1
|
Ao C, Zhong S, Zhang B, Xie Y, Pan B, Zhang W, Wu M. Lanthanum hydroxide@cellulose membranes with tunable pore sizes for selective removal of dyes with the same charges. Int J Biol Macromol 2024; 278:135002. [PMID: 39181352 DOI: 10.1016/j.ijbiomac.2024.135002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Adsorptive membranes for the efficient separation of dyes with the same charges are quite desirable. Herein, a novel membrane of lanthanum hydroxide/cellulose hydrogel coated filter paper (LC) was prepared through a facile strategy of dip-coating followed by freeze-shaping. With the aid of cellulose gel, the generated La(OH)3 achieved fine dispersion. In addition, the pore size of LC membrane could be regulated by altering the cellulose concentration or the lanthanum chloride dosage, which was crucial for its water flux. In particular, the obtained membrane possessed a high water flux (128.4 L m-2 h-1) and a high dye rejection (97.2 %) for anionic Congo red (CR) only driven by the gravity, which outperformed many previously reported membranes. More intriguingly, its dye rejection for anionic methyl orange (MO) was only 0.9 %, exhibiting high selectivity for dyes with the same charges. Single-solute adsorption experiments indicated that the CR adsorption on the membrane was best fitted by the pseudo-first-order kinetic model, and it followed the Langmuir monolayer adsorption mechanism.
Collapse
Affiliation(s)
- Chenghong Ao
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shouxian Zhong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bairui Zhang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yan Xie
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China.
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
3
|
Xavier GTM, Nunes RS, Urzedo AL, Tng KH, Le-Clech P, Araújo GCL, Mandelli D, Fadini PS, Carvalho WA. Removal of phosphorus by modified bentonite:polyvinylidene fluoride membrane-study of adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53718-53728. [PMID: 38270764 DOI: 10.1007/s11356-024-32157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Enhanced phosphorus management, geared towards sustainability, is imperative due to its indispensability for all life forms and its close association with water bodies' eutrophication, primarily stemming from anthropogenic activities. In response to this concern, innovative technologies rooted in the circular economy are emerging, to remove and recover this vital nutrient to global food production. This research undertakes an evaluation of the dead-end filtration performance of a mixed matrix membrane composed of modified bentonite (MB) and polyvinylidene fluoride (PVDF) for efficient phosphorus removal from water media. The MB:PVDF membrane exhibited higher permeability and surface roughness compared to the pristine membrane, showcasing an adsorption capacity (Q) of 23.2 mgP·m-2. Increasing the adsorbent concentration resulted in a higher removal capacity (from 16.9 to 23.2 mgP·m-2) and increased solution flux (from 0.5 to 16.5 L·m-2·h-1) through the membrane. The initial phosphorus concentration demonstrates a positive correlation with the adsorption capacity of the material, while the system pressure positively influences the observed flux. Conversely, the presence of humic acid exerts an adverse impact on both factors. Additionally, the primary mechanism involved in the adsorption process is identified as the formation of inner-sphere complexes.
Collapse
Affiliation(s)
- Gabriela Tuono Martins Xavier
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | - Renan Silva Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Keng Han Tng
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | | | - Dalmo Mandelli
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
| | - Pedro Sergio Fadini
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Wagner Alves Carvalho
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
4
|
He Y, Qi X, Li J, Wang W, Zhang J, Yang L, Xue M, Lan K. Lanthanum-Integrated Porous Adsorbent for Effective Phosphorus Removal. ACS OMEGA 2024; 9:30826-30833. [PMID: 39035977 PMCID: PMC11256352 DOI: 10.1021/acsomega.4c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
In pursuit of accessing clean water, the phosphate removal is of great importance for preventing eutrophication toward sustainable ecology. However, effective adsorbents with high capacity, selectivity, and long-term stability for treating phosphate in water still remain desired, which requires further development. Herein, a type of porous La-based adsorbents, which are composed of highly dispersed La(OH)3 on amino-functionalized Caragana korshinskii (CK) nanowires, are designed and fabricated through simple amination and decoration of lemon bars. Specifically, the adsorption to phosphate can be quickly completed within 50 min, and an ultrahigh adsorption capacity of 173.3 mg of P g-1 is realized. Moreover, these composite adsorbents display excellent selectivity and anti-interference ability to phosphate in the presence of common anions (CO3 2-, NO3-, Cl-, and SO4 2-). After four regenerations, there is still a removal rate of 85%. This study underscores an integrated material model for designing advanced structures toward efficient wastewater treatment.
Collapse
Affiliation(s)
- Yalin He
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Xingyue Qi
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Wendi Wang
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Jingyu Zhang
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Lanhao Yang
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Mei Xue
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry,
College of Chemistry and Chemical Engineering, Inner Mongolia Engineering
and Technology Research Center for Catalytic Conversion and Utilization
of Carbon Resource Molecules, Inner Mongolia
University, Hohhot 010021, P. R. China
| |
Collapse
|
5
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
6
|
Yang Y, Liu D, Chen Y, He J, Li Q. Mechanistic study of highly effective phosphate removal from aqueous solutions over a new lanthanum carbonate fabricated carbon nanotube film. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120938. [PMID: 38669888 DOI: 10.1016/j.jenvman.2024.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The effective purification of phosphate-containing wastewater is considered as increasingly important. In this study, a highly effective LC-CNT film was developed for efficient phosphate removal. Kinetic results showed that the adsorbent exhibited an improved mass transfer efficiency and a fast adsorption rate during adsorption (reaching 80% and 100% equilibrium adsorption capacity within 175 and 270 min, respectively). Kinetic model analysis suggested that the adsorption was a combined chemical physical process. Isotherm study revealed that the LC-CNT film showed a superior adsorption capacity (178.6 mg/g, estimated from the Langmuir model) with multiple adsorption mechanisms. pH study suggested that surface complexation and ligand exchange played important roles during adsorption, and the adsorbent worked well within the pH range of 3-7 with little La leakage. The ionic strength and competing anions showed little influence on the adsorbent effectiveness except for the carbonate and sulfate ions. The characterization and mechanism study revealed that the phosphate adsorption of the LC-CNT film was controlled by inner-sphere complexation, outer-sphere complexation and surface precipitation. The LC-CNT film also showed excellent regenerability and stability in cycling runs, further demonstrating its potential in industrial applications.
Collapse
Affiliation(s)
- Yi Yang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, PR China.
| | - Dachen Liu
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yiliang Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jing He
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, PR China
| | - Qu Li
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, PR China
| |
Collapse
|
7
|
Xu Y, Yin Y, Luan YN, Wang Q, Zhao Z, Guo Z, Liu C. Efficient phosphate removal by Mg-La binary layered double hydroxides: synthesis optimization, adsorption performance, and inner mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29132-29147. [PMID: 38568311 DOI: 10.1007/s11356-024-32838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
Layered double hydroxides (LDH) hold great promise as phosphate adsorbents; however, the conventional binary LDH exhibits low adsorption rate and adsorption capacity. In this study, Mg and La were chosen as binary metals in the synthesis of Mg-La LDH to enhance phosphate efficient adsorption. Different molar ratios of Mg to La (2:1, 3:1, and 4:1) were investigated to further enhance P adsorption. The best performing Mg-La LDH, with Mg to La ratio is 4:1 (LDH-4), presented a larger adsorption capacity and faster adsorption rate than other Mg-La LDH. The maximum adsorption capacity (87.23 mg/g) and the rapid adsorption rate in the initial 25 min of LDH-4 (70 mg/(g·h)) were at least 1.6 times and 1.8 times higher than the others. The kinetics, isotherms, the effect of initial pH and co-existing anions, and the adsorption-desorption cycle experiment were studied. The batch experiment results proved that the chemisorption progress occurred on the single-layered LDH surface and the optimized LDH exhibited strong anti-interference capability. Furthermore, the structural characteristics and adsorption mechanism were further investigated by SEM, BET, FTIR, XRD, and XPS. The characterization results showed that the different metal ratios could lead to changes in the metal hydroxide layer and the main ions inside. At lower Mg/La ratios, distortion occurred in the hydroxide layer, resulting in lower crystallinity and lower performance. The characterization results also proved that the main mechanisms of phosphate adsorption are electrostatic adsorption, ion exchange, and inner-sphere complexation. The results emphasized that the Mg-La LDH was efficient in phosphate removal and could be successfully used for this purpose.
