1
|
Wang X, Xu Y, Xiang S, Tao S, Liu W. Hydrogel-Assisted Robust Supraparticles Evolved from Droplet Evaporation. ACS NANO 2024. [PMID: 39699271 DOI: 10.1021/acsnano.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Supraparticles, formed through the self-assembly of nanoparticles, are promising contenders in catalysis, sensing, and drug delivery due to their exceptional specific surface area and porosity. However, their mechanical resilience, especially in dimensions spanning micrometers and beyond, is challenged by the inherently weak interactions among their constituent building blocks, significantly constraining their broad applicability. Here, we have exploited a robust supraparticle fabrication strategy by integrating hydrogel components into the assembly system and evaporating on the superamphiphobic surface. The resultant SiO2/SA (sodium alginate) supraparticles, achieved by evaporating a 15% volume fraction dispersion of SiO2 nanoparticles containing 18.46 mg/mL of sodium alginate and subsequently cross-linking with Ca2+, demonstrate mechanical robustness with a fracture force of 6.04 N, representing a mechanical strength enhancement of 60 times higher than that prior to the incorporation of the hydrogel component. The supraparticles maintain their original morphology after 30 min of ultrasonic treatment (200 W), demonstrating mechanical stability. This method exhibits generalizability, enabling the customization of supraparticles with various building blocks and hydrogel backbone materials. Based on such a methodology, we have synthesized enzyme-carrying supraparticles, further expanding the potential applications in intricate cascade reactions. The encapsulated glucose oxidase and horseradish peroxidase maintained their inherent reactivity, and such hydrogel-assisted robust supraparticles exhibited exceptional performance in accurate glucose assays, indicating great practical application in biocatalysis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yiming Xu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Dalian 116034, China
| | - Shengyang Tao
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Wendong Liu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
2
|
Wang X, Lian Y, Xiang S, Tao S, Kappl M, Liu W. Droplet evaporation on super liquid-repellent surfaces: A controllable approach for supraparticle fabrication. Adv Colloid Interface Sci 2024; 334:103305. [PMID: 39388856 DOI: 10.1016/j.cis.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Supraparticles are agglomerates of nano- and/or microparticles with sizes ranging from tens to hundreds of microns, making them more accessible for handling and recovery than the building blocks. Supraparticles not only inherit the properties and functions of primary particles but also exhibit characteristics such as high porosity, large specific surface area, and improved functionalities, which can be attributed to the synergism, coupling, and co-localization among the constituents. Therefore, supraparticles hold promising applications in catalysis, drug delivery, sensing, etc. Among the various synthesizing strategies, evaporating droplets on a liquid-repellent surface is proposed as an effective approach to fabricate supraparticles with unique structural features and functions. The boundary conditions of such droplet-confinement methods significantly drive the formation of supraparticles by reducing or avoiding the use of solvents or processing liquids, which further accelerates the development and utilization of supraparticles. This paper presents an overview of recent developments in the fabrication of supraparticles by evaporating droplets on liquid-repellent surfaces. The review focuses on the evaporation processes on lubricant and superhydrophobic surfaces, structural regulation, and applications of supraparticles. Finally, an outlook on the future directions of evaporation on liquid-repellent surfaces mediated supraparticle fabrication is presented.
Collapse
Affiliation(s)
- Xiaojing Wang
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yuechang Lian
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Dalian 116034, China
| | - Shengyang Tao
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Michael Kappl
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Wendong Liu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| |
Collapse
|
3
|
Shim W, Heo J, Lee J, Kappl M, Butt HJ, Wooh S. Surface-Templated Polymer Microparticle Synthesis Based on Droplet Microarrays. Macromol Rapid Commun 2024; 45:e2400521. [PMID: 39116429 DOI: 10.1002/marc.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Polymer microparticle synthesis based on the surface-templated method is a simple and environmentally friendly method to produce various microparticles. Unique particles with different compositions can be fabricated by simply annealing a polymer on a liquid-repellent surface. However, there are hurdles to producing particles of homogeneous sizes with large quantities and varying the shape of particles. Here, a new approach to synthesizing multiple polymer microparticles using micropatterns with wettability contrast is presented. Polymer microparticles are formed in two steps. First, a layer of poly(sodium-4-styrenesulfonate) is deposited on the hydrophilic regions by dipping and withdrawing this micropattern from a polymer solution, and an array of microdroplets is formed. A dewetting-inducing layer on the pattern is introduced, and then target polymer patches are sequentially generated on it. By annealing over Tg, the contact line of the target polymer patch is freely receded, creating a particle form. The size and shape of the microparticle can be controlled by varying the micropatterns. In addition, it is demonstrated that microparticles made of polymer blends or polymer/nanoparticle composite are easily produced. This versatile method offers the potential of surface-templated synthesis to tailor polymer microparticles with different sizes, shapes, and functionalities in various research and applications.
Collapse
Affiliation(s)
- Wonmi Shim
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jeongbin Heo
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jaeseung Lee
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Sanghyuk Wooh
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
4
|
Madubuko N, Sultan U, Carl S, Lehmann D, Zhou X, Soegaard A, Taccardi N, Apeleo Zubiri B, Wintzheimer S, Spiecker E, Haumann M, Vogel N, Wasserscheid P. Controlled Nanopore Sizes in Supraparticle Supports for Enhanced Propane Dehydrogenation with GaPt SCALMS Catalysts. ACS APPLIED NANO MATERIALS 2024; 7:24356-24367. [PMID: 39539809 PMCID: PMC11555637 DOI: 10.1021/acsanm.4c03577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
The efficient immobilization of GaPt liquid metal alloy droplets onto tailored supports improves catalytic performance by preventing coalescence and subsequent loss of active surface area. Herein, we use tailored supraparticle (SP) supports with controlled nanopores to systematically study the influence of pore sizes on the catalytic stability of GaPt supported catalytically active liquid metal solution (SCALMS) in propane dehydrogenation (PDH). Initially, GaPt droplets were prepared via an atom-efficient and scalable ultrasonication method with recycling loops to yield droplets <300 nm. Subsequently, these droplets were immobilized onto SiO2-based SPs with controlled pore sizes ranging from 45 to 320 nm. Catalytic evaluations in PDH revealed that GaPt immobilized on SPs with larger pores demonstrated superior stability over 15 h time-on-stream evidenced by reduced deactivation rates from 0.046 to 0.026 h-1. Nanocomputed tomography and identical location SEM confirmed the successful immobilization of GaPt droplets within the interstitial sites formed by the primary particles constituting the SPs. These remained unchanged before and after the catalytic reaction, demonstrating efficient coalescence prevention. Our findings underscore the importance of support pore size engineering for improving the stability of GaPt SCALMS catalysts and highlight, particularly, the high potential of using SPs in this context.
