1
|
Luo J, Lu W, Jang D, Zhang Q, Meng W, Wells A, Alavi AH. Millifluidic Nanogenerator Lab-on-a-Chip Device for Blood Electrical Conductivity Monitoring at Low Frequency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403568. [PMID: 38814691 DOI: 10.1002/adma.202403568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/27/2024] [Indexed: 05/31/2024]
Abstract
The electrical conductivity of blood is a crucial physiological parameter with diverse applications in medical diagnostics. Here, a novel approach utilizing a portable millifluidic nanogenerator lab-on-a-chip device for measuring blood conductivity at low frequencies, is introduced. The proposed device employs blood as a conductive substance within its built-in triboelectric nanogenerator system. The voltage generated by this blood-based nanogenerator device is analyzed to determine the electrical conductivity of the blood sample. The self-powering functionality of the device eliminates the need for complex embedded electronics and external electrodes. Experimental results using simulated body fluid and human blood plasma demonstrate the device's efficacy in detecting variations in conductivity related to changes in electrolyte concentrations. Furthermore, artificial intelligence models are used to analyze the generated voltage patterns and to estimate the blood electrical conductivity. The models exhibit high accuracy in predicting conductivity based solely on the device-generated voltage. The 3D-printed, disposable design of the device enhances portability and usability, providing a point-of-care solution for rapid blood conductivity assessment. A comparative analysis with traditional conductivity measurement methods highlights the advantages of the proposed device in terms of simplicity, portability, and adaptability for various applications beyond blood analysis.
Collapse
Affiliation(s)
- Jianzhe Luo
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wenyun Lu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Daeik Jang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qianyun Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Wenxuan Meng
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alan Wells
- Laboratory Service Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Camacho MJ, Albuquerque DC, Inácio ML, Martins VC, Mota M, Freitas PP, de Andrade E. FTA-LAMP based biosensor for a rapid in-field detection of Globodera pallida-the pale potato cyst nematode. Front Bioeng Biotechnol 2024; 12:1337879. [PMID: 38303911 PMCID: PMC10830618 DOI: 10.3389/fbioe.2024.1337879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The combination of a sensitive and specific magnetoresistive sensing device with an easy DNA extraction method and a rapid isothermal amplification is presented here targeting the on-site detection of Globodera pallida, a potato endoparasitic nematode. FTA-cards were used for DNA extraction, LAMP was the method developed for DNA amplification and a nanoparticle functionalized magnetic-biosensor was used for the detection. The combinatorial effect of these three emerging technologies has the capacity to detect G. pallida with a detection limit of one juvenile, even when mixed with other related species. This combined system is far more interesting than what a single technology can provide. Magnetic biosensors can be combined with any DNA extraction protocol and LAMP forming a new solution to target G. pallida. The probe designed in this study consistently distinguished G. pallida (∆Vac binding/Vac sensor above 1%) from other cyst nematodes (∆Vac binding/Vac sensor below 1%). It was confirmed that DNA either extracted with FTA-cards or Lab extraction Kit was of enough quantity and quality to detect G. pallida whenever present (alone or in mixed samples), ensuring probe specificity and sensitivity. This work provides insights for a new strategy to construct advanced devices for pathogens in-field diagnostics. LAMP runs separately but can be easily integrated into a single device.
Collapse
Affiliation(s)
- Maria João Camacho
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- NemaLab/ MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
| | - Débora C. Albuquerque
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
- IST—Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Maria L. Inácio
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | | - Manuel Mota
- NemaLab/ MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, Évora, Portugal
| | - Paulo P. Freitas
- INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
- INL—International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Eugénia de Andrade
- INIAV—National Institute for Agriculture and Veterinary Research, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
3
|
Tsai HF, Podder S, Chen PY. Microsystem Advances through Integration with Artificial Intelligence. MICROMACHINES 2023; 14:826. [PMID: 37421059 PMCID: PMC10141994 DOI: 10.3390/mi14040826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/09/2023]
Abstract
Microfluidics is a rapidly growing discipline that involves studying and manipulating fluids at reduced length scale and volume, typically on the scale of micro- or nanoliters. Under the reduced length scale and larger surface-to-volume ratio, advantages of low reagent consumption, faster reaction kinetics, and more compact systems are evident in microfluidics. However, miniaturization of microfluidic chips and systems introduces challenges of stricter tolerances in designing and controlling them for interdisciplinary applications. Recent advances in artificial intelligence (AI) have brought innovation to microfluidics from design, simulation, automation, and optimization to bioanalysis and data analytics. In microfluidics, the Navier-Stokes equations, which are partial differential equations describing viscous fluid motion that in complete form are known to not have a general analytical solution, can be simplified and have fair performance through numerical approximation due to low inertia and laminar flow. Approximation using neural networks trained by rules of physical knowledge introduces a new possibility to predict the physicochemical nature. The combination of microfluidics and automation can produce large amounts of data, where features and patterns that are difficult to discern by a human can be extracted by machine learning. Therefore, integration with AI introduces the potential to revolutionize the microfluidic workflow by enabling the precision control and automation of data analysis. Deployment of smart microfluidics may be tremendously beneficial in various applications in the future, including high-throughput drug discovery, rapid point-of-care-testing (POCT), and personalized medicine. In this review, we summarize key microfluidic advances integrated with AI and discuss the outlook and possibilities of combining AI and microfluidics.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Soumyajit Podder
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Pin-Yuan Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| |
Collapse
|
4
|
Akgönüllü S, Denizli A. Molecular imprinting-based sensors: Lab-on-chip integration and biomedical applications. J Pharm Biomed Anal 2023; 225:115213. [PMID: 36621283 DOI: 10.1016/j.jpba.2022.115213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