Collapse
Affiliation(s)
- Yanming Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Qing Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhuo Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhonghong Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
8
|
Shi H, Qin J, Lv Q, Zhang L, Li Q, Ou B, Chen X. A karst-inspired hierarchical Mg/Al layered double hydroxide with a high entropy-driven process for interception and storage. Dalton Trans 2024; 53:4412-4425. [PMID: 38312075 DOI: 10.1039/d3dt03615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Karstification plays a crucial role in forming magnificent scenery, and storing oil, natural gas, mineral resources, and water. Through the inspiration of karstification, a hierarchical layered double hydroxide (LDH) with funnel-like and cave-like structures (called Karst-LDH) is formed by the dissolution of acrylic acid/water solution. Meanwhile, the results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that Karst-LDH has complicated and interconnected internal pipe networks. The actual maximum phosphate adsorption capacity of Karst-LDH reaches 126.38 mg g-1 due to the unique structures, protonation, ligand exchange, ion exchange, and hydrogen bonding, which is over ten times that of general LDH with a regular hexagonal structure. The results of isotherms and thermodynamics also indicate that Karst-LDH conforms to more heterogeneous and multilayer adsorption with a higher entropy-driven process. Karst-LDH exhibits good selectivity for chloride and nitrate ions. The change in the frontier orbital interaction between phosphate and different LDHs is a significant reason for quick macropore transmission, mesopore interception, and finally, phosphate storage in Karst-LDH. This work provides an efficient way for the design and fabrication of high adsorption performance materials with unique karst-type structures, which can be used for multiple fields potentially.
Collapse
Affiliation(s)
- Hongyu Shi
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Jun Qin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Qing Lv
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Lijin Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Qingxin Li
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Bin Ou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
- Fuzhou Hongtai Investment Co., Ltd, 350001 Fuzhou, China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China.
| |
Collapse
|
9
|
Wang X, Li Y, Wen X, Liu L, Zhang L, Long M. Cooperation of ferrous ions and hydrated ferric oxide for advanced phosphate removal over a wide pH range: Mechanism and kinetics. WATER RESEARCH 2024; 249:120969. [PMID: 38086202 DOI: 10.1016/j.watres.2023.120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Excessive phosphate loading leads to eutrophication problems in rivers or lakes and causes serious environmental and economic damages, urging new technologies to reduce effluent phosphate at ultra-low levels. As a promising candidate, adsorption over metal oxides is restricted by the released hydroxide anions (OH-) through ligand exchange, which elevates pH and suppresses further adsorption. In this contribution, we found ferrous ions (Fe2+) significantly enhance phosphate removal over hydrated ferric oxide (HFO) in a wide pH range via a cooperation of adsorption and precipitation, and clarified the synergistic mechanism by a series of characterizations and the modified models of adsorption isotherms and pseudo second-order kinetics. The combination of Fe2+and HFO removed up to 51.7 mg/g of phosphate at pH 4.0, with 43.6 and 8.1 mg/g attributing to adsorption and precipitation, respectively. In comparison to HFO alone, HFO/Fe2+ system achieved 2.2-fold increase in phosphate removal, 1.9-fold increase in phosphate adsorption capacity, and 3.4-fold increase in phosphate removal rate. The enhancement is understood by that hydroxide anions released from ligand exchange over HFO are neutralized by protons produced from the oxidative precipitation of ferrous ions. The HFO/Fe2+ combining system is promising to realize advanced removal of low concentration phosphate containing wastewater, and these findings bring new insights for the development of novel phosphate removal technologies through a rational design of a combination process.
Collapse
Affiliation(s)
- Xiaohui Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyan Liu
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Huo L, Yang P, Yin H, Zhang E. Enhanced nutrient control efficiency in sediments using modified clay inactivation coupled with aquatic vegetation in the confluence area of a eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168149. [PMID: 37898219 DOI: 10.1016/j.scitotenv.2023.168149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Developing a long-term method for controlling sediment N and P release is important for enabling lake restoration. In this study, inactivation methods using lanthanum-modified clay, modified zeolite, or planting aquatic vegetation and their combinations were used in the control internal sediment loading (pore water N and P concentrations and their fluxes), and the efficacies of the methods were analyzed. The results indicated that compared to the control sediment, the addition of P sorbent, which was La and Al co-modified attapulgite (ACLA), and N sorbent, which was NaCl-modified zeolite (modified zeolite), planting of aquatic vegetation Vallisneria spiralis (V. spiralis), and a combination of sorbents and plants effectively reduced the porewater nutrient content and its fluxes across the sediment-water interface. However, the reduction in pore water nutrients and flux were superior when using a combination of clay inactivation and aquatic planting. The poorest sediment N and P control was achieved by planting V. spiralis alone. The addition of La and Al co-modified attapulgite (ACLA) and modified zeolite efficiently reduced N and P in the sediment, but the N and P sorbents did not achieve long-lasting nutrient release control. The high efficiency obtained by the combination of modified clay-based inactivation and V. spiralis was likely due to the strong chemical sorption capacity of clay and oxygenation by the rhizosphere of aquatic vegetation. These results show that a combination of chemical and ecological methods would be the most effective approach to remediate polluted sediments in the long term.
Collapse
Affiliation(s)
- Li Huo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Pan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, People's Republic of China.
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China
| |
Collapse
|
11
|
Zhu J, Rui T, You Y, Shen D, Liu T. Magnetic biochar with Mg/La modification for highly effective phosphate adsorption and its potential application as an algaecide and fertilizer. ENVIRONMENTAL RESEARCH 2023; 231:116252. [PMID: 37245573 DOI: 10.1016/j.envres.2023.116252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
In this study, a highly efficient phosphate adsorbent (MBC/Mg-La) based on magnetic biochar was successfully synthesized through Mg-La modification. The phosphate adsorption capacity of biochar was significantly enhanced after Mg-La modification. The adsorbent exhibited an excellent phosphate adsorption performance, particularly for treating low-concentration phosphate wastewater. Within a wide pH range, the adsorbent maintained a stable phosphate adsorption capacity. Furthermore, it showed a high adsorption selectivity for phosphate. Therefore, given the excellent phosphate adsorption performance, the adsorbent could effectively inhibit algae growth by removing phosphate from water. Furthermore, the adsorbent after phosphate adsorption can be easily recycled through magnetic separation, which can serve as a phosphorus fertilizer to promote the growth of Lolium perenne L.
Collapse
Affiliation(s)
- Jinqi Zhu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Tingwei Rui
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yiwen You
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Dong Shen
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Tao Liu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.
| |
Collapse
|
12
|
Wang Y, Liu GH, Yuan J, Li Q, Qi L, Wang H. Performance and mechanism of phosphorus adsorption removal from wastewater by a Ce-Zr-Al composite adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27894-2. [PMID: 37284948 DOI: 10.1007/s11356-023-27894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/21/2023] [Indexed: 06/08/2023]
Abstract
With the increasingly serious eutrophication of global water bodies and the strict discharge standards of tail water in wastewater treatment plants (WWTPs), there is an urgent technology need for efficient deep phosphorus removal from wastewater. A composite cerium-based adsorbent (Ce-Zr-Al) was synthesized by coprecipitation method for the adsorption of low concentration phosphorus in water. The performance of the Ce-Zr-Al composite adsorbent was explored, and the mechanism was also revealed through the analyses including SEM, BET, XPS, and FT-IR. The results showed that the composite adsorbent had excellent phosphorus removal performance. The phosphorus removal rate reached up to 92.6%, and the phosphorus concentration in effluent was less than 0.074 mg/L. The phosphate adsorption capacity of saturation was 73.51 mg/g. The adsorption process of phosphate was in accordance with pseudo-second-order kinetic model and Langmuir model. In addition, the composite adsorbent had a high zero potential point (pH PZC= 8) and a wide range of pH application. After the repeated desorption for 10 times in NaOH solution, the composite adsorbent still maintained good adsorbability (adsorption rate > 94%). The ligand exchange and electrostatic adsorption played the main role for the phosphorus removal from water using the composite adsorbent.