Collapse
Affiliation(s)
- Nnamdi Madubuko
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Umair Sultan
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Simon Carl
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Daniel Lehmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Xin Zhou
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Alexander Soegaard
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Fraunhofer-Institute
for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Erdmann Spiecker
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Department
of Chemistry, Research Centre for Synthesis and Catalysis, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, 2092, South Africa
| | - Nicolas Vogel
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Institute for a Sustainable
Hydrogen Economy (INW), 52428 Jülich, Germany
| |
Collapse
|
5
|
Naveenkumar PM, Roemling LJ, Sultan U, Vogel N. Fabrication of Spherical Colloidal Supraparticles via Membrane Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22245-22255. [PMID: 39383325 DOI: 10.1021/acs.langmuir.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.
Collapse
Affiliation(s)
- Parinamipura M Naveenkumar
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Umair Sultan
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Shneidman AV, Zhang CTY, Mandsberg NK, Picece VCTM, Shirman E, Paink GK, Nicolas NJ, Aizenberg J. Functional supraparticles produced by the evaporation of binary colloidal suspensions on superhydrophobic surfaces. SOFT MATTER 2024; 20:7502-7511. [PMID: 39268682 DOI: 10.1039/d4sm00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles. We extend this method to raspberry colloid templating, in which the binary suspension consists of titania nanoparticles together with gold-decorated polystyrene colloids. Following removal of the polymer particles, we demonstrate catalytic oxidative coupling of methanol to methyl formate using the resulting mesoporous supraparticles, showcasing their practical application.
Collapse
Affiliation(s)
- Anna V Shneidman
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Cathy T Y Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Nikolaj K Mandsberg
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Vittoria C T M Picece
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
- Department of Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Elijah Shirman
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Gurminder K Paink
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Natalie J Nicolas
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
- Department of Chemistry and Chemical Biology, Harvard Univeristy 12 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Groppe P, Reichstein J, Carl S, Cuadrado Collados C, Niebuur BJ, Zhang K, Apeleo Zubiri B, Libuda J, Kraus T, Retzer T, Thommes M, Spiecker E, Wintzheimer S, Mandel K. Catalyst Supraparticles: Tuning the Structure of Spray-Dried Pt/SiO 2 Supraparticles via Salt-Based Colloidal Manipulation to Control their Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310813. [PMID: 38700050 DOI: 10.1002/smll.202310813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.
Collapse
Affiliation(s)
- Philipp Groppe
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Simon Carl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bart-Jan Niebuur
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kailun Zhang
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
| | - Tanja Retzer
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
8
|
Marino E, LaCour RA, Kodger TE. Emergent Properties from Three-Dimensional Assemblies of (Nano)particles in Confined Spaces. CRYSTAL GROWTH & DESIGN 2024; 24:6060-6080. [PMID: 39044735 PMCID: PMC11261636 DOI: 10.1021/acs.cgd.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 07/25/2024]
Abstract
The assembly of (nano)particles into compact hierarchical structures yields emergent properties not found in the individual constituents. The formation of these structures relies on a profound knowledge of the nanoscale interactions between (nano)particles, which are often designed by researchers aided by computational studies. These interactions have an effect when the (nano)particles are brought into close proximity, yet relying only on diffusion to reach these closer distances may be inefficient. Recently, physical confinement has emerged as an efficient methodology to increase the volume fraction of (nano)particles, rapidly accelerating the time scale of assembly. Specifically, the high surface area of droplets of one immiscible fluid into another facilitates the controlled removal of the dispersed phase, resulting in spherical, often ordered, (nano)particle assemblies. In this review, we discuss the design strategies, computational approaches, and assembly methods for (nano)particles in confined spaces and the emergent properties therein, such as trigger-directed assembly, lasing behavior, and structural photonic color. Finally, we provide a brief outlook on the current challenges, both experimental and computational, and farther afield application possibilities.
Collapse
Affiliation(s)
- Emanuele Marino
- Department
of Physics and Chemistry, Università
degli Studi di Palermo, Via Archirafi 36, Palermo 90123, Italy
| | - R. Allen LaCour
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Thomas E. Kodger
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
10
|
Milani M, Phou T, Prevot G, Ramos L, Cipelletti L. Space-resolved dynamic light scattering within a millimeter-sized drop: From Brownian diffusion to the swelling of hydrogel beads. Phys Rev E 2024; 109:064613. [PMID: 39021030 DOI: 10.1103/physreve.109.064613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
We present a dynamic light scattering setup to probe, with time and space resolution, the microscopic dynamics of soft matter systems confined within millimeter-sized spherical drops. By using an ad hoc optical layout, we tackle the challenges raised by refraction effects due to the unconventional shape of the samples. We first validate the setup by investigating the dynamics of a suspension of Brownian particles. The dynamics measured at different positions in the drop, and hence different scattering angles, are found to be in excellent agreement with those obtained for the same sample in a conventional light scattering setup. We then demonstrate the setup capabilities by investigating a bead made of a polymer hydrogel undergoing swelling. The gel microscopic dynamics exhibit a space dependence that strongly varies with time elapsed since the beginning of swelling. Initially, the dynamics in the periphery of the bead are much faster than in the core, indicative of nonuniform swelling. As the swelling proceeds, the dynamics slow down and become more spatially homogeneous. By comparing the experimental results to numerical and analytical calculations for the dynamics of a homogeneous, purely elastic sphere undergoing swelling, we establish that the mean square displacement of the gel strands deviates from the affine motion inferred from the macroscopic deformation, evolving from fast diffusivelike dynamics at the onset of swelling to slower, yet supradiffusive, rearrangements at later stages.
Collapse
|
11
|
Yetkin M, Wani YM, Kritika K, Howard MP, Kappl M, Butt HJ, Nikoubashman A. Structure Formation in Supraparticles Composed of Spherical and Elongated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1096-1108. [PMID: 38153401 DOI: 10.1021/acs.langmuir.3c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.