The innovative technology of a marketable lab-on-a-chip platform for point-of-care (POC) in vitro detection has recently attracted remarkable attention. The POC tests can significantly enhance the high standard of medicinal care. In the last decade, clinical diagnostic technology has been broadly advanced and successfully performed in several areas. It seems that lab-on-a-chip approaches play a significant role in these technologies. However, high-cost and time-consuming methods are increasing the challenge and the development of a cost-effective, rapid and efficient method for the detection of biomolecules is urgently needed. Recently, polymer-coated sensing platforms have been a promising area that can be employed in medical diagnosis, pharmaceutical bioassays, and environmental monitoring. The designed on-chip sensors are based on molecular imprinting polymers (MIPs) that use label-free detection technology. Molecular imprinting shines out as a potentially promising technique for creating artificial recognition material with molecular recognition sites. MIPs provide unique advantages such as excellent recognition specificity, high selectivity, and good reusability. This review article aims to define several methods using molecular imprinting for biomolecules and their incorporation with several lab-on-chip technologies to describe the most promising methods for the development of sensing systems based on molecularly imprinted polymers. The higher selectivity, more user-friendly operation is believed to provide MIP-based lab-on-a-chip devices with great potential academic and commercial value in on-site clinical diagnostics and other point-of-care assays.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Camacho MJ, Albuquerque DC, de Andrade E, Martins VC, Inácio ML, Mota M, Freitas PP. A Lab-on-a-Chip Approach for the Detection of the Quarantine Potato Cyst Nematode Globodera pallida. SENSORS (BASEL, SWITZERLAND) 2023; 23:647. [PMID: 36679443 PMCID: PMC9861625 DOI: 10.3390/s23020647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The potato cyst nematode (PCN), Globodera pallida, has acquired significant importance throughout Europe due to its widespread prevalence and negative effects on potato production. Thus, rapid and reliable diagnosis of PCN is critical during surveillance programs and for the implementation of control measures. The development of innovative technologies to overcome the limitations of current methodologies in achieving early detection is needed. Lab-on-a-chip devices can swiftly and accurately detect the presence of certain nucleotide sequences with high sensitivity and convert the presence of biological components into an understandable electrical signal by combining biosensors with microfluidics-based biochemical analysis. In this study, a specific DNA-probe sequence and PCR primers were designed to be used in a magnetoresistive biosensing platform to amplify the internal transcribed spacer region of the ribosomal DNA of G. pallida. Magnetic nanoparticles were used as the labelling agents of asymmetric PCR product through biotin−streptavidin interaction. Upon target hybridization to sensor immobilized oligo probes, the fringe field created by the magnetic nanoparticles produces a variation in the sensor’s electrical resistance. The detection signal corresponds to the concentration of target molecules present in the sample. The results demonstrate the suitability of the magnetic biosensor to detect PCR target product and the specificity of the probe, which consistently distinguishes G. pallida (DV/V > 1%) from other cyst nematodes (DV/V < 1%), even when DNA mixtures were tested at different concentrations. This shows the magnetic biosensor’s potential as a bioanalytical device for field applications and border phytosanitary inspections.
Collapse
Affiliation(s)
- Maria João Camacho
- INIAV, I.P.—National Institute for Agriculture and Veterinary Research, 2780-159 Oeiras, Portugal
- NemaLab, MED–Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, 7006-554 Évora, Portugal
| | - Débora C. Albuquerque
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisbon, Portugal
- IST—Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Eugénia de Andrade
- INIAV, I.P.—National Institute for Agriculture and Veterinary Research, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | | | - Maria L. Inácio
- INIAV, I.P.—National Institute for Agriculture and Veterinary Research, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Manuel Mota
- NemaLab, MED–Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, University of Évora, 7006-554 Évora, Portugal
| | - Paulo P. Freitas
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisbon, Portugal
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Guo W, Tao Y, Mao K, Liu W, Xue R, Ge Z, Ren Y. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. LAB ON A CHIP 2022; 23:157-167. [PMID: 36484422 DOI: 10.1039/d2lc01053d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrokinetic sample manipulation is a key step for many kinds of microfluidic chips to achieve various functions, such as particle focusing and separation, fluid pumping and material synthesis. But these microfluidic experiments usually rely on large-scale signal generators for power supply, microscopes for imaging and other instruments for analysis, which hampers the portable process of microfluidic technology. Inspired by this situation, we herein designed a portable general microfluidic device (PGMD) with complex electric field regulation functions, which can accurately regulate static or continuous fluid samples. Through the graphical user interface (GUI) and modular design, the PGMD can generate multiple different electrical signals, and the micro-flow of fluid can be pumped through the built-in micropump, which can meet the requirements of most microfluidic experiments. Photos or videos of the microfluidic chip captured by the built-in microscope are received and displayed by a smartphone. We carried out a variety of microfluidic experiments such as induced-charge electroosmosis (ICEO), particle beam exit switching, thermal buoyancy flow and dielectrophoresis (DEP) on the PGMD. In addition, the PGMD can perform rapid microalgae concentration estimation in an outdoor environment, which can be used to guide microalgae cultivation, further demonstrating the development potential of this device in the field of microbial applications. Numerous results show that the PGMD has a high degree of integration and strong reliability, which expands the application of microfluidic electrokinetic experiments and provides technical support for the integration and portability of microfluidic experimental devices.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Kaihao Mao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
7
|
Wang X, Lu X, Cai B, Li X, Zou D, Lei S, Xu L, Wang G, Wang L, Wang Z. A Tumor‐Organoid‐based Precision Medicine Platform for the Prediction of Drug Sensitivity of Colorectal Cancer. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingyue Wang
- Department of Clinical Laboratory Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Xiaohuan Lu
- Department of Gastrointestinal Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Xiaoqiong Li
- Department of Gastrointestinal Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Danyi Zou
- Department of Clinical Laboratory Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Shijun Lei
- Department of Clinical Laboratory Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Luming Xu
- Department of Clinical Laboratory Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Guobin Wang
