1
|
Elumalai M, Baskaran A, Sadaiyandi V, Ramaraj SG, Kumar N, Karthika PC, Rajendiran N. Eco-friendly synthesis of N- cholyl mercapto histidine capped silver nanoparticles and its sensing of mercury (II) ions and photo catalytic degradation of methyl orange. CHEMOSPHERE 2024; 362:142748. [PMID: 38960050 DOI: 10.1016/j.chemosphere.2024.142748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
In this report, we have developed highly water soluble and stable silver nanoparticles (Ag NPs) utilizing N-Cholyl Mercapto Histidine (NCMH) as a reducing and stabilizing agent with near the primary critical micellar concentration (CMC) under ambient sunlight irradiation. Moreover, The NCMH was firstly synthesized by demonstrating the reaction between cholic acid and 2- Mercapto Histidine through a simple acid amine coupling approach. The primary and secondary CMC of NCMH surfactant was measured by pyrene (1 × 10-6 M) as a fluorescent probe, and values were found to be 3.2 and 13.1 mM respectively. The synthesized Ag NPs showed at neutral pH and highly stable for more than one year without any noticeable aggregation. The TEM analysis displays the synthesized Ag NPs having a spherical shape and average size of 9.6 ± 0.5 nm. The synthesis of stabilized Ag NPs was used for ultra-sensitive and selective detection of Hg2+ ions in aqueous medium were monitored by Uv-visible spectrometer and naked eyes with a lowest limit of detection (LOD) 7 nM. The photo-catalytic degradation of methyl orange (MO) by utilizing Ag NPs as nano-catalyst exhibits a potential degradation within a study period of 180 min. Concluding that, facile and cost effective green synthesis of NCMH capped Ag NPs possess excellent reducing ability towards the selective detection of Hg2+ ions along with photo-catalytic degradation of MO dye. These true findings detached an innovative pathway of Ag NPs towards the reactivity against the catalytic activity of dye degradation and selective sensing of Hg2+ ions. Thus it paves the way for extensive range of novel potential applications of Ag NPs in various environment friendly approaches of sensitive and analytical protocol in the future.
Collapse
Affiliation(s)
- Manikandan Elumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India.
| | - Aravind Baskaran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Vivekananthan Sadaiyandi
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Sankar Ganesh Ramaraj
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Japan; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Niraj Kumar
- Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhad, India
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India.
| |
Collapse
|
2
|
Sana SS, Raorane CJ, Raj V, Alagumalai K, Gangadhar L, Gupta VK, Kim SC, Kaushik AK. Electron Beam-Supported Fabrication of Biocompatible Silver/iota-Carrageenan for Wound Healing Application. ACS APPLIED BIO MATERIALS 2024; 7:3636-3648. [PMID: 38729923 DOI: 10.1021/acsabm.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Silver nanoparticles (AgNPs) are a potent antibacterial agent, especially when used to treat bacteria that are multidrug resistant. However, it is challenging to eliminate the hazardous reducing agents that remain in AgNPs produced by the conventional chemical reduction process. To overcome these challenges, the presented research demonstrates the fabrication of AgNPs using iota-carrageenan (ι-carra) as a carbohydrate polymer using electron beam (EB) irradiation. Well-characterized ι-carra@AgNPs have a face-centered cubic (FCC) structure with spherical morphology and an average size of 26 nm. Herein we explored the approach for fabricating ι-carra@AgNPs that is suitable for scaling up the production of nanoparticles that exhibit excellent water stability. Further, the optimized ι-carra@AgNPs exhibited considerable antibacterial activity of 40% and 30% inhibition when tested with Gram-negative Escherichia coli ATCC 43895 and Gram-positive Staphylococcus aureus (S. aureus) (ATCC 6538), respectively, and low cytotoxicity at 10-50 μg/mL. To establish the potential biomedical application, as proof of the concept, the ι-carra@AgNPs showed significant antibiofilm activity at 20 μg/mL and also showed 95% wound healing abilities at 50 μg/mL compared to the nontreated control groups. Electron beam assisted ι-carra@AgNPs showed significant beneficial effects against specific bacterial strains and may provide a guide for the development of new antibacterial materials for wound dressing for large-scale production for biomedical applications.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | | | - Lekshmi Gangadhar
- Department of Nanotechnology, Nanodot Research Private Limited, Nagercoil, Kanyakumari 629001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG13NE, United Kingdom
