1
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Graphene-Oxide Peptide-Containing Materials for Biomedical Applications. Int J Mol Sci 2024; 25:10174. [PMID: 39337659 PMCID: PMC11432502 DOI: 10.3390/ijms251810174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Lucian Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Dana Maria Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| |
Collapse
|
2
|
Zhang D, Gao B, Ouyang Y, Xu S, Tian Q, Wu W, Xu Q. Introduction of the -B(OH) 2 group into a graphene motif for p z orbital removal and ferromagnetic modulation. Chem Sci 2024:d4sc03778b. [PMID: 39268208 PMCID: PMC11388087 DOI: 10.1039/d4sc03778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Room-temperature ferromagnetism in graphene has attracted considerable attention due to its potential application as spintronics. Theoretically, magnetic moment of graphene can be generated by removing a single pz orbital from the π system, which introduces an unpaired electron into the graphene motif for magnetic coupling. In this work, pz orbital of graphene is experimentally removed by cleaving the π bond of graphene using H3BO3 with the assistance of supercritical CO2 (SC CO2), which simultaneously introduces -B(OH)2 groups and unpaired electrons. As a result, ferromagnetic coupling between unpaired electrons substantially enhances the magnetic properties of the 2D graphene motif, leading to room-temperature ferromagnetism. Overall, unpaired electrons were introduced into a 2D graphene motif through π bond cleavage, which provides a novel approach for magnetic manipulation of 2D materials with conjugated structures.
Collapse
Affiliation(s)
- Di Zhang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 P.R. China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 P.R. China
| | - Yuqi Ouyang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 P.R. China
| | - Song Xu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 P.R. China
| | - Qingyong Tian
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 P.R. China
| | - Wenzhuo Wu
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 P.R. China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 P.R. China
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 P.R. China
| |
Collapse
|
3
|
El-Machachi Z, Frantzov D, Nijamudheen A, Zarrouk T, Caro MA, Deringer VL. Accelerated First-Principles Exploration of Structure and Reactivity in Graphene Oxide. Angew Chem Int Ed Engl 2024:e202410088. [PMID: 39133826 DOI: 10.1002/anie.202410088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 11/14/2024]
Abstract
Graphene oxide (GO) materials are widely studied, and yet their atomic-scale structures remain to be fully understood. Here we show that the chemical and configurational space of GO can be rapidly explored by advanced machine-learning methods, combining on-the-fly acceleration for first-principles molecular dynamics with message-passing neural-network potentials. The first step allows for the rapid sampling of chemical structures with very little prior knowledge required; the second step affords state-of-the-art accuracy and predictive power. We apply the method to the thermal reduction of GO, which we describe in a realistic (ten-nanometre scale) structural model. Our simulations are consistent with recent experimental findings, including X-ray photoelectron spectroscopy (XPS), and help to rationalise them in atomistic and mechanistic detail. More generally, our work provides a platform for routine, accurate, and predictive simulations of diverse carbonaceous materials.
Collapse
Affiliation(s)
- Zakariya El-Machachi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - Damyan Frantzov
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - A Nijamudheen
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - Tigany Zarrouk
- Department of Chemistry and Materials Science, Aalto University, 02150, Espoo, Finland
| | - Miguel A Caro
- Department of Chemistry and Materials Science, Aalto University, 02150, Espoo, Finland
| | - Volker L Deringer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| |
Collapse
|
4
|
Goyat R, Singh J, Umar A, Ibrahim AA, Kumari S, Malik S, Chaudhary V, Akbar S, Baskoutas S. Enhanced removal of iron (Fe) and manganese (Mn) ions from contaminated water using graphene oxide-decorated polyethersulphone membranes: Synthesis and characterization. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:608-617. [PMID: 38353237 PMCID: PMC11295411 DOI: 10.1177/0734242x241227379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/30/2023] [Indexed: 08/02/2024]
Abstract
This study addresses the urgent issue of water pollution caused by iron (Fe) and manganese (Mn) ions. It introduces an innovative approach using graphene oxide (GO) and GO-decorated polyethersulphone (PES) membranes to efficiently remove these ions from contaminated water. The process involves integrating GO into PES membranes to enhance their adsorption capacity. Characterization techniques, including scanning electron microscopy, Fourier-transform infrared, and contact angle measurements, were used to assess structural and surface properties. The modified membranes demonstrated significantly improved adsorption compared to pristine PES. Notably, they achieved over 94% removal of Mn2+ and 93.6% of Fe2+ in the first filtration cycle for water with an initial concentration of 100 ppm. Continuous filtration for up to five cycles maintained removal rates above 60%. This research advances water purification materials, offering a promising solution for heavy metal ion removal. GO-decorated PES membranes may find application in large-scale water treatment, addressing environmental and public health concerns.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Kingdom of Saudi Arabia
| | - Savita Kumari
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
5
|
Buitrago Sanchez SN, Salla JDS, Cesconeto LP, Rocha GLD, Virmond E, Moreira RDFPM. Synthesis of multi-layer graphene oxide from HCl-treated coke and Brazilian coals by sulfuric acid thermal exfoliation and ozone oxidation. Heliyon 2024; 10:e30546. [PMID: 38726133 PMCID: PMC11079322 DOI: 10.1016/j.heliyon.2024.e30546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
This study involved the synthesis and characterization of graphene oxide (GO) from mineral coke and bituminous coal. HCl treated and non-HCl treated ultrafine powder obtained from both precursors were treated with H2SO4, followed by thermal treatment, and oxidation with ozone and ultra-sonication for GO production. The synthesized materials were characterized using Fourier transform infrared spectroscopy (FTIR), zeta potential (ZP), particle size distribution (PSD), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results confirmed the exfoliation of the material primarily at the edges of its structure and the formation of multilayer graphene oxide (GO) from mineral coke and bituminous coal. Furthermore, it was found that carbonaceous materials with graphitic morphology are easier to exfoliate and oxidize, leading to the production of higher quality graphene oxide. Therefore, the GO synthesized from mineral coke exhibited the best quality in this study. The methodology used proposes an innovative approach, offering a faster, more economical, and environmentally friendly synthesis compared to the traditional Hummers' method, thereby adding value to other raw materials that can be utilized in this process, such as Brazilian coke and coal.
Collapse
Affiliation(s)
- Sergio Nicolas Buitrago Sanchez
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Julia da Silveira Salla
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Laura Piacentini Cesconeto
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Gabriel Lincoln da Rocha
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Elaine Virmond
- Department of Energy and Sustainability, Federal University of Santa Catarina, Campus Universitário – Araranguá, 88905-120, Araranguá, SC, Brazil
| | - Regina de Fatima Peralta Muniz Moreira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Universitário – Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
6
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
7
|
Rajendran S, Blanco A, Gnanasekaran L, Jalil AA, Chen WH, Gracia F. Harvesting visible light for enhanced catalytic degradation of wastewater using TiO 2@Fe 3O 4 embedded on two dimensional reduced graphene oxide nanosheets. CHEMOSPHERE 2023; 345:140418. [PMID: 37844702 DOI: 10.1016/j.chemosphere.2023.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile.
| | - Adriana Blanco
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| | - Lalitha Gnanasekaran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile.
| |
Collapse
|
8
|
Wu ZF, Sun PZ, Wahab OJ, Tan YT, Barry D, Periyanagounder D, Pillai PB, Dai Q, Xiong WQ, Vega LF, Lulla K, Yuan SJ, Nair RR, Daviddi E, Unwin PR, Geim AK, Lozada-Hidalgo M. Proton and molecular permeation through the basal plane of monolayer graphene oxide. Nat Commun 2023; 14:7756. [PMID: 38012200 PMCID: PMC10682477 DOI: 10.1038/s41467-023-43637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Two-dimensional (2D) materials offer a prospect of membranes that combine negligible gas permeability with high proton conductivity and could outperform the existing proton exchange membranes used in various applications including fuel cells. Graphene oxide (GO), a well-known 2D material, facilitates rapid proton transport along its basal plane but proton conductivity across it remains unknown. It is also often presumed that individual GO monolayers contain a large density of nanoscale pinholes that lead to considerable gas leakage across the GO basal plane. Here we show that relatively large, micrometer-scale areas of monolayer GO are impermeable to gases, including helium, while exhibiting proton conductivity through the basal plane which is nearly two orders of magnitude higher than that of graphene. These findings provide insights into the key properties of GO and demonstrate that chemical functionalization of 2D crystals can be utilized to enhance their proton transparency without compromising gas impermeability.