- Department of Gastrointestinal Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Lin Wang
- Department of Clinical Laboratory Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Zheng Wang
- Department of Gastrointestinal Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
- Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| |
Collapse
|
8
|
Lai CH, Lee CL, Vu CA, Vu VT, Tsai YH, Chen WY, Cheng CM. Paper-Based Devices for Capturing Exosomes and Exosomal Nucleic Acids From Biological Samples. Front Bioeng Biotechnol 2022; 10:836082. [PMID: 35497368 PMCID: PMC9039228 DOI: 10.3389/fbioe.2022.836082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes, nanovesicles derived from cells, contain a variety of biomolecules that can be considered biomarkers for disease diagnosis, including microRNAs (miRNAs). Given knowledge and demand, inexpensive, robust, and easy-to-use tools that are compatible with downstream nucleic acid detection should be developed to replace traditional methodologies for point-of-care testing (POCT) applications. This study deploys a paper-based extraction kit for exosome and exosomal miRNA analytical system with some quantifying methods to serve as an easy sample preparation for a possible POCT process. Exosomes concentrated from HCT116 cell cultures were arrested on paper-based immunoaffinity devices, which were produced by immobilizing anti-CD63 antibodies on Whatman filter paper, before being subjected to paper-based silica devices for nucleic acids to be trapped by silica nanoparticles adsorbed onto Whatman filter paper. Concentrations of captured exosomes were quantified by enzyme-linked immunosorbent assay (ELISA), demonstrating that paper-based immunoaffinity devices succeeded in capturing and determining exosome levels from cells cultured in both neutral and acidic microenvironments, whereas microRNA 21 (miR-21), a biomarker for various types of cancers and among the nucleic acids absorbed onto the silica devices, was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) to prove that paper-based silica devices were capable of trapping exosomal nucleic acids. The developed paper-based kit and the devised procedure was successfully exploited to isolate exosomes and exosomal nucleic acids from different biological samples (platelet-poor plasma and lesion fluid) as clinical applications.
Collapse
Affiliation(s)
- Chi-Hung Lai
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Chih-Ling Lee
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Cao-An Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Van-Truc Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Yao-Hung Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
- *Correspondence: Chao-Min Cheng, ; Wen-Yih Chen,
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Chao-Min Cheng, ; Wen-Yih Chen,
| |
Collapse
|
9
|
Bhattacharjee G, Maurya R, Alzahrani KJ, Gohil N, Lam NL, Singh V. Microfluidics based point-of-care for disease diagnostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:241-248. [PMID: 35094776 DOI: 10.1016/bs.pmbts.2021.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microfluidics platform is widely used for several basic biological to advanced biotechnological applications. It reduces the expenditure of reagent consumption by readily reducing the volume of the reaction system. It is being used for early diagnosis of diseases, detection of pathogens, cancer markers, high-throughput screening and many such applications. Currently, microfluidics and lab-on-chip is integrated together with sample preparation, extraction, analysis and detection of biomarkers for disease diagnosis. This technology offers low-cost, rapid, sensitive and paper-based lateral flow mode of detection which is user-friendly and scalable. In this chapter, we highlight recent developments in microfluidics platform for disease diagnosis.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Navya L Lam
- The J. David Gladstone Institutes, San Francisco, CA, United States
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
10
|
Westphal H, Warias R, Weise C, Ragno D, Becker H, Spanka M, Massi A, Gläser R, Schneider C, Belder D. An integrated resource-efficient microfluidic device for parallelised studies of immobilised chiral catalysts in continuous flow via miniaturized LC/MS-analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-μReactor catalysis screening: a novel method combining multiple miniaturized packed-bed reactors and on-line HPLC/MS-analysis on one single microfluidic device.
Collapse
Affiliation(s)
- Hannes Westphal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Chris Weise
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Luigi Borsari 46, 44121, Italy
| | - Holger Becker
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Matthias Spanka
- Institute of Organic Chemistry, Leipzig University, Johannisallee 28, 04103, Germany
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Luigi Borsari 46, 44121, Italy
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, Leipzig University, Johannisallee 28, 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| |
Collapse
|
11
|
Sateesh J, Guha K, Dutta A, Sengupta P, Rao KS. Design and Modeling of Bioreactor Utilizing Electrophoresis and Di-electrophoresis Techniques for Regenerating Reabsorption Function of Human Kidney PCT in Microfluidics Environment. IEEE Trans Nanobioscience 2021; 21:529-541. [PMID: 34847037 DOI: 10.1109/tnb.2021.3131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The need for innovation in medical device technology is immense; especially to replace the dialysis techniques the necessity is extremely high. The available techniques that promised to replace dialysis have not yet geared up to the marketization level. The utilization of live kidney cells makes these devices costly, delicate, and unreliable. This paper aims to design a bioreactor to mimic the reabsorption function of the kidney that is fully artificial and highly controllable, which can be one step forward to the emerging Kidney-on-Chip (KOC) technology. The additional benefit of the proposed design is that it utilizes size-dependent reabsorption along with charge-dependent reabsorption phenomena to make it more compatible with human kidney function. The electrophoresis (EP), and di-electrophoresis (DEP) techniques are utilized to mimic the reabsorption function in this report. The structure utilized in the present design exactly replicates the proximal convoluted tubule (PCT) dimensions and functions as well. The whole setup is implemented in the COMSOL Multiphysics FEM benchmark tool for simulation, and analysis with appropriate boundary conditions. The device when excited by an electric field, Electrophoresis has produced a maximum velocity of 1.07 m/s for DC excitation and di-electrophoresis has produced a maximum flow velocity of 1.23 m/s, where both the offset voltages are the same (0.7 V). The flow velocity obtained utilizing both EP and DEP produced a reabsorption rate of 50-58% depending on the voltage applied and dimensions considered which is close to 60% reabsorption rate of the normal human kidney PCT. In accordance with the outcomes produced, the di-electrophoresis technique proved to be more efficient in realizing bioreactor as compared to electrophoresis. The novelty of the present work lies in the creation of a simulation environment, rigorous analysis, and optimization of the bioreactor supported by compact mathematical model.