Collapse
Affiliation(s)
- Melis Yetkin
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Kritika Kritika
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael Kappl
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hans-Jürgen Butt
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
12
|
Pan M, Shao H, Fan Y, Yang J, Liu J, Deng Z, Liu Z, Chen Z, Zhang J, Yi K, Su Y, Wang D, Deng X, Deng F. Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications. NANO-MICRO LETTERS 2024; 16:68. [PMID: 38175452 PMCID: PMC10766899 DOI: 10.1007/s40820-023-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Superhydrophobic surface (SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting, and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally, the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
Collapse
Affiliation(s)
- Mengyao Pan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Huijuan Shao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yue Fan
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jinlong Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jiaxin Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhongqian Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhenda Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhidi Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jun Zhang
- Pharmaceutical Glass Co. Ltd, Zibo, 256100, People's Republic of China
| | - Kangfeng Yi
- Pharmaceutical Glass Co. Ltd, Zibo, 256100, People's Republic of China
| | - Yucai Su
- Pharmaceutical Glass Co. Ltd, Zibo, 256100, People's Republic of China
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Xu Deng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Fei Deng
- Department of Nephropathy, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
13
|
Li L, Wei J, Zhang J, Li B, Yang Y, Zhang J. Challenges and strategies for commercialization and widespread practical applications of superhydrophobic surfaces. SCIENCE ADVANCES 2023; 9:eadj1554. [PMID: 37862425 PMCID: PMC10588945 DOI: 10.1126/sciadv.adj1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Superhydrophobic (SH) surfaces have progressed rapidly in fundamental research over the past 20 years, but their practical applications lag far behind. In this perspective, we first present the findings of a survey on the current state of SH surfaces including fundamental research, patenting, and commercialization. On the basis of the survey and our experience, this perspective explores the challenges and strategies for commercialization and widespread practical applications of SH surfaces. The comprehensive performances, preparation methods, and application scenarios of SH surfaces are the major constraints. These challenges should be addressed simultaneously, and the actionable strategies are provided. We then highlight the standard test methods of the comprehensive performances including mechanical stability, impalement resistance, and weather resistance. Last, the prospects of SH surfaces in the future are discussed. We anticipate that SH surfaces may be widely commercialized and used in practical applications around the year 2035 through combination of the suggested strategies and input from both academia and industry.
Collapse
Affiliation(s)
- Lingxiao Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Bucheng Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Yanfei Yang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Jiaojiao Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| |
Collapse
|
14
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
15
|
Milani M, Phou T, Ligoure C, Cipelletti L, Ramos L. A double rigidity transition rules the fate of drying colloidal drops. SOFT MATTER 2023; 19:6968-6977. [PMID: 37665265 DOI: 10.1039/d3sm00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The evaporation of drops of colloidal suspensions plays an important role in numerous contexts, such as the production of powdered dairies, the synthesis of functional supraparticles, and virus and bacteria survival in aerosols or drops on surfaces. The presence of colloidal particles in the evaporating drop eventually leads to the formation of a dense shell that may undergo a shape instability. Previous works propose that, for drops evaporating very fast, the instability occurs when the particles form a rigid porous solid, constituted of permanently aggregated particles at random close packing. To date, however, no measurements could directly test this scenario and assess whether it also applies to drops drying at lower evaporation rates, severely limiting our understanding of this phenomenon and the possibility of harnessing it in applications. Here, we combine macroscopic imaging and space- and time-resolved measurements of the microscopic dynamics of colloidal nanoparticles in drying drops sitting on a hydrophobic surface, measuring the evolution of the thickness of the shell and the spatial distribution and mobility of the nanoparticles. We find that, above a threshold evaporation rate, the drop undergoes successively two distinct shape instabilities, invagination and cracking. While permanent aggregation of nanoparticles accompanies the second instability, as hypothesized in previous works on fast-evaporating drops, we show that the first one results from a reversible glass transition of the shell, unreported so far. We rationalize our findings and discuss their implications in the framework of a unified state diagram for the drying of colloidal drops sitting on a hydrophobic surface.
Collapse
Affiliation(s)
- Matteo Milani
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Ty Phou
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Christian Ligoure
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Heo J, Lee J, Shim W, Kim H, Fujii S, Lim J, Kappl M, Butt HJ, Wooh S. Evaporation-driven Supraparticle Synthesis by Self-Lubricating Colloidal Dispersion Microdrops. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38986-38995. [PMID: 37530444 DOI: 10.1021/acsami.3c07719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The surface-templated evaporation-driven (S-TED) method that uses liquid-repellent surfaces has attracted considerable attention for its use in fabricating supraparticles of defined shape, size, and porosity. However, challenges in achieving mass production have impeded the widespread adoption of the S-TED method. To overcome this limit, we introduce an evaporation-driven "multiple supraparticle" synthesis by drying arrays of self-lubricating colloidal dispersion microdrops. To facilitate this synthetic method, a hydrophilic micropattern is prepared on a hydrophobic substrate as a template. During the removal of the substrate out of a dispersion, liquid drops are trapped and generate a microdrop array. To produce supraparticles, the contact lines of the trapped drops must be able to recede freely during evaporation. However, hydrophilic micropatterns induce strong contact line pinning for microdrops that hinders supraparticle formation. Herein, we solve this contradiction by employing an Ouzo-like colloidal dispersion, where we can control the wettability of the drop trapping domain. The self-lubrication effect provided by the Ouzo-like solution enables smooth movement of the drops' contact lines during evaporation, thereby resulting in the successful fabrication of supraparticle arrays even within the trapping domain. This strategy offers a promising and scalable approach for large-scale evaporation-driven supraparticle synthesis with a potential for extension to various primary colloidal particles, further broadening its applicability.
Collapse
Affiliation(s)
- Jeongbin Heo
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jaeseung Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Wonmi Shim
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyeonjin Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Jaehoon Lim
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Sanghyuk Wooh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
17
|
Turali-Emre ES, Emre AE, Vecchio DA, Kadiyala U, VanEpps JS, Kotov NA. Self-Organization of Iron Sulfide Nanoparticles into Complex Multicompartment Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211244. [PMID: 36965166 PMCID: PMC10265277 DOI: 10.1002/adma.202211244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Indexed: 06/09/2023]
Abstract
Self-assembled compartments from nanoscale components are found in all life forms. Their characteristic dimensions are in 50-1000 nm scale, typically assembled from a variety of bioorganic "building blocks". Among the various functions that these mesoscale compartments carry out, protection of the content from the environment is central. Finding synthetic pathways to similarly complex and functional particles from technologically friendly inorganic nanoparticles (NPs) is needed for a multitude of biomedical, biochemical, and biotechnological processes. Here, it is shown that FeS2 NPs stabilized by l-cysteine self-assemble into multicompartment supraparticles (mSPs). The NPs initially produce ≈55 nm concave assemblies that reconfigure into ≈75 nm closed mSPs with ≈340 interconnected compartments with an average size of ≈5 nm. The intercompartmental partitions and mSP surface are formed primarily from FeS2 and Fe2 O3 NPs, respectively. The intermediate formation of cup-like particles enables encapsulation of biological cargo. This capability is demonstrated by loading mSPs with DNA and subsequent transfection of mammalian cells. Also it is found that the temperature stability of the DNA cargo is enhanced compared to the traditional delivery vehicles. These findings demonstrate that biomimetic compartmentalized particles can be used to successfully encapsulate and enhance temperature stability of the nucleic acid cargo for a variety of bioapplications.