Collapse
Affiliation(s)
- Z F Wu
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - P Z Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
| | - O J Wahab
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Y T Tan
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - D Barry
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - D Periyanagounder
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - P B Pillai
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Q Dai
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - W Q Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - L F Vega
- Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical Engineering Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - K Lulla
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - S J Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - R R Nair
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - E Daviddi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - P R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - A K Geim
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Huo J, Zhang G, Zhang X, Yuan X, Guo S. Flexible Fluorinated Graphene/Poly(vinyl Alcohol) Films toward High Thermal Management Capability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922105 DOI: 10.1021/acsami.3c12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Graphene is widely used in heat dissipation, owing to its inherently high in-plane thermal conductivity and excellent mechanical properties. However, its poor cross-plane thermal conductivity limits its use in some electronic applications. The electron distribution of graphene and the interaction with the base material can be greatly altered by introducing F, the most electronegative element, giving fluorinated graphene oxide (FG) with a high thermal conductivity. Herein, FG is prepared by grafting F atoms onto the surface of graphene oxide in a low-temperature solid-phase reaction with poly(vinylidene fluoride) as a fluorine source. This method can effectively avoid the use of dangerous substances such as HF and F2. The FG dispersion and aqueous poly(vinyl alcohol) (PVA) solution are sequentially vacuum-filtered to obtain the FG/PVA composite film. After natural drying and hot-pressing, the thermal conductivity of the N-FG/PVA film is enhanced by the hydrogen bond between F of FG and the hydroxyl group of PVA. The in-plane and cross-plane thermal conductivity of an N-FG/PVA film containing 10.4 wt % FG are 7.13 and 1.42 W m-1 k-1, respectively. The film has a tensile strength of 60 MPa and an elongation at a break of 28%, which is promising for the thermal management of flexible electronic devices.
Collapse
Affiliation(s)
- Jinghao Huo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoqiang Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyi Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Sharma A, Sharma S, Dutta S, Yadav S, Dixit R, Arora B, Mehta S, Srivastava A, Sharma RK. A simple and straightforward strategy for expedient access to benzoxazoles using chemically engineered 2D magnetic graphene oxide nanosheets as an eco-compatible catalyst. Dalton Trans 2023; 52:11303-11314. [PMID: 37530180 DOI: 10.1039/d3dt01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Two-dimensional (2D) graphene oxide nanosheets serve as an excellent support material for immobilizing metal complexes to deal with the drawbacks of homogeneous catalysis. In this work, we report a magnetically retrievable graphene oxide (MGO) based copper nanocatalytic system that has been efficiently exploited for obtaining a series of pharmaceutically and biologically active benzoxazole scaffolds. The nanocatalyst was designed by covalent immobilization of dehydroacetic acid (DHA) onto a magnetic amino-silanized graphene oxide nanosupport which was accompanied by its metallation with copper acetate. The structure of the synthesized MGO hybrid material (Cu@DHA@APTES@MGO) was characterized by numerous physico-chemical techniques such as transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental mapping, atomic absorption spectroscopy (AAS), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis and energy-dispersive X-ray fluorescence spectroscopy (ED-XRF). The fabricated architectures exhibited high efficiency for cyclization of 2-aminophenols and β-diketones with wide substrate scope, excellent functional group tolerance, a higher conversion percentage (>98%) and a high turnover number (TON). The exceptional catalytic activity could be attributed to the 2D architecture of graphene oxide which provides space for trapping of reactants between 2D graphitic overlayers and metal surfaces and the reaction proceeds to afford benzoxazole products with moderate to excellent conversion percentages. Notably, this nanocomposite could be recovered easily through an external magnetic force and reused for multiple runs without any appreciable loss in its catalytic efficacy.
Collapse
Affiliation(s)
- Aditi Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Department of Chemistry, Ramjas College, University of, Delhi, Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Department of Chemistry, Institute of Home Economics, University of Delhi, Delhi-110016, India
| | - Ranjana Dixit
- Department of Chemistry, Ramjas College, University of, Delhi, Delhi-110007, India
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Shilpa Mehta
- Department of Chemistry, Ramjas College, University of, Delhi, Delhi-110007, India
| | - Anju Srivastava
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
11
|
Islam F, Khan FA, Khan NM, Ahmad S, Alsaiari AA, Almehmadi M, Ahmad N, Ul-Haq Z, Jan AK, Allahyani M, Alsharif A, Falade EO. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS OMEGA 2023; 8:20550-20560. [PMID: 37323383 PMCID: PMC10268258 DOI: 10.1021/acsomega.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
This study aims to develop a nanodrug delivery system containing podophyllotoxin (PTOX), a known anticancer drug, loaded on graphene oxide (GO). The system's ability to inhibit α-amylase and α-glucosidase enzymes was also investigated. PTOX was isolated from Podophyllum hexandrum roots with a yield of 2.3%. GO, prepared by Hummer's method, was converted into GO-COOH and surface-mobilized using polyethylene glycol (PEG) (1:1) in an aqueous medium to obtain GO-PEG. PTOX was loaded on GO-PEG in a facile manner with a 25% loading ratio. All the samples were characterized using FT-IR spectroscopy, UV/visible spectroscopy, and scanning electron microscopy (SEM). In FT-IR spectral data, GO-PEG-PTOX exhibited a reduction in acidic functionalities and there was an appearance of the ester linkage of PTOX with GO. The UV/visible measurements suggested an increase of absorbance in 290-350 nm regions for GO-PEG, suggesting the successful drug loading on its surface (25%). GO-PEG-PTOX exhibited a rough, aggregated, and scattered type of pattern in SEM with distinct edges and binding of PTOX on its surface. GO-PEG-PTOX remained potent in inhibiting both α-amylase and α-glucosidase with IC50 values of 7 and 5 mg/mL, closer to the IC50 of pure PTOX (5 and 4.5 mg/mL), respectively. Owing to the 25% loading ratio and 50% release within 48 h, our results are much more promising. Additionally, the molecular docking studies confirmed four types of interactions between the active centers of enzymes and PTOX, thus supporting the experimental results. In conclusion, the PTOX-loaded GO nanocomposites are promising α-amylase- and α-glucosidase-inhibitory agents when applied in vitro and have been reported for the first time.
Collapse
Affiliation(s)
- Fawad Islam
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Mehmood Khan
- Department
of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ahad Amer Alsaiari
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nadeem Ahmad
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H.
