1
|
Wang D, Chen H, Han H, Yang W, Sun Q, Cao C, Ning K, Huang Z, Wu T. Interaction of biochar with extracellular polymers of resistant bacteria restrains Pb(II) adsorption onto their composite: Macro and micro scale investigations. BIORESOURCE TECHNOLOGY 2024; 414:131602. [PMID: 39393646 DOI: 10.1016/j.biortech.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Pb(II) sequestration in extracellular polymers-biochar composites (EPS-BC) was explored using macroscopic models and microscopic technology. The results showed that the actual adsorption capacity of EPS-BC was 52.2% lower than the calculated capacity based on adsorption onto pure components due to the interaction of polysaccharide and amide group in extracellular polymers with biochar, which masked the reactive sites related to Pb(II) in EPS-BC. The bond of Pb-O (40.8%) and Pb-OOC (31.5%) mainly contributed to Pb(II) speciation on the EPS-BC surfaces. Furthermore, each Pb atom coordinated with 6O atoms in the first shell and with 0.5C atoms in the second shell, indicating that the carboxyl group in composite was complexed with Pb(II) as a monodentate inner-sphere structure. The findings provide an in-depth understanding of the adsorption mechanism of heavy metals by extracellular polymers coupled with biochar at molecular scale, guiding bioremediation with respect to heavy metal contamination.
Collapse
Affiliation(s)
- Di Wang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
| | - Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenwen Yang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Qi Sun
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Churong Cao
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Kai Ning
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510630, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuochun Huang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Ting Wu
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| |
Collapse
|
2
|
Dong Y, Abbasi A, Mohammadnejad S, Nasrollahzadeh M, Sheibani R, Otadi M. Recent progresses in bentonite/lignin or polysaccharide composites for sustainable water treatment. Int J Biol Macromol 2024; 278:134747. [PMID: 39151844 DOI: 10.1016/j.ijbiomac.2024.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Today, with the growth of the human population, industrial activities have also increased. Different industries such as painting, cosmetics, leather, etc. have broadly developed, and as a result, they also produce a lot of pollutants. These pollutants can enter the environment and pollute water, air, and soil. Organic dyes, nitro compounds, drug residues, pesticides and herbicides are pollutants that should be removed from the environment. Natural polymers or biopolymers are important types of organic materials that are broadly applied for different applications. Among them, polysaccharides and lignin, which are two types of biopolymers, have attracted much consideration owing to their advantages such as biocompatibility, environmental friendly, safety, availability, etc. Polysaccharides include cellulose, gum, starch, alginate (Alg), chitin, and chitosan (CS). On the other hand, bentonite is one of the types of clays, which owing to their properties like large specific surface area, adsorption performance, naturally available, etc., have drawn the interest of many researchers. As a result, the synthesis of a composite including polysaccharide/lignin and bentonite can be very efficient for different applications, especially environmental ones. In this review, we instigated the preparation of these composites as well as the removal performance of them. In fact, we reported recent advancements in the synthesis of lignin- and polysaccharide-bentonite composites for the removal of diverse kinds of contaminants like organic dyes, nitro compounds, and hazardous materials.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Azadeh Abbasi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran
| | - Sepideh Mohammadnejad
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Iran
| | | | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Maryam Otadi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Iran
| |
Collapse
|
3
|
Liu B, Lu H, Zhuang S, Huang H, Zou C, Tang L, Liu J, Zhang L, Liang J, Zhao C. Carboxymethyl chitosan modification of cobalt-zinc bimetallic MOF for tetracycline hydrochloride removal: Exploration of the enhancement mechanism of the process. Int J Biol Macromol 2024; 274:133385. [PMID: 38914402 DOI: 10.1016/j.ijbiomac.2024.133385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
This study synthesized a carboxymethyl chitosan-modified bimetallic Co/Zn-ZIF (CZ@CMC) with strong hydrophilicity and adsorption performance via the one-pot method. Tetracycline hydrochloride (TCH) was used as the model contaminant to evaluate the adsorption and peroxymonosulfate (PMS) activation properties of CZ@CMC. Mechanism showed that the adsorption behavior occurred through pore filling, electrostatic attraction, surface complexation, hydrogen bonding, and π-π stacking. In addition, a CZ@CMC/PMS system was constructed, which had excellent catalytic performance. The hydrophilicity and selective adsorption properties of CMC conferred a greatly accelerated CZ@CMC in catalyzing the PMS process with kobs of 0.095 min-1, in which OH, 1O2, SO4-, O2-, and Co(III) were the main ROS which quenching tests, EPR, and chemical probe experiments verified. In addition, the degradation pathways of TCH were obtained utilizing DFT and HPLC-MS and analyzed to show that the system possessed a good detoxification capacity. This work is expected to provide a green, efficient, and stable strategy to enhance the adsorption properties of catalytic materials and subsequently their co-catalytic properties.
Collapse
Affiliation(s)
- Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Haitao Lu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Shuntao Zhuang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Honghao Huang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Chong Zou
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Lei Tang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Lifang Zhang
- Guangzhou Water Supply Co., Ltd., Guangzhou 510600, PR China
| | - Jialiang Liang
- Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chun Zhao
- Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
4
|
Jiang R, Xiao M, Zhu HY, Zhao DX, Zang X, Fu YQ, Zhu JQ, Wang Q, Liu H. Sustainable chitosan-based materials as heterogeneous catalyst for application in wastewater treatment and water purification: An up-to-date review. Int J Biol Macromol 2024; 273:133043. [PMID: 38857728 DOI: 10.1016/j.ijbiomac.2024.133043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Water pollution is one of serious environmental issues due to the rapid development of industrial and agricultural sectors, and clean water resources have been receiving increasing attention. Recently, more and more studies have witnessed significant development of catalysts (metal oxides, metal sulfides, metal-organic frameworks, zero-valent metal, etc.) for wastewater treatment and water purification. Sustainable and clean catalysts immobilized into chitosan-based materials (Cat@CSbMs) are considered one of the most appealing subclasses of functional materials due to their high catalytic activity, high adsorption capacities, non-toxicity and relative stability. This review provides a summary of various upgrading renewable Cat@CSbMs (such as cocatalyst, photocatalyst, and Fenton-like reagent, etc.). As for engineering applications, further researches of Cat@CSbMs should focus on treating complex wastewater containing both heavy metals and organic pollutants, as well as developing continuous flow treatment methods for industrial wastewater using Cat@CSbMs. In conclusion, this review abridges the gap between different approaches for upgrading renewable and clean Cat@CSbMs and their future applications. This will contribute to the development of cleaner and sustainable Cat@CSbMs for wastewater treatment and water purification.