Collapse
Affiliation(s)
- Yijin Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Guo-Hua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, China.
| | - Junli Yuan
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Qiangang Li
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, China
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Haidian District, Beijing, 100872, China
| |
Collapse
|
13
|
GadelHak Y, El-Azazy M, Shibl MF, Mahmoud RK. Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: A detailed review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162629. [PMID: 36889388 DOI: 10.1016/j.scitotenv.2023.162629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The recent regulations pertaining to the circular economy have unlocked new prospects for researchers. In contrast to the unsustainable models associated with the linear economy, integration of concepts of circular economy braces reducing, reusing, and recycling of waste materials into high-end products. In this regard, adsorption is a promising and cost-effective water treatment technology for handling conventional and emerging pollutants. Numerous studies are published annually to investigate the technical performance of nano-adsorbents and nanocomposites in terms of adsorption capacity and kinetics. Yet, economic performance evaluation is rarely discussed in the literature. Even if an adsorbent shows high removal efficiency towards a specific pollutant, its high preparation and/or utilization costs might hinder its real-life use. This tutorial review aims at illustrating cost estimation methods for the synthesis and utilization of conventional and nano-adsorbents. The current treatise discusses the synthesis of adsorbents on a laboratory scale where the raw material, transportation, chemical, energy, and any other costs are discussed. Moreover, equations for estimating the costs at the large-scale adsorption units for wastewater treatment are illustrated. This review focuses on introducing these topics to non-specialized readers in a detailed but simplified manner.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | - Rehab K Mahmoud
- Chemistry Department. Faculty of Sciences, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
14
|
Zong E, Shen Y, Yang J, Liu X, Song P. Preparation and Characterization of an Invasive Plant-Derived Biochar-Supported Nano-Sized Lanthanum Composite and Its Application in Phosphate Capture from Aqueous Media. ACS OMEGA 2023; 8:14177-14189. [PMID: 37091370 PMCID: PMC10116626 DOI: 10.1021/acsomega.3c00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Invasive plants pose a great threat to natural ecosystems owing to their rapid propagation and spreading ability in nature. Herein, a typical invasive plant, Solidago canadensis, was chosen as a novel feedstock for the preparation of nano-sized lanthanum-loaded S. canadensis-derived biochar (SCBC-La), and its adsorption performance for phosphate removal was evaluated by batch adsorption experiment. The composite was characterized by multiple techniques. Effects of parameters, such as the initial concentration of phosphate, time, pH, coexisting ions, and ionic strength, were studied on the phosphate removal. Adsorption kinetics and isotherms showed that SCBC-La shows a faster adsorption rate at a low concentration and SCBC-La exhibits good La utilization efficiency than some of the reported La-modified adsorbents. Phosphate can be effectively removed over a relatively wide pH of 3-9 because of the high pH pzc of SCBC-La. Furthermore, the SCBC-La shows a strong anti-interference capability in terms of pH value, coexisting ions, and ionic strength, exhibiting a highly selective capacity for phosphate removal. Additionally, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements reveal that hydroxyl groups on the surface of SCBC-La were replaced by phosphate and manifest the reversible transformation between La(OH)3 and LaPO4. Considering its high adsorption capacity and excellent selectivity, SCBC-La is a promising material for preventing eutrophication. This work gives a new method of pollution control with waste treatment since the invasive plant (S. canadensis) is converted into biochar-based nanocomposite for effective removal of phosphate to mitigate eutrophication.
Collapse
Affiliation(s)
- Enmin Zong
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
- School
of Earth Sciences and Engineering, Nanjing
University, Nanjing 210093, P. R. China
| | - Yuanyuan Shen
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
| | - Jiayao Yang
- School
of Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Xiaohuan Liu
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
- School
of Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
- ,
| | - Pingan Song
- Centre
for Future Materials, University of Southern
Queensland, Springfield 4350, Australia
| |
Collapse
|
15
|
Li M, Feng M, Guo C, Qiu S, Zhang L, Zhao D, Guo H, Zhang K, Wang F. Green and Efficient Al-Doped LaFe xAl 1-xO 3 Perovskite Oxide for Enhanced Phosphate Adsorption with Creation of Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16942-16952. [PMID: 36961428 DOI: 10.1021/acsami.2c19513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
La-based metal oxide materials are environmentally friendly and show promise for phosphate adsorption. A series of Al-doped perovskite oxides, such as LaFexAl1-xO3, were prepared using a facile citric acid-assisted sol-gel method. The characterization results demonstrated that with optimized Al doping, there was a significant increase in the specific surface area and increased defect content of perovskite oxide LaFexAl1-xO3. Adsorption experiments showed that the performance of phosphate removal by LaFexAl1-xO3 was largely enhanced due to the improved adsorption capacity, which is maximum eight times higher compared with control perovskites prepared under neutral conditions. The mass transfer rate for adsorption was considerably boosted with phosphate removal within the initial 15 min. Spectroscopy analysis and density functional theory calculation results showed that the process of phosphate removal by the Al-doped perovskite oxides LaFexAl1-xO3 involved electrostatic interactions, an inner-sphere complex, and surface oxygen vacancies, among which the creation of oxygen vacancies caused by the Al doping was the predominant mechanism for reducing the bonding barrier during adsorption and generating adsorption sites. The results enable the development of a green and efficient perovskite adsorbent with a La-based perovskite material for phosphorus removal.
Collapse
Affiliation(s)
- Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- College of Grass Industry and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, People's Republic of China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Di Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China
| |
Collapse
|
16
|
Zong E, Wang X, Zhang L, Yang J, Liu X. A Recyclable Magnetic Aminated Lignin Supported Zr-La Dual-Metal Hydroxide for Rapid Separation and Highly Efficient Sequestration of Phosphate. Molecules 2023; 28:molecules28072923. [PMID: 37049693 PMCID: PMC10095728 DOI: 10.3390/molecules28072923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The application of lignin-based adsorbents in the efficient removal of phosphate from wastewater has attracted much attention and been intensively studied in recent years. However, most currently reported lignin-based adsorbents are difficult to recover and recycle. Herein, we have developed a recyclable, nanostructured bio-adsorbent, poly(ethyleneimine) (PEI)-modified lignin (LG) integrated with Fe3O4 and Zr-La dual-metal hydroxide (LG-NH2@Fe3O4@Zr-La), by the Mannich reaction followed by the chemical coprecipitation method. Multilayer adsorption existed on the surface of LG-NH2@Fe3O4@Zr-La based on the isotherm fitting curve, and its adsorption capacity reached 57.8 mg P g−1, exhibiting a higher phosphate uptake than most reported metallic oxide-based composites. The adsorption process was dominated by inner-sphere complexation of ligand-exchange and electrostatic interactions. Moreover, LG-NH2@Fe3O4@Zr-La exhibited excellent selectivity against coexisting anions, and the adsorption was more efficient under acidic conditions. When the phosphate concentration was 2.0 mg P L−1, the removal efficiency of phosphate reached 99.5% and the residual concentration was only 10 μg P L−1, which meets the United States Environmental Protection Agency (USEPA) standard for eutrophication prevention. In addition, the LG-NH2@Fe3O4@Zr-La displayed excellent reusability, maintaining 91.8% of removal efficiency after five cycles. Importantly, owing to the magnetic properties of the loaded Fe3O4, the resulting composite could be separated within 30 s under an external magnetic field. Thus, the separable and recyclable biobased magnetic adsorbent developed in this work exhibited promising application in phosphate capture from real sewage. This research study provides a new perspective for lignin valorization in lignocellulose biorefineries and establishes an approach for developing an economical and efficient bio-adsorbent for phosphate removal from wastewater.
