniversitySchool of MedicineXiamen UniversityXiamenFujian361005China
| | - Jialiang Huang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zi‐Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Zhi‐Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiang Wang
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qingming Qu
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhenghong Zuo
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chengyong He
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
3
|
Petit RR, Ozdemir R, Van Avermaet H, Giordano L, Kuhs J, Werbrouck A, Filez M, Dendooven J, Hens Z, Smet PF, Detavernier C. Atomic Layer Deposition for Stable InP-Based On-Chip Quantum Dot microLEDs: Hybrid Quantum Dot Pockets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63989-64001. [PMID: 39514638 DOI: 10.1021/acsami.4c11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent advances in synthesis techniques yield InP-based QDs with optical properties comparable to those of benchmark Cd-based QDs, making InP-based QDs viable alternatives to toxic Cd-based QDs for applications such as quantum dot LEDs (QLEDs). However, QLEDs typically suffer from a loss of luminescence over time due to exposure of the QDs to ambient air. To avoid this, state-of-the-art hybrid barrier layers are explored consisting of alternating organic/inorganic layers. In this study, InP-based QD thin films and InP-based QDs embedded in Kraton polymers are encapsulated with a thin metal oxide barrier layer by atomic layer deposition (ALD). Specifically, Al2O3, TiO2, and ZnO thin films are deposited using trimethylaluminum (TMA), tetrakis(dimethylamino)titanium (TDMAT), and diethylzinc (DEZ), with H2O as the reactant. In situ photoluminescence (PL) is used to evaluate the optical response of the InP-based QDs during the ALD coating. The results show that ALD on pristine QD thin films causes degradation of luminescence, while this is not observed for polymer-embedded QDs. The long-term stability of the (ALD-coated) samples is investigated by accelerated degradation in a humidity chamber at a high temperature. Using a single Al2O3 ALD thin film as a capping layer for polymer-embedded QDs, greater stability of the QD-PL over a period of at least 300 h is found compared to pristine QD samples. A similar study is performed with InP-based QDs embedded in UV-patterned polymer (thiol-ene) structures, the so-called QD pockets, envisioned for use in on-chip quantum dot microLEDs. These QD pockets are purposefully designed for pick-and-place operations to reduce the complexity of the on-chip quantum dot microLED manufacturing process. The PL stability was significantly improved after incorporating Al2O3 ALD thin films, with these hybrid QD pockets showing no clear signs of degradation after 140 h. The combination of polymer embedding and ALD with the merits and scalability of the QD pocket structure is demonstrated to be an effective approach to improving the long-term QD stability and shows promise for the development of stable, InP-based on-chip quantum dot microLEDs.
Collapse
Affiliation(s)
- Robin R Petit
- Department of Solid State Sciences, LumiLab, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
- SIM vzw, Technologiepark 48, 9052 Zwijnaarde, Belgium
| | - Resul Ozdemir
- Department of Chemistry, PCN, Ghent University, Krijgslaan 281 S3, 9000 Gent, Belgium
| | - Hannes Van Avermaet
- Department of Chemistry, PCN, Ghent University, Krijgslaan 281 S3, 9000 Gent, Belgium
| | - Luca Giordano
- Department of Chemistry, PCN, Ghent University, Krijgslaan 281 S3, 9000 Gent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark 15, 9052 Zwijnaarde, Belgium
| | - Jakob Kuhs
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| | - Andreas Werbrouck
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| | - Matthias Filez
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
- Department of Microbial and Molecular Systems, cMACS, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| | - Zeger Hens
- Department of Chemistry, PCN, Ghent University, Krijgslaan 281 S3, 9000 Gent, Belgium
| | - Philippe F Smet
- Department of Solid State Sciences, LumiLab, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| |
Collapse
|
4
|
Fei WL, Li SN, Xie JC, Li SM, Liu WZ, Zhang Q, Chen S, Wang YK, Liao LS. X-Type Ligands Effect on the Operational Stability of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. NANO LETTERS 2024; 24:14066-14072. [PMID: 39466907 DOI: 10.1021/acs.nanolett.4c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
ZnSeTe quantum dots (QDs) offer an efficient avenue for realizing heavy-metal-free light-emitting diodes (LEDs) that meet the Rec.2100 blue standard. Synthetic core-shell engineering has enabled big advances in the external quantum efficiency (EQE) of ZnSeTe QD-LEDs. However, the mechanisms behind the degradation of the operational stability of ZnSeTe QD-LEDs remain relatively unexplored. In this study, we explore the impact of ligand density and composition on both material and device stability. We developed a solid-film ligand exchange utilizing an inorganic X-type ligand (zinc chloride), revealing that the substitution of inorganic ligands for organic counterparts significantly influences the stability of both materials and devices.
Collapse
Affiliation(s)
- Wen-Long Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Sheng-Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jia-Chen Xie
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Sheng-Ming Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei-Zhi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Song Chen
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
5
|
Saha A, Yadav R, Rivaux C, Aldakov D, Reiss P. Water-Soluble Alumina-Coated Indium Phosphide Core-Shell Quantum Dots with Efficient Deep-Red Emission Beyond 700 nm. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404426. [PMID: 39058212 DOI: 10.1002/smll.202404426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window. The resulting QDs exhibit an emission wavelength up to 725 nm with a narrow peak full width at half maximum (FWHM) down to 107 meV (45 nm). To enhance the biocompatibility and chemical stability of the QDs, their surface is further capped with a layer of amorphous alumina resulting in an InP/ZnSe/ZnS/Al2O3 heterostructure. This surface passivation not only ensures environmental- and photostability but also enhances the photoluminescence quantum yield (PLQY). The alumina capping enables the aqueous phase transfer via surface ligand exchange using mercaptopropionic acid (MPA) while maintaining the initial quantum yield. The resulting QDs demonstrate a significant potential for advancing next-generation optoelectronic technologies and bio-applications.