Collapse
|
12
|
Yang L, Yi W, Sun F, Xu M, Zeng Z, Bi X, Dong J, Xie Y, Li M. Application of Lab-on-Chip for Detection of Microbial Nucleic Acid in Food and Environment. Front Microbiol 2021; 12:765375. [PMID: 34803990 PMCID: PMC8600318 DOI: 10.3389/fmicb.2021.765375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Various diseases caused by food-borne or environmental pathogenic microorganisms have been a persistent threat to public health and global economies. It is necessary to regularly detect microorganisms in food and environment to prevent infection of pathogenic microorganisms. However, most traditional detection methods are expensive, time-consuming, and unfeasible in practice in the absence of sophisticated instruments and trained operators. Point-of-care testing (POCT) can be used to detect microorganisms rapidly on site and greatly improve the efficiency of microbial detection. Lab-on-chip (LOC) is an emerging POCT technology with great potential by integrating most of the experimental steps carried out in the laboratory into a single monolithic device. This review will primarily focus on principles and techniques of LOC for detection of microbial nucleic acid in food and environment, including sample preparation, nucleic acid amplification and sample detection.
Collapse
Affiliation(s)
- Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
13
|
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:901-927. [PMID: 34803553 PMCID: PMC8590809 DOI: 10.1007/s10311-021-01342-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT UK
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Balasubramanian Sivasamy
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641407 India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Ortega C, Corredor D, Santillán M, Ger W, Noceda J, Pais-Chanfrau J, Trujillo L. Lab on a Chip: Bioreactors miniaturization for rapid optimization of biomedical processes and its impact on SARS-CoV-2 diagnosis. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lab on a Chip (LoC) as part of Microbioreactors (MBRs) constitute an emergent technology to carry out micro-bioprocesses based on microfluidics research. In this review, the usefulness of LoCs is exposed since its inception, demonstrating that it is a multidisciplinary research field, gathering different science branches to develop this technology. As a result, a beneficial point of advancement is reached, producing useful consumables for humanity. Some of the described LoCs throughout this work are also used to detect infectious diseases caused by bacteria or viruses, allowing accelerated studies on emerging or high-impact diseases, such as COVID-19. Here are also displayed with an updated panorama, different strategies to improve the use, applications in the biomedical field, and spread of these devices aimed at their availability to solve social problems.
Collapse
Affiliation(s)
- C.P. Ortega
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - D.A Corredor
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - M.E Santillán
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - W.S Ger
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - J.M Noceda
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - J.M Pais-Chanfrau
- Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador FICAYA, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - L.E Trujillo
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador. Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| |
Collapse
|
15
|
Jamaludeen N, Beyer C, Billing U, Vogel K, Brunner-Weinzierl M, Spiliopoulou M. Potential of Point-of-Care and At-Home Assessment of Immune Status via Rapid Cytokine Detection and Questionnaire-Based Anamnesis. SENSORS (BASEL, SWITZERLAND) 2021; 21:4960. [PMID: 34372196 PMCID: PMC8348245 DOI: 10.3390/s21154960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Monitoring the immune system's status has emerged as an urgent demand in critical health conditions. The circulating cytokine levels in the blood reflect a thorough insight into the immune system status. Indeed, measuring one cytokine may deliver more information equivalent to detecting multiple diseases at a time. However, if the reported cytokine levels are interpreted with considering lifestyle and any comorbid health conditions for the individual, this will promote a more precise assessment of the immune status. Therefore, this study addresses the most recent advanced assays that deliver rapid, accurate measuring of the cytokine levels in human blood, focusing on add-on potentials for point-of-care (PoC) or personal at-home usage, and investigates existing health questionnaires as supportive assessment tools that collect all necessary information for the concrete analysis of the measured cytokine levels. We introduced a ten-dimensional featuring of cytokine measurement assays. We found 15 rapid cytokine assays with assay time less than 1 h; some could operate on unprocessed blood samples, while others are mature commercial products available in the market. In addition, we retrieved several health questionnaires that addressed various health conditions such as chronic diseases and psychological issues. Then, we present a machine learning-based solution to determine what makes the immune system fit. To this end, we discuss how to employ topic modeling for deriving the definition of immune fitness automatically from literature. Finally, we propose a prototype model to assess the fitness of the immune system through leveraging the derived definition of the immune fitness, the cytokine measurements delivered by a rapid PoC immunoassay, and the complementary information collected by the health questionnaire about other health factors. In conclusion, we discovered various advanced rapid cytokine detection technologies that are promising candidates for point-of-care or at-home usage; if paired with a health status questionnaire, the assessment of the immune system status becomes solid and we demonstrated potentials for promoting the assessment tool with data mining techniques.