Collapse
Affiliation(s)
- Ru Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Mei Xiao
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hua-Yue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Dan-Xia Zhao
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Xiao Zang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jian-Qiang Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Huan Liu
- School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
5
|
Qiu D, Geng Y, Geng J, Du H, Chang J. Removal of dyes from wastewater using Eucalyptus wood fiber loaded nanoscale zero-valent iron: Characterization and removal mechanism. Int J Biol Macromol 2024; 266:131141. [PMID: 38537855 DOI: 10.1016/j.ijbiomac.2024.131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
Wood fiber as a natural and renewable material has low cost and plenty of functional groups, which owns the ability to adsorb dyes. In order to improve the application performance of wood fiber in dye-pollution wastewater, Eucalyptus wood fiber loaded nanoscale zero-valent iron (EWF-nZVI) was developed to give EWF magnetism and the ability to degrade dyes. EWF-nZVI was characterized via FTIR, XRD, zeta potential, VSM, SEM-EDS and XPS. Results showed that EWF-nZVI owned a strong magnetism of 96.51 emu/g. The dye removal process of EWF-nZVI was more in line with the pseudo-second-order kinetics model. In addition, the Langmuir isotherm model fitting results showed that the maximum removal capacities of Congo red and Rhodamine B by EWF-nZVI were 714.29 mg/g and 68.49 mg/g at 328 K, respectively. After five adsorption-desorption cycles, the regeneration efficiencies of Congo red and Rhodamine B were 74 % and 42 % in turn. The dye removal mechanisms of EWF-nZVI included redox degradation (Congo red and Rhodamine B) and electrostatic adsorption (Congo red). In summary, EWF-nZVI is a promising biomass-based material with high dye removal capacities. This work is beneficial to promote the large-scale application of wood fiber in water treatment.
Collapse
Affiliation(s)
- Dongxu Qiu
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Yuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jing Geng
- School of Material Science and Engineering, Beihua University, Jilin 132013, China.
| | - Hongshuang Du
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Jianmin Chang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Mondal A, Mumford K, Dubey BK, Arora M. Effect of solution chemistry on the sedimentation, dissolution, and aggregation of the bimetallic Fe/Cu nanoparticles pre- and post-grafted with carboxymethyl cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170966. [PMID: 38367731 DOI: 10.1016/j.scitotenv.2024.170966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The suitability of iron-based nanomaterials or composites for in-situ remediation hinges on their physicochemical stability. Introducing surface modifications like metal doping or polymer grafting can regulate interparticle forces, influencing particle stability. Thus, probing how grafting methods (i.e., pre- or post-grafting) tune material properties controlling interparticle forces, comprehend the synergistic effect of metal doping and polymer grafting, and evaluate stability under varying geochemical conditions are the way forward in designing sustainable remediation strategies. To this end, time-dependent sedimentation, dissolution, and aggregation of four synthesized iron-based nanoparticles (bare iron (Fe), copper doped bimetallic iron/copper (Fe/Cu), pre- and post-grafted Fe/Cu with carboxymethyl cellulose (CMC) - CMCpre-Fe/Cu and CMCpost-Fe/Cu, respectively) were carried out as a function of solution chemistry (i.e., pH - 5 to 10, ionic strength, IS - 0 to 100 mM NaCl, initial particle concentration, C0-20 to 200 mg.L-1) mimicking geoenvironmental conditions. CMCpre-Fe/Cu exhibited markedly higher particle availability (> 91 %) against sedimentation than others (bare Fe/Cu (11.28 %) > bare Fe (7.33 %) > CMCpost-Fe/Cu (6.09 %)) - suggesting the pivotal role of grafting method on particle stability. XDLVO energy profiles revealed pre-grafting altered magnetic properties favoring surface charge-driven electrostatic repulsion over magnetic attraction, thereby limiting aggregation-induced particle settling. In contrast, superior magnetic force overrides the electrostatic behavior for bare and post-grafted particles. Unlike bare and post-grafted nanoparticles, CMCpre-Fe/Cu aggregate size correlated positively with [H+] and IS, consistent with their settling behavior. Rise in C0 showed a visible negative effect on particle aggregation and, thereby, sedimentation except for CMCpre-Fe/Cu by facilitating particle collision through Brownian movement. Both acidic pH and copper doping promoted nanoparticle dissolution, whereas pre-grafting can provide a plausible solution against nanoparticle toxicity and loss of reactivity due to ionic release. To recapitulate, these findings are imperative in building a sustainable framework for environmental remediation application.
Collapse
Affiliation(s)
- Abhisek Mondal
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Meenakshi Arora
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Kumari N, Arya S, Behera M, Seth CS, Singh R. Chitosan anchored nZVI bionanocomposites for treatment of textile wastewater: Optimization, mechanism, and phytotoxic assessment. ENVIRONMENTAL RESEARCH 2024; 245:118041. [PMID: 38160973 DOI: 10.1016/j.envres.2023.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
In recent years, there has been a growing focus on treating textile wastewater due to its escalating threat to aquatic ecosystems and exposed communities. The present study investigates the adsorption efficacy of biopolymer functionalized nanoscale zero-valent iron (CS@nZVI) composite for the treatment of textile wastewater using the RSM-CCD model. The structure and morphology of CS@nZVI were characterized using XRD, FTIR, FESEM, and EDX. CS@nZVI was then evaluated for its adsorption potential in removing COD, color, and other physico-chemical parameters from textile wastewater. The results showed the high efficacy of CS@nZVI for COD and color removal from textile wastewater. Under optimal conditions (pH 6, contact time 60 min, and 1.84 g CS@nZVI), COD removal reached a maximum of 85.53%, and decolorization efficiency was found to be 89.73%. The coefficient of determination R2 (0.98) and AIC (269.75) values suggested quadratic model as the best-fitted model for optimizing the process parameters for COD removal. Additionally, the physico-chemical parameters were found to be within permissible limits after treatment with CS@nZVI. The influence of coexisting ions on COD removal followed the order PO43- > SO42- > Cl- >Na+ > Ca2+. The kinetics data fitted well with the pseudo-first-order reaction, indicating physisorption as the primary mechanism. The thermodynamic study revealed the endothermic nature of the removal process. Reusability tests demonstrated that great regeneration capacity of spent CS@nZVIafter five consecutive cycles. Furthermore, toxicological studies showed reduced toxicity in treated samples, leading to improved growth of Vigna radiata L. These findings suggest that CS@nZVI bionanocomposites could serve as an efficient, cost-effective, and eco-friendly remediation agent for the treatment of textile effluents, presenting significant prospects for commercial applications.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Sarita Arya
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | | | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India.
| |
Collapse
|
8
|
Hu X, Zhou S, Zhang X, Zeng H, Guo Y, Xu Y, Liang Q, Wang J, Jiang L, Kong B. Superassembled MXene-carboxymethyl chitosan nanochannels for the highly sensitive recognition and detection of copper ions. Analyst 2024; 149:1464-1472. [PMID: 38284827 DOI: 10.1039/d3an02190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yaxin Guo
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yeqing Xu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
9
|
Zhang KY, Li D, Wang Y, Wang LJ. Carboxymethyl chitosan/polyvinyl alcohol double network hydrogels prepared by freeze-thawing and calcium chloride cross-linking for efficient dye adsorption. Int J Biol Macromol 2023; 253:126897. [PMID: 37709214 DOI: 10.1016/j.ijbiomac.2023.126897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The discharge of dye wastewater resulting from rapid industrial development has become a serious environmental concern. Therefore, there is a pressing need to develop efficient methods and technologies for the removal of dye pollutants. This study introduced a double network hydrogel, with varying carboxymethyl chitosan (CMCS) contents and polyvinyl alcohol (PVA), employing a combination of freeze- thawing and calcium chloride cross-linking. The investigation focused on the rheological properties of the hydrogels and their removal ability of acidic blue 93 (AB). The results showed that the strength and viscoelastic modulus of composite hydrogels were positively correlated with the CMCS content, and all composite hydrogels exhibited the typical weak strain overshoot behavior. The pore size of the gel initially decreased and then increased, with the densest pores observed at 4 wt% CMCS, showing the optimal removal ability for AB. The adsorption process followed pseudo second-order kinetic model, dominated by external diffusion, and exhibited inhomogeneous multilayer adsorption. This study unveils the potential of CMCS/PVA gels as adsorbents, offering inspirations for the design and development of polyvinyl alcohol-based gels for applications in the food industry.