Collapse
|
17
|
In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020760. [PMID: 36677818 PMCID: PMC9860898 DOI: 10.3390/molecules28020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In recent years, metal-organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in situ formation of MOF/polymer NFMs using an electrospinning method. The porous MOF/polymer NFMs were constructed by interconnecting mesopores in electrospun composite nanofibers using poly(vinylpolypyrrolidone) (PVP) as the sacrificial pore-forming agent. MOF (MIL-88A) particles were formed inside the polyacrylonitrile (PAN)/PVP nanofibers in situ during electrospinning, and the porous MIL-88A/PAN (pMIL-88A/PAN) NFM was obtained after removing PVP by ethanol and water washing. The MOF particles were uniformly distributed throughout the pMIL-88A/PAN NFM, showing a good porous micro-nano morphological structure of the NFM with a surface area of 143.21 m2 g-1, which is conducive to its efficient application in dye adsorption and removal. Specifically, the dye removal efficiencies of the pMIL-88A/PAN NFM for amaranth red, rhodamine B, and acid blue were as high as 99.2, 94.4, and 99.8%, respectively. In addition, the NFM still showed over 80% dye removal efficiencies after five adsorption cycles. The pMIL-88A/PAN NFM also presented high adsorption capacities, fast adsorption kinetics, and high cycling stabilities during the processes of dye adsorption and removal. Overall, this work demonstrates that the in situ electrospun porous MOF/polymer NFMs present promising application potential in water treatment for organic dyestuff removal.
Collapse
|
18
|
Guo L, Liu H, Peng F, Kang J, Qi H. Novel multifunctional papers based on chemical modified cellulose fibers derived from waste bagasse. Carbohydr Polym 2022; 297:120013. [DOI: 10.1016/j.carbpol.2022.120013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
19
|
Tan L, Zhang W, Zhu X, Ru Y, Yi W, Pang B, Liu T. Porous fibrous bacterial cellulose/La(OH)3 membrane for superior phosphate removal from water. Carbohydr Polym 2022; 298:120135. [DOI: 10.1016/j.carbpol.2022.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
20
|
Zheng K, Xiang L, Huang C, Wang Y, Zhang H, Li J. Efficient phosphate removal and recovery from wastewater with Zn(OH)2@DETA-aminated polyacrylonitrile fibre. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Liang WX, Wei Y, Qiao M, Fu JW, Wang JX. High-gravity-assisted controlled synthesis of lanthanum carbonate for highly-efficient adsorption of phosphate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liu B, Dai S, Zhang X, Cui F, Nan J, Wang W. Highly efficient and reusable lanthanum-carbon nanotube films for enhanced phosphate removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
He Q, Zhao H, Teng Z, Wang Y, Li M, Hoffmann MR. Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances. CHEMOSPHERE 2022; 303:134987. [PMID: 35597457 DOI: 10.1016/j.chemosphere.2022.134987] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Controlling eutrophication and recovering phosphate from water bodies are hot issues in the 21st century. Adsorption is considered to be the best method for phosphate removal because of its high adsorption efficiency and fast removal rate. Among the many adsorbents, lanthanum (La)-based adsorbents have been paid more and more attention due to their strong affinity to phosphorus. This paper reviews research of phosphate adsorption on La-based adsorbents in different La forms, including lanthanum oxide/hydroxide, lanthanum mixed metal oxide/hydroxide, lanthanum carbonate, La3+, La-based metal-organic framework (La-MOF) and La-MOF derivatives. The La-based adsorbents can be loaded on many carriers, such as carbon material, clay minerals, porous silica, polymers, industrial wastes, and others. We find that lanthanum oxide/hydroxide and La3+ adsorbents are mostly studied, while those in the forms of lanthanum carbonate, La-MOF, and La-MOF derivatives are relatively few. The kinetic process of most phosphate adsorption is pseudo-second-order and the isotherm process is in accordance with the Langmuir model. The cost of La-based and other traditional adsorbents was compared. The adsorption mechanisms are categorized as electrostatic attraction, ligand exchange, Lewis acid-base interaction, ion exchange and surface precipitation. Besides, regeneration methods of La-based adsorbents are mainly acid, alkali, and salt-alkali. In addition, the La-based adsorbents after absorbing phosphate can be directly used as a slow-release fertilizer. This review provides a basis for the research on phosphate adsorption by La-based adsorbents. It should be carried out to further develop La-based materials with high adsorption capacity and good regeneration ability. Meanwhile, studies have been conducted on the reuse of phosphate after desorption, which needs more attention in future research.
Collapse
Affiliation(s)
- Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yin Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Michael R Hoffmann
- Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
24
|
Zhou Y, Chen S, Qiu J, Zhu C, Xu T, Zeng M, He X, Hu B, Zhang X, Yu G. Removal of phosphorus in wastewater by sinusoidal alternating current coagulation: performance and mechanism. ENVIRONMENTAL TECHNOLOGY 2022; 43:3161-3174. [PMID: 33843473 DOI: 10.1080/09593330.2021.1916093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The effects of initial total phosphorus (TP) concentration, current density, conductivity and initial pH value on the removal rate of TP and energy consumption, as well as the behaviour and mechanism of phosphorus removal, were investigated by sinusoidal alternating current coagulation (SACC). The flocs produced by SACC were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy FTIR and X-ray photo electron spectroscopy. The thermodynamic and kinetic behaviours of phosphorus removal by iron sol adsorption were also studied in detail. In a self-made SACC reactor equipped with five sets of parallel iron electrodes spacing 10 mm, the removal rate of TP reached 90.9% for a pH 7.0 wastewater with 5 mg dm-3 TP (κ = 800 μS cm-1) after being treated for 60 min by applying 2.12 mA cm-2 sinusoidal alternating current. Compared with direct current coagulation (DCC), SACC exhibits a higher removal efficiency of phosphorus due to the stronger adsorption of the produced flocs. It was found that the adsorption in the SACC process follows pseudo-second-order kinetic with the involvement of the intra-particle model. The adsorption of iron sol to phosphorus was an endothermic and spontaneous process, and its adsorption behaviour can be characterized with Langmuir and Redlich-Peterson isothermal adsorption models. SACC may be employed for the treatment of more complex wastewater combined with biological and/or electrochemical techniques.