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Technology, Woxsen University, Hyderabad, Telangana 502345, India
| |
Collapse
|
3
|
Homdi TA, Fagieh TM, Akhtar K, Bakhsh EM, Alhemadan AH, Khan SB. Metal nanoparticles decorated mint-cellulose acetate composite as an efficient catalyst for the reduction of methyl orange. Int J Biol Macromol 2024; 268:131558. [PMID: 38614166 DOI: 10.1016/j.ijbiomac.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Water contamination caused by toxic compounds has emerged as one of the most severe challenges worldwide. Biomass-based nanocomposites offer a sustainable and renewable alternative to conventional materials. In this study, a nanocomposite of mint and cellulose acetate (Mint-CA) was prepared and employed as a supportive material for Cu nanoparticles (CuNPs) and Ag nanoparticles (AgNPs). The selectivity of CuNPs@mint-CA and AgNPs@mint-CA was assessed by comparing their performance in the reduction reaction of various dyes solutions. AgNPs@mint-CA exhibited superior catalytic performance, with a removal of 95.2 % for methyl orange (MO) compared to 68 % with CuNPs@mint-CA. The absorption spectra of MO exhibited a distinct peak at 464 nm. The reduction reaction of MO by AgNPs@mint-CA followed pseudo-first-order-kinetic with a rate constant of k = 0.0063 min-1 (R2 = 0.928). The highest removal of MO was achieved under the following conditions: a catalyst weight of 40 mg, an initial MO concentration of 0.07 mM, the addition of 0.5 mL of 0.1 M NaBH4, and a temperature of 25 °C. Furthermore, the AgNPs@mint-CA catalyst exhibited exceptional reducibility even after five use cycles, highlighting its potential for efficiently removing MO.
Collapse
Affiliation(s)
- Tahani A Homdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Taghreed M Fagieh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abeer H Alhemadan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Mehrotra S, Goyal V, Dimkpa CO, Chhokar V. Green Synthesis and Characterization of Ginger-Derived Silver Nanoparticles and Evaluation of Their Antioxidant, Antibacterial, and Anticancer Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1255. [PMID: 38732470 PMCID: PMC11085059 DOI: 10.3390/plants13091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
The efficacy, targeting ability, and biocompatibility of plant-based nanoparticles can be exploited in fields such as agriculture and medicine. This study highlights the use of plant-based ginger nanoparticles as an effective and promising strategy against cancer and for the treatment and prevention of bacterial infections and related disorders. Ginger is a well-known spice with significant medicinal value due to its phytochemical constituents including gingerols, shogaols, zingerones, and paradols. The silver nanoparticles (AgNPs) derived from ginger extracts could be an important non-toxic and eco-friendly nanomaterial for widespread use in medicine. In this study, AgNPs were biosynthesized using an ethanolic extract of ginger rhizome and their phytochemical, antioxidant, antibacterial, and cytotoxic properties were evaluated. UV-visible spectral analysis confirmed the formation of spherical AgNPs. FTIR analysis revealed that the NPs were associated with various functional biomolecules that were associated with the NPs during stabilization. The particle size and SEM analyses revealed that the AgNPs were in the size range of 80-100 nm, with a polydispersity index (PDI) of 0.510, and a zeta potential of -17.1 mV. The purity and crystalline nature of the AgNPs were confirmed by X-ray diffraction analysis. The simple and repeatable phyto-fabrication method reported here may be used for scaling up for large-scale production of ginger-derived NPs. A phytochemical analysis of the ginger extract revealed the presence of alkaloids, glycosides, flavonoids, phenolics, tannins, saponins, and terpenoids, which can serve as active biocatalysts and natural stabilizers of metallic NPs. The ginger extracts at low concentrations demonstrated promising cytotoxicity against Vero cell lines with a 50% reduction in cell viability at 0.6-6 μg/mL. When evaluated for biological activity, the AgNPs exhibited significant antioxidant and antibacterial activity on several Gram-positive and Gram-negative bacterial species, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. This suggests that the AgNPs may be used against multi-drug-resistant bacteria. Ginger-derived AgNPs have a considerable potential for use in the development of broad-spectrum antimicrobial and anticancer medications, and an optimistic perspective for their use in medicine and pharmaceutical industry.