Collapse
Affiliation(s)
- Avijit Saha
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Ranjana Yadav
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Céline Rivaux
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Dmitry Aldakov
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Peter Reiss
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| |
Collapse
|
6
|
Kim G, Park S, Kim S. Quantum Dots for Resistive Switching Memory and Artificial Synapse. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1575. [PMID: 39404302 PMCID: PMC11478683 DOI: 10.3390/nano14191575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Memristor devices for resistive-switching memory and artificial synapses have emerged as promising solutions for overcoming the technological challenges associated with the von Neumann bottleneck. Recently, due to their unique optoelectronic properties, solution processability, fast switching speeds, and low operating voltages, quantum dots (QDs) have drawn substantial research attention as candidate materials for memristors and artificial synapses. This review covers recent advancements in QD-based resistive random-access memory (RRAM) for resistive memory devices and artificial synapses. Following a brief introduction to QDs, the fundamental principles of the switching mechanism in RRAM are introduced. Then, the RRAM materials, synthesis techniques, and device performance are summarized for a relative comparison of RRAM materials. Finally, we introduce QD-based RRAM and discuss the challenges associated with its implementation in memristors and artificial synapses.
Collapse
Affiliation(s)
| | | | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
7
|
Gwak N, Shin S, Yoo H, Seo GW, Kim S, Jang H, Lee M, Park TH, Kim BJ, Lim J, Kim SY, Kim S, Hwang GW, Oh N. Highly Luminescent Shell-Less Indium Phosphide Quantum Dots Enabled by Atomistically Tailored Surface States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404480. [PMID: 39016602 DOI: 10.1002/adma.202404480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Contrary to the prevailing notion that shell structures arise from the intricate chemistry and surface defects of InP quantum dots (QDs), an innovative strategy that remarkably enhances the luminescence efficiency of core-only InP QDs to over 90% is introduced. This paradigm shift is achieved through the concurrent utilization of group 2 and 3 metal-derived ligands, providing an effective remedy for surface defects and facilitating charge recombination. Specifically, a combination of Zn carboxylate and Ga chloride is employed to address the undercoordination issues associated with In and P atoms, leading to the alleviation of in-gap trap states. The intricate interplay and proportional ratio between Ga- and Zn-containing ligands play pivotal roles in attaining record-high luminescence efficiency in core-only InP QDs, as successfully demonstrated across various sizes and color emissions. Moreover, the fabrication of electroluminescent devices relying solely on InP core emission opens a new direction in optoelectronics, demonstrating the potential of the approach not only in optoelectronic applications but also in catalysis or energy conversion by charge transfer.
Collapse
Affiliation(s)
- Namyoung Gwak
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seungki Shin
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyeri Yoo
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gyeong Won Seo
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seongchan Kim
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyunwoo Jang
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minwoo Lee
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tae Hwan Park
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byong Jae Kim
- Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Future Energy Engineering (DFEE), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jaehoon Lim
- Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Future Energy Engineering (DFEE), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sangtae Kim
- Department of Nuclear Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Gyu Weon Hwang
- Center for Semiconductor Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
8
|
Babkin IA, Bammens S, Schiettecatte P, Van Avermaet H, Hens Z, Mooter GVD, Clasen C. Encapsulation of Cadmium-Free InP-based Quantum Dots in Cross-Linked Core-Shell Microparticles via Coaxial Electrospraying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401219. [PMID: 38764319 DOI: 10.1002/smll.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 05/21/2024]
Abstract
Quantum dots (QDs) are inorganic semiconductor nanocrystals capable of emitting light. The current major challenge lies in the use of heavy metals, which are known to be highly toxic to humans and pose significant environmental risks. Researchers have turned to indium (In) as a promising option for more environmentally benign QDs, specifically indium phosphide (InP). A significant obstacle remains in sustaining the long-term photostability of InP-based QDs when exposed to the environment. To tackle this, electrospraying is used in this work to protect indium phosphide/zinc selenide/zinc sulfide (InP/ZnSe/ZnS) QDs by embedding them within polymer core-shell microparticles of poly[(lauryl methacrylate)-co-(ethylene glycol dimethacrylate)]/poly(methyl methacrylate) (poly(LMA-co-EGDMA)/PMMA). During the flight of droplets, the liquid monomer core of LMA and EGDMA with QDs is encapsulated by the solid shell of PMMA formed due to solvent evaporation, resulting in a liquid-core/solid-shell particle structure. After that, the captured core of monomers is polymerized into a cross-linked polymer with the embedded QDs via a thermal initiation. They demonstrate how a successful core-shell particle formation is achieved to produce structures for initially liquid monomer systems via coaxial electrospraying that are used for cross-linked polymers, which are of major interest for the encapsulation of InP-based QDs for generally improved photostability over pristine QDs.
Collapse
Affiliation(s)
- Iurii Alekseevich Babkin
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Simon Bammens
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Pieter Schiettecatte
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Hannes Van Avermaet
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, Leuven, 3000, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
9
|
Wang L, Bai J, Huang X, He X, Yang Z, Zhang T, Li Q, Jin X, Wang Y, Zhang X, Song Y. Improving spectral linewidth performance of InP quantum dots by promoting size-focused growth and decreasing exciton-phonon coupling. OPTICS EXPRESS 2024; 32:25000-25011. [PMID: 39538923 DOI: 10.1364/oe.523817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 11/16/2024]
Abstract
InP-based quantum dots (QDs) are widely adopted as a superior alternative to CdSe-based QDs in various fields owing to their high quantum yield, environmental friendliness, and excellent stability. However, improving its color purity remains a challenging task. In this work, we employ a multistage heating strategy to optimize the nucleation and shell growth processes of amino-phosphine-based InP/ZnSe/ZnS QDs for reducing emission linewidths. The multistage heating strategy mitigates the undesired formation of small-size cores by decreasing monomer supersaturation during the nucleation process, thereby promoting size-focusing growth. During the shelling process, multistage heating effectively suppresses Zn2+ diffusion into the InP core while ensuring high-quality shell growth, thus reducing the homogeneous broadening caused by exciton-phonon coupling. Compared to classical synthesis, the multistage heating strategy can reduce the emission linewidth of nucleation and shelling by 13.2% and 30.9% respectively. The optimized InP/ZnSe/ZnS QDs exhibit a narrow full width at half maximum (FWHM) of 41.5 nm at 630 nm, representing significant progress in studying spectral linewidths of amino-phosphine InP QDs. This work provides potential insights for further improving the spectral linewidth performance of InP QDs or other nanocrystals with similar reaction-limited growth systems.