Collapse
Affiliation(s)
- Noor Jamaludeen
- Knowledge Management & Discovery Lab, Otto-von-Guericke University, 39106 Magdeburg, Germany; (C.B.); (M.S.)
| | - Christian Beyer
- Knowledge Management & Discovery Lab, Otto-von-Guericke University, 39106 Magdeburg, Germany; (C.B.); (M.S.)
| | - Ulrike Billing
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany; (U.B.); (K.V.); (M.B.-W.)
| | - Katrin Vogel
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany; (U.B.); (K.V.); (M.B.-W.)
| | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany; (U.B.); (K.V.); (M.B.-W.)
| | - Myra Spiliopoulou
- Knowledge Management & Discovery Lab, Otto-von-Guericke University, 39106 Magdeburg, Germany; (C.B.); (M.S.)
| |
Collapse
|
16
|
Shahid I, Alzahrani AR, Al-Ghamdi SS, Alanazi IM, Rehman S, Hassan S. Hepatitis C Diagnosis: Simplified Solutions, Predictive Barriers, and Future Promises. Diagnostics (Basel) 2021; 11:1253. [PMID: 34359335 PMCID: PMC8305142 DOI: 10.3390/diagnostics11071253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
The simplification of current hepatitis C diagnostic algorithms and the emergence of digital diagnostic devices will be very crucial to achieving the WHO's set goals of hepatitis C diagnosis (i.e., 90%) by 2030. From the last decade, hepatitis C diagnosis has been revolutionized by the advent and approval of state-of-the-art HCV diagnostic platforms which have been efficiently implemented in high-risk HCV populations in developed nations as well as in some low-to-middle income countries (LMICs) to identify millions of undiagnosed hepatitis C-infected individuals. Point-of-care (POC) rapid diagnostic tests (RDTs; POC-RDTs), RNA reflex testing, hepatitis C self-test assays, and dried blood spot (DBS) sample analysis have been proven their diagnostic worth in real-world clinical experiences both at centralized and decentralized diagnostic settings, in mass hepatitis C screening campaigns, and hard-to-reach aboriginal hepatitis C populations in remote areas. The present review article overviews the significance of current and emerging hepatitis C diagnostic packages to subvert the public health care burden of this 'silent epidemic' worldwide. We also highlight the challenges that remain to be met about the affordability, accessibility, and health system-related barriers to overcome while modulating the hepatitis C care cascade to adopt a 'test and treat' strategy for every hepatitis C-affected individual. We also elaborate some key measures and strategies in terms of policy and progress to be part of hepatitis C care plans to effectively link diagnosis to care cascade for rapid treatment uptake and, consequently, hepatitis C cure.
Collapse
Affiliation(s)
- Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia; (A.R.A.); (S.S.A.-G.); (I.M.A.)
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia; (A.R.A.); (S.S.A.-G.); (I.M.A.)
| | - Saeed S. Al-Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia; (A.R.A.); (S.S.A.-G.); (I.M.A.)
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia; (A.R.A.); (S.S.A.-G.); (I.M.A.)
| | - Sidra Rehman
- Functional Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan;
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
17
|
Boutiette AL, Toothaker C, Corless B, Boukaftane C, Howell C. 3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems. PLoS One 2020; 15:e0244324. [PMID: 33370381 PMCID: PMC7769481 DOI: 10.1371/journal.pone.0244324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Microfluidic technologies have enormous potential to offer breakthrough solutions across a wide range of applications. However, the rate of scale-up and commercialization of these technologies has lagged significantly behind promising breakthrough developments in the lab, due at least in part to the problems presented by transitioning from benchtop fabrication methods to mass-manufacturing. In this work, we develop and validate a method to create functional microfluidic prototype devices using 3D printed masters in an industrial-scale roll-to-roll continuous casting process. There were no significant difference in mixing performance between the roll-to-roll cast devices and the PDMS controls in fluidic mixing tests. Furthermore, the casting process provided information on the suitability of the prototype microfluidic patterns for scale-up. This work represents an important step in the realization of high-volume prototyping and manufacturing of microfluidic patterns for use across a broad range of applications.
Collapse
Affiliation(s)
- Amber L. Boutiette
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | - Cristoffer Toothaker
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | - Bailey Corless
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
| | | | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
18
|
Asadzadeh A, Pakkhoo S, Saeidabad MM, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100475. [PMID: 33204821 PMCID: PMC7661942 DOI: 10.1016/j.imu.2020.100475] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Emergency management of the emerging infectious disease outbreak is critical for public health threats. Currently, control of the COVID-19 outbreak is an international concern and has become a crucial challenge in many countries. This article reviews significant information technologyIT) applications in emergency management of COVID-19 by considering the prevention/mitigation, preparedness, response, and recovery phases of the crisis. This review was conducted using MEDLINE PubMed), Embase, IEEE, and Google Scholar. Expert opinions were collected to show existence gaps, useful technologies for each phase of emergency management, and future direction. Results indicated that various IT-based systems such as surveillance systems, artificial intelligence, computational methods, Internet of things, remote sensing sensor, online service, and GIS geographic information system) could have different outbreak management applications, especially in response phases. Information technology was applied in several aspects, such as increasing the accuracy of diagnosis, early detection, ensuring healthcare providers' safety, decreasing workload, saving time and cost, and drug discovery. We categorized these applications into four core topics, including diagnosis and prediction, treatment, protection, and management goals, which were confirmed by five experts. Without applying IT, the control and management of the crisis could be difficult on a large scale. For reducing and improving the hazard effect of disaster situations, the role of IT is inevitable. In addition to the response phase, communities should be considered to use IT capabilities in prevention, preparedness, and recovery phases. It is expected that IT will have an influential role in the recovery phase of COVID-19. Providing IT infrastructure and financial support by the governments should be more considered in facilitating IT capabilities.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Pakkhoo
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mirzaei Saeidabad
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hero Khezri
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Pala L, Sirec T, Spitz U. Modified Enzyme Substrates for the Detection of Bacteria: A Review. Molecules 2020; 25:E3690. [PMID: 32823590 PMCID: PMC7465704 DOI: 10.3390/molecules25163690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to detect, identify and quantify bacteria is crucial in clinical diagnostics, environmental testing, food security settings and in microbiology research. Recently, the threat of multidrug-resistant bacterial pathogens pushed the global scientific community to develop fast, reliable, specific and affordable methods to detect bacterial species. The use of synthetically modified enzyme substrates is a convenient approach to detect bacteria in a specific, economic and rapid manner. The method is based on the use of specific enzyme substrates for a given bacterial marker enzyme, conjugated to a signalogenic moiety. Following enzymatic reaction, the signalophor is released from the synthetic substrate, generating a specific and measurable signal. Several types of signalophors have been described and are defined by the type of signal they generate, such as chromogenic, fluorogenic, luminogenic, electrogenic and redox. Signalophors are further subdivided into groups based on their solubility in water, which is key in defining their application on solid or liquid media for bacterial culturing. This comprehensive review describes synthetic enzyme substrates and their applications for bacterial detection, showing their mechanism of action and their synthetic routes.