Collapse
Affiliation(s)
- Shweta Mehrotra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Vinod Goyal
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125001, India
| | - Christian O. Dimkpa
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| |
Collapse
|
5
|
Jacob JAE, Antony R, Ivan Jebakumar DS. Synergistic effect of silver nanoparticle-embedded calcite-rich biochar derived from Tamarindus indica bark on 4-nitrophenol reduction. CHEMOSPHERE 2024; 349:140765. [PMID: 38006917 DOI: 10.1016/j.chemosphere.2023.140765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Calcite-biochar composites are attractive materials with outstanding adsorption capabilities for removing various recalcitrant contaminants in wastewater treatment, however, the complexity of their synthesis limits their practical applications. In this work, we have prepared calcite-rich biochar (Ca-BC) from a single precursor (Tamarindus indica bark), which simplifies the synthetic route for preparing calcite-biochar composite. The as-synthesized composite is utilized to make a heterogeneous catalytic system containing the supported silver nanoparticles (Ag@Ca-BC) formed by the reduction of Ag+ ions on the surface of the composite. The formation of Ag@Ca-BC is confirmed by various characterization techniques such as PXRD, FT-IR, UV-Vis, cyclic voltammetry, impedance measurement, SEM, and TEM analyses. Especially, the TEM analysis confirms the presence of Ag nanoparticles with size ranging between 20 and 50 nm on the surface of Ca-BC composite. The nano-catalyst Ag@Ca-BC efficiently promotes the conversion of 4-nitrophenol to 4-aminophenol using NaBH4 as the reductant in water within 24 minutes at room temperature, suggesting that Ag@Ca-BC can be an efficient catalyst to remove nitroaromatics from the industrial effluents. The straightforward synthesis of Ca-BC from a single precursor along with its utility as a catalytic support presents a compelling proposition for application in the field of materials synthesis, catalysis, and green chemistry.
Collapse
Affiliation(s)
- J Amala Ebi Jacob
- Postgraduate Department of Chemistry, St. John's College, Palayamkottai, 627002, Tamil Nadu, India
| | - R Antony
- Department of Chemistry, Mepco Schlenk Engineering College (Autonomous), Sivakasi, 626005, Tamil Nadu, India.
| | - D S Ivan Jebakumar
- Postgraduate Department of Chemistry, St. John's College, Palayamkottai, 627002, Tamil Nadu, India.
| |
Collapse
|
6
|
Kim DY, Kim M, Sung JS, Koduru JR, Nile SH, Syed A, Bahkali AH, Seth CS, Ghodake GS. Extracellular synthesis of silver nanoparticle using yeast extracts: antibacterial and seed priming applicationss. Appl Microbiol Biotechnol 2024; 108:150. [PMID: 38240838 DOI: 10.1007/s00253-023-12920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 01/23/2024]
Abstract
The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Shivraj Hariram Nile
- Division of Food and Nutrition, DBT-National Agri-Food Biotechnology Institute, Mohali, Sahibzada Ajit Singh Nagar, 140308, Punjab, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
7
|
Kaur A, Sharma Y, Singh G, Kumar A, Kaushik N, Khan AA, Bala K. Novel biogenic silver nanoconjugates of Abrus precatorius seed extracts and their antiproliferative and antiangiogenic efficacies. Sci Rep 2023; 13:13514. [PMID: 37598190 PMCID: PMC10439965 DOI: 10.1038/s41598-023-40079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
Biogenic silver nanoconjugates (AgNCs), derived from medicinal plants, have been widely explored in the field of biomedicines. AgNCs for the first-time were synthesized using ethyl acetate seed extracts of Abrus precatorius and their antiproliferative and antiangiogenic efficacies were evaluated against cervical and oral carcinoma. Ultraviolet-Visible spectrophotometry, dynamic light Scattering (DLS), and scanning electron microscopy (SEM) were used for characterization of AgNCs. Antiproliferative activity was investigated using MTT, DNA fragmentation and in-vitro antioxidant enzyme activity assays. In-vivo chick chorioallantoic membrane (CAM) model was used to evaluate antiangiogenic activity. A total of 11 compounds were identified in both the extracts in GCMS analysis. The synthesized AgNCs were spherical shaped with an average size of 97.4 nm for AgAPE (Sox) and 64.3 nm for AgAPE (Mac). AgNCs possessed effective inhibition against Hep2C and KB cells. In Hep2C cells, AgAPE (Mac) revealed the highest SOD, catalase, GST activity and lower MDA content, whereas AgAPE (Sox) showed the highest GSH content. On the other hand, in KB cells, AgAPE (Sox) exhibited the higher SOD, GST activity, GSH content, and least MDA content, while AgAPE (Mac) displayed the highest levels of catalase activity. Docking analysis revealed maximum binding affinity of safrole and linoleic acid with selected targets. AgAPE (Sox), AgAPE (Mac) treatment profoundly reduced the thickness, branching, and sprouting of blood vessels in the chick embryos. This study indicates that A. precatorius-derived AgNCs have enhanced efficacies against cervical and oral carcinoma as well as against angiogenesis, potentially limiting tumour growth.