Collapse
Affiliation(s)
- Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Shuaiqi Chen
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Jingxian Qiu
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Chunyou Zhu
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Muping Zeng
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Xi He
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, People's Republic of China
| | - Xueyuan Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| |
Collapse
|
25
|
Jiao GJ, Ma J, Zhang J, Zhou J, Sun R. High-efficiency capture and removal of phosphate from wastewater by 3D hierarchical functional biomass-derived carbon aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154343. [PMID: 35257753 DOI: 10.1016/j.scitotenv.2022.154343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The development of functional biomass-based carbon aerogels (CAs) with excellent mechanical flexibility and ultra-high phosphate capture capacity is crucial for capture and recovery of phosphate from waste water. Herein, a functional biomass-derived CA (MgO@SL/CMC CA) with an ordered wave-shaped layered structure and excellent compressibility was fabricated with the aim of creating a material with efficient phosphate capture performance. The incorporation of sulfonomethylated lignin (SL) significantly improves the mechanical flexibility of MgO@SL/CMC CA. Numerous MgO nano-particles (NPs), which act as principal adsorption sites, were uniformly anchored on the MgO@SL/CMC CA. The prepared MgO@SL/CMC CA with high Mg content (20.34 wt%) exhibited an ultra-high phosphate capture capacity (218.51 mg P g-1 for adsorbent or 644.58 mg P g-1 for MgO), excellent adsorptive selectivity for phosphate and a wide pH range of application (2-8). Notably, more than 81.95% of the phosphate capture capacity was retained after six cyclic adsorption-desorption tests. A considerable effective treatment volume (468 BV) of actual wastewater (1.7 mg P L-1) could be achieved by the MgO@SL/CMC CA in the fixed-bed adsorption column. Research into the adsorption mechanism reveals that monolayer chemisorption of phosphate occurs on the MgO@SL/CMC CA through a ligand exchange process. The combination of favorable flexibility, green raw materials and superior phosphate capture performance endows MgO@SL/CMC CA with great application potential in the practical treatment of wastewater.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Junqiang Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
26
|
“Twin Lotus Flower” Adsorbents Derived from LaFe Cyanometallate for High-Performance Phosphorus Removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Cheng W, Liu W, Wang P, Zhou M, Cui L, Wang Q, Yu Y. Multifunctional coating of cotton fabric via the assembly of amino-quinone networks with polyamine biomacromolecules and dopamine quinone. Int J Biol Macromol 2022; 213:96-109. [PMID: 35636528 DOI: 10.1016/j.ijbiomac.2022.05.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
Abstract
Functional textiles with antibacterial properties and UV protection are essential for human health. However, the process of functional modification of textiles is usually done with the help of chemical cross-linking agents to improve the bonding fastness of functional finishing agents on textiles. The use of chemical cross-linking agents is not eco-friendly enough and is prone to chemical waste. In this study, some highly reactive polyamine biomolecules were combined with dopamine quinone, a super adhesive bionic material, to spontaneously construct amino-quinone networks (AQNs) coatings on the surface of cotton fabrics without the addition of chemical crosslinkers. The amino/quinone compounds (A/Q) self-crosslinking reaction is achieved by Michael addition and Schiff base reaction between the quinone group in dopamine quinone and the amino group in chitosan (CTS), chitooligosaccharide (COS) or ԑ-polylysine (ԑ-PL). The combination of polyamines and dopamine quinone during the cotton finishing process imparts antibacterial and UV protection to cotton fabric. The results showed that the AQNs coating modified fabrics had superb UV protection and antibacterial rates of over 96% against both E. coli and S. aureus. In addition, the AQNs coating modified fabrics had good resistance to washing and mechanical abrasion. This study proposes that self-assembled amino-quinone network multifunctional coatings of dopamine quinone and polyamine biomolecules are of guiding significance for the development of environmentally friendly bio-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
28
|
Zhi Y, Paterson AR, Call DF, Jones JL, Hesterberg D, Duckworth OW, Poitras EP, Knappe DRU. Mechanisms of orthophosphate removal from water by lanthanum carbonate and other lanthanum-containing materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153153. [PMID: 35041946 DOI: 10.1016/j.scitotenv.2022.153153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Removing phosphorus (P) from water and wastewater is essential for preventing eutrophication and protecting environmental quality. Lanthanum [La(III)]-containing materials can effectively and selectively remove orthophosphate (PO4) from aqueous systems, but there remains a need to better understand the underlying mechanism of PO4 removal. Our objectives were to 1) identify the mechanism of PO4 removal by La-containing materials and 2) evaluate the ability of a new material, La2(CO3)3(s), to remove PO4 from different aqueous matrices, including municipal wastewater. We determined the dominant mechanism of PO4 removal by comparing geochemical simulations with equilibrium data from batch experiments and analyzing reaction products by X-ray diffraction and scanning transmission electron microscopy with energy dispersive spectroscopy. Geochemical simulations of aqueous systems containing PO4 and La-containing materials predicted that PO4 removal occurs via precipitation of poorly soluble LaPO4(s). Results from batch experiments agreed with those obtained from geochemical simulations, and mineralogical characterization of the reaction products were consistent with PO4 removal occurring primarily by precipitation of LaPO4(s). Between pH 1.5 and 12.9, La2(CO3)3(s) selectively removed PO4 over other anions from different aqueous matrices, including treated wastewater. However, the rate of PO4 removal decreased with increasing solution pH. In comparison to other solids, such as La(OH)3(s), La2(CO3)3(s) exhibits a relatively low solubility, particularly under slightly acidic conditions. Consequently, release of La3+ into the environment can be minimized when La2(CO3)3(s) is deployed for PO4 sequestration.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alisa R Paterson
- Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA
| | - Douglas F Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob L Jones
- Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA
| | - Dean Hesterberg
- Department of Crop and Soil Sciences, North Carolina State University, 27695 Raleigh, NC, USA
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, 27695 Raleigh, NC, USA
| | - Eric P Poitras
- Analytical Sciences Department, Research Triangle Institute, 27709 Durham, NC, USA
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
29
|
Liu X, Wu A, Xiong L, Yang Y, Gao J, Bao J, Li W, Liu Y. Electrospinning preparation and adsorption properties of La2O3 nanofibers and photoluminescence properties of La2O3:Eu nanofibers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Yin X, Li X, Petropoulos E, Feng Y, Yang B, Xue L, Yang L, He S. Phosphate removal from actual wastewater via La(OH) 3-C 3N 4 adsorption: Performance, mechanisms and applicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152791. [PMID: 34990668 DOI: 10.1016/j.scitotenv.2021.152791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
In this study, La(OH)3 nanoparticles were immobilized on C3N4 to effectively restrict their aggregation and subsequently enhance the La utilization efficiency to promote phosphate adsorption. The prepared La(OH)3-C3N4 nanocomposite was characterized by SEM, XRD, FTIR, XPS, BET and Zeta potential analysis. Batch and continuously-fed (fixed-bed column) experiments to assess the adsorption performance of La(OH)3-C3N4 showed that the composite exhibits superior utilization efficiency, resulting to relatively quick adsorption with a short equilibrium time of 30 min. The theoretical maximum P adsorption capacity reached the 148.35 mg·g-1, efficiency that remained unaffected by the anions and HA present. The adsorption mechanism showed stability in a wide pH range (4.0-11.0) and is considered effective even after extensive use (five-cycles). The dynamics of the adsorption capacity and the half-penetration time values were estimated by 'Thomas' and 'Yoon-Nelson' models showed that are better represented from the experimental values obtained from the fixed-bed column trial. The adsorption mechanisms were attributed to surface precipitation, electrostatic attraction, and inner-sphere complexation via ligand exchange. Furthermore, La(OH)3-C3N4 demonstrated high efficiency in scavenging phosphate from both diluted and concentrated wastewater (natural pond and swine wastewater respectively). The above confirm that La(OH)3-C3N4 is a promising composite material for phosphate management in aqueous environments.
Collapse
Affiliation(s)
- Xuejie Yin
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, PR China
| | - Xin Li
- College of Chemical Engineering, Nanjing Forest University, Nanjing, Jiangsu Province, PR China
| | | | - Yanfang Feng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, PR China
| | - Bei Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, PR China
| | - Lihong Xue
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, PR China
| | - Linzhang Yang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Shiying He
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
31
|
Enhanced phosphate removal by nano-lanthanum hydroxide embedded silica aerogel composites: Superior performance and insights into specific adsorption mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Wang X, Li H, Shan C, Pan B. Construction of model platforms to probe the confinement effect of nanocomposite-enabled water treatment. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
33
|
Ding J, Zhu YB, Wang L, Li YY, Ji WX, Yu ZJ, Ma YL, Sun YG. Investigation of the boosted persulfate activation in the degradation of bisphenol A over MOF-derived cerium-doped Fe 3O 4 clusters with different shapes: the role of coordinatively unsaturated metal sites. NEW J CHEM 2022. [DOI: 10.1039/d2nj01458k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A great challenge for the application of metal–organic frameworks (MOFs) as peroxymonosulfate (PMS) activators for environmental applications in pollutant removal is their stability and activity.