E. J. Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani
Center for Molecular Medicine and Drug Research, International Center
for Chemical and Biological Sciences, University
of Karachi, Karachi 75270, Pakistan
| | - Abdul Khaliq Jan
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Mamdouh Allahyani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebenezer Ola Falade
- Institute
of Food Science and Technology, Chinese
Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Fan L. Mechanical Mechanism of Ion and Water Molecular Transport through Angstrom-Scale Graphene Derivatives Channels: From Atomic Model to Solid-Liquid Interaction. Int J Mol Sci 2023; 24:10001. [PMID: 37373149 DOI: 10.3390/ijms241210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Ion and water transport at the Angstrom/Nano scale has always been one of the focuses of experimental and theoretical research. In particular, the surface properties of the angstrom channel and the solid-liquid interface interaction will play a decisive role in ion and water transport when the channel size is small to molecular or angstrom level. In this paper, the chemical structure and theoretical model of graphene oxide (GO) are reviewed. Moreover, the mechanical mechanism of water molecules and ions transport through the angstrom channel of GO are discussed, including the mechanism of intermolecular force at a solid/liquid/ion interface, the charge asymmetry effect and the dehydration effect. Angstrom channels, which are precisely constructed by two-dimensional (2D) materials such as GO, provide a new platform and idea for angstrom-scale transport. It provides an important reference for the understanding and cognition of fluid transport mechanism at angstrom-scale and its application in filtration, screening, seawater desalination, gas separation and so on.
Collapse
Affiliation(s)
- Lei Fan
- School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou 310023, China
| |
Collapse
|
13
|
Chen Y, Szkopek T, Cerruti M. Supramolecular temperature responsive assembly of polydopamine reduced graphene oxide. MATERIALS HORIZONS 2023. [PMID: 37098724 DOI: 10.1039/d3mh00202k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) colloidal systems can directly respond to environmental stimuli such as pH, ionic strength, and light by themselves, but not to temperature. Here we show that surface modification of rGO with polydopamine (PDA) leads to a temperature-responsive composite material, even though neither rGO nor PDA have intrinsic temperature responsiveness. Reducing GO with dopamine results in rGO/PDA flakes with hydrophilic PDA clusters attached to hydrophobic rGO domains, which mimics the amphiphilic structure of temperature responsive poly(N-isopropylacrylamide) (PNIPAM). The rGO/PDA flakes self-assemble at temperature higher than 30 °C, causing flake aggregation and precipitation in suspensions with concentration of 0.05 g L-1, which is reversible upon cooling, shaking, and re-heating. A solution-to-gelation transition occurs upon heating suspensions with concentration of 10 g L-1. Nacre-like films and porous monoliths are obtained by drying rGO/PDA suspensions at different concentrations. Films and porous monoliths obtained by drying suspensions that are previously self-assembled through heat have more compact structures compared to those obtained with suspensions that are not heated. Overall, this work introduces the concept of supramolecular temperature responsive assembly of nanomaterials (STRAN), i.e., that temperature response can be introduced in nanomaterials by combining non-responsive components that function cooperatively in supramolecules, whose interactions with solvents can be modulated by temperature changes, mimicking what happens in macromolecular systems such as PNIPAM. STRAN could be applied to nanomaterials beyond GO to develop responsive systems whose self-assembly in suspension and architectural features realized upon drying can be controlled by temperature.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada.
| | - Thomas Szkopek
- Department of Electrical & Computer Engineering, McGill University, Montreal, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Huang J, Su J, Hou Z, Li J, Li Z, Zhu Z, Liu S, Yang Z, Yin X, Yu G. Cytocompatibility of Ti 3C 2T x MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chem Res Toxicol 2023; 36:347-359. [PMID: 36791021 PMCID: PMC10032211 DOI: 10.1021/acs.chemrestox.2c00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 02/16/2023]
Abstract
Two-dimensional (2D) nanomaterials have been widely used in biomedical applications because of their biocompatibility. Considering the high risk of exposure of the circulatory system to Ti3C2Tx, we studied the cytocompatibility of Ti3C2Tx MXene with red blood cells (RBCs) and human umbilical vein endothelial cells (HUVECs) and showed that Ti3C2Tx had excellent compatibility with the two cell lines. Ti3C2Tx at a concentration as high as 200 μg/mL caused a negligible percent hemolysis of 0.8%. By contrast, at the same treatment concentration, graphene oxide (GO) caused a high percent hemolysis of 50.8%. Scanning electron microscopy revealed that RBC structures remained intact in the Ti3C2Tx treatment group, whereas those in the GO group completely deformed, sunk, and shrunk, which resulted in the release of cell contents. This difference can be largely ascribed to the distinct surficial properties of the two nanosheets. In specific, the fully covered surface-terminating -O and -OH groups leading to Ti3C2Tx had a very hydrophilic surface, thereby hindering its penetration into the highly hydrophobic interior of the cell membrane. However, the strong direct van der Waals attractions coordinated with hydrophobic interactions between the unoxidized regions of GO and the lipid hydrophobic tails can still damage the integrity of the cell membranes. In addition, the sharp and keen-edged corners of GO may also facilitate its relatively strong cell membrane damage effects than Ti3C2Tx. Thus, the excellent cell membrane compatibility of Ti3C2Tx nanosheets and their ultraweak capacity to provoke excessive ROS generation endowed them with much better compatibility with HUVECs than GO nanosheets. These results indicate that Ti3C2Tx has much better cytocompatibility than GO and provide a valuable reference for the future biomedical applications of Ti3C2Tx.
Collapse
Affiliation(s)
- Jian Huang
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Juan Su
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhenyu Hou
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zheming Li
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhu Zhu
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Shengtang Liu
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiuhua Yin
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Yu
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
- Polytechnic
Institute, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
15
|
Tang C, Jiang Y, Chen L, Sun J, Liu Y, Shi P, Aguilar-Hurtado JY, Rosenkranz A, Qian L. Layer-Dependent Nanowear of Graphene Oxide. ACS NANO 2023; 17:2497-2505. [PMID: 36735233 DOI: 10.1021/acsnano.2c10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The mechanical performance and surface friction of graphene oxide (GO) were found to inversely depend on the number of layers. Here, we demonstrate the non-monotonic layer-dependence of the nanowear resistance of GO nanosheets deposited on a native silicon oxide substrate. As the thickness of GO increases from ∼0.9 nm to ∼14.5 nm, the nanowear resistance initially demonstrated a decreasing and then an increasing tendency with a critical number of layers of 4 (∼3.6 nm in thickness). This experimental tendency corresponds to a change of the underlying wear mode from the overall removal to progressive layer-by-layer removal. The phenomenon of overall removal disappeared as GO was deposited on an H-DLC substrate with a low surface energy, while the nanowear resistance of thicker GO layers was always higher. Combined with density functional theory calculations, the wear resistance of few-layer GO was found to correlate with the substrate's surface energy. This can be traced back to substrate-dependent adhesive strengths of GO, which correlated with the GO thickness originating from differences in the interfacial charge transfer. Our study proposes a strategy to improve the antiwear properties of 2D layered materials by tuning their own thickness and/or the interfacial interaction with the underlying substrate.