Collapse
Affiliation(s)
- Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gagandeep Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, Hauz Khas, India
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, CCRAS, Ministry of Ayush, Govt. of India, Jhansi, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Janakpuri, New Delhi, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
8
|
Shumi G, Demissie TB, Eswaramoorthy R, Bogale RF, Kenasa G, Desalegn T. Biosynthesis of Silver Nanoparticles Functionalized with Histidine and Phenylalanine Amino Acids for Potential Antioxidant and Antibacterial Activities. ACS OMEGA 2023; 8:24371-24386. [PMID: 37457474 PMCID: PMC10339392 DOI: 10.1021/acsomega.3c01910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Due to biochemically active secondary metabolites that assist in the reduction, stabilization, and capping of nanoparticles, plant-mediated nanoparticle synthesis is becoming more and more popular. This is because it allows for ecologically friendly, feasible, sustainable, and cost-effective green synthesis techniques. This study describes the biosynthesis of silver nanoparticles (AgNPs) functionalized with histidine and phenylalanine using the Lippia abyssinica (locally called koseret) plant leaf extract. The functionalization with amino acids was meant to enhance the biological activities of the AgNPs. The synthesized nanoparticles were characterized using UV-Visible absorption (UV-Vis), powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The surface plasmonic resonance (SPR) peak at about 433 nm confirmed the biosynthesis of the AgNPs. FTIR spectra also revealed that the phytochemicals in the plant extract were responsible for the capping of the biogenically synthesized AgNPs. On the other hand, the TEM micrograph revealed that the morphology of AgNP-His had diameters ranging from 5 to 14 nm. The antibacterial activities of the synthesized nanoparticles against Gram-positive and Gram-negative bacteria showed a growth inhibition of 8.67 ± 1.25 and 11.00 ± 0.82 mm against Escherichia coli and Staphylococcus aureus, respectively, at a concentration of 62.5 μg/mL AgNP-His. Moreover, the nanoparticle has an antioxidant activity potential of 63.76 ± 1.25% at 250 μg/mL. The results showed that the green-synthesized AgNPs possess promising antioxidant and antibacterial activities with the potential for biological applications.
Collapse
Affiliation(s)
- Gemechu Shumi
- Department
of Applied Chemistry, School of Natural Science, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, P/bag UB 00704, Gaborone, Botswana
| | - Rajalakshmanan Eswaramoorthy
- Department
of Applied Chemistry, School of Natural Science, Adama Science and Technology University, Adama 1888, Ethiopia
- Department
of Biomaterials, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences,
Saveetha University, Chennai 600 077, India
| | - Raji Feyisa Bogale
- Department
of Chemistry, College of Natural and Computational Science, Wollega University, Nekemte 395, Ethiopia
| | - Girmaye Kenasa
- Department
of Biology, College of Natural and Computational Science, Wollega University, Nekemte 395, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, School of Natural Science, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
9
|
Maduraimuthu V, Ranishree JK, Gopalakrishnan RM, Ayyadurai B, Raja R, Heese K. Antioxidant Activities of Photoinduced Phycogenic Silver Nanoparticles and Their Potential Applications. Antioxidants (Basel) 2023; 12:1298. [PMID: 37372028 DOI: 10.3390/antiox12061298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
While various methods exist for synthesizing silver nanoparticles (AgNPs), green synthesis has emerged as a promising approach due to its affordability, sustainability, and suitability for biomedical purposes. However, green synthesis is time-consuming, necessitating the development of efficient and cost-effective techniques to minimize reaction time. Consequently, researchers have turned their attention to photo-driven processes. In this study, we present the photoinduced bioreduction of silver nitrate (AgNO3) to AgNPs using an aqueous extract of Ulva lactuca, an edible green seaweed. The phytochemicals found in the seaweed functioned as both reducing and capping agents, while light served as a catalyst for biosynthesis. We explored the