Collapse
Affiliation(s)
- Kai-Yan Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
10
|
Gong YR, Zhang C, Xiang X, Wang ZB, Wang YQ, Su YH, Zhang HQ. Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:487-495. [PMID: 37544834 DOI: 10.1016/j.joim.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/18/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE This study tests the efficacy of Bletilla striata polysaccharide (BSP), carboxymethyl chitosan (CMC), baicalin (BA) and silver titanate (ST) in a wound dressings to fight infection, promote healing and provide superior biocompatibility. METHODS The antibacterial activity of BA and ST was evaluated in vitro using the inhibition zone method. BA/ST/BSP/CMC porous sponge dressings were prepared and characterized. The biocompatibility of BA/ST/BSP/CMC was assessed using the cell counting kit-8 assay. The therapeutic effect of BA/ST/BSP/CMC was further investigated using the dorsal skin burn model in Sprague-Dawley rats. RESULTS The wound dressing had good antibacterial activity against Escherichia coli and Staphylococcus aureus through BA and ST, while the combination of BSP and CMC played an important role in promoting wound healing. The BA/ST/BSP/CMC porous sponge dressings were prepared using a freeze-drying method with the concentrations of BA and ST at 20 and 0.83 mg/mL, respectively, and the optimal ratio of 5% BSP to 4% CMC was 1:3. The average porosity, water absorption and air permeability of BA/ST/BSP/CMC porous sponge dressings were measured to be 90.43%, 746.1% and 66.60%, respectively. After treatment for 3 and 7 days, the healing rates of the BA/ST/BSP/CMC group and BA/BSP/CMC group were significantly higher than those of the normal saline (NS) group and silver sulfadiazine (SSD) group (P < 0.05). Interleukin-1β expression in the BA/ST/BSP/CMC group at 1 and 3 days was significantly lower than that in the other three groups (P < 0.05). After being treated for 3 days, vascular endothelial growth factor expression in the BA/BSP/CMC group and BA/ST/BSP/CMC group was significantly higher than that in the NS group and SSD group (P < 0.05). Inspection of histological sections showed that the BA/ST/BSP/CMC group and BA/BSP/CMC group began to develop scabbing and peeling of damaged skin after 3 days of treatment, indicating accelerated healing relative to the NS group and SSD group. CONCLUSION The optimized concentration of BA/ST/BSP/CMC dressing was as follows: 6 mg BSP, 14.4 mg CMC, 0.5 mg ST and 12 mg BA. The BA/ST/BSP/CMC dressing, containing antibacterial constituents, was non-cytotoxic and effective in accelerating the healing of burn wounds, making it a promising candidate for wound healing. Please cite this article as: Gong YR, Zhang C, Xiang X, Wang ZB, Wang YQ, Su YH, Zhang HQ. Baicalin, silver titanate, Bletilla striata polysaccharide and carboxymethyl chitosan in a porous sponge dressing for burn wound healing. J Integr Med. 2023; 21(5): 487-495.
Collapse
Affiliation(s)
- Yan-Rong Gong
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Cheng Zhang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China; Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xing Xiang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Zhi-Bo Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yu-Qing Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yong-Hua Su
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui-Qing Zhang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
11
|
Zhu H, Chen S, Duan H, He J, Luo Y. Removal of anionic and cationic dyes using porous chitosan/carboxymethyl cellulose-PEG hydrogels: Optimization, adsorption kinetics, isotherm and thermodynamics studies. Int J Biol Macromol 2023; 231:123213. [PMID: 36641019 DOI: 10.1016/j.ijbiomac.2023.123213] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Chitosan (CS)/carboxymethyl cellulose (CMC) porous hydrogels chemically crosslinked by epichlorohydrin were synthesized using polyethylene glycol (PEG) as a pore-forming agent for anionic (Congo red, CR) and cationic (methylene blue, MB) dyes removal from aqueous solutions. The swelling ratio of hydrogels prepared with 2 % CS and 2 % CMC (CS2/CMC2) exhibited optimal performance at different pHs. The addition of PEG into hydrogels (denoted as CS2/CMC2-PEG1.25) exhibited a significantly higher adsorption for CR and MB, increasing from 117.83 to 159.12 mg/g and 110.2 to 136 mg/g, respectively. The comprehensive analyses of Fourier transform infrared spectroscopy, thermalgravimetric study and scanning electron microscopy showed that CS2/CMC2-PEG1.25 hydrogels became more porous with no significant changes in intermolecular and intramolecular interactions, compared with CS2/CMC2 hydrogels. The adsorption process for CR and MB conformed to the pseudo-second-order and pseudo-first-order kinetics models, respectively. The results of adsorption isotherm for CR followed both Freundlich and Langmuir models with the maximum adsorption capacities of 1053.88 mg/g, whereas the isotherm for MB fitted the Langmuir model better with the maximum adsorption capacities of 331.72 mg/g. The thermodynamic study results proved that the CR and MB adsorption by hydrogels was spontaneous, but the CR adsorption was endothermic and the MB adsorption was exothermic.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sunni Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Hanyi Duan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
12
|
Habeche F, Boukoussa B, Issam I, Mokhtar A, Lu X, Iqbal J, Hacini S, Hachemaoui M, Bengueddach A, Hamacha R. Catalytic reduction of organic pollutants, antibacterial and antifungal activities of AgNPs@CuO nanoparticles-loaded mesoporous silica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30855-30873. [PMID: 36441305 DOI: 10.1007/s11356-022-24317-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In this work, the mesoporous silica MCM-41 was prepared by a hydrothermal method and then modified using silver and copper. The obtained samples were used as antibacterial/antifungal agents and as catalysts for the reduction of the following dyes: Methylene Blue (MB), Congo Red (CR), Methyl Orange (MO), and Orange G (OG). Several parameters affecting the reduction of dyes were investigated and discussed such as the catalyst nature, the initial concentration of the dye, the dye nature, the selectivity of the catalyst in a binary system as well as the catalyst reuse. The catalysts were characterized using XRD, nitrogen sorption measurements, XRF, FTIR, XPS, SEM/EDS, and TEM. XRD, XPS, and TEM analysis clearly showed that the calcination of copper- and silver-modified silica leads to the formation of well-dispersed CuO and AgNPs having sizes between 5 and 10 nm. As determined by XRF analysis, the content of silver nanoparticles was higher compared to CuO in all samples. It has been shown that the dye reduction is influenced by the size and the content of nanoparticles as well as by their dispersions. The catalytic activity was shown to be the highest for the Ag-Cu-MCM(0.05) catalyst with a rate constant of 0.114, 0.102, 0.093, and 0.056 s-1 for MO, MB, CR, and OG dyes in the single-dye system, respectively. In the binary system containing MB/OG or MB/MO, the catalyst Ag-Cu-MCM(0.05) was more selective toward the MB dye. The reuse of the catalyst for three consecutive cycles showed higher MB conversion in a single system with an increase in reaction time. For antifungal and antibacterial properties, the application of calcined and uncalcined materials toward six different strains showed good results, but uncalcined materials showed the best results due to the synergistic effect between CuO and unreduced species Ag+ which are considered responsible for the antibacterial and antifungal action.
Collapse
Affiliation(s)
- Fatima Habeche
- Département de Génie Des Matériaux, Faculté de Chimie, Université Des Sciences Et de La Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000, Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie Des Matériaux, Faculté de Chimie, Université Des Sciences Et de La Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000, Oran, Algeria.