Collapse
Affiliation(s)
- E. Sumeyra Turali-Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Ahmet E. Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Drew A. Vecchio
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Nicholas A. Kotov
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Materials Science and Engineering Department, University of Michigan Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| |
Collapse
|
18
|
Wang L, Wang Q, Rosqvist E, Smått JH, Yong Q, Lassila L, Peltonen J, Rosenau T, Toivakka M, Willför S, Eklund P, Xu C, Wang X. Template-Directed Polymerization of Binary Acrylate Monomers on Surface-Activated Lignin Nanoparticles in Toughening of Bio-Latex Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207085. [PMID: 36919307 DOI: 10.1002/smll.202207085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Indexed: 06/15/2023]
Abstract
Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.
Collapse
Affiliation(s)
- Luyao Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qingbo Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Emil Rosqvist
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Jan-Henrik Smått
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qiwen Yong
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Lippo Lassila
- Turku Clinical Biomaterials Centre, University of Turku, Itäinen Pitkäkatu 4b, Turku, FI-20520, Finland
| | - Jouko Peltonen
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Thomas Rosenau
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU University), Konrad-Lorenz-Strasse 24, Tulln, AT-3430, Austria
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Stefan Willför
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Patrik Eklund
- Organic Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| |
Collapse
|
19
|
Sultan U, Götz A, Schlumberger C, Drobek D, Bleyer G, Walter T, Löwer E, Peuker UA, Thommes M, Spiecker E, Apeleo Zubiri B, Inayat A, Vogel N. From Meso to Macro: Controlling Hierarchical Porosity in Supraparticle Powders. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300241. [PMID: 36932894 DOI: 10.1002/smll.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.
Collapse
Affiliation(s)
- Umair Sultan
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Carola Schlumberger
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Teresa Walter
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Erik Löwer
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Urs Alexander Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Alexandra Inayat
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
20
|
Almohammadi H, Fu Y, Mezzenga R. Evaporation-Driven Liquid-Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids. ACS NANO 2023; 17:3098-3106. [PMID: 36719319 DOI: 10.1021/acsnano.2c12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Drying a colloidal droplet involves complex physics that is often accompanied by evaporation-induced concentration gradients inside of the droplet, offering a platform for fundamental and technological opportunities, including self-assembly, thin film deposition, microfabrication, and DNA stretching. Here, we investigate the drying, liquid crystalline structures, and deposit patterns of colloidal liquid crystalline droplets undergoing liquid-liquid crystalline phase separation (LLCPS) during evaporation. We show that evaporation-induced progressive up-concentration inside the drying droplets makes it possible to cross, at different speeds, various thermodynamic stability states in solutions of amyloid fibril rigid filamentous colloids, thus allowing access to both metastable states, where phase separation occurs via nucleation and growth, as well as to unstable states, where phase separation occurs via the more elusive spinodal decomposition, leading to the formation of liquid crystalline microdroplets (or tactoids) of different shapes. We present the tactoids "phase diagram" as a function of the position within the droplet and elucidate their hydrodynamics. Furthermore, we demonstrate that the presence of the amyloid fibrils not only does not enhance the pinning behavior during droplet evaporation but also slightly suppresses it, thus minimizing the coffee-ring effect. We observed that microsize domains with cholesteric structure emerge in the drying droplet close to the droplet's initial edge, yet such domains are not connected to form a uniform cholesteric dried film. Finally, we demonstrate that a fully cholesteric dried layer can be generated from the drying droplets by regulating the kinetics of the evaporation process.
Collapse
Affiliation(s)
- Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Yutong Fu
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Kang S, Wang W, Rahman A, Nam W, Zhou W, Vikesland PJ. Highly porous gold supraparticles as surface-enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants. RSC Adv 2022; 12:32803-32812. [PMID: 36425178 PMCID: PMC9665105 DOI: 10.1039/d2ra06248h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 09/10/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has great potential as an analytical technique for environmental analyses. In this study, we fabricated highly porous gold (Au) supraparticles (i.e., ∼100 μm diameter agglomerates of primary nano-sized particles) and evaluated their applicability as SERS substrates for the sensitive detection of environmental contaminants. Facile supraparticle fabrication was achieved by evaporating a droplet containing an Au and polystyrene (PS) nanoparticle mixture on a superamphiphobic nanofilament substrate. Porous Au supraparticles were obtained through the removal of the PS phase by calcination at 500 °C. The porosity of the Au supraparticles was readily adjusted by varying the volumetric ratios of Au and PS nanoparticles. Six environmental contaminants (malachite green isothiocyanate, rhodamine B, benzenethiol, atrazine, adenine, and gene segment) were successfully adsorbed to the porous Au supraparticles, and their distinct SERS spectra were obtained. The observed linear dependence of the characteristic Raman peak intensity for each environmental contaminant on its aqueous concentration reveals the quantitative SERS detection capability by porous Au supraparticles. The limit of detection (LOD) for the six environmental contaminants ranged from ∼10 nM to ∼10 μM, which depends on analyte affinity to the porous Au supraparticles and analyte intrinsic Raman cross-sections. The porous Au supraparticles enabled multiplex SERS detection and maintained comparable SERS detection sensitivity in wastewater influent. Overall, we envision that the Au supraparticles can potentially serve as practical and sensitive SERS devices for environmental analysis applications.
Collapse
Affiliation(s)
- Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Department of Electronic Engineering, Pukyong National University Busan Republic of Korea
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech 415 Durham Blacksburg 24061 Virginia USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN) Blacksburg Virginia USA
| |
Collapse
|
22
|
Guo X, Xue N, Zhang M, Ettelaie R, Yang H. A supraparticle-based biomimetic cascade catalyst for continuous flow reaction. Nat Commun 2022; 13:5935. [PMID: 36209156 PMCID: PMC9547976 DOI: 10.1038/s41467-022-33756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Robust millimeter-sized spherical particles with controlled compositions and microstructures hold promises of important practical applications especially in relation to continuous flow cascade catalysis. However, the efficient fabrication methods for producing such particles remain scare. Here, we demonstrate a liquid marble approach to fabricate robust mm-sized porous supraparticles (SPs) through the bottom-up assembly of silica nanoparticles in the presence of strength additive or surface interactions, without the need for the specific liquid-repellent surfaces used by the existing methods. As the proof of the concept, our method was exemplified by fabricating biomimetic cascade catalysts through assembly of two types of well-defined catalytically active nanoparticles. The obtained SP-based cascade catalysts work well in industrially preferred fixed-bed reactors, exhibiting excellent catalysis efficiency, controlled reaction kinetics, high enantioselectivity (99% ee) and outstanding stability (200~500 h) in the cascades of ketone hydrogenation-kinetic resolution and amine racemization-kinetic resolution. The excellent catalytic performances are attributed to the structural features, reconciling close proximity of different catalytic sites and their sufficient spatial isolation. Robust millimeter-sized spherical particles with controlled compositions and microstructures hold promises of important practical applications. Here the authors develop a liquid marble method to facilely fabricate robust millimeter-sized supraparticles with controlled microstructures through the bottom-up assembly of silica nanoparticles.