Collapse
Affiliation(s)
| | | | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK; (L.P.); (T.S.)
| |
Collapse
|
20
|
Campanile R, Scardapane E, Forente A, Granata C, Germano R, Di Girolamo R, Minopoli A, Velotta R, Della Ventura B, Iannotti V. Core-Shell Magnetic Nanoparticles for Highly Sensitive Magnetoelastic Immunosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1526. [PMID: 32759707 PMCID: PMC7466411 DOI: 10.3390/nano10081526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
A magnetoelastic (ME) biosensor for wireless detection of analytes in liquid is described. The ME biosensor was tested against human IgG in the range 0-20 μg∙mL-1. The sensing elements, anti-human IgG produced in goat, were immobilized on the surface of the sensor by using a recently introduced photochemical immobilization technique (PIT), whereas a new amplification protocol exploiting gold coated magnetic nanoparticles (core-shell nanoparticles) is demonstrated to significantly enhance the sensitivity. The gold nanoflowers grown on the magnetic core allowed us to tether anti-human IgG to the nanoparticles to exploit the sandwich detection scheme. The experimental results show that the 6 mm × 1 mm × 30 μm ME biosensor with an amplification protocol that uses magnetic nanoparticles has a limit of detection (LOD) lower than 1 nM, works well in water, and has a rapid response time of few minutes. Therefore, the ME biosensor is very promising for real-time wireless detection of pathogens in liquids and for real life diagnostic purpose.
Collapse
Affiliation(s)
- Raffaele Campanile
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Emanuela Scardapane
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Antonio Forente
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
- Department of Mathematics and Physics-University of Campania “L. Vanvitelli”, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Roberto Germano
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemistry, University of Naples “Federico II”, Via Cintia 26, I-80126 Napoli, Italy;
| | - Antonio Minopoli
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
| | - Raffaele Velotta
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Bartolomeo Della Ventura
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Vincenzo Iannotti
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute for Superconducting, Oxides and other Innovative Materials and Devices of the National Research Council (CNR-SPIN), Piazzale V. Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
21
|
Hospital Preparedness Measures for Biological Hazards: A Systematic Review and Meta-Synthesis. Disaster Med Public Health Prep 2020; 15:790-803. [PMID: 32713417 DOI: 10.1017/dmp.2020.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Biological hazards are one of the most important and common types of hazards in emergencies and disasters. Hospital preparedness measures for biological hazards are essential for a proper response and mitigation of its effects. The aim of this systematic review is to investigate hospital preparedness measures for biological hazards. METHODS For this research, electronic databases including Web of Science, PubMed, ScienceDirect, Scopus, ProQuest, Google Scholar, and Cochrane Library from March 1950 to June 2019 were searched. Key words such as hospital, emergency department, preparedness, plan, management, and biological hazards were used in combination with the Boolean operators OR and AND. A thematic synthesis approach through the use of MAXQDA software was applied to analyze the data. RESULTS In total, 5257 articles were identified, in which 23 articles meet the inclusion criteria for entering the process of final analysis. The findings showed three main administrative, specialized, and logistical issues regarding preparedness measures for biological hazards in hospitals. CONCLUSION Hospital preparedness for biological hazards is one of the most important hospital disaster plans. Results of this systematic review present valuable advice for policy-makers and hospital managers to prepare and enhance hospital performance against biological hazards.
Collapse
|
22
|
Viveiros S, Rodrigues M, Albuquerque D, Martins SAM, Cardoso S, Martins VC. Multiple Bacteria Identification in the Point-of-Care: an Old Method Serving a New Approach. SENSORS 2020; 20:s20123351. [PMID: 32545686 PMCID: PMC7349726 DOI: 10.3390/s20123351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
The accurate diagnosis of bacterial infections is of critical importance for effective treatment decisions. Due to the multietiologic nature of most infectious diseases, multiplex assays are essential for diagnostics. However, multiplexability in nucleic acid amplification-based methods commonly resorts to multiple primers and/or multiple reaction chambers, which increases analysis cost and complexity. Herein, a polymerase chain reaction (PCR) offer method based on a universal pair of primers and an array of specific oligonucleotide probes was developed through the analysis of the bacterial 16S ribosomal RNA gene. The detection system consisted of DNA hybridization over an array of magnetoresistive sensors in a microfabricated biochip coupled to an electronic reader. Immobilized probes interrogated single-stranded biotinylated amplicons and were obtained using asymmetric PCR. Moreover, they were magnetically labelled with streptavidin-coated superparamagnetic nanoparticles. The benchmarking of the system was demonstrated to detect five major bovine mastitis-causing pathogens: Escherichia coli, Klebsiella sp., Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae. All selected probes proved to specifically detect their respective amplicon without significant cross reactivity. A calibration curve was performed for S. agalactiae, which demonstrates demonstrating a limit of detection below 30 fg/µL. Thus, a sensitive and specific multiplex detection assay was established, demonstrating its potential as a bioanalytical device for point-of-care applications.