Collapse
|
10
|
Lee JE, Lee CJ, Lee SJ, Jeong UH, Park JG. Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1055. [PMID: 38921931 PMCID: PMC11206699 DOI: 10.3390/nano14121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
This work highlights the novel approach of incorporating potassium iodide (KI) doping during the synthesis of In0.53P0.47 core quantum dots (QDs) to significantly reduce the concentration of vacancies (i.e., In vacancies; VIn-) within the bulk of the core QD and inhibit the formation of InPOx at the core QD-Zn0.6Se0.4 shell interfaces. The photoluminescence quantum yield (PLQY) of ~97% and full width at half maximum (FWHM) of ~40 nm were achieved for In0.53P0.47/Zn0.6Se0.4/Zn0.6Se0.1S0.3/Zn0.5S0.5 core/multi-shell QDs emitting red light, which is essential for a quantum-dot organic light-emitting diode (QD-OLED) without red, green, and blue crosstalk. KI doping eliminated VIn- in the core QD bulk by forming K+-VIn- substitutes and effectively inhibited the formation of InPO4(H2O)2 at the core QD-Zn0.6Se0.4 shell interface through the passivation of phosphorus (P)-dangling bonds by P-I bonds. The elimination of vacancies in the core QD bulk was evidenced by the decreased relative intensity of non-radiative unpaired electrons, measured by electron spin resonance (ESR). Additionally, the inhibition of InPO4(H2O)2 formation at the core QD and shell interface was confirmed by the absence of the {210} X-ray diffraction (XRD) peak intensity for the core/multi-shell QDs. By finely tuning the doping concentration, the optimal level was achieved, ensuring maximum K-VIn- substitution, minimal K+ and I- interstitials, and maximum P-dangling bond passivation. This resulted in the smallest core QD diameter distribution and maximized optical properties. Consequently, the maximum PLQY (~97%) and minimum FWHM (~40 nm) were observed at 3% KI doping. Furthermore, the color gamut of a QD-OLED display using R-, G-, and B-QD functional color filters (i.e., ~131.1%@NTSC and ~98.2@Rec.2020) provided a nearly perfect color representation, where red-light-emitting KI-doped QDs were applied.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Information Display Engineering, Hanyang University, Seoul 04763, Republic of Korea;
| | - Chang-Jin Lee
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
| | - Seung-Jae Lee
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
- Samsung Electronics, 130 Samsung-ro, Suwon 16678, Republic of Korea
| | - Ui-Hyun Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
| | - Jea-Gun Park
- Department of Information Display Engineering, Hanyang University, Seoul 04763, Republic of Korea;
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
| |
Collapse
|
11
|
Stam M, Almeida G, Ubbink RF, van der Poll LM, Vogel YB, Chen H, Giordano L, Schiettecatte P, Hens Z, Houtepen AJ. Near-Unity Photoluminescence Quantum Yield of Core-Only InP Quantum Dots via a Simple Postsynthetic InF 3 Treatment. ACS NANO 2024; 18:14685-14695. [PMID: 38773944 PMCID: PMC11155241 DOI: 10.1021/acsnano.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Indium phosphide (InP) quantum dots (QDs) are considered the most promising alternative for Cd and Pb-based QDs for lighting and display applications. However, while core-only QDs of CdSe and CdTe have been prepared with near-unity photoluminescence quantum yield (PLQY), this is not yet achieved for InP QDs. Treatments with HF have been used to boost the PLQY of InP core-only QDs up to 85%. However, HF etches the QDs, causing loss of material and broadening of the optical features. Here, we present a simple postsynthesis HF-free treatment that is based on passivating the surface of the InP QDs with InF3. For optimized conditions, this results in a PLQY as high as 93% and nearly monoexponential photoluminescence decay. Etching of the particle surface is entirely avoided if the treatment is performed under stringent acid-free conditions. We show that this treatment is applicable to InP QDs with various sizes and InP QDs obtained via different synthesis routes. The optical properties of the resulting core-only InP QDs are on par with InP/ZnSe/ZnS core-shell QDs, with significantly higher absorption coefficients in the blue, and with potential for faster charge transport. These are important advantages when considering InP QDs for use in micro-LEDs or photodetectors.
Collapse
Affiliation(s)
- Maarten Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Guilherme Almeida
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Reinout F. Ubbink
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Lara M. van der Poll
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Yan B. Vogel
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Hua Chen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Luca Giordano
- Physics
and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Pieter Schiettecatte
- Physics
and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
12
|
Valleix R, Zhang W, Jordan AJ, Guillemeney L, Castro LG, Zekarias BL, Park SV, Wang O, Owen JS. Metal Fluorides Passivate II-VI and III-V Quantum Dots. NANO LETTERS 2024; 24:5722-5728. [PMID: 38712788 DOI: 10.1021/acs.nanolett.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Quantum dots (QDs) with metal fluoride surface ligands were prepared via reaction with anhydrous oleylammonium fluoride. Carboxylate terminated II-VI QDs underwent carboxylate for fluoride exchange, while InP QDs underwent photochemical acidolysis yielding oleylamine, PH3, and InF3. The final photoluminescence quantum yield (PLQY) reached 83% for InP and near unity for core-shell QDs. Core-only CdS QDs showed dramatic improvements in PLQY, but only after exposure to air. Following etching, the InP QDs were bound by oleylamine ligands that were characterized by the frequency and breadth of the corresponding ν(N-H) bands in the infrared absorption spectrum. The fluoride content (1.6-9.2 nm-2) was measured by titration with chlorotrimethylsilane and compared with the oleylamine content (2.3-5.1 nm-2) supporting the formation of densely covered surfaces. The influence of metal fluoride adsorption on the air stability of QDs is discussed.
Collapse
Affiliation(s)
- Rodolphe Valleix
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, Lyon, 69342, France
| | - William Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abraham J Jordan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lilian Guillemeney
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, Lyon, 69342, France
| | - Leslie G Castro
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Bereket L Zekarias
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sungho V Park
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Oliver Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Kim J, Roh J, Park M, Lee C. Recent Advances and Challenges of Colloidal Quantum Dot Light-Emitting Diodes for Display Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212220. [PMID: 36853911 DOI: 10.1002/adma.202212220] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Colloidal quantum dots (QDs) exhibit tremendous potential in display technologies owing to their unique optical properties, such as size-tunable emission wavelength, narrow spectral linewidth, and near-unity photoluminescence quantum yield. Significant efforts in academia and industry have achieved dramatic improvements in the performance of quantum dot light-emitting diodes (QLEDs) over the past decade, primarily owing to the development of high-quality QDs and optimized device architectures. Moreover, sophisticated patterning processes have also been developed for QDs, which is an essential technique for their commercialization. As a result of these achievements, some QD-based display technologies, such as QD enhancement films and QD-organic light-emitting diodes, have been successfully commercialized, confirming the superiority of QDs in display technologies. However, despite these developments, the commercialization of QLEDs is yet to reach a threshold, requiring a leap forward in addressing challenges and related problems. Thus, representative research trends, progress, and challenges of QLEDs in the categories of material synthesis, device engineering, and fabrication method to specify the current status and development direction are reviewed. Furthermore, brief insights into the factors to be considered when conducting research on single-device QLEDs are provided to realize active matrix displays. This review guides the way toward the commercialization of QLEDs.