Collapse
Affiliation(s)
- Xiaomiao Guo
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China. .,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
23
|
Liu Z, Liu Y, Yang J, Li S, Peng C, Cui X, Sheng L, Wu B. Highly Efficient and Controlled Fabrication of Supraparticles by Leidenfrost Phenomenon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9157-9165. [PMID: 35857373 DOI: 10.1021/acs.langmuir.2c00709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supraparticles (SPs) are agglomerates of smaller particles, which show promising applications in catalysis, sensing, and so forth. Preparation of SPs with controlled sizes, components, and structures in an efficient, scalable, and environmentally friendly way has become an urgent demand for the development of SPs. Herein, a method to fabricate SPs based on the Leidenfrost phenomenon is described. By dropping a nano-/microparticle dispersion on a metal plate at the Leidenfrost temperature (TLF) or higher, the solvent evaporates quickly, and SPs can be formed within 1 min. To understand the influence of various factors on the properties of SPs, and also to optimize the fabrication of SPs, the effects of metal surface roughness and primary particle concentration on TLF were carefully observed. Plates with a higher roughness as well as a higher primary particle concentration could trigger a lower TLF. Combining the regulation of composition and volume of the droplets, SPs with different sizes, compositions, and structures were precisely fabricated. Furthermore, highly porous titanium dioxide (TiO2) SPs with enhanced photocatalytic performance were fabricated via this method, showing the merits of the method in practical applications. This simple, efficient, and green method provides a new approach for controlled and large-scale fabrication of SPs with various functions.
Collapse
Affiliation(s)
- Zhe Liu
- National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yong Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Jinge Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Shengsong Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Chaoyi Peng
- Zhuzhou Times New Materials Technology Co., Ltd, Zhuzhou 412007, P. R. China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
| | - Liping Sheng
- National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Binrui Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| |
Collapse
|
24
|
Reichstein J, Müssig S, Bauer H, Wintzheimer S, Mandel K. Recording Temperature with Magnetic Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202683. [PMID: 35596261 DOI: 10.1002/adma.202202683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Small-sized temperature indicator additives autonomously record temperature events via a gradual irreversible signal change. This permits, for instance, the indication of possible cold-chain breaches or failure of electronics but also curing of glues. Thus, information about the materials' thermal history can be obtained upon signal detection at every point of interest. In this work, maximum-temperature indicators with magnetic readout based on micrometer-sized supraparticles (SPs) are introduced. The magnetic signal transduction is, by nature, independent of the materials' optical properties. This facilitates the determination of valuable temperature information from the inside, that is, the bulk, even of dark and opaque macroscopic objects, which might differ from their surface. Compared to state-of-the-art optical temperature indicators, complementary magnetic readout characteristics ultimately expand their applicability. The conceptualized SPs are hierarchically structured assemblies of environmentally friendly, inexpensive iron oxide nanoparticles and thermoplastic polymer. Irreversible structural changes, induced by polymer softening, yield magnetic interaction changes within and between the hierarchic sub-structures, which are distinguishable and define the temperature indication mechanism. The fundamental understanding of the SPs' working principle enables customization of the particles' working range, response time, and sensitivity, using a toolbox-like manufacturing approach. The magnetic signal change is detected self-referenced, fast, and contactless.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Hannes Bauer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
25
|
Hu M, Reichholf N, Xia Y, Alvarez L, Cao X, Ma S, deMello AJ, Isa L. Multi-compartment supracapsules made from nano-containers towards programmable release. MATERIALS HORIZONS 2022; 9:1641-1648. [PMID: 35466981 DOI: 10.1039/d2mh00135g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assembly of nanomaterials into suprastructures offers the possibility to fabricate larger scale functional materials, whose inner structure strongly influences their functionality for a vast range of applications. In spite of the many current strategies, achieving multi-compartment structures in a targeted and versatile way remains highly challenging. Here, we describe a controllable and straightforward route to create uniform suprastructured materials with a multi-compartmentalized architecture by confining primary nanocapsules into droplets using a cross-junction microfluidic device. Following solvent evaporation from the droplets, the nanocapsules spontaneously assemble into precisely sized multi-compartment particles, which we term supracapsules. Thanks to the process, each spatially separated nanocapsule unit retains its cargo and functionalities within the resulting supracapsules. However, new collective properties emerge, and, particularly, programmable release profiles that are distinct from those of single-compartment capsules. Finally, the suprastructures can be disassembled into single-compartment units by applying ultra-sonication, switching their release to a burst-release mode. These findings open up exciting opportunities to fabricate multi-compartment suprastructures incorporating diverse functionalities for materials with emerging properties.
Collapse
Affiliation(s)
- Minghan Hu
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
| | - Nico Reichholf
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
| | - Yanming Xia
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Laura Alvarez
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
| | - Xiaobao Cao
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Shenglin Ma
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
26
|
Jo S, Kim J, Lee JE, Wurm FR, Landfester K, Wooh S. Multimodal Enzyme-Carrying Suprastructures for Rapid and Sensitive Biocatalytic Cascade Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104884. [PMID: 34939366 PMCID: PMC8981434 DOI: 10.1002/advs.202104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Colloidal assemblies of mesoporous suprastructures provide effective catalysis in an advantageous volume-confined environment. However, typical fabrication methods of colloidal suprastructures are carried out under toxic or harmful conditions for unstable biomolecules, such as, biocatalytic enzymes. For this reason, biocatalytic enzymes have rarely been used with suprastructures, even though biocatalytic cascade reactions in confined environments are more efficient than in open conditions. Here, multimodal enzyme- and photocatalyst-carrying superstructures with efficient cascade reactions for colorimetric glucose detection are demonstrated. The suprastructures consisting of various functional nanoparticles, including enzyme-carrying nanoparticles, are fabricated by surface-templated evaporation driven suprastructure synthesis on polydimethylsiloxane-grafted surfaces at ambient conditions. For the fabrication of suprastructures, no additional chemicals and reactions are required, which allows maintaining the enzyme activities. The multimodal enzymes (glucose oxidase and peroxidase)-carrying suprastructures exhibit rapid and highly sensitive glucose detection via two enzyme cascade reactions in confined geometry. Moreover, the combination of enzymatic and photocatalytic cascade reactions of glucose oxidase to titanium dioxide nanoparticles is successfully realized for the same assay. These results show promising abilities of multiple colloidal mixtures carrying suprastructures for effective enzymatic reactions and open a new door for advanced biological reactions and enzyme-related works.