Collapse
Affiliation(s)
- Chuan Tang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Yilong Jiang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Lei Chen
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Junhui Sun
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Yangqin Liu
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Pengfei Shi
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
| | - Jose Yesid Aguilar-Hurtado
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago8370415, Chile
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago8370415, Chile
| | - Linmao Qian
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China
| |
Collapse
|
16
|
Souza LCA, Abreu RVA, Guerreiro MC, Oliveira JE, Anconi CPA. Estimating hydroxyl/epoxy ratio in graphene oxide through adsorption experiment and semiempirical GFN2-xTB quantum method. J Mol Model 2023; 29:42. [PMID: 36653546 DOI: 10.1007/s00894-023-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
CONTEXT The reactivity of graphene oxide (GO) with amines is related to the ring-opening of the epoxy groups in its basal surface, as addressed experimentally. Therefore, discussing the hydroxyl/epoxy ratio for GO is relevant to improve the characterization of such material. As the adsorption of Methylene Blue into GO is related to a graphene derivative's oxidation degree (OD), we combined adsorption experimental information and theoretical data to estimate the hydroxyl/epoxy ratio. The theoretical data were compared to the experimental adsorption of Methylene Blue and Indigo Carmine into GO synthesized in our department. Our results show GO systems with hydroxyl/epoxy ratios equal to 0.7, 0.8, and 0.9 are the most representative in which the most coherent model corresponds to OH/EP=0.8 for our GO previously synthesized. METHODS The GO-MODEL software was developed in the present work to obtain cartesian coordinates of GO systems. We investigated 204 systems comprising models with 486 carbon atoms with the GFN2-xTB semiempirical quantum method. The supramolecular arrangements were constructed with the recently developed UD-APARM program.
Collapse
Affiliation(s)
- Larissa C A Souza
- Department of Chemistry, Institute of Natural Sciences, University of Lavras, Lavras, 37200900, Brazil
| | - Regis V A Abreu
- Department of Chemistry, Institute of Natural Sciences, University of Lavras, Lavras, 37200900, Brazil
| | - Mário C Guerreiro
- Department of Chemistry, Institute of Natural Sciences, University of Lavras, Lavras, 37200900, Brazil
| | - Juliano E Oliveira
- Department of Engineering, School of Engineering, University of Lavras, Lavras, 37200900, Brazil
| | - Cleber P A Anconi
- Department of Chemistry, Institute of Natural Sciences, University of Lavras, Lavras, 37200900, Brazil.
| |
Collapse
|
17
|
Li W, Yu J, Zhang S, Tang H, Huang T. The fate of aggregated graphene oxide upon the increasing of pH: An experimental and molecular dynamic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157954. [PMID: 35963410 DOI: 10.1016/j.scitotenv.2022.157954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Given the possible ecological dangers of graphene oxide (GO), a thorough understanding of its aggregation behavior is essential. During industrial applications, GOs may be used as multi-layered, and there is some possibility that GOs are released into the water environment in the aggregated state. Thus, elucidating the fate of aggregated GO is valuable for evaluating their environmental fate. In this work, the effect of pH on the fate of aggregated graphene oxide (GO) was explored using experimental measurements and molecular dynamic simulations and promoted aggregation of GO upon the increase of pH was observed. Additional investigations show that the presence of oxidation debris (ODs) on GO served as the primary driver of the unanticipated trend in aggregation behavior. GO consists of lightly oxidized functionalized graphene sheets and highly oxidized ODs. Upon the increase of pH and the deprotonation of functional groups, ODs are stripped from GO due to electrostatic repulsions and steric hindrance of water molecules. The stripping of ODs decreased the zeta potential and increased the hydrophobicity of GO, thus accelerating the aggregation. Additionally, the stripped ODs may recombine to GO edges and bridged GOs, which also contribute to further aggregation. Functional group deprotonation, ODs stripping, OD bridging, double layer compression, and charge neutralization all worked together to promote aggregation, resulting in the formation of FG-water-OD aggregates. Overall, the presence of ODs complicates the structures and properties of GO and should be considered during the development of GO-related nanomaterials and the evaluation of their environmental impact.
Collapse
Affiliation(s)
- Wenli Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiahai Yu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuyan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Sheka EF. Digital Twins Solve the Mystery of Raman Spectra of Parental and Reduced Graphene Oxides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4209. [PMID: 36500834 PMCID: PMC9741444 DOI: 10.3390/nano12234209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/01/2023]
Abstract
Digital Twins concept presents a new trend in virtual material science, common to all computational techniques. Digital twins, virtual devices and intellectual products, presenting the main constituents of the concept, are considered in detail on the example of a complex problem, which concerns an amazing identity of the D-G-doublet Raman spectra of parental and reduced graphene oxides. Digital twins, presenting different aspects of the GO and rGO structure and properties, were virtually synthesized using a spin-density algorithm emerging from the Hartree-Fock approximation. Virtual device presents AM1 version of the semi-empirical unrestricted HF approximation. The equilibrium structure of the twins as well as virtual one-phonon harmonic spectra of IR absorption and Raman scattering constitute a set of intellectual products. It was established that in both cases the D-G doublets owe their origin to the sp3 and sp2 C-C stretchings, respectively. This outwardly similar community reveals different grounds. Thus, multilayer packing of individual rGO molecules in stacks provides the existence of the sp3 D band in addition to sp2 G one. The latter is related to stretchings of the main pool of sp2 C-C bonds, while the sp3 constituent presents out-of-plane stretchings of dynamically stimulated interlayer bonds. In the GO case, the sp3 D component, corresponding to stretchings of the main pool of sp3 C-C bonds, is accompanied by an sp2 G component, which is related to stretchings of the remaining sp2 C-C bonds provided with the spin-influenced prohibition of the 100% oxidative reaction in graphene domain basal plane.
Collapse
Affiliation(s)
- Elena F Sheka
- Institute of Physical Researches and Technology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
19
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
20
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Precise Design Strategies of Nanotechnologies for Controlled Drug Delivery. J Funct Biomater 2022; 13:jfb13040188. [PMID: 36278656 PMCID: PMC9590086 DOI: 10.3390/jfb13040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Rapid advances in nanotechnologies are driving the revolution in controlled drug delivery. However, heterogeneous barriers, such as blood circulation and cellular barriers, prevent the drug from reaching the cellular target in complex physiologic environments. In this review, we discuss the precise design of nanotechnologies to enhance the efficacy, quality, and durability of drug delivery. For drug delivery in vivo, drugs loaded in nanoplatforms target particular sites in a spatial- and temporal-dependent manner. Advances in stimuli-responsive nanoparticles and carbon-based drug delivery platforms are summarized. For transdermal drug delivery systems, specific strategies including microneedles and hydrogel lead to a sustained release efficacy. Moreover, we highlight the current limitations of clinical translation and an incentive for the future development of nanotechnology-based drug delivery.
Collapse
|
22
|
Progress in preparation, characterization, surface functional modification of graphene oxide: A review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
|
24
|
Chen X, Qu Z, Liu Z, Ren G. Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS OMEGA 2022; 7:23503-23510. [PMID: 35847285 PMCID: PMC9280770 DOI: 10.1021/acsomega.2c01963] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mechanism of oxidizing reaction in the preparation of graphene oxide (GO) by a chemical oxidation method remains unclear. The main oxidant of graphite oxide has not been determined. Here, we show a new mechanism in which Mn2O7, the main oxidant, is heated to decompose oxygen atoms and react with graphite. The whole preparation process constitutes of four distinct independent steps, different from the three steps of literature registration, and each step has its own chemical oxidation reaction. In the first step, concentrated sulfuric acid and nitric acid are intercalated between graphite layers in the form of a molecular thermal motion to produce HNO3-H2SO4-GIC. In the second step, Mn2O7 is intercalated between graphite layers in the molecular convection-diffusion to Mn2O7-H2SO4-GIC. In the third step, Mn2O7 is decomposed by heat. Oxygen atoms are generated to oxidize the defects in the graphite layer to PGO. This discovery is the latest and most important. In the fourth step, PGO is purified with deionized water, hydrogen peroxide, and hydrochloric acid to GO. Optical microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectrometry, and scanning electron microscopy analytical evidence was used for confirming Mn2O7 as the main oxidant and the structure of GO. This work provides a more plausible explanation for the mechanism of oxidizing reaction in the preparation of GO by a chemical oxidation method.