Collapse
Affiliation(s)
- Jaehoon Kim
- Department of Energy and Mineral Resources Engineering, Dong-A University, Busan, 49315, Republic of Korea
| | - Jeongkyun Roh
- Department of Electrical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Myoungjin Park
- Display Research Center, Samsung Display Co., Yongin-si, Gyeonggi-do, 17113, Republic of Korea
| | - Changhee Lee
- Display Research Center, Samsung Display Co., Yongin-si, Gyeonggi-do, 17113, Republic of Korea
| |
Collapse
|
14
|
Tolmachev DO, Fernée MJ, Shornikova EV, Siverin NV, Yakovlev DR, Van Avermaet H, Hens Z, Bayer M. Positive Trions in InP/ZnSe/ZnS Colloidal Nanocrystals. ACS NANO 2024; 18:9378-9388. [PMID: 38498768 DOI: 10.1021/acsnano.3c09971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
InP-based colloidal nanocrystals are being developed as an alternative to cadmium-based materials. However, their optical properties have not been widely studied. In this paper, the fundamental magneto-optical properties of InP/ZnSe/ZnS nanocrystals are investigated at cryogenic temperatures. Ensemble measurements using two-photon excitation spectroscopy revealed the band-edge hole state to have 1Sh symmetry, resolving some controversy on this issue. Single nanocrystal microphotoluminescence measurements provided increased spectral resolution that facilitated direct detection of the lowest energy confined acoustic phonon mode at 0.9 meV, which is several times smaller than the previously reported values for similar nanocrystals. Zeeman splitting of narrow spectral lines in a magnetic field indicated a bright trion emission. A simple trion model was used to identify a positive trion charge. Furthermore, the Zeeman split spectra allowed the direct measurement of both the electron and hole g-factors, which match existing theoretical predictions.
Collapse
Affiliation(s)
- Danil O Tolmachev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Mark J Fernée
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Elena V Shornikova
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Nikita V Siverin
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dmitri R Yakovlev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Hannes Van Avermaet
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
15
|
Hou Q, Du Z, Sun Z, Kong J, Huang Y, Wang K, Ning J, Tang J. Pseudohalogen Ammonium Salt-Assisted Syntheses of Large-Sized Indium Phosphide Quantum Dots with Near-Infrared Photoluminescence. J Phys Chem Lett 2024:3285-3293. [PMID: 38489757 DOI: 10.1021/acs.jpclett.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The development of indium phosphide (InP)-based quantum dots (QDs) with a near-infrared (NIR) emission area still lags behind the visible wavelength region and remains problematic. This study describes a one-step in situ pseudohalogen ammonium salt-assisted approach to generate NIR-emitted InP-based QDs with high photoluminescence quantum yields (PLQYs). The coexistence of NH4+ and PF6- ions from NH4PF6 may in situ synchronously etch and passivate the surface oxides and impede the creation of traps under the whole growth process of InP QDs. Experimental findings demonstrated that the in situ pseudohalogen ammonium salt-assisted syntheses technique may feature emission at a full width at half-maximum (fwhm) peak as fine as ∼45 nm and broaden the emission range to around ∼780 nm. A two-step approach for ZnS shells was developed to further improve the PLQY of NIR-emitted InP QDs. Furthermore, the constructed high-power intrinsically stretchable NIR color-conversion film employing the InP-based QDs/polymer composites presented excellent luminescence conversion ability and stretchability.
Collapse
Affiliation(s)
- Qinggang Hou
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Zhe Sun
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Jiahua Kong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yixiao Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Keke Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Jiajia Ning
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| |
Collapse
|
16
|
Zhang L, Xu H, Zhang X, Chen X, Lv Y, Zhang R, Wang L, Wu R, Shen H, Li LS. Highly Sensitive, Stable InP Quantum Dot Fluorescent Probes for Quantitative Immunoassay Through Nanostructure Tailoring and Biotin-Streptavidin Coupling. Inorg Chem 2024; 63:4604-4613. [PMID: 38395777 DOI: 10.1021/acs.inorgchem.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Han Xu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xuhui Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xinxin Chen
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruixue Zhang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Huaibin Shen
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
17
|
Lee T, Lee M, Seo H, Kim M, Chun B, Kwak J. Top-Emitting Quantum Dot Light-Emitting Diodes: Theory, Optimization, and Application. SMALL METHODS 2024; 8:e2300266. [PMID: 37183298 DOI: 10.1002/smtd.202300266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Indexed: 05/16/2023]
Abstract
The superior optical properties of colloidal quantum dots (QDs) have garnered significant broad interest from academia and industry owing to their successful application in self-emitting QD-based light-emitting diodes (QLEDs). In particular, active research is being conducted on QLEDs with top-emission device architectures (TQLEDs) owing to their advantages such as easy integration with conventional backplanes, high color purity, and excellent light extraction. However, due to the complicated optical phenomena and their highly sensitive optoelectrical properties to experimental variations, TQLEDs cannot be optimized easily for practical use. This review summarizes previous studies that have investigated top-emitting device structures and discusses ways to advance the performance of TQLEDs. First, theories relevant to the optoelectrical properties of TQLEDs are introduced. Second, advancements in device optimization are presented, where the underlying theories for each are considered. Finally, multilateral strategies for TQLEDs to enable their wider application to advanced industries are discussed. This work believes that this review can provide valuable insights for realizing commercial TQLEDs applicable to a broad range of applications.