Collapse
Affiliation(s)
- Seong‐Min Jo
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jihye Kim
- School of Chemical Engineering & Materials ScienceChung‐Ang UniversityHeukseok‐ro 84 Dongjak‐guSeoul06974Republic of Korea
| | - Ji Eun Lee
- School of Chemical Engineering & Materials ScienceChung‐Ang UniversityHeukseok‐ro 84 Dongjak‐guSeoul06974Republic of Korea
| | - Frederik R. Wurm
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversiteit TwentePO Box 217Enschede7500 AEThe Netherlands
| | | | - Sanghyuk Wooh
- School of Chemical Engineering & Materials ScienceChung‐Ang UniversityHeukseok‐ro 84 Dongjak‐guSeoul06974Republic of Korea
| |
Collapse
|
27
|
Müssig S, Koch VM, Collados Cuadrado C, Bachmann J, Thommes M, Barr MKS, Mandel K. Spray-Drying and Atomic Layer Deposition: Complementary Tools toward Fully Orthogonal Control of Bulk Composition and Surface Identity of Multifunctional Supraparticles. SMALL METHODS 2022; 6:e2101296. [PMID: 35041268 DOI: 10.1002/smtd.202101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Spray-drying is a scalable process enabling one to assemble freely chosen nanoparticles into supraparticles. Atomic layer deposition (ALD) allows for controlled thin film deposition of a vast variety of materials including exotic ones that can hardly be synthesized by wet chemical methods. The properties of coated supraparticles are defined not only by the nanoparticle material chosen and the nanostructure adjusted during spray-drying but also by surface functionalities modified by ALD, if ALD is capable of modifying not only the outer surfaces but also surfaces buried inside the porous supraparticle. Simultaneously, surface accessibility in the porous supraparticles must be ensured to make use of all functionalized surfaces. In this work, iron oxide supraparticles are utilized as a model substrate as their magnetic properties enable the use of advanced magnetic characterization methods. Detailed information about the structural evolution upon individual ALD cycles of aluminium oxide, zinc oxide and titanium dioxide are thereby revealed and confirmed by gas sorption analyses. This demonstrates a powerful and versatile approach to freely designing the functionality of future materials by combination of spray-drying and ALD.
Collapse
Affiliation(s)
- Stephan Müssig
- Department of Chemistry and Pharmacy, Friedrich-Alexander University ErlangenNürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Vanessa M Koch
- Chair "Chemistry of Thin Film Materials" (CTFM), Friedrich-Alexander University ErlangenNürnberg (FAU), IZNF, Cauerstraße 3, 91058, Erlangen, Germany
| | - Carlos Collados Cuadrado
- Department of Chemical and Bioengineering, Institute of Separation Science and Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chair "Chemistry of Thin Film Materials" (CTFM), Friedrich-Alexander University ErlangenNürnberg (FAU), IZNF, Cauerstraße 3, 91058, Erlangen, Germany
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russian Federation
| | - Matthias Thommes
- Department of Chemical and Bioengineering, Institute of Separation Science and Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Maïssa K S Barr
- Chair "Chemistry of Thin Film Materials" (CTFM), Friedrich-Alexander University ErlangenNürnberg (FAU), IZNF, Cauerstraße 3, 91058, Erlangen, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich-Alexander University ErlangenNürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
28
|
Textured and Hierarchically Constructed Polymer Micro- and Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidic techniques allow for the tailored construction of specific microparticles, which are becoming increasingly interesting and relevant. Here, using a microfluidic hole-plate-device and thermal-initiated free radical polymerization, submicrometer polymer particles with a highly textured surface were synthesized. Two types of monomers were applied: (1) methylmethacrylate (MMA) combined with crosslinkers and (2) divinylbenzene (DVB). Surface texture and morphology can be influenced by a series of parameters such as the monomer–crosslinker–solvent composition, surfactants, and additives. Generally, the most structured surfaces with the simultaneously most uniform particles were obtained in the DVB–toluene–nonionic-tensides system. In a second approach, poly-MMA (PMMA) particles were used to build aggregates with bigger polymer particles. For this purpose, tripropyleneglycolediacrylate (TPGDA) particles were synthesized in a microfluidic co-flow arrangement and polymerized by light- irradiation. Then, PMMA particles were assembled at their surface. In a third step, these composites were dispersed in an aqueous acrylamide–methylenebisacrylamide solution, which again was run through a co-flow-device and photopolymerized. As such, entities consisting of particles of three different size ranges—typically 0.7/30/600 µm—were obtained. The particles synthesized by both approaches are potentially suitable for loading with or incorporation of analytic probes or catalysts such as dyes or metals.
Collapse
|
29
|
Wang J, Kang E, Sultan U, Merle B, Inayat A, Graczykowski B, Fytas G, Vogel N. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23445-23456. [PMID: 34737841 PMCID: PMC8558861 DOI: 10.1021/acs.jpcc.1c06839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.
Collapse
Affiliation(s)
- Junwei Wang
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Umair Sultan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials
Science and Engineering I and Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexandra Inayat
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail:
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- E-mail:
| |
Collapse
|
30
|
Wang J, Schwenger J, Ströbel A, Feldner P, Herre P, Romeis S, Peukert W, Merle B, Vogel N. Mechanics of colloidal supraparticles under compression. SCIENCE ADVANCES 2021; 7:eabj0954. [PMID: 34644116 PMCID: PMC11095630 DOI: 10.1126/sciadv.abj0954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 05/16/2023]
Abstract
Colloidal supraparticles are finite, spherical assemblies of many primary particles. To take advantage of their emergent functionalities, such supraparticles must retain their structural integrity. Here, we investigate their size-dependent mechanical properties via nanoindentation. We find that the deformation resistance inversely scales with the primary particle diameter, while the work of deformation is dependent on the supraparticle diameter. We adopt the Griffith theory to such particulate systems to provide a predictive scaling to relate the fracture stress to the geometry of supraparticles. The interplay between primary particle material and cohesive interparticle forces dictates the mechanical properties of supraparticles. We find that enhanced stability, associated with ductile fracture, can be achieved if supraparticles are engineered to dissipate more energy via deformation of primary particles than breaking of interparticle bonds. Our work provides a coherent framework to analyze, predict, and design the mechanical properties of colloidal supraparticles.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Schwenger
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Ströbel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Feldner
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Herre
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Romeis
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
31
|
Liu W, Kappl M, Steffen W, Butt HJ. Controlling supraparticle shape and structure by tuning colloidal interactions. J Colloid Interface Sci 2021; 607:1661-1670. [PMID: 34592553 DOI: 10.1016/j.jcis.2021.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Assembly of colloids in drying colloidal suspensions on superhydrophobic surface is influenced by the colloidal interactions, which determine the shape and interior structure of the assembled supraparticle. The introduction of salt (electrolyte) into the assembly system is expected to influence the colloid interactions and packing during the evaporation process. Hence, both the outer shape and internal structure of supraparticles should be controlled by varying salt concentrations. EXPERIMENTS Suspensions of electrostatically stabilized polystyrene particles with specified salt concentrations were chosen as model systems to conduct the evaporation on a superhydrophobic surface. A systematic study was performed by regulating the concentration and valency of salt. The morphology and interior of supraparticles were carefully characterized with electron scanning microscopy, while the colloidal interaction was established using colloidal probe atomic force microscopy. FINDINGS Supraparticles displayed a spherical-to-nonspherical shape change due to the addition of salts. The extent of crystallization depended on salt concentration. These changes in shape and structure were correlated with salt-dependent single colloid interaction forces, which were not previously investigated in detail in radially symmetric evaporation geometry. Our findings are crucial for understanding assembly behavior during the drying process and offer guidance for preparing complex supraparticles to meet specific applications requirement.