effects of different light intensities and wavelengths, the initial pH of the reaction mixture, and the exposure time on the biosynthesis of AgNPs. Confirmation of AgNP formation was achieved through the observation of a surface plasmon resonance band at 428 nm using an ultraviolet-visible (UV-vis) spectrophotometer. Fourier transform infrared spectroscopy (FTIR) revealed the presence of algae-derived phytochemicals bound to the outer surface of the synthesized AgNPs. Additionally, high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) images demonstrated that the NPs possessed a nearly spherical shape, ranging in size from 5 nm to 40 nm. The crystalline nature of the NPs was confirmed by selected area electron diffraction (SAED) and X-ray diffraction (XRD), with Bragg's diffraction pattern revealing peaks at 2θ = 38°, 44°, 64°, and 77°, corresponding to the planes of silver 111, 200, 220, and 311 in the face-centered cubic crystal lattice of metallic silver. Energy-dispersive X-ray spectroscopy (EDX) results exhibited a prominent peak at 3 keV, indicating an Ag elemental configuration. The highly negative zeta potential values provided further confirmation of the stability of AgNPs. Moreover, the reduction kinetics observed via UV-vis spectrophotometry demonstrated superior photocatalytic activity in the degradation of hazardous pollutant dyes, such as rhodamine B, methylene orange, Congo red, acridine orange, and Coomassie brilliant blue G-250. Consequently, our biosynthesized AgNPs hold great potential for various biomedical redox reaction applications.
Collapse
Affiliation(s)
- Vijayakumar Maduraimuthu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | | | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Brabakaran Ayyadurai
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Rathinam Raja
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chennai 600044, Tamil Nadu, India
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
10
|
Ahmad I, Abbasi A, El Bahy ZM, Ikram S. Synergistic effect of silver NPs immobilized on Fe 3O 4@L-proline magnetic nanocomposite toward the photocatalytic degradation of Victoria blue and reduction of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27837-x. [PMID: 37278899 DOI: 10.1007/s11356-023-27837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
The surface of magnetite (Fe3O4) nanoparticles was subject to modification through the incorporation of L-proline (LP) by simple co-precipitation method in which silver nanoparticles were deposited by in situ method, thereby yielding the Fe3O4@LP-Ag nanocatalyst. The fabricated nanocatalyst was characterized using an array of techniques including Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), Brunauer-Emmett-Teller (BET), and UV-Vis spectroscopy. The results evince that the immobilization of LP on the Fe3O4 magnetic support facilitated the dispersion and stabilization of Ag NPs. The SPION@LP-Ag nanophotocatalyst exhibited exceptional catalytic efficiency facilitating the reduction of MO, MB, p-NP, p-NA, NB, and CR in the presence of NaBH4. The rate constants obtained from the pseudo-first-order equation were 0.78, 0.41, 0.34, 0.27, 0.45, 0.44, and 0.34 min-1 for CR, p-NP, NB, MB, MO, and p-NA, respectively. Additionally, the Langmuir-Hinshelwood model was deemed the most probable mechanism for catalytic reduction. The novelty of this study lies in the use of L-proline immobilized on Fe3O4 MNPs as a stabilizing agent for the in-situ deposition of silver nanoparticles, resulting in the synthesis of Fe3O4@LP-Ag nanocatalyst. This nanocatalyst exhibits high catalytic efficacy for the reduction of multiple organic pollutants and azo dyes, which can be attributed to the synergistic effects between the magnetic support and the catalytic activity of the silver nanoparticles. The easy recyclability and low cost of the Fe3O4@LP-Ag nanocatalyst further enhance its potential application in environmental remediation.
Collapse
Affiliation(s)
- Iftkhar Ahmad
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi, 110025, India
| | - Arshiya Abbasi
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi, 110025, India
| | - Zeinhom M El Bahy
- Department of Chemistry, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Saiqa Ikram
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi, 110025, India.