Collapse
Affiliation(s)
- Taesoo Lee
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minhyung Lee
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hansol Seo
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjun Kim
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Beomsoo Chun
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
18
|
Wang L, Liang C, Zheng N, Yang C, Yan S, Wang X, Zuo Z, He C. Kidney injury contributes to edema of zebrafish larvae caused by quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168420. [PMID: 37963533 DOI: 10.1016/j.scitotenv.2023.168420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Edema represents a notable outcome in fishes exposed to aquatic pollutants, yet the underlying etiology remains inadequately understood. This investigation delves into the etiological factors of edema formation in 7 days post fertilization (dpf) zebrafish larvae following their exposure to InP/ZnS quantum dots (QDs), which was chosen as a prototypical edema inducer. Given the fundamental role of the kidney in osmoregulation, we used transgenic zebrafish lines featuring fluorescent protein labeling of the glomerulus, renal tubule, and blood vessels, in conjunction with histopathological scrutiny. We identified the pronounced morphological and structural aberrations within the pronephros. By means of tissue mass spectrometry imaging and hyperspectral microscopy, we discerned the accumulation of InP/ZnS QDs in the pronephros. Moreover, InP/ZnS QDs impeded the renal clearance capacity of the pronephros, as substantiated by diminished uptake of FITC-dextran. InP/ZnS QDs also disturbed the expression levels of marker genes associated with kidney development and osmoregulatory function at the earlier time points, which preceded the onset of edema. These results suggest that impaired fluid clearance most likely resulting from pronephros injury contributes to the emergence of zebrafish edema. Briefly, our study provides a perspective: the kidney developmental injury induced by exogenous substances may regulate edema in a zebrafish model.
Collapse
Affiliation(s)
- Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixin Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
19
|
Yu P, Cao S, Wang Y, Zhao J. Repercussions of the Inner Shell Layer on the Performance of Cd-Free Quantum Dots and Their Light-Emitting Diodes. J Phys Chem Lett 2024; 15:201-211. [PMID: 38157217 DOI: 10.1021/acs.jpclett.3c03137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Indium phosphide (InP) and zinc selenium tellurium (ZnSeTe) quantum dots (QDs) as less toxic alternatives have received substantial attention. The structure of QDs generally consists of a QD core, inner shell layer, and outer shell layer. We reckon that the inner shell layer, especially its components and thickness, have a significant influence on the optical and electronic performances of QDs. In this Perspective, we compare optical properties of these QDs with different inner shells and summarize how typical inner shell components and thickness influence their optical properties. The impact of the inner shell on the performance of QD light-emitting diodes (QLEDs) has also been discussed. The appropriate components and thickness of the inner shell both contribute to alleviate valence or lattice mismatch, thereby enhancing the performance of QDs. We expect that this Perspective could heighten awareness of the significance and impact of the inner shell layer in QDs and facilitate further development of QDs and QLEDs.
Collapse
Affiliation(s)
- Peng Yu
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Yunjun Wang
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou 215123, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| |
Collapse
|
20
|
Segura Lecina O, Newton MA, Green PB, Albertini PP, Leemans J, Marshall KP, Stoian D, Loiudice A, Buonsanti R. Surface Chemistry Dictates the Enhancement of Luminescence and Stability of InP QDs upon c-ALD ZnO Hybrid Shell Growth. JACS AU 2023; 3:3066-3075. [PMID: 38034959 PMCID: PMC10685429 DOI: 10.1021/jacsau.3c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Indium phosphide quantum dots (InP QDs) are a promising example of Restriction of Hazardous Substances directive (RoHS)-compliant light-emitting materials. However, they suffer from low quantum yield and instability upon processing under ambient conditions. Colloidal atomic layer deposition (c-ALD) has been recently proposed as a methodology to grow hybrid materials including QDs and organic/inorganic oxide shells, which possess new functions compared to those of the as-synthesized QDs. Here, we demonstrate that ZnO shells can be grown on InP QDs obtained via two synthetic routes, which are the classical sylilphosphine-based route and the more recently developed aminophosphine-based one. We find that the ZnO shell increases the photoluminescence emission only in the case of aminophosphine-based InP QDs. We rationalize this result with the different chemistry involved in the nucleation step of the shell and the resulting surface defect passivation. Furthermore, we demonstrate that the ZnO shell prevents degradation of the InP QD suspension under ambient conditions by avoiding moisture-induced displacement of the ligands from their surface. Overall, this study proposes c-ALD as a methodology for the synthesis of alternative InP-based core@shell QDs and provides insight into the surface chemistry that results in both enhanced photoluminescence and stability required for application in optoelectronic devices and bioimaging.
Collapse
Affiliation(s)
- Ona Segura Lecina
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Mark A. Newton
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Philippe B. Green
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Petru P. Albertini
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jari Leemans
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Kenneth P. Marshall
- The
Swiss-Norwegian Beamlines, European Synchrotron
Radiation Facility (ESRF), 38000 Grenoble, France
| | - Dragos Stoian
- The
Swiss-Norwegian Beamlines, European Synchrotron
Radiation Facility (ESRF), 38000 Grenoble, France
| | - Anna Loiudice
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
21
|
Yuan C, He M, Liao X, Liu M, Zhang Q, Wan Q, Qu Z, Kong L, Li L. Interface defects repair of core/shell quantum dots through halide ion penetration. Chem Sci 2023; 14:13119-13125. [PMID: 38023521 PMCID: PMC10664535 DOI: 10.1039/d3sc04136k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The interface defects of core-shell colloidal quantum dots (QDs) affect their optoelectronic properties and charge transport characteristics. However, the limited available strategies pose challenges in the comprehensive control of these interface defects. Herein, we introduce a versatile strategy that effectively addresses both surface and interface defects in QDs through simple post-synthesis treatment. Through the combination of fine chemical etching methods and spectroscopic analysis, we have revealed that halogens can diffuse within the crystal structure at elevated temperatures, acting as "repairmen" to rectify oxidation and significantly reducing interface defects within the QDs. Under the guidance of this protocol, InP core/shell QDs were synthesized by a hydrofluoric acid-free method with a full width at half-maximum of 37.0 nm and an absolute quantum yield of 86%. To further underscore the generality of this strategy, we successfully applied it to CdSe core/shell QDs as well. These findings provide fundamental insights into interface defect engineering and contribute to the advancement of innovative solutions for semiconductor nanomaterials.