Collapse
Affiliation(s)
- Jie Ding
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ying-Bo Zhu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Lei Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuan-Yuan Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wen-Xin Ji
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhi-Jun Yu
- School of Environment, Tsinghua University, 100084, China
| | - Yu-Long Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yong-Gang Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
34
|
Balasubramaniam B, Arun Kumar S, Singh KA, Bhunia S, Verma K, Tian L, Gupta RK, Gaharwar AK. Electrically Conductive MoS
2
Reinforced Polyacrylonitrile Nanofibers for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
| | - Shreedevi Arun Kumar
- Biomedical Engineering Dwight Look College of Engineering Texas A&M University College Station TX 77843 USA
| | - Kanwar Abhay Singh
- Biomedical Engineering Dwight Look College of Engineering Texas A&M University College Station TX 77843 USA
| | - Sukanya Bhunia
- Biomedical Engineering Dwight Look College of Engineering Texas A&M University College Station TX 77843 USA
| | - Kartikey Verma
- Department of Chemical Engineering Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Limei Tian
- Biomedical Engineering Dwight Look College of Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health Technologies and Systems Texas A&M University College Station TX 77843 USA
| | - Raju Kumar Gupta
- Department of Chemical Engineering Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
- Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh 208016 India
| | - Akhilesh K. Gaharwar
- Biomedical Engineering Dwight Look College of Engineering Texas A&M University College Station TX 77843 USA
- Genetics and Genomics Texas A&M University College Station TX 77843 USA
- Center for Remote Health Technologies and Systems Texas A&M University College Station TX 77843 USA
| |
Collapse
|
35
|
Li X, Wang Y, Li J, Dong S, Hao H, Liu C, Tong Y, Zhou Y. Rapid and selective harvest of low-concentration phosphate by La(OH) 3 loaded magnetic cationic hydrogel from aqueous solution: Surface migration of phosphate from -N +(CH 3) 3 to La(OH) 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149418. [PMID: 34426305 DOI: 10.1016/j.scitotenv.2021.149418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Phosphate is an important factor for the occurrence of surface water eutrophication, and is also a non-renewable resource which faces a potential depletion crisis. In this study, La(OH)3 loaded magnetic cationic hydrogel composite MCH-La(OH)3-EW was used to absorb low strength phosphate in simulated water and real water. The adsorption amount of MCH-La(OH)3-EW was 39.14 ± 0.31 mg P/g and the equilibrium time was 120 min at the initial phosphate concentration of 2.0 mg P/L. The adsorption process was a spontaneous endothermic reaction. MCH-La(OH)3-EW exhibited a high selectivity towards phosphate within pH of 4.0-10.0 or in the presence of co-existing ions (including Cl-, SO42-, NO3-, HCO3-, SiO32-) and humic acid. After 10 cycles of adsorption-desorption, the adsorption amount of regenerated MCH-La(OH)3-EW still remained at 63.4% of its maximum value. For the real water sample with phosphate concentration of 2.0 mg P/L, the phosphate removal efficiency could achieve 97.65-98.90% and the effluent turbidity was 2.10-4.27 NTU at the MCH-La(OH)3-EW dosage of 0.04 g/L. The adsorption mechanism analysis showed that both quaternary amine groups (-N+(CH3)3) and La(OH)3 of MCH-La(OH)3-EW were involved in the process of phosphate adsorption. The electrostatic interaction between phosphate and -N+(CH3)3 rapidly occurred at the initial stage of adsorption process, then the electrostatic absorbed phosphate migrated to La(OH)3 on the surface of MCH-La(OH)3-EW via ligand exchange to form inner-sphere complex. This phenomenon was conducive to phosphate adsorption kinetics by MCH-La(OH)3-EW.
Collapse
Affiliation(s)
- Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Junyi Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Shuoxun Dong
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haotian Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenyang Liu
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yao Tong
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yanqing Zhou
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
36
|
Ahmed S, Zhang Y, Wu B, Zheng Z, Leung CF, Choy TY, Kwok YT, Lo IMC. Scaled-up development of magnetically recyclable Fe 3O 4/La(OH) 3 composite for river water phosphate removal: From bench-scale to pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148281. [PMID: 34119786 DOI: 10.1016/j.scitotenv.2021.148281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The use of magnetic lanthanum-based materials for phosphate removal from river water has gained increasing attention. However, challenges to produce and use lanthanum-based materials in large-scale or pilot-scale studies remain. In this work, a kilogram-scale Fe3O4/La(OH)3 magnetically recyclable composite for removing phosphate from river water was developed through a low-temperature precipitation route. The composite was used to remove phosphate from river water at both bench- and pilot-scales. Based on the bench-scale tests, the developed Fe3O4/La(OH)3 composite was found to have excellent magnetic particle separation efficiency (>98%) and a sorption capacity of 11.77 mg/g for phosphate. A 1.0 g/L dosage of the composite in the river water sample was able to selectively reduce the phosphate level from 0.089 to 0.005 mg/L in 60 min over five consecutive adsorption cycles. At the pilot-scale, the Fe3O4/La(OH)3 composite only achieved 36.0% phosphate removal efficiency, which is considerably different from the bench-scale results over an operational time of five months and a total treatment volume of 300 m3. This significantly reduced removal efficiency is mainly attributable to turbidity, suspended solids, and organic matter in the river water and the deteriorated magnetic separation efficiency. This study revealed potential challenges and shed new insights on moving magnetic nanocomposite-based technology from the bench-scale to the pilot-scale, which can inspire new designs for the application of similar technology.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanyang Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Baile Wu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chui-Fan Leung
- Water Supplies Department, Hong Kong Special Administrative Region, China
| | - Tak-Yip Choy
- Water Supplies Department, Hong Kong Special Administrative Region, China
| | - Yau-Ting Kwok
- Water Supplies Department, Hong Kong Special Administrative Region, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
37
|
Jiao GJ, Ma J, Li Y, Jin D, Ali Z, Zhou J, Sun R. Recent advances and challenges on removal and recycling of phosphate from wastewater using biomass-derived adsorbents. CHEMOSPHERE 2021; 278:130377. [PMID: 33819886 DOI: 10.1016/j.chemosphere.2021.130377] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
As the severe damage of phosphate enrichment in the water ecosystem and the supply shortage of phosphate rock, developing an efficient method for the removal and recycling of phosphate from wastewater is of great significance. To achieve this goal, adsorption technology has been widely investigated, and various adsorbents were developed. Among them, the biomass-derived adsorbents including biomass-derived carbon-based materials, biomass-based anion exchangers and metal-biomass composites have attracted increasing attention over the past years due to the low cost, abundant renewable raw materials and environmental friendliness. However, different adsorbents usually exhibit variable adsorption performances for phosphate, which highly depends on their design strategies, preparation methods and potential adsorption mechanisms. Thus, this review comprehensively summarizes the recent researches on the removal and recycling of phosphate from wastewater using the biomass-derived adsorbents. Especially, the design strategies, preparation methods, adsorption performances and mechanisms of these reported biomass-derived adsorbents are discussed in detail. Moreover, as the significant strategies to recover and recycling phosphate, the elution and direct use of phosphate-loaded adsorbents as fertilizers are also presented. Although the excellent adsorption performance has been obtained, some challenges are still existing, which should be given more attention in the following researches to facilitate the development and industrial application of biomass-derived adsorbents.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Zulfiqar Ali
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
38
|
Li S, Zeng W, Ren Z, Jia Z, Wu G, Peng Y. Performance difference of hydrated phosphorophilic metal oxides in modifying diatomite and recovering phosphorus from wastewater. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Zhang S, Zhang Y, Ding J, Zhang Z, Gao C, Halimi M, Demey H, Yang Z, Yang W. High phosphate removal using La(OH) 3 loaded chitosan based composites and mechanistic study. J Environ Sci (China) 2021; 106:105-115. [PMID: 34210426 DOI: 10.1016/j.jes.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/13/2023]
Abstract
Our present study was to prepare a biomass-supported adsorbents with high adsorptive capacity and high selectivity to prevent the accelerated eutrophication in water body. To this end, different metal hydroxide (La, Zr and Fe) first was successfully loaded on chitosan microspheres. Then the quaternary ammonium group with different content was introduced into the adsorbent by polymerization. By comparison of adsorption properties, chitosan-La(OH)3-quaternary ammonium-20% (CS-La-N-20%) has strong adsorption to phosphate (160 mg/g) by immobilizing nano-sized La(OH)3 within a quaternary-aminated chitosan and it maintain high adsorption in the presence of salt ions. The pH results indicated that the CS-La-N-20% would effectively sequestrate phosphate over a wide pH range between 3 and 7 without significant La3+ leaching. What's more, adsorption capacity on the introduce of positively charged quanternary-aminated groups was significantly higher than that of the unmodified adsorbents at alkaline conditions. The column adsorption capacity reached 1300 bed volumes (BV) when phosphate concentration decreased until 0.5 mg/L at 6 BV/hr. The column adsorption/desorption reveals that no significant capacity loss is observed, indicating excellent stability and repeated use property. Characterizations revealed that phosphate adsorption on CS-La-N-20% through ligand exchange (impregnated nano-La(OH)3) and electrostatic attraction (positively charged quanternary-aminated groups). All the results suggested that CS-La-N-20% can serve as a promising adsorbent for preferable phosphate removal in realistic application.