| |
Collapse
|
11
|
Shukla S, Mehata MS. Selective picomolar detection of carcinogenic chromium ions using silver nanoparticles capped via biomolecules from flowers of Plumeria obtusa. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Alamier WM, D Y Oteef M, Bakry AM, Hasan N, Ismail KS, Awad FS. Green Synthesis of Silver Nanoparticles Using Acacia ehrenbergiana Plant Cortex Extract for Efficient Removal of Rhodamine B Cationic Dye from Wastewater and the Evaluation of Antimicrobial Activity. ACS OMEGA 2023; 8:18901-18914. [PMID: 37273622 PMCID: PMC10233848 DOI: 10.1021/acsomega.3c01292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (Ag-NPs) exhibit vast potential in numerous applications, such as wastewater treatment and catalysis. In this study, we report the green synthesis of Ag-NPs using Acacia ehrenbergiana plant cortex extract to reduce cationic Rhodamine B (RhB) dye and for antibacterial and antifungal applications. The green synthesis of Ag-NPs involves three main phases: activation, growth, and termination. The shape and morphologies of the prepared Ag-NPs were studied through different analytical techniques. The results confirmed the successful preparation of Ag-NPs with a particle size distribution ranging from 1 to 40 nm. The Ag-NPs were used as a heterogeneous catalyst to reduce RhB dye from aqueous solutions in the presence of sodium borohydride (NaBH4). The results showed that 96% of catalytic reduction can be accomplished within 32 min using 20 μL of 0.05% Ag-NPs aqueous suspension in 100 μL of 1 mM RhB solution, 2 mL of deionized water, and 1 mL of 10 mM NaBH4 solution. The results followed a zero-order chemical kinetic (R2 = 0.98) with reaction rate constant k as 0.059 mol L-1 s-1. Furthermore, the Ag-NPs were used as antibacterial and antifungal agents against 16 Gram-positive and Gram-negative bacteria as well as 1 fungus. The green synthesis of Ag-NPs is environmentally friendly and inexpensive, as well as yields highly stabilized nanoparticles by phytochemicals. The substantial results of catalytic reductions and antimicrobial activity reflect the novelty of the prepared Ag-NPs. These nanoparticles entrench the dye and effectively remove the microorganisms from polluted water.
Collapse
Affiliation(s)
- Waleed M. Alamier
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohammed D Y Oteef
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Ayyob M. Bakry
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Nazim Hasan
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Khatib Sayeed Ismail
- Department
of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Anjum F, Shaban M, Ismail M, Gul S, Bakhsh EM, Khan MA, Sharafat U, Khan SB, Khan MI. Novel Synthesis of CuO/GO Nanocomposites and Their Photocatalytic Potential in the Degradation of Hazardous Industrial Effluents. ACS OMEGA 2023; 8:17667-17681. [PMID: 37251181 PMCID: PMC10210201 DOI: 10.1021/acsomega.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Photocatalytic degradation of dyes has been the subject of extensive study due to its low cost, eco-friendly operation, and absence of secondary pollutants. Copper oxide/graphene oxide (CuO/GO) nanocomposites are emerging as a new class of fascinating materials due to their low cost, nontoxicity, and distinctive properties such as a narrow band gap and good sunlight absorbency. In this study, copper oxide (CuO), graphene oxide (GO), and CuO/GO were synthesized successfully. X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectroscopy confirm the oxidation and production of GO from the graphene of lead pencil. According to the morphological analysis of nanocomposites, CuO nanoparticles of sizes ≤20 nm on the GO sheets were evenly adorned and distributed. Nanocomposites of different CuO:GO ratios (1:1 up to 5:1) were applied for the photocatalytic degradation of methyl red (MR). CuO:GO(1:1) nanocomposites achieved 84% MR dye removal, while CuO:GO(5:1) nanocomposites achieved the highest value (95.48%). The thermodynamic parameters of the reaction for CuO:GO(5:1) were evaluated using the Van't Hoff equation and the activation energy was found to be 44.186 kJ/mol. The reusability test of the nanocomposites showed high stability even after seven cycles. CuO/GO catalysts can be used in the photodegradation of organic pollutants in wastewater at room temperature due to their excellent properties, simple synthesis process, and low cost.