Collapse
Affiliation(s)
- Changwei Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Mengda He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Xinrong Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Mingming Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Qinggang Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Qun Wan
- Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology Taipa Macao 999078 P. R. China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 P. R. China
| | - Liang Li
- Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology Taipa Macao 999078 P. R. China
| |
Collapse
|
22
|
Soheyli E, Biçer A, Ozel SS, Sahin Tiras K, Mutlugun E. Tuning the Shades of Red Emission in InP/ZnSe/ZnS Nanocrystals with Narrow Full Width for Fabrication of Light-Emitting Diodes. ACS OMEGA 2023; 8:39690-39698. [PMID: 37901544 PMCID: PMC10600898 DOI: 10.1021/acsomega.3c05580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
While Cd-based luminescent nanocrystals (NCs) are the most mature NCs for fabricating efficient red light-emitting diodes (LEDs), their toxicity related limitation is inevitable, making it necessary to find a promising alternative. From this point of view, multishell-coated, red-emissive InP-based NCs are excellent luminescent nanomaterials for use as an emissive layer in electroluminescent (EL) devices. However, due to the presence of oxidation states, they suffer from a wide emission spectrum, which limits their performance. This study uses tris(dimethylamino)phosphine (3DMA-P) as a low-cost aminophosphine precursor and a double HF treatment to suggest an upscaled, cost-effective, and one-pot hot-injection synthesis of purely red-emissive InP-based NCs. The InP core structures were coated with thick layers of ZnSe and ZnS shells to prevent charge delocalization and to create a narrow size distribution. The purified NCs showed an intense emission signal as narrow as 43 nm across the entire red wavelength range (626-670 nm) with an emission quantum efficiency of 74% at 632 nm. The purified samples also showed an emission quantum efficiency of 60% for far-red wavelengths of 670 nm with a narrow full width of 50 nm. The samples showed a relatively long average emission lifetime of 50-70 ns with a biexponential decay profile. To demonstrate the practical ability of the prepared NCs in optoelectronics, we fabricated a red-emissive InP-based LEDs. The best-performing device showed an external quantum efficiency (EQE) of 1.16%, a luminance of 1039 cd m-2, and a current efficiency of 0.88 cd A-1.
Collapse
Affiliation(s)
- Ehsan Soheyli
- Department
of Electrical-Electronics Engineering, Abdullah
Gül University, Kayseri 38080, Türkiye
| | - Ayşenur Biçer
- Department
of Electrical-Electronics Engineering, Abdullah
Gül University, Kayseri 38080, Türkiye
| | - Sultan Suleyman Ozel
- Department
of Electrical-Electronics Engineering, Abdullah
Gül University, Kayseri 38080, Türkiye
| | - Kevser Sahin Tiras
- Department
of Physics, Faculty of Sciences, Erciyes
University, Kayseri 38030, Türkiye
| | - Evren Mutlugun
- Department
of Electrical-Electronics Engineering, Abdullah
Gül University, Kayseri 38080, Türkiye
| |
Collapse
|
23
|
Qinghua L, Jinke B, Cuiying B, Zimei C, Jiyan H, Xuerong N, Xiao J, Bing X. Extensive emission tuning and characterization of highly efficient CuInS 2 quantum dots for white light-emitting diodes. OPTICS EXPRESS 2023; 31:36691-36701. [PMID: 38017814 DOI: 10.1364/oe.502064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/07/2023] [Indexed: 11/30/2023]
Abstract
Whole visible range emitting CuInS2/ZnS QDs were obtained with broad band-width and high luminous efficiency by altering the Cu/In ratio and coating ZnS layer. 1-Dodecanethiol (DDT) as a sulfur source in the ZnS coating process can inhibit the lattice defects caused by Zn2+ inter-diffusion, thus increasing the photoluminescence quantum yield (PL QY). Then the stability and lighting performance of white light-emitting diodes (WLEDs) based on these CuInS2/ZnS QDs were characterized. The optimized WLED device exhibited a moderate luminous efficacy (LE) (70.33 lm·W-1) and ultrahigh color qualities (CRI Ra = 92.7, R9 = 95.9, R13 = 96.3) with warm white at a correlated color temperature (CCT) of 4052 K.
Collapse
|
24
|
Stam M, du Fossé I, Infante I, Houtepen AJ. Guilty as Charged: The Role of Undercoordinated Indium in Electron-Charged Indium Phosphide Quantum Dots. ACS NANO 2023; 17:18576-18583. [PMID: 37712414 PMCID: PMC10540256 DOI: 10.1021/acsnano.3c07029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Quantum dots (QDs) are known for their size-dependent optical properties, narrow emission bands, and high photoluminescence quantum yield (PLQY), which make them interesting candidates for optoelectronic applications. In particular, InP QDs are receiving a lot of attention since they are less toxic than other QD materials and are hence suitable for consumer applications. Most of these applications, such as LEDs, photovoltaics, and lasing, involve charging QDs with electrons and/or holes. However, charging of QDs is not easy nor innocent, and the effect of charging on the composition and properties of InP QDs is not yet well understood. This work provides theoretical insight into electron charging of the InP core and InP/ZnSe QDs. Density functional theory calculations are used to show that charging of InP-based QDs with electrons leads to the formation of trap states if the QD contains In atoms that are undercoordinated and thus have less than four bonds to neighboring atoms. InP core-only QDs have such atoms at the surface, which are responsible for the formation of trap states upon charging with electrons. We show that InP/ZnSe core-shell models with all In atoms fully coordinated can be charged with electrons without the formation of trap states. These results show that undercoordinated In atoms should be avoided at all times for QDs to be stably charged with electrons.