Collapse
Affiliation(s)
- Xiaodong Chen
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, P. R. China
- Shaanxi
Key Laboratory of Clean Utilization of Low-Metamorphic Coal, Yulin 719000, Shaanxi, P. R. China
| | - Zhan Qu
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, P. R. China
- Shaanxi
Key Laboratory of Clean Utilization of Low-Metamorphic Coal, Yulin 719000, Shaanxi, P. R. China
| | - Zhe Liu
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, P. R. China
- Shaanxi
Key Laboratory of Clean Utilization of Low-Metamorphic Coal, Yulin 719000, Shaanxi, P. R. China
| | - Guoyu Ren
- School
of Chemistry and Chemical Engineering, Yulin
University, Yulin 719000, Shaanxi, P. R. China
- Shaanxi
Key Laboratory of Clean Utilization of Low-Metamorphic Coal, Yulin 719000, Shaanxi, P. R. China
| |
Collapse
|
25
|
Ashraf T, Alfryyan N, Nasr M, Ahmed SA, Shaban M. Removal of Scale-Forming Ions and Oil Traces from Oil Field Produced Water Using Graphene Oxide/Polyethersulfone and TiO 2 Nanoribbons/Polyethersulfone Nanofiltration Membranes. Polymers (Basel) 2022; 14:2572. [PMID: 35808619 PMCID: PMC9269001 DOI: 10.3390/polym14132572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022] Open
Abstract
Treatment of produced water in oil fields has become a tough challenge for oil producers. Nanofiltration, a promising method for water treatment, has been proposed as a solution. The phase inversion technique was used for the synthesis of nanofiltration membranes of polyethersulfone embedded with graphene oxide nanoparticles and polyethersulfone embedded with titanium nanoribbons. As a realistic situation, water samples taken from the oil field were filtered using synthetic membranes at an operating pressure of 0.3 MPa. Physiochemical properties such as water flux, membrane morphology, flux recovery ratio, pore size and hydrophilicity were investigated. Additionally, filtration efficiency for removal of constituent ions, oil traces in water removal, and fouling tendency were evaluated. The constituent ions of produced water act as the scaling agent which threatens the blocking of the reservoir bores of the disposal wells. Adding graphene oxide (GO) and titanium nanoribbons (TNR) to polyethersulfone (PES) enhanced filtration efficiency, water flux, and anti-fouling properties while also boosting hydrophilicity and porosity. The PES-0.7GO membrane has the best filtering performance, followed by the PES-0.7TNR and pure-PES membranes, with chloride salt rejection rates of 81%, 78%, and 35%; oil rejection rates of 88%, 85%, and 71%; and water fluxes of 85, 82, and 42.5 kg/m2 h, respectively. Because of its higher hydrophilicity and physicochemical qualities, the PES-0.7GO membrane outperformed the PES-0.7TNR membrane. Nanofiltration membranes embedded with nanomaterial described in this work revealed encouraging long-term performance for oil-in-water trace separation and scaling agent removal.
Collapse
Affiliation(s)
- Tarek Ashraf
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (T.A.); (M.N.); (S.A.A.)
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mervat Nasr
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (T.A.); (M.N.); (S.A.A.)
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sayed A. Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (T.A.); (M.N.); (S.A.A.)
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, Almadinah Almonawara 42351, Saudi Arabia
| |
Collapse
|
26
|
Ali J, Li Y, Shang E, Wang X, Zhao J, Mohiuddin M, Xia X. Aggregation of graphene oxide and its environmental implications in the aquatic environment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Marsden AJ, Skilbeck M, Healey M, Thomas HR, Walker M, Edwards RS, Garcia NA, Vuković F, Jabraoui H, Walsh TR, Rourke JP, Wilson NR. From graphene to graphene oxide: the importance of extended topological defects. Phys Chem Chem Phys 2022; 24:2318-2331. [PMID: 35015800 DOI: 10.1039/d1cp04316a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide (GO) represents a complex family of materials related to graphene: easy to produce in large quantities, easy to process, and convenient to use as a basis for further functionalization, with the potential for wide-ranging applications such as in nanocomposites, electronic inks, biosensors and more. Despite their importance, the key structural traits of GO, and the impact of these traits on properties, are still poorly understood due to the inherently berthollide character of GO which complicates the establishment of clear structure/property relationships. Widely accepted structural models of GO frequently neglect the presence of extended topological defects, structural changes to the graphene basal plane that are not removed by reduction methods. Here, a combination of experimental approaches and molecular simulations demonstrate that extended topological defects are a common feature across GO and that the presence of these defects strongly influences the properties of GO. We show that these extended topological defects are produced following even controlled 'gentle' functionalization by atomic oxygen and are comparable to those obtained by a conventional modified Hummers' method. The presence of the extended topological defects is shown to play an important role in the retention of oxygen functional groups after reduction. As an exemplar of their effect on the physical properties, we show that the GO sheets display a dramatic decrease in strength and stiffness relative to graphene and, due to the presence of extended structural defects, no improvement is seen in the mechanical properties after reduction. These findings indicate the importance of extended topological defects to the structure and properties of functionalized graphene, which merits their inclusion as a key trait in simple structural models of GO.
Collapse
Affiliation(s)
| | - Mark Skilbeck
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Matthew Healey
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Helen R Thomas
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Rachel S Edwards
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Natalya A Garcia
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
| | - Filip Vuković
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
| | - Hicham Jabraoui
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.
| | - Jonathan P Rourke
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
28
|
Cho JH, Cayll D, Behera D, Cullinan M. Towards Repeatable, Scalable Graphene Integrated Micro-Nano Electromechanical Systems (MEMS/NEMS). MICROMACHINES 2021; 13:27. [PMID: 35056192 PMCID: PMC8777989 DOI: 10.3390/mi13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
The demand for graphene-based devices is rapidly growing but there are significant challenges for developing scalable and repeatable processes for the manufacturing of graphene devices. Basic research on understanding and controlling growth mechanisms have recently enabled various mass production approaches over the past decade. However, the integration of graphene with Micro-Nano Electromechanical Systems (MEMS/NEMS) has been especially challenging due to performance sensitivities of these systems to the production process. Therefore, ability to produce graphene-based devices on a large scale with high repeatability is still a major barrier to the commercialization of graphene. In this review article, we discuss the merits of integrating graphene into Micro-Nano Electromechanical Systems, current approaches for the mass production of graphene integrated devices, and propose solutions to overcome current manufacturing limits for the scalable and repeatable production of integrated graphene-based devices.
Collapse
Affiliation(s)
| | | | | | - Michael Cullinan
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton St, Austin, TX 78712, USA; (J.H.C.); (D.C.); (D.B.)
| |
Collapse
|
29
|
Lin H, Liu X, He C. Ceramide-Graphene Oxide Nanoparticles Enhance the Cytotoxicity and Reduce the Occurrence and Development of Breast Cancer Xenografts. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ceramide exerts crucial effect on inducing tumor cell apoptosis, while its insolublility limits the application in treating tumors. In this study, we used NGO-PEG-PEI (NPP) and C6-NPP/Cer (NPP/C) as method to explore NPP/C’s effect and its anti-tumor ability on breast cancer.
Confocal microscopy was used to detect the transfection efficiency in tumor cells. Breast cancer cells were treated with C6-NGO-PEG-PEI solution (control group) or NPP/C followed by analysis of cell proliferation and apoptosis by flow cytometry. C6-ceramide solution (control group) or NPP/C
was administrated into nude mice with tumor followed by measuring tumor volume and size as well as cell proliferation and apoptosis. NGO-PEG-PEI could significantly enhance cell intake and inhibit cell proliferation and promote apoptosis. In vivo transplantation tumor model experiments
showed that NPP/C could decrease tumor growth, slow down the multiplication rate and accelerate apoptosis. In conclusion, Ceramide-graphene oxide can inhibit tumor growth by inhibiting tumor cell growth and promoting cell apoptosis.