Collapse
Affiliation(s)
- Shaopeng Zhang
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yi Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ding
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Zepeng Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Chao Gao
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Muslim Halimi
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Hary Demey
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Barcelona 08028, Spain
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
40
|
Ju X, Cui H, Liu T, Sun Y, Zheng S, Qu X. Confined La 2O 3 particles in mesoporous carbon material for enhanced phosphate adsorption. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210428. [PMID: 34386256 PMCID: PMC8334834 DOI: 10.1098/rsos.210428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Novel phosphate adsorbents with confined La2O3 inside mesoporous carbon were fabricated by the solid-state grinding method using pristine mesoporous carbon material CMK-3 (PCMK-3) and oxidized CMK-3 (OCMK-3) as the matrixes (denoted as La2O3@PCMK-3 and La2O3@OCMK-3). Compared with pure La2O3, La2O3@PCMK-3 and La2O3@OCMK-3 exhibited higher normalized phosphate adsorption capacity, indicative of efficient loading of La2O3 inside the mesopores of the carbon materials. Furthermore, La2O3 loading led to substantially enhanced phosphate adsorption. The adsorption capacities of La2O3@OCMK-3 samples were higher than those of La2O3@PCMK-3 samples, possibly owing to the oxygen-containing groups forming in OCMK-3 during HNO3 oxidation, which enhanced the dispersion of La2O3 in the mesopores of OCMK-3. The adsorption capacities of La2O3@PCMK-3 and La2O3@OCMK-3 increased with the La2O3 loading amount. Phosphate adsorption onto La2O3(14.7)@PCMK-3 followed the pseudo-second-order kinetics with respect to correlation coefficient values (larger than 0.99). As pH increased from 3.4 to 12.0, the phosphate adsorption amounts of La2O3(14.7)@PCMK-3 and La2O3(15.7)@OCMK-3 decreased from 37.64 mg g-1 and 37.08 mg g-1 to 21.92 mg g-1 and 14.18 mg g-1, respectively. Additionally, La2O3@PCMK-3 showed higher adsorption selectivity towards phosphate than coexisting Cl-,NO 3 - andSO 4 2 - . The adsorbent La2O3(14.7)@PCMK-3 remained stable after five regeneration cycles.
Collapse
Affiliation(s)
- Xiaoqiu Ju
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - He Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| | - Yabing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| |
Collapse
|
41
|
Jiao GJ, Ma J, Zhang Y, Jin D, Li Y, Hu C, Guo Y, Wang Z, Zhou J, Sun R. Nitrogen-doped lignin-derived biochar with enriched loading of CeO 2 nanoparticles for highly efficient and rapid phosphate capture. Int J Biol Macromol 2021; 182:1484-1494. [PMID: 34019923 DOI: 10.1016/j.ijbiomac.2021.05.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022]
Abstract
Development of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO2 functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO2 nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC. Consequently, an enhanced capture capacity for phosphate (196.85 mg g-1) as well as extremely rapid adsorption kinetics were achieved in a wide operating pH range (2-10). Interestingly, Ce@NLC exhibited a strong phosphate adsorption activity at even low-concentration phosphorus-containing water. The removal efficiency and final P concentration reached 99.87% and 2.59 μg P L-1 within 1 min at the phosphate concentration of 2 mg P L-1. Experiments and characterization indicated that Ce(III) species plays a predominant role for the phosphate capture, and ligand exchange, together with electrostatic attraction, are the main adsorption mechanism. This work develops not only an efficient carbon-based adsorbent for phosphate capture, but also promotes the high-value application of industrial lignin.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Yuheng Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chensheng Hu
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
42
|
Xia M, Gao R, Wang Y, Wang S, Yun Y, Dou J. Synthesis and phosphate adsorption behaviour of Mg/Al-pillared montmorillonite loaded with La(OH) 3. ENVIRONMENTAL TECHNOLOGY 2021; 42:1652-1668. [PMID: 31580789 DOI: 10.1080/09593330.2019.1675775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Magnesium/aluminum-pillared montmorillonite loaded with lanthanum hydroxide (Mg/Al-MMT-La(OH)3) was synthesized using non-toxic raw materials by ion-exchange and co-precipitation for phosphate removal from wastewater. Some adsorbents were fabricated in different molar ratios of Mg to Al, analyzed using various characterizations, and investigated in batch adsorption experiments. The determined adsorption kinetics of the 1:4 Mg/Al-MMT-La(OH)3 composite fitted well with the Elovich model. In addition, the Langmuir model revealed the high adsorption efficiency of phosphate by the adsorbent with a maximum adsorption capacity of 79.33 mg/g. The negative value of ΔG° and positive value of ΔH° (64.25 kJ/mol) demonstrated that phosphate adsorption onto 1:4 Mg/Al-MMT-La(OH)3 was spontaneous and endothermic in nature. Moreover, when the molar ratio of PO43- to CO32- was 1:5, the phosphate adsorption capacity reduced by 53.5%, far exceeding the effect of NO2-, NO3-, Cl-, and SO42-. The addition of Al3+ caused a sharp decline in phosphate removal property by 81.9% when PO43-/Al3+ molar ratio was 1:5, however, the presence of other cations showed the negligible impact on it. The adsorption mechanism primarily involved ion exchange with intercalated anions and surface coordination with loaded hydroxides. Results proved that 1:4 Mg/Al-MMT-La(OH)3 material has a favourable application potential in the surface water remediation.
Collapse
Affiliation(s)
- Meng Xia
- College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Ran Gao
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Yingying Wang
- College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Shengrui Wang
- College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Ying Yun
- College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Jiao GJ, Ma J, Li Y, Jin D, Guo Y, Zhou J, Sun R. Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143217. [PMID: 33162139 DOI: 10.1016/j.scitotenv.2020.143217] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Design of carbon-based adsorbents derived from industrial lignin with superior phosphate adsorption performance is of great significance, yet limited researches have been reported. Here, we report a MgO-functionalized lignin-based bio-charcoal (MFLC) as an efficient adsorbent for phosphate removal. The obtained MgO nanoparticles were dispersed homogeneously on MFLC with particle size of 50-100 nm and higher loading content (28.41%). Benefiting from the favorable morphology of MgO nanoparticles, the MFLC exhibits excellent regeneration ability for phosphate adsorption, which can be applied in a wide range of pH values (2-10). The maximum adsorption capacity could reach to 906.82 mg g-1 for phosphate. Interestingly, the MFLC shows extremely high adsorption activity in the low concentration of phosphate (2 mg P L-1), and its phosphate removal efficiency achieves 99.76%. Furthermore, the results also indicated that the higher loading content of MgO together with smaller particle size can effectively enhance the phosphate adsorption activity of MFLC. The adsorption mechanism revealed that the adsorption of phosphate on the surface of MFLC belongs to single-layer chemisorption, and ligand exchange plays a crucial role during adsorption/desorption. This work not only develops a new strategy for the preparation of high-efficiency carbon-based adsorbents, but also facilitates the value-added utilization of industrial lignin.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yancong Li
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongnv Jin
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
44
|
Lin Z, Chen J. Magnetic Fe 3O 4@MgAl-LDH@La(OH) 3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release. CHEMOSPHERE 2021; 264:128551. [PMID: 33059289 DOI: 10.1016/j.chemosphere.2020.128551] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
In order to facilitate recovery and enhance phosphate adsorption capacity of lanthanum (La)-based materials, magnetic Fe3O4@MgAl-LDH@La(OH)3 (MMAL) composites with a hierarchical core-shell structure were synthesized. In the preparation process, citric acid played a vital role in the morphology control of La(OH)3, deciding the La content and phosphate adsorption capacity of materials. MMAL composites with a citric acid-to-La molar ratio of 0.375 (MMAL-0.375) exhibited a high adsorption capacity of 66.5 mg P/g, fast adsorption kinetics of 30 min, widely applicable pH range of 4.0-10.0, outstanding selective adsorption performance, and superior reusability in batch adsorption experiments. Moreover, the phosphate in the desorption solution could be concentrated by repeated use of desorption solution and recovered by using CaCl2. When the obtained composites were used for the sedimentary phosphorus sequestration and recovery, the results showed that the addition of MMAL-0.375 effectively reduced the concentration of soluble reactive phosphorus (SRP) in the overlying water. Accompanied by an evident increase in HCl-extractable phosphorus (HCl-P), mobile phosphorus (Pmob) in sediments was effectively reduced. This work indicates that the MMAL-0.375 composites can serve as an effective tool for the removal of phosphate from wastewater and the control of sedimentary phosphorus.