Collapse
Affiliation(s)
- Maarten Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ivan Infante
- BC
Materials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
25
|
Mingabudinova L, Giordano L, Tessier MD, Hens Z, Schiettecatte P. Mechanistic study of ZnSe nanocrystal formation from zinc halides. J Chem Phys 2023; 158:2895233. [PMID: 37290076 DOI: 10.1063/5.0144683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
We studied the formation of zinc selenide (ZnSe) from zinc chloride (ZnCl2) and trioctylphosphine selenide (TOP=Se) in oleylamine, a chemistry originally proposed to grow ZnSe shells around InP core quantum dots. By monitoring the formation of ZnSe in reactions with and without InP seeds by quantitative absorbance and nuclear magnetic resonance (NMR) spectroscopy, we observe that the ZnSe formation rate is independent of the presence of InP cores. Similar to the seeded growth of CdSe and CdS, this observation supports a ZnSe growth mechanism through the inclusion of reactive ZnSe monomers that form homogeneously in the solution. Furthermore, by combining NMR and mass spectrometry, we identified the dominant reaction products of the ZnSe formation reaction as oleylammonium chloride and amino-substitutions of TOP, i.e., iminophosphoranes (TOP=NR), aminophosphonium chloride salts [TOP(NHR)Cl], and bis(amino)phosphoranes [TOP(NHR)2]. Based on the acquired results, we outline a reaction scheme that involves the complexation of TOP=Se by ZnCl2, followed by the nucleophilic addition of oleylamine onto the Lewis acid activated P-Se bond, thereby eliminating ZnSe monomers and forming amino-substitutions of TOP. Our work highlights the central role of oleylamine, acting as both the nucleophile and Brønsted base, in the transformation of metal halides and alkylphosphine chalcogenides into metal chalcogenides.
Collapse
Affiliation(s)
- Leila Mingabudinova
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, B-9000 Gent, Belgium
| | - Luca Giordano
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, B-9000 Gent, Belgium
| | - Mickael D Tessier
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, B-9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, B-9000 Gent, Belgium
| | - Pieter Schiettecatte
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|
26
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
27
|
Babkin IA, Udepurkar AP, Van Avermaet H, de Oliveira-Silva R, Sakellariou D, Hens Z, Van den Mooter G, Kuhn S, Clasen C. Encapsulation of Cadmium-Free InP/ZnSe/ZnS Quantum Dots in Poly(LMA-co-EGDMA) Microparticles via Co-flow Droplet Microfluidics. SMALL METHODS 2023:e2201454. [PMID: 36995027 DOI: 10.1002/smtd.202201454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group. However, the InP-based QDs lack an overall photostability under environmental influences. One design path of achieving stability is through encapsulation in cross-linked polymer matrices with the possibility to covalently link the matrix to surface ligands of modified core-shell QDs. The work focuses on the formation of polymer microbeads suitable for InP-based QD encapsulation, allowing for an individual protection of QDs and an improved processibility via this particle-based approach. For this, a microfluidic based method in the co-flow regime is used that consists of an oil-in-water droplet system in a glass capillary environment. The generated monomer droplets are polymerized in-flow into poly(LMA-co-EGDMA) microparticles with embedded InP/ZnSe/ZnS QDs using a UV initiation. They demonstrate how a successful polymer microparticle formation via droplet microfluidics produces optimized matrix structures leading to a distinct photostability improvement of InP-based QDs compared to nonprotected QDs.
Collapse
Affiliation(s)
- Iurii Alekseevich Babkin
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Aniket Pradip Udepurkar
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hannes Van Avermaet
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Rodrigo de Oliveira-Silva
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Dimitrios Sakellariou
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, Leuven, 3000, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
28
|
Yadav R, Kwon Y, Rivaux C, Saint-Pierre C, Ling WL, Reiss P. Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine. J Am Chem Soc 2023; 145:5970-5981. [PMID: 36866828 DOI: 10.1021/jacs.2c13834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Nonpyrophoric aminophosphines reacted with indium(III) halides in the presence of zinc chloride have emerged as promising phosphorus precursors in the synthesis of colloidal indium phosphide (InP) quantum dots (QDs). Nonetheless, due to the required P/In ratio of 4:1, it remains challenging to prepare large-sized (>5 nm), near-infrared absorbing/emitting InP QDs using this synthetic scheme. Furthermore, the addition of zinc chloride leads to structural disorder and the formation of shallow trap states inducing spectral broadening. To overcome these limitations, we introduce a synthetic approach relying on the use of indium(I) halide, which acts as both the indium source and reducing agent for aminophosphine. The developed zinc-free, single-injection method gives access to tetrahedral InP QDs with an edge length > 10 nm and narrow size distribution. The first excitonic peak is tunable from 450 to 700 nm by changing the indium halide (InI, InBr, InCl). Kinetic studies using phosphorus NMR reveal the coexistence of two reaction pathways, the reduction of transaminated aminophosphine by In(I) and via redox disproportionation. Etching the surface of the obtained InP QDs at room temperature with in situ-generated hydrofluoric acid (HF) leads to strong photoluminescence (PL) emission with a quantum yield approaching 80%. Alternatively, surface passivation of the InP core QDs was achieved by low-temperature (140 °C) ZnS shelling using the monomolecular precursor zinc diethyldithiocarbamate. The obtained InP/ZnS core/shell QDs that emit in a range of 507-728 nm exhibit a small Stokes shift (110-120 meV) and a narrow PL line width (112 meV at 728 nm).
Collapse
Affiliation(s)
- Ranjana Yadav
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Yongju Kwon
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Céline Rivaux
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Peter Reiss
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
29
|
Hu HL, Hao H, Ren X, Chen ZY, Liu M, Liu Y, Jiang FL. Bright InP Quantum Dots by Mid-Synthetic Modification with Zinc Halides. Inorg Chem 2023; 62:2877-2886. [PMID: 36723932 DOI: 10.1021/acs.inorgchem.2c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
InP quantum dots (QDs) attract growing interest in recent years, owing to their environmental advantages upon applications in display and lighting. However, compared to Cd-based QDs and Pb-based perovskites, the synthesis of InP QDs with high optical quality is relatively more difficult. Here, we established a mid-synthetic modification approach to improve the optical properties of InP-based QDs. Tris(dimethylamino)phosphine ((DMA)3P) and indium iodide were used to prepare InP QDs with a green emission (∼527 nm). By introducing zinc halides (ZnX2) during the mid-synthetic process, the photoluminescence quantum yield (PLQY) of the resulting InP/ZnSeS/ZnS core/shell/shell QDs was increased to >70%, and the full-width-at-half-maximum (FWHM) could be narrowed to ∼40 nm. Transmission electron microscopy clearly showed the improvement of the QDs particle size distribution after introducing ZnX2. It was speculated that ZnX2 was bound to the surface of QDs as a Z-type ligand, which not only passivated surface defects and suppressed the emission of defect states but also prevented Ostwald ripening. The InP cores were also activated by ZnX2, which made the growth of the ZnSeS shell more favorable. The photoluminescence properties started to be improved significantly only when the amount of ZnX2 exceeded 0.5 mmol. As the amount increased, more ZnX2 was distributed around the QDs to form a ligand layer, which prevented the shell precursor from crossing the ligand layer to the surface of the InP core, thus reducing the size of the InP/ZnSeS/ZnS QDs. This work revealed a new role of ZnX2 and found a method for InP QDs with high brightness and low FWHM by the mid-synthetic modification, which would inspire the synthesis of even better InP QDs.