Collapse
Affiliation(s)
- Hongxia Lin
- Department of Breast Surgery, Haikou People’s Hospital, Haikou City, Hainan Province, 570208, China
| | - Xiaoping Liu
- Department of Breast Surgery, Haikou People’s Hospital, Haikou City, Hainan Province, 570208, China
| | - Chunnuan He
- Department of Neurosurgery, Haikou People’s Hospital, Haikou City, Hainan Province, 570208, China
| |
Collapse
|
30
|
Chen C, Meng L, Hu Y, Su Z, Zhang T, Ouyang Z, Li W, Wan J, Wu Q. Graphene oxide-reinforced poly (ether-ether-ketone)/silica composites with improved mechanical performance and surface bioactivity. J Mech Behav Biomed Mater 2021; 124:104811. [PMID: 34500354 DOI: 10.1016/j.jmbbm.2021.104811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
The control of interfacial interaction between polymers and fillers is essential for the fabrication of high-performance polymer composites. In this work, poly(ether-ether-ketone)/silica (PEEK/SiO2) and PEEK/SiO2/graphene oxide (GO) composite were prepared by ball milling-ultrasonic dispersion combined with melt extrusion injection molding. GO nanosheets were introduced as the interfacial enhancer to improve interfacial binding between SiO2 and PEEK. Mechanical tests showed that the incorporation of SiO2 and GO greatly optimized the modulus, strength, and fracture toughness of the composites. The tensile strength and Young's modulus of the PEEK/SiO2 composites increases with the increase of SiO2 content. The maximum tensile strength and Young's modulus of the PEEK/SiO2 composites are approximate 95.9 ± 0.6 MPa and 4.007 ± 0.005 GPa at 30 wt% of SiO2, an increase of 6.4% and 21.2% than that of pure PEEK. The maximum tensile strength and Young's modulus of the PEEK/SiO2/GO composite are further improved to approximate 101.5 ± 0.7 MPa and 4.62 ± 0.08 GPa at a GO content of 1.5% wt, which is 12.6% and 39.4% higher than that of pure PEEK. In addition, SEM images show that numerous HA formed on the surface of the PEEK/SiO2/GO composite after immersion in SBF for 7 days, and the HA layer becomes gradually thicker after 14 days, implying the good osteogenic activity of PEEK/SiO2/GO composites. Therefore, these results suggest that the use of GO as a novel filler surface modifier for the preparation of high-performance composites may become a novel interfacial design strategy for the development of high-performance composites.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhengnan Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Tiantian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhiyuan Ouyang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
31
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
32
|
Liu Z, Diao Z, Yuan Y, Jia H, Wang L, Fei W. A two-step thermal treatment method to produce reduced graphene oxide with selectively increasing electrochemically active carbonyl group content for high-performance supercapacitor electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Jia H, Zhang A, Yang Y, Cui Y, Xu J, Jiang H, Tao S, Zhang D, Zeng H, Hou Z, Feng J. A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2. LAB ON A CHIP 2021; 21:2398-2406. [PMID: 33960344 DOI: 10.1039/d0lc01231a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
COVID-19 is a new strain of highly contagious coronavirus, and at present, more than 221.4 million people have been infected with this virus, and the death toll exceeds 2793398. Early and fast detection of COVID-19 from infected individuals is critical to limit its spreading. Here, we report an innovative approach to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein by combining DNA/RNA oligomers as aptamers and a graphene oxide (GO) coated optical microfiber as a sensor system. The DNA/RNA aptamers can effectively capture the SARS-CoV-2 N protein in vitro, with the GO coated optical microfiber aptasensor for real-time monitoring of the SARS-CoV-2 N protein. Due to the extremely high surface-to-volume ratio and excellent optical and biochemical properties of the GO surface layer, the fixing effect of the microfiber surface is significantly improved and the lowest limit of detection (LOD) is 6.25 × 10-19 M. Furthermore, in order to prove the feasibility of this sensing method in clinical applications, we use this sensor to detect the N protein mixed in fetal bovine serum (FBS) samples. The experimental results show that the biosensor can quickly and effectively detect the N protein (1 × 10-9 M) in a complex sample matrix within 3 minutes. These findings suggest that this approach can be utilized for quantitative monitoring of coronavirus particles due to its high sensitivity, which can help to quickly exclude patients who do not have the infection. Collectively, the optical microfiber sensor system could be expected to become an important platform for the diagnosis of coronavirus due to its simple detection scheme and easy miniaturization.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China. and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Ao Zhang
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuquan Yang
- Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Yaqi Cui
- Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Jianrong Xu
- Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Dawei Zhang
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhaoyuan Hou
- Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China. and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Jijun Feng
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
34
|
Kayal A, G H, Bandopadhyay K, Kumar A, Silva SRP, Mitra J. Controlling the macroscopic electrical properties of reduced graphene oxide by nanoscale writing of electronic channels. NANOTECHNOLOGY 2021; 32:175202. [PMID: 33429382 DOI: 10.1088/1361-6528/abda72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The allure of all-carbon electronics stems from the spread of its physical properties across all its allotropes. The scheme also harbours unique challenges, such as tunability of band gap, variability of doping and defect control. Here, we explore the technique of scanning probe tip-induced nanoscale reduction of graphene oxide (GO), which nucleates conducting, [Formula: see text] rich graphitic regions on the insulating GO background. The flexibility of direct writing is supplemented with control over the degree of reduction and tunability of band gap through macroscopic control parameters. The fabricated reduced GO channels and ensuing devices are investigated via spectroscopy and temperature and bias-dependent electrical transport and correlated with spatially resolved electronic properties, using surface potentiometry. The presence of carrier localization effects, induced by the phase-separated [Formula: see text] domains, and large local electric field fluctuations are reflected in the non-linear transport across the channels. Together, the results indicate a complex transport phenomenon, which may be variously dominated by tunnelling or variable range hopping or activated depending on the electronic state of the material.
Collapse
Affiliation(s)
- Arijit Kayal
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Harikrishnan G
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - K Bandopadhyay
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Amit Kumar
- School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, United Kingdom
| | - S Ravi P Silva
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - J Mitra
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
35
|
Grant JJ, Pillai SC, Hehir S, McAfee M, Breen A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater Sci Eng 2021; 7:1278-1301. [PMID: 33729744 DOI: 10.1021/acsbiomaterials.0c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.