Collapse
Affiliation(s)
- Sara Viveiros
- Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (S.V.); (D.A.); (S.C.)
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisboa, Portugal;
| | - Mónica Rodrigues
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Débora Albuquerque
- Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (S.V.); (D.A.); (S.C.)
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisboa, Portugal;
| | | | - Susana Cardoso
- Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (S.V.); (D.A.); (S.C.)
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisboa, Portugal;
| | - Verónica C. Martins
- INESC-MN- Microsystems and Nanotechnologies, 1000-029 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-213100237
| |
Collapse
|
23
|
Fornells E, Murray E, Waheed S, Morrin A, Diamond D, Paull B, Breadmore M. Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water. Anal Chim Acta 2019; 1098:94-101. [PMID: 31948591 DOI: 10.1016/j.aca.2019.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
A multi-material 3D printed microfluidic reactor with integrated heating is presented, which was applied within a manifold for the colorimetric determination of ammonium in natural waters. Graphene doped polymer was used to provide localised heating when connected to a power source, achieving temperatures of up to 120 °C at 12 V, 0.7 A. An electrically insulating layer of acrylonitrile butadiene styrene (ABS) polymer or a new microdiamond-ABS polymer composite was used as a heater coating. The microdiamond polymer composite provided higher thermal conductivity and uniform heating of the serpentine microreactor which resulted in greater temperature control and accuracy in comparison to pure ABS polymer. The developed heater was then applied and demonstrated using a modified Berthelot reaction for ammonium analysis, in which the microreactor was configured at a predetermined optimised temperature. A 5-fold increase in reaction speed was observed compared to previously reported reaction rates. A simple flow injection analysis set up, comprising the microfluidic heater along with an LED-photodiode based optical detector, was assembled for ammonium analysis. Two river water samples and two blind ammonium standards were analysed and estimated concentrations were compared to concentrations determined using benchtop IC. The highest relative error observed following the analysis of the environmental samples was 11% and for the blind standards was 5%.
Collapse
Affiliation(s)
- Elisenda Fornells
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia
| | - Eoin Murray
- Research & Development, T.E. Laboratories Ltd. (TelLab), Tullow, Carlow, Ireland; Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Sidra Waheed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia; ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia
| | - Aoife Morrin
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Brett Paull
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia; ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia
| | - Michael Breadmore
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Australia.
| |
Collapse
|
24
|
Manipulation of Magnetic Beads with Thin Film Microelectromagnet Traps. MICROMACHINES 2019; 10:mi10090607. [PMID: 31540268 PMCID: PMC6780769 DOI: 10.3390/mi10090607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023]
Abstract
Integration of point-of-care assays can be facilitated with the use of actuated magnetic beads (MB) to perform testing in less expensive settings to enable the delivery of cost-effective care. In this paper we present six different designs of planar microelectromagnets traps (MEMT) with four external coils in series and one central coil connected for an opposite direction of manipulation of MB in microfluidic flows. The development of a simulation tool facilitated the rapid and efficient optimization of designs by presenting the influence of system variables on real time concentrations of MB. Real time experiments are in good agreement with the simulations and showed that the design enabled synchronous concentration and dispersion of MB on the same MEMT. The yield of local concentration is seen to be highly dependent on coil design. Additional coil turns between the central and external coils (inter-windings) doubled magnetic concentration and repulsion with no significant electrical resistance increase. The assemblage of a copper microchannel closed loop cooling system to the coils successfully eliminated the thermal drift promoted by joule heating generated by applied current.
Collapse
|
25
|
Trevisan C, Torgerson PR, Robertson LJ. Foodborne Parasites in Europe: Present Status and Future Trends. Trends Parasitol 2019; 35:695-703. [PMID: 31358427 DOI: 10.1016/j.pt.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Although foodborne parasites (FBPs) are becoming recognized as important foodborne pathogens, they remain neglected compared with bacterial and viral foodborne pathogens. As drivers for infection with FBPs are variable, it is often unclear for funding bodies where research should be prioritized. Through a COST Action (Euro-FBP; FA1408), we harnessed Europe-wide expertise to address these questions, using an Expert Knowledge Elicitation approach. Eating habits, lack of food-chain control, lack of awareness from relevant agencies, globalization, and water quality were identified as major drivers for FBP infection. Prioritized research needs to be largely focused on methodological gaps, but also on surveillance concerns, impact-assessment issues, and the role of microbiota. Despite the European focus, these responses should be relevant to those concerned with FBPs globally.
Collapse
Affiliation(s)
- Chiara Trevisan
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 270, 8057 Zürich, Switzerland
| | - Lucy J Robertson
- Parasitology Laboratory, Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, 0102 Oslo, Norway.
| |
Collapse
|
26
|
Kaprou GD, Papadopoulos V, Papageorgiou DP, Kefala I, Papadakis G, Gizeli E, Chatzandroulis S, Kokkoris G, Tserepi A. Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification. Anal Bioanal Chem 2019; 411:5297-5307. [PMID: 31161322 DOI: 10.1007/s00216-019-01911-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
The design and fabrication of a continuous-flow μPCR device with very short amplification time and low power consumption are presented. Commercially available, 4-layer printed circuit board (PCB) substrates are employed, with in-house designed yet industrially manufactured embedded Cu micro-resistive heaters lying at very close distance from the microfluidic network, where DNA amplification takes place. The 1.9-m-long microchannel in combination with desirably high flow velocities (for fast amplification) challenged the robustness of the sealing that was overcome with the development of a novel bonding method rendering the microdevice robust even at extreme pressure drops (12 bars). The proposed fabrication methods are PCB compatible, allowing for mass and reliable production of the μPCR device in the established PCB industry. The μPCR chip was successfully validated during the amplification of two different DNA fragments (and with different target DNA copies) corresponding to the exon 20 of the BRCA1 gene, and to the plasmid pBR322, a commonly used cloning vector in E. coli. Successful DNA amplification was demonstrated at total reaction times down to 2 min, with a power consumption of 2.7 W, rendering the presented μPCR one of the fastest and lowest power-consuming devices, suitable for implementation in low-resource settings. Detailed numerical calculations of the DNA residence time distributions, within an acceptable temperature range for denaturation, annealing, and extension, performed for the first time in the literature, provide useful information regarding the actual on-chip PCR protocol and justify the maximum volumetric flow rate for successful DNA amplification. The calculations indicate that the shortest amplification time is achieved when the device is operated at its enzyme kinetic limit (i.e., extension rate). Graphical abstract.