Collapse
Affiliation(s)
- Hui-Ling Hu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Hao Hao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Xue Ren
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Zhe-Yong Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China.,College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China
| |
Collapse
|
30
|
Kim S, Park S, Kim M, Jeong S. Synthesis of single‐crystalline
InP
tetrapod nanocrystals via addition of
ZnCl
2
. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Sunghu Kim
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
| | - Seongmin Park
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
- SKKU Institute of Energy Science and Technology (SIEST) Suwon Gyeonggi‐do South Korea
| | - Meeree Kim
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
- SKKU Institute of Energy Science and Technology (SIEST) Suwon Gyeonggi‐do South Korea
| | - Sohee Jeong
- Department of Energy Science (DOES) and Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do South Korea
- SKKU Institute of Energy Science and Technology (SIEST) Suwon Gyeonggi‐do South Korea
| |
Collapse
|
31
|
Du R, Li X, Li Y, Li Y, Hou T, Li Y, Qiao C, Zhang J. Cation Exchange Synthesis of Aliovalent Doped InP QDs and Their ZnSe xS 1-x Shell Coating for Enhanced Fluorescence Properties. J Phys Chem Lett 2023; 14:670-676. [PMID: 36637473 DOI: 10.1021/acs.jpclett.2c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
III-V quantum dots (QDs), in particular InP QDs, have emerged as high-performance and environmentally friendly candidates to replace cadmium based QDs. InP QDs exhibit properties of direct band gap structure, low toxicity, and high mobility, which make them suitable for high-performance optoelectronic applications. However, it is still challenging to precisely regulate the components and crystal structure of InP QDs, especially in the engineered stable aliovalent doping. In this work, we developed our original reverse cation exchange strategy to achieve Cu+ doped InP (InP:Cu) QDs at lower temperature. A ZnSexS1-x shell was then homogeneously grown on the InP:Cu QDs as the passivation shell. The as-prepared InP:Cu@ZnSexS1-x core-shell QDs exhibited better fluorescence properties with a photoluminescence quantum yield (PLQY) of 56.47%. Due to the existence of multiple luminous centers in the QDs, variable temperature-dependent fluorescence characteristics have been studied. The high photoluminescence characteristics in the near-infrared region indicate their potential applications in optoelectronic devices and biological fields.
Collapse
Affiliation(s)
- Ruizhi Du
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - You Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxi Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tailei Hou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuemei Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Qiao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
32
|
Ubbink R, Almeida G, Iziyi H, du Fossé I, Verkleij R, Ganapathy S, van Eck ERH, Houtepen AJ. A Water-Free In Situ HF Treatment for Ultrabright InP Quantum Dots. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10093-10103. [PMID: 36439318 PMCID: PMC9686131 DOI: 10.1021/acs.chemmater.2c02800] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Indium phosphide quantum dots are the main alternative for toxic and restricted Cd-based quantum dots for lighting and display applications, but in the absence of protecting ZnSe and/or ZnS shells, InP quantum dots suffer from low photoluminescence quantum yields. Traditionally, HF treatments have been used to improve the quantum yield of InP to ∼50%, but these treatments are dangerous and not well understood. Here, we develop a postsynthetic treatment that forms HF in situ from benzoyl fluoride, which can be used to strongly increase the quantum yield of InP core-only quantum dots. This treatment is water-free and can be performed safely. Simultaneous addition of the z-type ligand ZnCl2 increases the photoluminescence quantum yield up to 85%. Structural analysis via XPS as well as solid state and solution NMR measurements shows that the in situ generated HF leads to a surface passivation by indium fluoride z-type ligands and removes polyphosphates, but not PO3 and PO4 species from the InP surface. With DFT calculations it is shown that InP QDs can be trap-free even when PO3 and PO4 species are present on the surface. These results show that both polyphosphate removal and z-type passivation are necessary to obtain high quantum yields in InP core-only quantum dots. They further show that core-only InP QDs can achieve photoluminescence quantum yields rivalling those of InP/ZnSe/ZnS core/shell/shell QDs and the best core-only II-VI QDs.
Collapse
Affiliation(s)
- Reinout
F. Ubbink
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Guilherme Almeida
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Hodayfa Iziyi
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ruud Verkleij
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Swapna Ganapathy
- Department
of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Ernst R. H. van Eck
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
33
|
Karadza B, Van Avermaet H, Mingabudinova L, Hens Z, Meuret Y. Comparison of different RGB InP-quantum-dot-on-chip LED configurations. OPTICS EXPRESS 2022; 30:43522-43533. [PMID: 36523048 DOI: 10.1364/oe.476135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
InP/ZnSe/ZnS quantum dots (QDs) offer a cadmium-free solution to make white LEDs with a narrow blue, green and red emission peak. Such LEDs are required for display and lighting applications with high color gamut. An important phenomenon that hampers the efficiency of such quantum-dot-on-chip LEDs is re-absorption of already converted light by the QDs. Proposed solutions to remedy this effect often rely on complex or cost-ineffective manufacturing methods. In this work, four different RGB QD-on-chip LED package configurations are investigated that can be fabricated with a simple cavity encapsulation method. Using accurate optical simulations, the impact of QD re-absorption on the overall luminous efficacy of the light source is analyzed for these four configurations as a function of the photo-luminescent quantum yield (PLQY) of the QDs. The simulation results are validated by implementing these configurations in QD-on-chip LEDs using a single set of red and green emitting InP/ZnSe/ZnS QDs. In this way, the benefits are demonstrated of adding volume scattering particles or a hemispherical extraction dome to the LED package. The best configuration in terms of luminous efficacy, however, is one where the red QDs are deposited in the recycling cavity, while the green QDs are incorporated in the extraction dome. Using this configuration with green and red InP/ZnSe/ZnS QDs with a PLQY of 75% and 65% respectively, luminous efficacy of 102 lm/W was realized for white light with a CCT of 3000 K.
Collapse
|