Collapse
Affiliation(s)
- Jamie J Grant
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Sarah Hehir
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Marion McAfee
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| |
Collapse
|
36
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
37
|
Hajiahmadi M, Zarei M, Khataee A. Introducing an effective iron-based catalyst for heterogeneous electro-Fenton removal of Gemcitabine using three-dimensional graphene as cathode. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Guo J, Bao H, Zhang Y, Shen X, Kim JK, Ma J, Shao L. Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118791] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Kim SW, Kwon S, Kim YK. Graphene Oxide Derivatives and Their Nanohybrid Structures for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Small Molecules. NANOMATERIALS 2021; 11:nano11020288. [PMID: 33499396 PMCID: PMC7910985 DOI: 10.3390/nano11020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) has been considered as one of the most powerful analytical tools for mass spectrometry (MS) analysis of large molecular weight compounds such as proteins, nucleic acids, and synthetic polymers thanks to its high sensitivity, high resolution, and compatibility with high-throughput analysis. Despite these advantages, MALDI cannot be applied to MS analysis of small molecular weight compounds (<500 Da) because of the matrix interference in low mass region. Therefore, numerous efforts have been devoted to solving this issue by using metal, semiconductor, and carbon nanomaterials for MALDI time-of-flight MS (MALDI-TOF-MS) analysis instead of organic matrices. Among those nanomaterials, graphene oxide (GO) is of particular interest considering its unique and highly tunable chemical structures composed of the segregated sp2 carbon domains surrounded by sp3 carbon matrix. Chemical modification of GO can precisely tune its physicochemical properties, and it can be readily incorporated with other functional nanomaterials. In this review, the advances of GO derivatives and their nanohybrid structures as alternatives to organic matrices are summarized to demonstrate their potential and practical aspect for MALDI-TOF-MS analysis of small molecules.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Chemistry, Dongguk University-Seoul, 30 Pildong-ro, Jung-gu, Seoul 04620, Korea;
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
- Correspondence: (S.-W.K.); (Y.-K.K.); Tel.: +82-2-820-5201 (S.-W.K.); +82-2-2260-3214 (Y.-K.K.)
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University-Seoul, 30 Pildong-ro, Jung-gu, Seoul 04620, Korea;
- Correspondence: (S.-W.K.); (Y.-K.K.); Tel.: +82-2-820-5201 (S.-W.K.); +82-2-2260-3214 (Y.-K.K.)
| |
Collapse
|
40
|
Jiao S, Liu M. Snap-through in Graphene Nanochannels: With Application to Fluidic Control. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1158-1168. [PMID: 33354971 DOI: 10.1021/acsami.0c16468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent studies on the structure and transport behaviors of water confined within lamellar graphene have attracted intense interest in filtration technology, but the mechanism of water transport in complex membrane nanostructures remains an open question. For example, similar systems but at much larger scales have indicated that the instabilities of an elastic structure, such as snap-through, play an essential role in controlling the fluid flow. Graphene sheets, which have an atomic thickness, often appear highly wrinkled in nanofluidic devices and so are vulnerable to elastic instabilities. However, it remains unclear how does the flexible wrinkled structure affect the transport of water and filtration efficiency or whether such an effect can be exploited in devices. In this work, we explore the flow-induced snap-through in graphene nanochannels by combining molecular simulations with the theoretical analysis. We further demonstrate its applications to passive control of fluid flow and to ion/molecule selection. By introducing a flexible arch embedded within a graphene nanochannel, we observe the "snap" of the arched graphene wall from one stable state to another by varying the fluid flux (i.e., velocity); the critical velocity of this snap transition is found to depend nonmonotonically on the geometric size of the channel and the arch. We also demonstrate reversible snap-through by fixing the end parts of the flexible arch. These results suggest the potential of flow-induced snap-through in graphene-based nanochannels for ion/molecule selection applications in, for example, the design of a foul-resistant, easy-to-clean, reusable filter membrane.
Collapse
Affiliation(s)
- Shuping Jiao
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Mingchao Liu
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, U.K
| |
Collapse
|
41
|
Solodov AN, Shayimova J, Amirov RR, Dimiev AM. Mimicking the graphene oxide structure in solutions by interaction of Fe(III) and Gd(III) with model small-size ligands. The NMR relaxation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Wu J, Jia L, Zhang Y, Qu Y, Jia B, Moss DJ. Graphene Oxide for Integrated Photonics and Flat Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006415. [PMID: 33258178 DOI: 10.1002/adma.202006415] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/05/2020] [Indexed: 05/15/2023]
Abstract
With superior optical properties, high flexibility in engineering its material properties, and strong capability for large-scale on-chip integration, graphene oxide (GO) is an attractive solution for on-chip integration of 2D materials to implement functional integrated photonic devices capable of new features. Over the past decade, integrated GO photonics, representing an innovative merging of integrated photonic devices and thin GO films, has experienced significant development, leading to a surge in many applications covering almost every field of optical sciences such as photovoltaics, optical imaging, sensing, nonlinear optics, and light emitting. This paper reviews the recent advances in this emerging field, providing an overview of the optical properties of GO as well as methods for the on-chip integration of GO. The main achievements made in GO hybrid integrated photonic devices for diverse applications are summarized. The open challenges as well as the potential for future improvement are also discussed.
Collapse
Affiliation(s)
- Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
43
|
Jazie AA, Albaaji AJ, Abed SA. A review on recent trends of antiviral nanoparticles and airborne filters: special insight on COVID-19 virus. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 14:1811-1824. [PMID: 34178182 PMCID: PMC8211456 DOI: 10.1007/s11869-021-01055-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/01/2021] [Indexed: 05/10/2023]
Abstract
Novel corona virus (COVID-19) pandemic in the last 4 months stimulates the international scientific community to search for vaccine of antiviral agents suitable for in activating the virus inside and outside the human body. More than 4 million people globally are infected by the virus and about 300,000 dead cases until this moment. The ventilation and airborne filters are also investigated aiming to develop an efficient antiviral filtration technology. Human secretion of the infected person as nasal or saliva droplets goes as airborne and distributes the virus everywhere around the person. N95 and N98 filters are the must use filters for capturing particles of sizes around 300 nm. The average size of the novel corona virus (COVID-19) is 100 nm and there is no standard or special filter suitable for this virus. The nanoparticle-coated airborne filter is a suitable technique in this regard. While the efficiency of this type of filters still needs to be enhanced, new developed nanofiber filters are proposed. Most recently, the charged nanofiber filters of sizes below 100 nm are developed and provide an efficient viral filtration and inactivation. The efficiency of filter must be kept at accepted level without increasing the pressure drop. The present review outlines the most efficient antiviral nanoparticles including the recent functional nanoparticles. The filtration theory, filtration modeling, filter testing, and different types of filter with special concentration on the charged nanofiber filter were discussed. The charged nanofiber filter able to capture novel corona virus (COVID-19) with 94% efficiency and a pressure drop less than 20 MPa.
Collapse
Affiliation(s)
- Ali A. Jazie
- Chemical Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Amar J. Albaaji
- Materials Engineering Department, Engineering College, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Suhad A. Abed
- Department of Biology, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| |
Collapse
|
44
|
Czepa W, Witomska S, Ciesielski A, Samorì P. Reduced graphene oxide-silsesquioxane hybrid as a novel supercapacitor electrode. NANOSCALE 2020; 12:18733-18741. [PMID: 32970083 DOI: 10.1039/d0nr05226d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supercapacitor energy storage devices recently garnered considerable attention due to their cost-effectiveness, eco-friendly nature, high power density, moderate energy density, and long-term cycling stability. Such figures of merit render supercapacitors unique energy sources to power portable electronic devices. Among various energy storage materials, graphene-related materials have established themselves as ideal electrodes for the development of elite supercapacitors because of their excellent electrical conductivity, high surface area, outstanding mechanical properties combined with the possibility to tailor various physical and chemical properties via chemical functionalization. Increasing the surface area is a powerful strategy to improve the performance of supercapacitors. Here, modified polyhedral oligosilsesquioxane (POSS) is used to improve the electrochemical performance of reduced graphene oxide (rGO) through the enhancement of porosity and the extension of interlayer space between the sheets allowing efficient electrolyte transport. rGO-POSS hybrids exhibited a high specific capacitance of 174 F g-1, power density reaching 2.25 W cm-3, and high energy density of 41.4 mW h cm-3 endowed by the introduction of POSS spacers. Moreover, these electrode materials display excellent durability reaching >98% retention after 5000 cycles.
Collapse
Affiliation(s)
- Włodzimierz Czepa
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61614 Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61614 Poznań, Poland
| | - Samanta Witomska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61614 Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61614 Poznań, Poland
| | - Artur Ciesielski
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61614 Poznań, Poland
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France.