Collapse
Affiliation(s)
- Farhana Anjum
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed Shaban
- Physics
Department, Faculty of Science, Islamic
University of Madinah, P. O. Box: 170, Al Madinah Al Monawara 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef 62514, Egypt
| | - Muhammad Ismail
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Saima Gul
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Esraa M. Bakhsh
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box: 80203, Jeddah 21589, Saudi Arabia
| | - Murad Ali Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Uzma Sharafat
- School
of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, Newfoundland A2H 5G4, Canada
| | - Sher Bahadar Khan
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box: 80203, Jeddah 21589, Saudi Arabia
| | - M. I. Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
14
|
Beiranvand M, Farhadi S, Mohammadi-Gholami A. Ag NPs decorated on the magnetic rod-like hydroxyapatite/MIL-101(Fe) nanocomposite as an efficient catalyst for the reduction of some nitroaromatic compounds and as an effective antimicrobial agent. RSC Adv 2023; 13:13683-13697. [PMID: 37152578 PMCID: PMC10157360 DOI: 10.1039/d3ra01180a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
A rod-like magnetic nanocomposite was successfully synthesized in this work by loading Ag and Fe3O4 nanoparticles onto the surface of the hydroxyapatite/MIL-101(Fe) metal-organic framework. Various techniques were used to investigate the crystalline nature, size, morphology, and magnetic and structural properties of the HAP/MIL-101(Fe)/Ag/Fe3O4 nanocomposite, including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), BET surface area measurements, and zeta potential analysis. The results indicate that the nanocomposite sample is composed of Ag and Fe3O4 nanoparticles adhered to rod-like hydroxyapatite/MIL-101(Fe). The catalytic and antibacterial abilities of the as-prepared HAP/MIL-101(Fe)/Ag/Fe3O4 were studied. This nanocomposite was utilized as a heterogeneous catalyst for the catalytic reduction of toxic pollutants, including 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), 2,4-dinitrophenol (2,4-NP), 4-nitroaniline (4-NA), and 2-nitroaniline (2-NA) by NaBH4 in water and at room temperature. These compounds were converted to their amine derivatives within 8-18 min with rate constant values equal to 0.2, 0.3, 0.33, and 0.47 min-1, respectively. This quaternary magnetic catalyst can be easily separated from the reaction medium using an external magnetic field and reused. The synthesized nanocomposite maintained its efficiency in reducing nitroaromatic compounds after 5 runs, showing the high stability of the catalyst. Besides, the antibacterial activity of the nanocomposite against Gram-negative and Gram-positive bacteria was evaluated using the disk diffusion method. The inhibition zone diameter of the nanocomposite against Staphylococcus aureus, Staphylococcus saprophyticus, and Escherichia coli was measured to be 17, 14, and 12 mm, respectively.
Collapse
Affiliation(s)
- Maryam Beiranvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | | |
Collapse
|
15
|
Al-Otibi FO, Yassin MT, Al-Askar AA, Maniah K. Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens. Microorganisms 2023; 11:microorganisms11040945. [PMID: 37110368 PMCID: PMC10144991 DOI: 10.3390/microorganisms11040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings.
Collapse
Affiliation(s)
- Fatimah O. Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Suresh R, Karthikeyan NS, Gnanasekaran L, Rajendran S, Soto-Moscoso M. Facile synthesis of CuO/g-C 3N 4 nanolayer composites with superior catalytic reductive degradation behavior. CHEMOSPHERE 2023; 315:137711. [PMID: 36608894 DOI: 10.1016/j.chemosphere.2022.137711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The cupric oxide (CuO) loaded graphitic carbon nitride (g-C3N4) nanocomposites (CuO/g-C3N4) were prepared by a facile calcination method. The formation of monoclinic CuO nanocrystals along with g-C3N4 was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analysis. X-ray photoelectron spectral (XPS) analysis further confirms the formation of CuO/g-C3N4. Distribution of CuO stone-like crystalline nanoparticles on g-C3N4 nanosheets was observed by transmission electron microscopic images. The influence of CuO loading on the optical property of g-C3N4 was determined by ultraviolet (UV)-visible absorption and photoluminescence (PL) spectral analysis. Band gap was decreased from 2.7 to 2.3 eV by the addition of CuO nanoparticles. The catalytic performance of the synthesized samples in 4-nitrophenol (4-NP) and methyl orange (MO) reduction was evaluated. The 5 wt% CuO/g-C3N4 showed 99.5% (7 min) and 99.7% (4 min) reduction efficiency for 4-NP and MO respectively. The 5 wt% CuO/g-C3N4 could become a potential catalyst in the chemical treatment of organic pollutants.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - N S Karthikeyan
- Department of Chemistry, Easwari Engineering College (Autonomous), Chennai, 600089, Tamil Nadu, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | | |
Collapse
|
17
|
Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020907. [PMID: 36677963 PMCID: PMC9860806 DOI: 10.3390/molecules28020907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Herein, we report the green synthesis of flower-like carrageenan-silver nanoparticles (c-AgNPs) through a facile hydrothermal reaction at 90 °C for 2 h. The reduction of silver nitrate (AgNO3) to c-AgNPs was evident by the colour change of the solution from colourless to dark brown and further confirmed by a UV-Vis surface plasmon resonance (SPR) peak at ~420 nm. The FTIR spectra showed that the abundance of functional groups present in the carrageenan were responsible for the reduction and stabilisation of the c-AgNPs. The XRD pattern confirmed the crystalline nature and face-centred cubic structure of the c-AgNPs, while the EDX analysis showed the presence of a high composition of elemental silver (85.87 wt%). Interestingly, the morphological characterisations by SEM and FE-SEM revealed the formation of flower-like c-AgNPs composed of intercrossed and random lamellar petals of approximately 50 nm in thickness. The growth mechanism of flower-like c-AgNPs were elucidated based on the TEM and AFM analyses. The c-AgNPs displayed promising antibacterial properties against E. coli and S. aureus, with zones of inhibition ranging from 8.0 ± 0.0 to 11.7 ± 0.6 mm and 7.3 ± 0.6 to 9.7 ± 0.6 mm, respectively, as the concentration of c-AgNPs increased from 0.1 to 4 mg/mL.