Collapse
Affiliation(s)
- Wendong Liu
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China; Department of Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Michael Kappl
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Werner Steffen
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
32
|
Song J, Zhang W, Wang D, Fan Y, Zhang C, Wang D, Chen L, Miao B, Cui J, Deng X. Polymeric Microparticles Generated via Confinement-Free Fluid Instability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007154. [PMID: 33891327 DOI: 10.1002/adma.202007154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Indexed: 06/12/2023]
Abstract
In-fiber fluid instability can be harnessed to realize scalable microparticles fabrication with tunable sizes and multifunctional characteristics making it competitive in comparison to conventional microparticles fabrication methods. However, since in-fiber fluid instability has to be induced via thermal annealing and the resulting microparticles can only be collected after dissolving the fiber cladding, obtaining contamination-free particles for high-temperature incompatible materials remains great challenge. Herein, confinement-free fluid instability is demonstrated to fabricate polymeric microparticles in a facile manner induced by the ultralow surface energy of the superamphiphobic surface. The polymer solution columns break up into uniform droplets then form spherical particles spontaneously in seconds at ambient temperature. This method can be applied to a variety of polymers spanning an exceptionally wide range of sizes: from 1 mm down to 1 µm. With the aid of microfluidic spinning instrument, a large quantity of microparticles can be obtained, making this method promising for scaling up production. Notably, through simple modification of the feed solution configuration, composite/structured micromaterials can also be produced, including quantum-dots-labeled fluorescent particles, magnetic particles, core-shell particles, microcapsules, and necklace-like microfibers. This method, with general applicability and facile control, is envisioned to have great prospects in the field of polymer microprocessing.
Collapse
Affiliation(s)
- Jianing Song
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wenluan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yue Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chenglin Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Bing Miao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| |
Collapse
|
33
|
Zhao B, Borghei M, Zou T, Wang L, Johansson LS, Majoinen J, Sipponen MH, Österberg M, Mattos BD, Rojas OJ. Lignin-Based Porous Supraparticles for Carbon Capture. ACS NANO 2021; 15:6774-6786. [PMID: 33779142 PMCID: PMC8155330 DOI: 10.1021/acsnano.0c10307] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm-3) and surface area (1152 m2·g-1). Given their features, the carbon SPs offer hierarchical access to adsorption sites that are well suited for CO2 capture (77 mg CO2·g-1), while presenting a relatively low pressure drop (∼33 kPa·m-1 calculated for a packed fixed-bed column). The introduced lignin-derived SPs address the limitations associated with mass transport (diffusion of adsorbates within channels) and kinetics of systems that are otherwise based on nanoparticles. Moreover, the carbon SPs do not require doping with heteroatoms (as tested for N) for effective CO2 uptake (at 1 bar CO2 and 40 °C) and are suitable for regeneration, following multiple adsorption/desorption cycles. Overall, we demonstrate porous SP carbon systems of low cost (precursor, fabrication, and processing) and superior activity (gas sorption and capture).
Collapse
Affiliation(s)
- Bin Zhao
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Maryam Borghei
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Tao Zou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Ling Wang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Leena-Sisko Johansson
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
- Bioproduct
Institute, Departments of Chemical & Biological Engineering, Chemistry,
and Wood Science, The University of British
Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
34
|
Kim J, Hwang H, Butt HJ, Wooh S. Designing the shape of supraparticles by controlling the apparent contact angle and contact line friction of droplets. J Colloid Interface Sci 2021; 588:157-163. [PMID: 33388581 DOI: 10.1016/j.jcis.2020.12.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Surface-templated evaporation-driven supraparticle synthesis is a versatile method for supraparticle fabrication. A supraparticle is formed by drying droplet of a colloidal dispersion on liquid repellent surfaces, allowing precise control of the size and mean composition of the supraparticles. The crucial factor determining the morphology is the motion of the contact line of the dispersion droplet on the liquid repellent surface. Here, we study effects of (i) the apparent contact angle and (ii) the contact line friction of a droplet on the shape of the supraparticle. In order to change the initial apparent contact angle of the dispersion droplet a surfactant was added to decrease surface tension. In addition, two different liquid repellent surfaces were used: a polydimethysiloxane (PDMS) grafted surface and a lubricated surface. Both surfaces exhibited distinctly different contact line friction during evaporation. As the initial contact angle of a droplet decreases and friction of a contact line increases, flatter supraparticles are fabricated. By using this simple manipulation principle, eventually, various shapes of supraparticles can be obtained, such as mushroom, hemispherical, convex lens, and disk shapes. This study presents fundamental and critical information that allow us to manipulate the shape of a supraparticle via surface-templated evaporation-driven synthesis that increases the scalability of supraparticles for use in a wide range of applications.
Collapse
Affiliation(s)
- Jihye Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyesun Hwang
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sanghyuk Wooh
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
35
|
Thayyil Raju L, Koshkina O, Tan H, Riedinger A, Landfester K, Lohse D, Zhang X. Particle Size Determines the Shape of Supraparticles in Self-Lubricating Ternary Droplets. ACS NANO 2021; 15:4256-4267. [PMID: 33601887 PMCID: PMC8023807 DOI: 10.1021/acsnano.0c06814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Supraparticles are large clusters of much smaller colloidal particles. Controlling the shape and anisotropy of supraparticles can enhance their functionality, enabling applications in fields such as optics, magnetics, and medicine. The evaporation of self-lubricating colloidal ouzo droplets is an easy and efficient strategy to create supraparticles, overcoming the problem of the "coffee-stain effect" during drop evaporation. Yet, the parameters that control the shape of the supraparticles formed in such evaporating droplets are not fully understood. Here, we show that the size of the colloidal particles determines the shape of the supraparticle. We compared the shape of the supraparticles made of seven different sizes of spherical silica particles, namely from 20 to 1000 nm, and of the mixtures of small and large colloidal particles at different mixing ratios. Specifically, our in situ measurements revealed that the supraparticle formation proceeds via the formation of a flexible shell of colloidal particles at the rapidly moving interfaces of the evaporating droplet. The time tc0 when the shell ceases to shrink and loses its flexibility is closely related to the size of particles. A lower tc0, as observed for smaller colloidal particles, leads to a flat pancake-like supraparticle, in contrast to a more curved American football-like supraparticle from larger colloidal particles. Furthermore, using a mixture of large and small colloidal particles, we obtained supraparticles that display a spatial variation in particle distribution, with small colloids forming the outer surface of the supraparticle. Our findings provide a guideline for controlling the supraparticle shape and the spatial distribution of the colloidal particles in supraparticles by simply self-lubricating ternary drops filled with colloidal particles.