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
45
|
Wang Z, Yao Q, Neumann C, Börrnert F, Renner J, Kaiser U, Turchanin A, Zandvliet HJW, Eigler S. Identification of Semiconductive Patches in Thermally Processed Monolayer Oxo-Functionalized Graphene. Angew Chem Int Ed Engl 2020; 59:13657-13662. [PMID: 32315109 PMCID: PMC7496721 DOI: 10.1002/anie.202004005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/19/2020] [Indexed: 11/17/2022]
Abstract
The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo-functionalized graphene (oxo-G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo-G flake and correlated the chemical composition and topography corrugation by two-probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo-G, processed at 300 °C, displays C-C sp3 -patches and possibly C-O-C bonds, next to graphene domains and holes. It is striking that those C-O-C/C-C sp3 -separated sp2 -patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp3 -patches confine conjugated sp2 -C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp3 -C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.
Collapse
Affiliation(s)
- Zhenping Wang
- Freie Universität BerlinInstitute for Chemistry and BiochemistryTakustraße 314195BerlinGermany
| | - Qirong Yao
- Physics of Interfaces and NanomaterialsUniversity of TwenteEnschede7500AEThe Netherlands
| | - Christof Neumann
- Friedrich Schiller University JenaInstitute of Physical ChemistryLessingstraße 1007743JenaGermany
| | - Felix Börrnert
- Universität UlmZentrale Einrichtung ElektronenmikroskopieAlbert-Einstein-Allee 1189081UlmGermany
- Current address: Max-Planck-Institut für MikrostrukturphysikWeinberg 206120HalleGermany
| | - Julian Renner
- Universität UlmZentrale Einrichtung ElektronenmikroskopieAlbert-Einstein-Allee 1189081UlmGermany
| | - Ute Kaiser
- Universität UlmZentrale Einrichtung ElektronenmikroskopieAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrey Turchanin
- Friedrich Schiller University JenaInstitute of Physical ChemistryLessingstraße 1007743JenaGermany
| | - Harold J. W. Zandvliet
- Physics of Interfaces and NanomaterialsUniversity of TwenteEnschede7500AEThe Netherlands
| | - Siegfried Eigler
- Freie Universität BerlinInstitute for Chemistry and BiochemistryTakustraße 314195BerlinGermany
| |
Collapse
|
46
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
47
|
Wang Z, Yao Q, Neumann C, Börrnert F, Renner J, Kaiser U, Turchanin A, Zandvliet HJW, Eigler S. Identifizierung von halbleitenden Bereichen in thermisch behandeltem monolagigem Oxo‐funktionalisiertem Graphen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenping Wang
- Freie Universität Berlin Institute for Chemistry and Biochemistry Takustraße 3 14195 Berlin Deutschland
| | - Qirong Yao
- Physics of Interfaces and Nanomaterials University of Twente Enschede 7500 AE Niederlande
| | - Christof Neumann
- Friedrich Schiller University Jena Institute of Physical Chemistry Lessingstraße 10 07743 Jena Deutschland
| | - Felix Börrnert
- Universität Ulm Zentrale Einrichtung Elektronenmikroskopie Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Aktuelle Adresse: Max-Planck-Institut für Mikrostrukturphysik Weinberg 2 06120 Halle Deutschland
| | - Julian Renner
- Universität Ulm Zentrale Einrichtung Elektronenmikroskopie Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Ute Kaiser
- Universität Ulm Zentrale Einrichtung Elektronenmikroskopie Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Andrey Turchanin
- Friedrich Schiller University Jena Institute of Physical Chemistry Lessingstraße 10 07743 Jena Deutschland
| | - Harold J. W. Zandvliet
- Physics of Interfaces and Nanomaterials University of Twente Enschede 7500 AE Niederlande
| | - Siegfried Eigler
- Freie Universität Berlin Institute for Chemistry and Biochemistry Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
48
|
Georgieva M, Vasileva B, Speranza G, Wang D, Stoyanov K, Draganova-Filipova M, Zagorchev P, Sarafian V, Miloshev G, Krasteva N. Amination of Graphene Oxide Leads to Increased Cytotoxicity in Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 21:E2427. [PMID: 32244505 PMCID: PMC7177364 DOI: 10.3390/ijms21072427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Clinically, there is an urgent need to identify new therapeutic strategies for selectively treating cancer cells. One of the directions in this research is the development of biocompatible therapeutics that selectively target cancer cells. Here, we show that novel aminated graphene oxide (haGO-NH2) nanoparticles demonstrate increased toxicity towards human hepatocellular cancer cells compared to pristine graphene oxide(GO). The applied novel strategy for amination leads to a decrease in the size of haGO-NH2 and their zeta potential, thus, assuring easier penetration through the cell membrane. After characterization of the biological activities of pristine and aminated GO, we have demonstrated strong cytotoxicity of haGO-NH2 toward hepatic cancer cells - HepG2 cell line, in a dose-dependent manner. We have presented evidence that the cytotoxic effects of haGO-NH2 on hepatic cancer cells were due to cell membrane damage, mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Intrinsically, our current study provides new rationale for exploiting aminated graphene oxide as an anticancer therapeutic.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (B.V.); (G.M.)
| | - Bela Vasileva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (B.V.); (G.M.)
| | - Giorgio Speranza
- Functional Materials and Photonic Structure, Center for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo, Italy;
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Medical School in Southeast University, Nanjing 210009, China;
| | - Kalin Stoyanov
- Department of Automation, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Milena Draganova-Filipova
- Department of Medical Biology, Medical Faculty, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (M.D.-F.); (V.S.)
- Research Institute at Medical University-Plovdiv, Bulgaria; 15A Vassil Aprilov, blvd, 4000 Plovdiv, Bulgaria
| | - Plamen Zagorchev
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical Faculty, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (M.D.-F.); (V.S.)
- Research Institute at Medical University-Plovdiv, Bulgaria; 15A Vassil Aprilov, blvd, 4000 Plovdiv, Bulgaria
| | - George Miloshev
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (B.V.); (G.M.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
49
|
Harris P. Non-Graphitizing Carbon: Its Structure and Formation from Organic Precursors. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2019. [DOI: 10.18321/ectj863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Non-graphitizing carbon, or char, has been intensively studied for decades, but there is still no agreement about its detailed atomic structure. The first models for graphitizing and non-graphitizing carbons were proposed by Rosalind Franklin in the early 1950s, and while these are correct in a broad sense, they are incomplete. Subsequent models also fail to explain fully the structure of non-graphitizing carbons. The discovery of the fullerenes and related structures stimulated the present author and others to put forward models which incorporate non-hexagonal rings into hexagonally-bonded sp2 carbon networks, creating a microporous structure made up of highly curved fragments. However, this model has not been universally accepted. This paper reviews the models that have been put forward for non-graphitizing carbon and outlines the evidence for a fullerene-like structure. This evidence comes from transmission electron microscopy, electron energy loss spectroscopy and Raman spectroscopy. Finally, the influence of precursor chemistry on the structure of graphitizing and non-graphitizing carbons is discussed. It is well established that carbonization of oxygen–containing precursors tends to produce non-graphitizing carbons. This may be explained by the fact that the removal of oxygen from a hexagonal carbon network can result in the formation of pentagonal carbon rings.
Collapse
|
50
|
Gao H, Hu G, Liu H. Preparation of a Highly Stable Dispersion of Graphene in Water with the Aid of Graphene Oxide. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanyang Gao
- School of Mechanical Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Guoxin Hu
- School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haijun Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| |
Collapse
|