Collapse
Affiliation(s)
- Zhiguo Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China; Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, Yunnan University, Kunming, 650091, China; National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, 650091, China.
| | - Jing Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| |
Collapse
|
45
|
Zhao R, Shi X, Ma T, Rong H, Wang Z, Cui F, Zhu G, Wang C. Constructing Mesoporous Adsorption Channels and MOF-Polymer Interfaces in Electrospun Composite Fibers for Effective Removal of Emerging Organic Contaminants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:755-764. [PMID: 33373204 DOI: 10.1021/acsami.0c20404] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, metal-organic framework (MOF)-based electrospun fibers have attracted considerable attention as adsorbents for organic contaminant removal from water. To prepare these fibers, two common strategies including blending electrospinning and surface coating are employed. However, fibers obtained from the two strategies still have some disadvantages, such as adsorption site blockage and unstable loading. Here, we constructed interconnected mesopores in the electrospun zeolitic imidazolate framework-8 (ZIF-8)/polyacrylonitrile (PAN) fibers with the assistance of poly(vinylpyrrolidone) to expose more adsorption sites of ZIF-8 and make ZIF-8 more stable. Moreover, the mesopores could also enhance the diffusion of contaminant molecules and create MOF-polymer interfaces in the fiber, which improve the adsorption rate and adsorption capacity, respectively. The obtained fibers were used to adsorb antibiotic tetracycline from water. Benefiting from the mesoporous adsorption channels and the MOF-polymer interface, porous ZIF-8/PAN fibers showed faster adsorption kinetics than ZIF-8/PAN blending fibers and larger adsorption capacity than ZIF-8-coated PAN fibers and ZIF-8/PAN blending fibers. The maximum adsorption capacity of porous ZIF-8/PAN fibers was 885.24 mg/g, which is close to that of pure ZIF-8. After 10 adsorption-desorption cycles, the removal efficiency was still above 97%. In addition, porous ZIF-8/PAN fibers could act as the membrane adsorbents to dynamically separate tetracycline with a treated capacity of 9.93 × 103 bed volumes. These results demonstrate that our prepared porous ZIF-8/PAN fibers have great potential in antibiotic drug removal.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoyuan Shi
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tingting Ma
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Huazhen Rong
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ziyang Wang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
46
|
Zong E, Guo B, Yang J, Shi C, Jiang S, Ma Z, Liu X. Reusable Hyperbranched Polyethylenimine-Functionalized Ethyl Cellulose Film for the Removal of Phosphate with Easy Separation. ACS OMEGA 2021; 6:505-515. [PMID: 33458502 PMCID: PMC7807744 DOI: 10.1021/acsomega.0c04955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/14/2020] [Indexed: 05/09/2023]
Abstract
The design of a reusable film adsorbent with easy solid-liquid separation for the removal of phosphate is necessary and significant but remains hugely challenging. Herein, the hyperbranched polyethylenimine-functionalized ethyl cellulose (HPEI-EC) film was successfully synthesized by a one-step solution-casting method. The structure and elemental composition of the HPEI-EC film were characterized by Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The phosphate adsorption capacity of the HPEI-EC film was 15.53 mg g-1, which is 12 times higher than that of EC. Significantly, the elongation at break of the HPEI-EC film was 13.43%, which is higher than that of the EC film (8.9%), and the HPEI-EC film had a considerable tensile strength of 13.21 MPa. Such good mechanical properties of the HPEI-EC film bring about the advantage of the saturated HPEI-EC film, allowing it to be easily taken out using a pair of tweezers, which significantly reduces the operation time and saves the cost in the application process. Furthermore, the HPEI-EC film possessed good reusability, and 71.6% of the original adsorption capacity of phosphate was retained even after five cycles. Moreover, the electrostatic interaction between protonated the amine group (-NH3 +) and the phosphate ion (PO4 3-) is mainly responsible for the adsorption process. This study presents a low-cost and reusable film adsorbent for the effective removal of phosphate from water and provides an easy solid-liquid separation method for use in the adsorption field.
Collapse
Affiliation(s)
- Enmin Zong
- College
of Life Science, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
- School
of Earth Sciences and Engineering, Nanjing
University, Nanjing 210093, China
| | - Binlu Guo
- College
of Life Science, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Jiayao Yang
- School
of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Chao Shi
- School
of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Shengtao Jiang
- College
of Life Science, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Zhongqing Ma
- School
of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Xiaohuan Liu
- School
of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| |
Collapse
|
47
|
Luo F, Feng X, Jiang X, Zhou A, Xie P, Wang Z, Tao T, Wan J. Lanthanum molybdate/magnetite for selective phosphate removal from wastewater: characterization, performance, and sorption mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4342-4351. [PMID: 32944858 DOI: 10.1007/s11356-020-10807-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Lanthanum molybdate/magnetite (M-La2(MoO4)3) with various LaCl3/Fe3O4 mass ratios was synthesized and optimized for selective phosphate removal from wastewater. M-La2(MoO4)3 (2:1) was selected on the basis of phosphate sorption capacity for further experiments and characterized by a variety of methods. The phosphate sorption kinetics, isotherms, and matrix effect were studied. The maximum sorption capacity at initial pH 7 indicates the possible applicability M-La2(MoO4)3 (2:1) in removing phosphate from the aquatic environment. Phosphate removal by M-La2(MoO4)3 (2:1) with high selectivity was achieved in the presence of other co-existing anions, while calcium and magnesium ions were found to inhibit the sorption process. The sorption isotherm study showed that Freundlich and Sips models fit better the Langmuir model, indicating that heterogeneous multilayer sorption was dominant during the phosphate sorption process. Sorption kinetic results showed that the pseudo-first-order kinetic model can describe well the phosphate sorption process by M-La2(MoO4)3 (2:1). Consecutive sorption-desorption runs showed that M-La2(MoO4)3 (2:1) could be reused for a few cycles. Simultaneous removal of phosphate and organic matter was achieved in real wastewater by using M-La2(MoO4)3 (2:1). The sorption mechanism was inner-sphere complexation.
Collapse
Affiliation(s)
- Feng Luo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaonan Feng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiaoqing Jiang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan Planning & Design Co., LTD., Wuhan, 430014, China
| | - Aijiao Zhou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengchao Xie
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Tao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Wan
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
48
|
Multifunctional La(OH)3@cellulose nanofibrous membranes for efficient oil/water separation and selective removal of dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117603] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Ahmed S, Lo IMC. Phosphate removal from river water using a highly efficient magnetically recyclable Fe 3O 4/La(OH) 3 nanocomposite. CHEMOSPHERE 2020; 261:128118. [PMID: 33113641 DOI: 10.1016/j.chemosphere.2020.128118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Lanthanum based nanocomposites have attracted much attention for their efficiency and capacity in removing phosphate from water. This study developed a Fe3O4/La(OH)3 nanocomposite through a precipitation route at room temperature and used the nanocomposite to remove phosphate from river water. Performance of the Fe3O4/La(OH)3 nanocomposite was evaluated in terms of sorption kinetics, sorption isotherms, different solution pH values, competing ions, and regenerative ability. The Fe3O4/La(OH)3 nanocomposite showed a nanosphere-like morphology with 97% magnetic separation efficiency, excellent phosphate removal capacity of 253.83 mg/g, 99% phosphate selectivity in the presence of chloride, nitrate, sulfate, fluoride, and calcium as competing ions and excellent reusability in ten cycles. Based on these findings, the Fe3O4/La(OH)3 nanocomposite was used to remove phosphate from river water. It was found that, in 60 min, a 0.1 g/L dosage of the nanocomposite was able to reduce the phosphate in the water from 0.087 mg/L to 0.002 mg/L. Moreover, studying of the removal mechanism of the nanocomposite revealed that surface complexation and the electrostatic interaction between phosphate species and lanthanum hydroxide played a prominent role in the sorption of phosphate.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
50
|
Wang Y, Yang X, Jing X, Dai J, Dong M, Yan Y. Adsorption of phosphorus on lanthanum doped carbon films guided by self-assembly of cellulose nanocrystalline. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|