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria.
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Adel Mokhtar
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
- Département Génie Des Procédés, Institut Des Sciences Et Technologies, Université Ahmed Zabana, 48000, Relizane, Algeria
| | - Xinnan Lu
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran1 Ahmed Ben Bella, BP‑1524, El‑Mnaouer, 31000, Oran, Algeria
| | - Mohammed Hachemaoui
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
- Département de Sciences de La Matière, Institut Des Sciences Et Technologies, Université Ahmed Zabana, 48000, Relizane, Algeria
| | - Abdelkader Bengueddach
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
| | - Rachida Hamacha
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
| |
Collapse
|
13
|
Redwan N, Tsegaye D, Abebe B. Synthesis of iron-magnetite nanocomposites for hexavalent chromium sorption. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Bir R, Tanweer MS, Singh M, Alam M. Multifunctional Ternary NLP/ZnO@l-cysteine- grafted-PANI Bionanocomposites for the Selective Removal of Anionic and Cationic Dyes from Synthetic and Real Water Samples. ACS OMEGA 2022; 7:44836-44850. [PMID: 36530240 PMCID: PMC9753193 DOI: 10.1021/acsomega.2c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The development of competent adsorbents based on agro-waste materials with multifunctional groups and porosity for the removal of toxic dyes from aqueous solutions is still a challenge. Herein, a bionanocomposite made up of neem leaf powder (NLP), zinc oxide (ZnO), and amino acid (l-cysteine)-functionalized polyaniline (PANI), namely, NLP/ZnO@l-cysteine-grafted-PANI (NZC-g-PANI), has been prepared by an in situ polymerization method. The as-prepared bionanocomposite was tested for the adsorptive removal of three anionic dyes, namely, methyl orange (MO), amido black 10B (AB 10B), and eriochrome black T (EBT), as well as three cationic dyes, namely, brilliant green (BG), crystal violet (CV), and methylene blue (MB), from synthetic aqueous medium. The morphological and structural characteristics of the NZC-g-PANI nanocomposite were examined with the help of HR field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopy. FTIR and Raman studies show that the formulated NZC-g-PANI have an ample number of functional moieties such as carboxyl (-COOH), hydroxyl (-OH), amines (-NH2), and imines (-N=), thus demonstrating outstanding dye removal capacity. C-S linkage helps to attach l-cysteine with polyaniline. Moreover, the predominance of chemisorption via ionic/pi-pi interaction and hydrogen bonding between the NZC-g-PANI nanocomposite and dyes (BG and MO) has been realized by FTIR and fitting of kinetics data to the PSO model. For both BG and MO dyes, the biosorption isotherm was precisely accounted for by the Langmuir isotherm with q max values of up to 218.27 mg g-1 for BG at pH 6 and 558.34 mg g-1 for MO at pH 1. Additionally, thermodynamic studies revealed the endothermic and spontaneous nature of adsorption. NZC-g-PANI showed six successive regeneration cycles for cationic (MO: from 96.3 to 90.4%) and anionic (BG: from 94.7 to 88.7%) dyes. Also, batch adsorption operations were validated to demonstrate dye biosorption from real wastewater, such as tap water, river water, and laundry wastewater. Overall, this study indicates that the prepared NZC-g-PANI biosorbent could be used as an effective adsorbent for the removal of various types of anionic as well as cationic dyes from different aqueous solutions.
Collapse
Affiliation(s)
- Ritu Bir
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Mohd Saquib Tanweer
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| | - Meenakshi Singh
- Department
of Chemistry, Galgotias University, Gautam Buddh Nagar, Noida203201, Uttar Pradesh, India
| | - Masood Alam
- Environmental
Science Research Lab, Department of Applied Sciences & Humanities,
Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
15
|
Rizwan K, Babar ZB, Munir S, Arshad A, Rauf A. Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices. ENVIRONMENTAL RESEARCH 2022; 215:114398. [PMID: 36174757 DOI: 10.1016/j.envres.2022.114398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Industrial wastewater is causing serious health problems due to presence of large concentrations of toxic metals. Removal of these metals is still a big challenge using pristine natural biopolymers due to their low surface area, water solubility, and poor recovery. Developing biopolymeric composites with other materials has attained attention because they possess a high surface area and structural porosity, high reactivity, and less water solubility. In simple words, biopolymeric nanohybrids have great adsorption capacity for heavy metals. Biopolymeric materials are abundant, low cost, biodegradable, and possess different functional moieties (carboxyl, amine, hydroxyl, and carbonyl) which play a vital role to adsorb metal ions through various inter-linkages (i.e., electrostatic, hydrogen bonding, ion exchange, chelation, etc.). Biopolymeric nanohybrids have been proven a potent tool in environmental remediation such as the abatement of heavy metal ions from polluted water. Herein, we have reported the adsorption potential of various biopolymers (cellulose, chitosan, pectin, gelatin, and silk proteins) for the removal of heavy metals. This review discusses the suitability of biopolymeric nanohybrids as an adsorbent for heavy metals, their synthesis, modification, adsorption potential, and adsorption mechanism along with best fitted thermodynamic and kinetic models. The influence of pH, contact time, and adsorbent dose on adsorption potential has also been discussed in detail. Lastly, the challenges, research gaps and recommendations have been presented. This review concludes that biopolymers in combination with other materials such as metal-based nanoparticles, clay, and carbon-based materials are excellent materials to remove metallic ions from wastewater. Significant adsorption of heavy metals was obtained at a moderate pH (5-6). Contact time and adsorbent dose also affect the adsorption of heavy metals in certain ways. The Pseudo-first order model fits the data for the initial period of the first step of the reaction. Kinetic studies of different adsorption processes of various biopolymeric nanohybrids described that for majority of bionanohybrids, Pseudo-second order fitted the experimental data very well. Functionalized biopolymeric nanohybrids being biodegradable, environment friendly, cost-effective materials have great potential to adsorb heavy metal ions. These may be the future materials for environmental remediation.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Zaeem Bin Babar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shahid Munir
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Ali Arshad
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Abdul Rauf
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
16
|
Wei Y, Chu R, Zhang Q, Usman M, Haider FU, Cai L. Nano zero-valent iron loaded corn-straw biochar for efficient removal of hexavalent chromium: remediation performance and interfacial chemical behaviour. RSC Adv 2022; 12:26953-26965. [PMID: 36320854 PMCID: PMC9534316 DOI: 10.1039/d2ra04650d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022] Open
Abstract
To improve the poor stability of nano zero-valent iron (nZVI), corn-straw biochar (BC) was used as a support for the synthesis of composites of nZVI-biochar (nZVI/BC) in different mass ratios. After a thorough characterization, the obtained nZVI/BC composite was used to remove hexavalent chromium [Cr(vi)] in an aquatic system under varying conditions including composite amount, Cr(vi) concentration, and pH. The obtained results show that the treatment efficiency varied in the following order: nZVI-BC (1 : 3) > nZVI-BC (1 : 5) > nZVI alone > BC alone. This order indicates the higher efficiency of composite material and the positive effect of nZVI content in the composite. Similarly, the composite dosage and Cr(vi) concentration had significant effects on the removal performance and 2 g L-1 and 6 g L-1 were considered to be the optimum dose at a Cr(vi) concentration of 20 mg L-1 and 100 mg L-1, respectively. The removal efficiency was maximum (100%) at pH 2 whereas solution pH increased significantly after the reaction (from 2 to 4.13). The removal kinetics of Cr(vi) was described by a pseudo-second-order model which indicated that the removal process was mainly controlled by the rate of chemical adsorption. The thermodynamics was more in line with the Freundlich model which indicated that the removal was multi-molecular layer adsorption. TEM-EDS, XRD, and XPS were applied to characterize the crystal lattice and structural changes of the material to specify the interfacial chemical behaviour on the agent surface. These techniques demonstrate that the underlying mechanisms of Cr(vi) removal include adsorption, chemical reduction-oxidation reaction, and co-precipitation on the surface of the nZVI-BC composite. The results indicated that the corn-straw BC as a carrier material highly improved Cr(vi) removal performance of nZVI and offered better utilization of the corn straw.