Collapse
Affiliation(s)
- Lijun Thayyil Raju
- Physics
of Fluids Group, Faculty of Science and Technology, Mesa+ Institute
for Nanotechnology, Max Planck Center for Complex Fluid Dynamics,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Olga Koshkina
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Huanshu Tan
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Center
for Complex Flows and Soft Matter Research & Department of Mechanics
and Aerospace Engineering, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Andreas Riedinger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Detlef Lohse
- Physics
of Fluids Group, Faculty of Science and Technology, Mesa+ Institute
for Nanotechnology, Max Planck Center for Complex Fluid Dynamics,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organisation, Am Fassberg 17, 37077 Göttingen, Germany
| | - Xuehua Zhang
- Physics
of Fluids Group, Faculty of Science and Technology, Mesa+ Institute
for Nanotechnology, Max Planck Center for Complex Fluid Dynamics,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
- Department
of Chemical and Materials Engineering, University
of Alberta, 12-380 Donadeo
Innovation Centre for Engineering, Edmonton, T6G1H9 Alberta, Canada
| |
Collapse
|
36
|
Liu Z, Li M, Xia Y, Chen C, Ning J, Xi X, Long Y, Li Z, Yang D, Dong A. Self-assembled mesostructured Co 0.5Fe 2.5O 4 nanoparticle superstructures for highly efficient oxygen evolution. J Colloid Interface Sci 2021; 593:125-132. [PMID: 33744523 DOI: 10.1016/j.jcis.2021.02.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into well-defined superstructures has been recognized as one of the most promising ways to fabricate rationally-designed functional materials for a variety of applications. Introducing hierarchical mesoporosity into NP superstructures will facilitate mass transport while simultaneously enhancing the accessibility of constituent NPs, which is of critical importance for widening their applications in catalysis and energy-related fields. Herein, we develop a colloidal co-assembly strategy to construct mesostructured, carbon-coated Co0.5Fe2.5O4 NP superstructures (M-C@CFOSs), which show great promise as highly efficient electrocatalysts for the oxygen evolution reaction (OER). Specifically, organically-stabilized SiO2 NPs are employed as both building blocks and sacrificial template, which co-assemble with Co0.5Fe2.5O4 NPs to afford binary NP superstructures through a solvent drying process. M-C@CFOSs are obtainable after in situ ligand carbonization followed by the selective removal of SiO2 NPs. The hierarchical mesoporous structure of M-C@CFOSs, combined with the conformal graphitic carbon coating derived from the native organic ligands, significantly improves their electrocatalytic performance as OER electrocatalysts when compared with nonporous Co0.5Fe2.5O4 NP superstructures. This work establishes a new and facile approach for designing NP superstructures with hierarchical mesoporosity, which may find wide applications in energy storage and conversion.
Collapse
Affiliation(s)
- Zihan Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Mingzhong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yan Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chen Chen
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jing Ning
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangyun Xi
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ying Long
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhicheng Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
37
|
Kim J, Shim W, Jo SM, Wooh S. Evaporation driven synthesis of supraparticles on liquid repellent surfaces. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Plunkett A, Eldridge C, Schneider GA, Domènech B. Controlling the Large-Scale Fabrication of Supraparticles. J Phys Chem B 2020; 124:11263-11272. [PMID: 33211501 DOI: 10.1021/acs.jpcb.0c07306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Controlling the nanoscale interactions of colloidal building blocks is a key step for the transition from single nanoparticles to tailor-made, architected morphologies and their further integration into functional materials. Solvent evaporation-induced self-assembly within emulsion droplets emerges as a fast, versatile, and low-cost approach to obtain spherical, complex structures, such as supraparticles. Nevertheless, some process-structure relationships able to describe the effects of emulsion conditions on the synthesis outcomes still remain to be understood. Here, we explore the effect of different physicochemical parameters of emulsion-templated self-assembly (ETSA) on supraparticles' formation. Supraparticle size, size dispersity, microporosity, and sample homogeneity are rationalized based on the used surfactant formulation, stabilization mechanism, and viscosity of the emulsion. We further demonstrate the significance of the parameters found by optimizing a transferable, large-scale (gram-size) ETSA setup for the controlled synthesis of spherical supraparticles in a range of defined sizes (from 0.1-10 μm). Ultimately, our results provide new key synthetic parameters able to control the process, promoting the development of supraparticle-based, functional nanomaterials for a wide range of applications.
Collapse
Affiliation(s)
- Alexander Plunkett
- Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg 21073, Germany
| | - Catriona Eldridge
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Gerold A Schneider
- Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg 21073, Germany
| | - Berta Domènech
- Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg 21073, Germany
| |
Collapse
|
39
|
Zhu Q, Li B, Li S, Luo G, Zheng B, Zhang J. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. J Colloid Interface Sci 2020; 578:262-272. [DOI: 10.1016/j.jcis.2020.05.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022]
|
40
|
Zhang C, Chen D, Yang W. Preparation of Styrene–Maleic Anhydride–Acrylamide Terpolymer Particles of Uniform Size and Controlled Composition via Self-Stabilized Precipitation Polymerization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
41
|
Howard MP, Nikoubashman A. Stratification of polymer mixtures in drying droplets: Hydrodynamics and diffusion. J Chem Phys 2020; 153:054901. [PMID: 32770900 DOI: 10.1063/5.0014429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We study the evaporation-induced stratification of a mixture of short and long polymer chains in a drying droplet using molecular simulations. We systematically investigate the effects of hydrodynamic interactions (HI) on this process by comparing hybrid simulations accounting for HI between polymers through the multiparticle collision dynamics technique with free-draining Langevin dynamics simulations neglecting the same. We find that the dried supraparticle morphologies are homogeneous when HI are included but are stratified in core-shell structures (with the short polymers forming the shell) when HI are neglected. The simulation methodology unambiguously attributes this difference to the treatment of the solvent in the two models. We rationalize the presence (or absence) of stratification by measuring phenomenological multicomponent diffusion coefficients for the polymer mixtures. The diffusion coefficients show the importance of not only solvent backflow but also HI between polymers in controlling the dried supraparticle morphology.
Collapse
Affiliation(s)
- Michael P Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|