Collapse
|
18
|
Synergistic visible light plasmonic photocatalysis of bi-metallic Gold-Palladium nanoparticles supported on graphene. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
19
|
Ngcongco K, Krishna SBN, Pillay K. Biogenic metallic nanoparticles as enzyme mimicking agents. Front Chem 2023; 11:1107619. [PMID: 36959878 PMCID: PMC10027806 DOI: 10.3389/fchem.2023.1107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The use of biological systems such as plants, bacteria, and fungi for the synthesis of nanomaterials has emerged to fill the gap in the development of sustainable methods that are non-toxic, pollution-free, environmentally friendly, and economical for synthesizing nanomaterials with potential in biomedicine, biotechnology, environmental science, and engineering. Current research focuses on understanding the characteristics of biogenic nanoparticles as these will form the basis for the biosynthesis of nanoparticles with multiple functions due to the physicochemical properties they possess. This review briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic nanoparticles, the cytotoxic effects of nanoparticles due to their physicochemical properties and the use of capping agents, molecules acting as reducing and stability agents and which aid to alleviate toxicity. The review also summarizes recent green synthetic strategies for metallic nanoparticles.
Collapse
Affiliation(s)
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Karen Pillay
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Karen Pillay,
| |
Collapse
|
20
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
21
|
Zhu X, Liu H, Wu Y, Ye J, Li Y, Liu Z. Preparation and catalytic properties of polydopamine-modified polyacrylonitrile fibers functionalized with silver nanoparticles. RSC Adv 2022; 12:25906-25911. [PMID: 36199616 PMCID: PMC9465701 DOI: 10.1039/d2ra03845e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Fiber-supported catalysts have attracted much attention due to their large specific surface area, high catalytic activity, and good recyclability. Functional polyacrylonitrile fibers were prepared by immersion of polyacrylonitrile fibers at room temperature in an alkaline dopamine (pH = 8.5) aqueous solution which can undergo self-polymerization and reduce silver ions to silver nanoparticles with mild reducibility and adsorption. The surface of the polyacrylonitrile fiber (PAN) was wrapped with a layer of polydopamine (PDA), and silver nanoparticles (Ag NPs) were adsorbed on the surface of PDA, forming an efficient fiber catalyst. The morphology and chemical composition of the catalyst material were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) patterns, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction reaction of 4-nitrophenol using sodium borohydride (NaBH4) at 35 °C with a material molar ratio of 1 : 10 and a fiber loaded catalysis dosage of 40 mg. The liquid phase yield can reach 98% in 30 minutes and can be reused after washing with ethanol. Moreover, the composite material exhibited a good stability up to 10 cycles without a significant loss of its catalytic activity. The results show that the catalyst is easy to recover from the reaction system and has maintained good stability and catalytic activity after many cycles. Via the help of polydopamine, polyacrylonitrile fiber catalysts functionalized with silver nanoparticles were prepared and employed for the reduction reaction of 4-nitrophenol to 4-aminophenol, with a yield of 98% in 30 minutes, and can be reused for up to 10 cycles.![]()
Collapse
Affiliation(s)
- Xiaoyu Zhu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Huiying Liu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Yingying Wu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Jing Ye
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Yacheng Li
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Zhendong Liu
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| |
Collapse
|