Collapse
Affiliation(s)
- Yuzhen Wei
- College of Forestry, Gansu Agricultural University Lanzhou 730070 P. R. China
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Run Chu
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Qinhu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Centre for Environmental Studies and Research, Sultan Qaboos University Al-Khoud 123 Muscat Oman
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Liqun Cai
- College of Forestry, Gansu Agricultural University Lanzhou 730070 P. R. China
- College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou 730070 P. R. China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| |
Collapse
|
17
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
18
|
Floatable cellulose acetate beads embedded with flower-like zwitterionic binary MOF/PDA for efficient removal of tetracycline. J Colloid Interface Sci 2022; 620:333-345. [DOI: 10.1016/j.jcis.2022.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
|
19
|
Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology. Sci Rep 2022; 12:9339. [PMID: 35660768 PMCID: PMC9167308 DOI: 10.1038/s41598-022-13105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
New multi-featured adsorbent beads were fabricated through impregnation of sulfonated graphene (SGO) oxide into cellulose acetate (CA) beads for fast adsorption of cationic methylene blue (MB) dye. The formulated SGO@CA composite beads were thoroughly characterized by several tools including FTIR, TGA, SEM, XRD, XPS and zeta potential. The optimal levels of the most significant identified variables affecting the adsorption process were sequential determined by the response surface methodology (RSM) using Plackett–Burman and Box–Behnken designs. The gained results denoted that the surface of SGO@CA beads displayed the higher negative charges (− 42.2 mV) compared to − 35.7 and − 38.7 mV for pristine CA and SGO, respectively. In addition, the floated SGO@CA beads demonstrated excellent floating property, fast adsorption and easy separation. The adsorption performance was accomplished rapidly, since the adsorption equilibrium was closely gotten within 30 min. Furthermore, the adsorption capacity was greatly improved with increasing SGO content from 10 to 30%. The obtained data were followed the pseudo-second order kinetic model and agreed with Langmuir adsorption isotherm model with a maximum adsorption capacity reached 234.74 mg g−1. The thermodynamic studies designated the spontaneity and endothermic nature of MB dye adsorption. Besides, the floated beads exposed acceptable adsorption characteristics for six successive reuse cycles, in addition to their better adsorption selectivity towards MB dye compared to cationic crystal violet and anionic Congo red dyes. These findings assume that the formulated SGO@CA floated beads could be used effectively as highly efficient, easy separable and reusable adsorbents for the fast removal of toxic cationic dyes.
Collapse
|
20
|
Poly(N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogel as an efficient metal ion adsorbent of aqueous systems. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-01010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Rehman KU, Gouda M, Zaman U, Tahir K, Khan SU, Saeed S, Khojah E, El-Beltagy A, Zaky AA, Naeem M, Khan MI, Khattak NS. Optimization of Platinum Nanoparticles (PtNPs) Synthesis by Acid Phosphatase Mediated Eco-Benign Combined with Photocatalytic and Bioactivity Assessments. NANOMATERIALS 2022; 12:nano12071079. [PMID: 35407197 PMCID: PMC9000267 DOI: 10.3390/nano12071079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
Noble metal nanoparticles (NMNPs) are viable alternative green sources compared to the chemical available methods in several approach like Food, medical, biotechnology, and textile industries. The biological synthesis of platinum nanoparticles (PtNPs), as a strong photocatalytic agent, has proved as more effective and safer method. In this study, PtNPs were synthesized at four different temperatures (25 °C, 50 °C, 70 °C, and 100 °C). PtNPs synthesized at 100 °C were smaller and exhibited spherical morphology with a high degree of dispersion. A series of physicochemical characterizations were applied to investigate the synthesis, particle size, crystalline nature, and surface morphology of PtNPs. The biosynthesized PtNPs were tested for the photodegradation of methylene blue (MB) under visible light irradiations. The results showed that PtNPs exhibited remarkable photocatalytic activity by degrading 98% of MB only in 40 min. The acid phosphatase mediated PtNPs showed strong bacterial inhibition efficiency against S. aureus and E. coli. Furthermore, it showed high antioxidant activity (88%) against 1,1-diphenyl-2-picryl-hydrazil (DPPH). In conclusion, this study provided an overview of the applications of PtNPs in food chemistry, biotechnology, and textile industries for the deterioration of the natural and synthetic dyes and its potential application in the suppression of pathogenic microbes of the biological systems. Thus, it could be used as a novel approach in the food microbiology, biomedical and environmental applications.
Collapse
Affiliation(s)
- Khalil ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Science, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12422, Egypt
- Correspondence: or (M.G.); (S.U.K.)
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Abbottabad 22080, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: or (M.G.); (S.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (A.E.-B.)
| | - Alaa El-Beltagy
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (A.E.-B.)