Collapse
Affiliation(s)
- Georgia D Kaprou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.,Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece
| | - Vasileios Papadopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - Dimitris P Papageorgiou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ioanna Kefala
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - George Papadakis
- Institute of Molecular Biology and Biotechnology-FORTH, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology-FORTH, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Stavros Chatzandroulis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - George Kokkoris
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.
| |
Collapse
|
27
|
O'Sullivan S, Ali Z, Jiang X, Abdolvand R, Ünlü MS, Silva HPD, Baca JT, Kim B, Scott S, Sajid MI, Moradian S, Mansoorzare H, Holzinger A. Developments in Transduction, Connectivity and AI/Machine Learning for Point-of-Care Testing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1917. [PMID: 31018573 PMCID: PMC6515310 DOI: 10.3390/s19081917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.
Collapse
Affiliation(s)
- Shane O'Sullivan
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil.
| | - Zulfiqur Ali
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK.
| | - Xiaoyi Jiang
- Faculty of Mathematics and Computer Science, University Münster, Münster 48149, Germany.
| | - Reza Abdolvand
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering and Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | - Justin T Baca
- Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Brian Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Simon Scott
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK.
| | - Mohammed Imran Sajid
- Department of Upper GI Surgery, Wirral University Teaching Hospital, Wirral CH49 5PE, UK.
| | - Sina Moradian
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Hakhamanesh Mansoorzare
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Andreas Holzinger
- Institute for interactive Systems and Data Science, Graz University of Technology, Graz 8074, Austria.
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
28
|
Holmes J, Pathirathna P, Hashemi P. Novel frontiers in voltammetric trace metal analysis: Towards real time, on-site, in situ measurements. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Silverio V, Silva AV, Przykaza K, Santos LF, Melo LV, Cardoso S. Dark matters: black-PDMS nanocomposite for opaque microfluidic systems. Phys Chem Chem Phys 2019; 21:2719-2726. [PMID: 30663744 DOI: 10.1039/c8cp06828c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optically detectable labels and probes are commonly used in bioapplications. Together with the miniaturization of analytical platforms based on microfluidic technology, with tuneable properties, they yield unparalleled opportunities towards faster, cheaper and more efficient biomolecule analysis. This work describes the preparation and testing of uniformly shaded polydimethylsiloxane (PDMS) membranes and microfluidic devices used to enhance or inhibit optical detection of fluorescent labels. The uniformly pigmented black-PDMS nanocomposite mixtures have been prepared by adding a known quantity of black pigment to PDMS, and its optical, spectroscopic and morphological properties have been characterized. The effect of pigment-to-DMS mixing ratio has been investigated by Ultra-Violet/Visible, near infrared and middle infrared spectroscopies; scanning electron microscopy and atomic force microscopy; and contact angle measurements. The results demonstrate that optical and spectroscopic properties of black-PDMS are strongly altered with the progressive inclusion of black pigment while wetting behaviour and morphology are maintained. Surface contact angle decreases more prominently with the decreasing ratio of DMS-to-curing agent than for the inclusion of pigment nanocomposite in the mixture. The ability to tune optical properties of PDMS has been experimentally demonstrated in a Black-PDMS nanocomposite microfluidic chip cast and bonded to glass. The results show double the signal-to-noise in fluorescence images as compared to pure PDMS devices, demonstrating a very promising integrated optical detection strategy for portable microfluidic systems.
Collapse
Affiliation(s)
- Vania Silverio
- Instituto de Engenharia de Sistemas e Computadores para os Microsistemas e as Nanotecnologias, INESC MN, 1000-029 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
30
|
Wang J, Meng J, Ding G, Kang Y, Zhao W. A novel microfluidic capture and monitoring method for assessing physiological damage of C. elegans
under microgravity. Electrophoresis 2019; 40:922-929. [DOI: 10.1002/elps.201800461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Junsheng Wang
- College of Information Science and Technology; Dalian Maritime University; Dalian P. R. China
| | - Jie Meng
- College of Information Science and Technology; Dalian Maritime University; Dalian P. R. China
| | - Gege Ding
- College of Information Science and Technology; Dalian Maritime University; Dalian P. R. China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials; Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
| | - Wenshuang Zhao
- College of Information Science and Technology; Dalian Maritime University; Dalian P. R. China
| |
Collapse
|
31
|
Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers. Mikrochim Acta 2019; 186:57. [DOI: 10.1007/s00604-018-3133-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023]
|
32
|
Kannan P, Su SS, Mannan MS, Castaneda H, Vaddiraju S. A Review of Characterization and Quantification Tools for Microbiologically Influenced Corrosion in the Oil and Gas Industry: Current and Future Trends. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02211] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pranav Kannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Shei Sia Su
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - M. Sam Mannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Homero Castaneda
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Sreeram Vaddiraju
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| |
Collapse
|
33
|
Applegate TL, Fajardo E, Sacks JA. Hepatitis C Virus Diagnosis and the Holy Grail. Infect Dis Clin North Am 2018; 32:425-445. [DOI: 10.1016/j.idc.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|