| | - Ahmed A. Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12422, Egypt;
| | - Mohamed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo 11566, Egypt;
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Mang Haripur 22620, Pakistan;
| | - Noor Saeed Khattak
- Center for Materials Science, Islamia College University, Peshawar 25120, Pakistan;
| |
Collapse
|
22
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Akhtar K, Asiri AM. Metal nanoparticles supported chitosan coated carboxymethyl cellulose beads as a catalyst for the selective removal of 4-nitrophenol. CHEMOSPHERE 2022; 291:133010. [PMID: 34813848 DOI: 10.1016/j.chemosphere.2021.133010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In the area of water pollution treatment, the coupling of biopolymers with metal/metal nanoparticles is getting a lot of interest these days. Herein, carboxymethyl cellulose (CMC) beads and chitosan (Cs) coated CMC beads were employed as a support for copper nanoparticles, (Cu/CMC) and (Cu/Cs@CMC), respectively. Following that, a reducing agent (NaBH4) was used to convert Cu/CMC and Cu/Cs@CMC beads to zero valent. The developed beads were employed for catalytic reductions of nitrophenol, dyes, and potassium hexacyanoferrate (III) in their mixed solution with NaBH4. Cu/Cs@CMC beads were more efficient compared to Cu/CMC beads toward selected pollutants. The reduction rate constants of 4-NP, MO, EY and K3[Fe(CN)6] by utilizing Cu/Cs@CMC were 3.8 × 10-1, 4.0 × 10-1, 1.4 × 10-1 and 4.48 × 10-1 min-1, respectively. Further, the catalytic activity of the Cu/Cs@CMC beads were optimized using 4-NP as a model compound for this study. Cu/Cs@CMC beads were able to use up to three cycles compared to Cu/CMC beads without losing catalytic activity in the reduction of 4-NP, according to the recyclability and reusability study of both beads. The chitosan coating beads Cu/Cs@CMC was simply prepared and have good catalytic activity, recyclable, and more efficient than Cu/CMC beads due to their high strength and stability.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
23
|
Hosny M, Fawzy M, El-Fakharany EM, Omer AM, El-Monaem EMA, Khalifa RE, Eltaweil AS. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:106806. [DOI: 10.1016/j.jece.2021.106806] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
24
|
Toto NA, Elhenawy HI, Eltaweil AS, El-Ashram S, El-Samad LM, Moussian B, El Wakil A. Musca domestica (Diptera: Muscidae) as a biological model for the assessment of magnetite nanoparticles toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151483. [PMID: 34742953 DOI: 10.1016/j.scitotenv.2021.151483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles (NPs) is rapidly expanding; there is a critical need for efficient assays to first determine the potential toxicity of NPs before their use in human applications. Magnetite nanoparticles (Fe3O4 NPs) have tremendous applications which include cell separation, arsenic removal from water and DNA separation. Spherically shaped Fe3O4 NPs with sizes ranging from 23 to 30 nm were used in this study. The housefly, Musca domestica is the most common fly species. It is present worldwide and considered to be an important medical insect which can carry and transmit over 100 human pathogens and zoonotic agents. It has been used in this study to assess Fe3O4NPs toxicity and give us an overview of their impact. The larvicidal activity of Fe3O4NPs was tested against the third instar larvae of M. domestica. We investigated the effects of six varying concentrations (15, 30, 45, 60, 75 and 90 μg/mL) used under laboratory conditions in two differential application assays: contact and feeding. The LC50 value for Fe3O4 NPs was 60 and 75 μg/mL by feeding and contact, respectively. To investigate the toxicity effects of Fe3O4 NPs on houseflies, morphological and histoarchitectural changes in larvae, pupae and adult flies were analyzed. NP exposure caused morphological abnormalities of larvae and pupae as well as larval pupal intermediates, and deformed adult with crumpled wings. Also, some adults couldn't emerge and remained in their puparia. The histological examinations showed that Fe3O4 NPs caused severe tissue damage especially in the cuticle and the digestive system. Thus, besides affecting the organ of first contact (digestive system), remote organs such as the integument are also targeted by Fe3O4 NPs suggesting a systemic impact on fly development and physiology.
Collapse
Affiliation(s)
- Noura A Toto
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Hanan I Elhenawy
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | | | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Bernard Moussian
- Université Nice Sophia Antipolis, Parc Valrose, Nice Cedex, France
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Egypt.
| |
Collapse
|
25
|
Omer AM, Dey R, Eltaweil AS, Abd El-Monaem EM, Ziora ZM. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103543] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
26
|
Rostamian M, Hosseini H, Fakhri V, Talouki PY, Farahani M, Gharehtzpeh AJ, Goodarzi V, Su CH. Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol sebacate)/chitosan/graphene oxide ecofriendly nanocomposites. CHEMOSPHERE 2022; 289:133219. [PMID: 34902387 DOI: 10.1016/j.chemosphere.2021.133219] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As a consequence of industrial activities, one of the most prevalent components in wastewater is Water-soluble dyes needed to be removed. In this research, eco-friendly adsorbents based on poly(glycerol sebacate) (PGS), including PGS-graphene oxide nanoparticles (GO), PGS-graft-chitosan(CS), and PGS-CS-GO nanocomposites, have been proposed as efficient dye adsorbents for the wastewater treatment procedure. FESEM images showed that a smooth and uniform structure was created over incorporating CS into PGS. Besides, the presence of CS within PGS/GO nanocomposites had a positive impact on the exfoliation of GO. Moreover, it was found that the incorporation of both CS and GO into PGS reduced the glass transition of PGS. Besides, their coexistence can probably increase the chain regularity in the polymer matrix and cause a relatively larger crystal size of PGS. In this regard, the ternary nanocomposite saw a Tg value of -29.4 °C. A high adsorption capacity of 178 mg g-1, as well as 99 removal% efficiency, were observed in the case of the PGS-CS-GO sample after 300 min at a dye concentration of 100 mg L-1 and pH 7. Additionally, the adsorption capacity value of the adsorbent was preserved around 129 mg g-1 after 7 cycles of adsorption-desorption. The findings revealed that innovatively synthesized PGS-g-CS/GO nanocomposites could efficiently remove methylene blue from water solutions. Hence, they can be used as a powerful and influential dye adsorbent to purify water solutions.
Collapse
Affiliation(s)
- Mostafa Rostamian
- Department of Biomedical Engineering Faculty, Islamic Azad University, South Tehran Branch, P.O. Box 19585-466, Tehran, Iran
| | - Hadi Hosseini
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Vafa Fakhri
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Pardis Yousefi Talouki
- Department of Biomedical Engineering, Center Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Farahani
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box 11155-4563, Tehran, Iran
| | - Ali Jalali Gharehtzpeh
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 19945-546, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
27
|
Chowdhury S, Al‐Mamun A, Zulfiqar M, Alam MM, Rahman MM. Statistical Optimization and Modeling Approach for Fenton‐like Discoloration of Methyl Orange using Green Zero‐valent Iron Nanoparticle Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sujan Chowdhury
- Chemical Engineering Department Jashore University of Science and Technology 1 Churamonkathi – Chaugachha Road 7408 Jashore Bangladesh
| | - Abdullah Al‐Mamun
- Chemical Engineering Department Jashore University of Science and Technology 1 Churamonkathi – Chaugachha Road 7408 Jashore Bangladesh
| | - Muhammad Zulfiqar
- Chemical Engineering Department Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Malaysia
| | - M. M. Alam
- Center of Excellent for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellent for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
28
|
Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103517] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
El-Maghrabi N, El-Borady OM, Hosny M, Fawzy M. Catalytic and Medical Potential of a Phyto-Functionalized Reduced Graphene Oxide-Gold Nanocomposite Using Willow-Leaved Knotgrass. ACS OMEGA 2021; 6:34954-34966. [PMID: 34963977 PMCID: PMC8697594 DOI: 10.1021/acsomega.1c05596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
In the current study, a simple, environmentally friendly, and cost-effective reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was successfully phytosynthesized using the aqueous leaf extract of a common weed found on the Nile banks, Persicaria salicifolia, for the first time. The phytosynthesis of rGO-AuNPs was first confirmed via the color transformation from brown to black as well as throughvarious techniques such as transmission electron microscopy (TEM) and Raman spectroscopy. Two UV-vis peaks at 275 and 530 nm were observed for the nanocomposite with a typical particle size of mostly spherical AuNPs of 15-20 nm. However, other shapes were occasionally detected including rods, triangles, and rhomboids. Existing phytoconstituents such as flavonoids and glycosides in the plant extract were suggested to be responsible for the phytosynthesis of rGO-AuNPs. The excellent catalytic efficacy of rGO-AuNPs against MB degradation was confirmed, and a high antibacterial efficiency against Escherichia coli and Klebsiella pneumonia was also confirmed. Promising antioxidant performance of rGO-AuNPs was also proved. Furthermore, it was concluded that rGO-AuNPs acquired higher efficiency than AuNPs synthesized from the same plant extract in all of the studied applications.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Ola M. El-Borady
- Institute
of Nanoscience and Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- ,
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, 101 Kasr Al Aini Street, Cairo 33516, Egypt
| |
Collapse
|
30
|
Omer AM, Sadik WAA, El-Demerdash AGM, Hassan HS. Formulation of pH-sensitive aminated chitosan–gelatin crosslinked hydrogel for oral drug delivery. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Abdelfatah AM, Fawzy M, El-Khouly ME, Eltaweil AS. Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldin MS, Abd El-Monaem EM. Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydr Polym 2021; 274:118671. [PMID: 34702487 DOI: 10.1016/j.carbpol.2021.118671] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
The tremendous development in the industrial sector leads to discharging of the several types of effluents containing detrimental contaminants into water sources. Lately, the proliferation of toxic anions particularly phosphates and nitrates onto aquatic systems certainly depreciates the ecological system and causes a deadly serious problem. Chitosan (Cs) is one of the most auspicious biopolymer adsorbents that are being daily developed for removing of various contaminants from polluted water. This is due to its unparalleled benefits involving biocompatibility, non-toxicity, facile modifications and low-cost production. Nevertheless, chitosan displays considerable drawbacks including low adsorption capacity, low surface area and lack of reusability. Therefore, few findings have been established regarding the aptitude of modified chitosan-based adsorbents towards phosphate and nitrate anions. This review elaborates an overview for the current advances of modified chitosan based-adsorbent for phosphate and nitrate removal, in specific multivalent metals-modified chitosan, clays and zeolite-modified chitosan, magnetic chitosan and carbon materials-modified chitosan. The efforts that have been executed for enriching their adsorption characteristics as well as their possible adsorption mechanisms and reusability were well addressed. Besides, the research conclusions for the optimum adsorption conditions were also discussed, along with emphasizing the foremost research gaps and future potential trends that could motivate further research and innovation to find best solutions for water treatment problems facing the world.
Collapse
Affiliation(s)
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nourhan Mohamed Gaber
- Department of Medical Laboratories, Faculty of Applied health science technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Omer AM, Eweida BY, Tamer TM, Soliman HMA, Ali SM, Zaatot AA, Mohy-Eldin MS. Removal of oil spills by novel developed amphiphilic chitosan-g-citronellal schiff base polymer. Sci Rep 2021; 11:19879. [PMID: 34615906 PMCID: PMC8494754 DOI: 10.1038/s41598-021-99241-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
A novel chitosan grafted citronellal (Ch-Cit) schiff base amphiphilic polymer was developed for the adsorptive removal of oil spills. The chemical structure was verified by FT-IR spectroscopy and 1H NMR spectrometer, while the morphological changes and surface area were investigated by SEM and BET analysis tools. The amphiphilic character of Ch-Cit schiff base was controlled through variation of the grafting percentage (G%) of citronellal from 11 to 61%. Dramatic changes in the ion exchange capacity (IEC), solubility and water uptake profiles were established, while the oil adsorption capacity was founded in direct relation with the G (%) of citronellal. Operational conditions such as oil amount, adsorption time, adsorbent dose and agitation speed were investigated. The developed Ch-Cit schiff base exhibited a higher surface area (115.94 m2/g) compared to neat chitosan (57.78 m2/g). The oil adsorption capacity of the Ch-Cit schiff base was greatly improved by 166% and 120% for light crude and heavy crude oil, respectively. Finally, the adsorption process was optimized using response surface methodology (RSM).The results substantiate that the amphiphilic Ch-Cit schiff base could be efficiently applied as a low-cost oil-adsorbent for the removal of crude oil spills from sea-water surfaces.
Collapse
Affiliation(s)
- Ahmed Mohamed Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Basant Yossry Eweida
- Modeling and Simulation Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Tamer Mahmoud Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Hesham M A Soliman
- Nanotechnology and New Composite Materials Department Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Safaa Mohamed Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Ahmed Amin Zaatot
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Mohamed Samir Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
34
|
Abdelfatah A, Fawzy M, Eltaweil AS, El-Khouly ME. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS OMEGA 2021; 6:25397-25411. [PMID: 34632198 PMCID: PMC8495865 DOI: 10.1021/acsomega.1c03355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 05/15/2023]
Abstract
In this study, the removal of methylene blue dye (MB) from aqueous solution was examined using a novel green adsorbent to overcome the obstacles encountered in chemical methods. Ricinus communis (RC) aqueous seeds extract was herein used as a reducing and capping agent to synthesize a novel nano-zero-valent iron (RC-nZVI) for the adsorption of harmful MB. Structural and morphological characterization of the synthesized RC-nZVI were performed using several techniques, e.g., steady-state absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and zeta potential. The maximum efficiency of the removal was 96.8% at pH 6 and 25 °C. According to the kinetics study results, the adsorption process obeys the pseudo-first-order model. The experimental equilibrium data were fitted to the Freundlich isotherm model, the maximum adsorption capacity reached was 61.37 mg·g-1, and the equilibrium parameters were determined. The synthesized RC-nZVI possesses good reusability and can be considered as a potential economic and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Ahmed
M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed E. El-Khouly
- Institute
of Basic and Applied Sciences, Egypt-Japan University of Science and
Technology (E-JUST), New Borg
El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
35
|
Zhuang H, Zhang W, Wang L, Zhu Y, Xi Y, Lin X. Vapor Deposition-Prepared MIL-100(Cr)- and MIL-101(Cr)-Supported Iron Catalysts for Effectively Removing Organic Pollutants from Water. ACS OMEGA 2021; 6:25311-25322. [PMID: 34632189 PMCID: PMC8495704 DOI: 10.1021/acsomega.1c03118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Metal organic framework (MOF)-supported Fe catalysts belong to an important class of catalysts used for the advanced oxidation of organic pollutants in water. The successful preparation of the Fe/MIL-100(Cr) and Fe/MIL-101(Cr) catalysts in this work reinforced that a recently established carrier-gas free vapor deposition method can be a general one for preparing Fe/MOF catalysts. The Fe loading was in the range of 7.8-27.2 wt % on Fe/MIL-101(Cr) at a deposition temperature of 110-150 °C, and it was only 4.35 wt % on Fe/MIL-100(Cr) at 110 °C in comparison. The results obtained from the characterization using the N2-isotherm and EDX mapping showed that the Fe components resided uniformly within the pore of the MOF supports. Both of Fe/MIL-100(Cr) and Fe/MIL-101(Cr) were rather effective for the catalytic removal of aniline from water with Fenton oxidation. Fe/MIL-100(Cr) can effectively remove the total organic carbon (TOC) of the aniline solutions, while Fe/MIL-101(Cr) had a lower TOC removal efficiency. Both of the Fe/MIL-100(Cr) and Fe/MIL-101(Cr) catalysts showed good stability in the crystalline form compared to the previously prepared Fe/UiO-66 catalyst, implicating that they can be potentially more useful than Fe/UiO-66 for treating organic pollutants in water.
Collapse
Affiliation(s)
- Huimin Zhuang
- Department
of Chemistry, College of Science, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Wumin Zhang
- Department
of Chemistry, College of Science, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Lu Wang
- College
of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuanyuan Zhu
- College
of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yanyan Xi
- College
of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, P. R. China
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xufeng Lin
- Department
of Chemistry, College of Science, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
36
|
Development of novel cellulose acetate-g-poly(sodium 4-styrenesulfonate) proton conducting polyelectrolyte polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Eltaweil AS, Mamdouh IM, Abd El-Monaem EM, El-Subruiti GM. Highly Efficient Removal for Methylene Blue and Cu 2+ onto UiO-66 Metal-Organic Framework/Carboxylated Graphene Oxide-Incorporated Sodium Alginate Beads. ACS OMEGA 2021; 6:23528-23541. [PMID: 34549149 PMCID: PMC8444308 DOI: 10.1021/acsomega.1c03479] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 05/02/2023]
Abstract
Herein, we report a new metal-organic framework (MOF)-based composite beads adsorbent made via incorporating UiO-66 MOF, carboxylated graphene oxide (GOCOOH) into sodium alginate for efficient removal of methylene blue dye, and Cu2+ ions. The successful fabrication of the synthesized UiO-66/GOCOOH@SA composite beads was confirmed by means of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, zeta potential, X-ray photoelectron spectroscopy analysis, and thermogravimetric analysis and BET measurement. The incorporation of both UiO-66 and GOCOOH into SA beads greatly increased their adsorption efficiency for the removal of both MB and Cu2+ with maximum adsorption capacities of 490.72 and 343.49 mg/g, respectively. The removal process of both MB and Cu2+ follows the pseudo-second-order model and Freundlich isotherm model. A plausible adsorption mechanism was discussed in detail. Regeneration tests clarified that the removal efficiencies toward both MB and Cu2+ remained higher than 87% after five cycles. These results reveal the potentiality of UiO-66/GOCOOH@SA beads as an excellent adsorbent.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Injy M. Mamdouh
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
38
|
Hosny M, Fawzy M, Abdelfatah AM, Fawzy EE, Eltaweil AS. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Eltaweil AS, El-Monaem EMA, Mohy-Eldin MS, Omer AM. Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Sci Rep 2021; 11:16598. [PMID: 34400760 PMCID: PMC8368087 DOI: 10.1038/s41598-021-96145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient composite was constructed based on aminated chitosan (NH2Cs), attapulgite (ATP) clay and magnetic Fe3O4 for adsorptive removal of Cr(VI) ions. The as-fabricated ATP@Fe3O4-NH2Cs composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Zeta potential (ZP), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller method (BET) and X-ray photoelectron spectroscope (XPS). A significant improve in the adsorption profile was established at pH 2 in the order of ATP@Fe3O4-NH2Cs(1:3) > ATP@Fe3O4-NH2Cs(1:1) > ATP@Fe3O4-NH2Cs(3:1) > Fe3O4-NH2Cs > ATP. The maximum removal (%) of Cr(VI) exceeded 94% within a short equilibrium time of 60 min. The adsorption process obeyed the pseudo 2nd order and followed the Langmuir isotherm model with a maximum monolayer adsorption capacity of 294.12 mg/g. In addition, thermodynamics studies elucidated that the adsorption process was spontaneous, randomness and endothermic process. Interestingly, the developed adsorbent retained respectable adsorption properties with acceptable removal efficiency exceeded 58% after ten sequential cycles of reuse. Besides, the results hypothesize that the adsorption process occurs via electrostatic interactions, reduction of Cr(VI) to Cr(III) and ion-exchanging. These findings substantiate that the ATP@Fe3O4-NH2Cs composite could be effectively applied as a reusable adsorbent for removing of Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
40
|
Hosny M, Fawzy M. Instantaneous phytosynthesis of gold nanoparticles via Persicaria salicifolia leaf extract, and their medical applications. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Formulation and Antibacterial Activity Evaluation of Quaternized Aminochitosan Membrane for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13152428. [PMID: 34372035 PMCID: PMC8347330 DOI: 10.3390/polym13152428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Much attention has been paid to chitosan biopolymer for advanced wound dressing owing to its exceptional biological characteristics comprising biodegradability, biocompatibility and respectable antibacterial activity. This study intended to develop a new antibacterial membrane based on quaternized aminochitosan (QAMCS) derivative. Herein, aminochitosan (AMCS) derivative was quaternized by N-(2-Chloroethyl) dimethylamine hydrochloride with different ratios. The pre-fabricated membranes were characterized by several analysis tools. The results indicate that maximum surface potential of +42.2 mV was attained by QAMCS3 membrane compared with +33.6 mV for native AMCS membrane. Moreover, membranes displayed higher surface roughness (1.27 ± 0.24 μm) and higher water uptake value (237 ± 8%) for QAMCS3 compared with 0.81 ± 0.08 μm and 165 ± 6% for neat AMCS membranes. Furthermore, the antibacterial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus. Superior antibacterial activities with maximum inhibition values of 80–98% were accomplished by QAMCS3 membranes compared with 57–72% for AMCS membrane. Minimum inhibition concentration (MIC) results denote that the antibacterial activities were significantly boosted with increasing of polymeric sample concentration from 25 to 250 µg/mL. Additionally, all membranes unveiled better biocompatibility and respectable biodegradability, suggesting their possible application for advanced wound dressing.
Collapse
|
42
|
Marzban N, Moheb A, Filonenko S, Hosseini SH, Nouri MJ, Libra JA, Farru G. Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. Int J Biol Macromol 2021; 186:79-91. [PMID: 34237369 DOI: 10.1016/j.ijbiomac.2021.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
As tighter regulations on color in discharges to water bodies are more widely implemented worldwide, the demand for reliable inexpensive technologies for dye removal grows. In this study, the removal of the basic dye, methylene blue, by adsorption onto low-cost sodium alginate-kaolin beads was investigated to determine the effect of operating parameters (initial dye concentration, contact time, pH, adsorbent dosage, temperature, agitation speed) on dye removal efficiency. The composite beads and individual components were characterized by a number of analytical techniques. Three models were developed to describe the adsorption as a function of the operating parameters using regression analysis, and two powerful intelligent modeling techniques, genetic programming and artificial neural network (ANN). The ANN model is best in predicting dye removal efficiency with R2 = 0.97 and RMSE = 3.59. The developed model can be used as a useful tool to optimize treatment processes using the promising adsorbent, to eliminate basic dyes from aqueous solutions. Adsorption followed a pseudo-second order kinetics and was best described by the Freundlich isotherm. Encapsulating the kaolin powder in sodium alginate resulted in removal efficiency of 99.56% and a maximum adsorption capacity of 188.7 mg.g-1, a more than fourfold increase over kaolin alone.
Collapse
Affiliation(s)
- Nader Marzban
- Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Ahmad Moheb
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Svitlana Filonenko
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Mohammad Javad Nouri
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Judy A Libra
- Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Gianluigi Farru
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo, 2, 09123 Cagliari, Italy
| |
Collapse
|
43
|
Omer AM, Abd El-Monaem EM, Abd El-Latif MM, El-Subruiti GM, Eltaweil AS. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohydr Polym 2021; 265:118084. [PMID: 33966848 DOI: 10.1016/j.carbpol.2021.118084] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Metal organic frameworks (MOFs) have become premium candidates for the removal of hazardous contaminants from wastewater. However, MOFs have a vast obstacle which is their poor recyclability. In this study, ZIF-67 was decorated with magnetic Fe3O4 nanoparticles, and then embedded into aminated chitosan (AmCs) matrix to form core-dual shell Fe3O4/ZIF-67@AmCs composite beads. Diverse analysis tools were utilized to ensure the successful fabrication of the magnetic composite beads. The fabricated magnetic composite beads were examined their adsorptive removal aptitude towards toxic Cr(VI) ions. The gained results refereed that a maximum adsorption capacity of 119.05 mg/g was attained by magnetic Fe3O4/ZIF-67@AmCs composite beads at 25 °C. The process obeyed both of Langmuir and Freundlich isotherm models, and the pseudo 2nd order was more suitable kinetic model to represent the adsorption process. Besides, Fe3O4/ZIF-67@AmCs composite showed an excellent recyclability for the removal of Cr(VI) ions from their aqueous solutions for seven consecutive cycles.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|