1
|
Jurković M, Radić Stojković M, Božinović K, Nestić D, Majhen D, Delgado-Pinar E, Inclán M, García-España E, Piantanida I. Novel Tripodal Polyamine Tris-Pyrene: DNA/RNA Binding and Photodynamic Antiproliferative Activity. Pharmaceutics 2023; 15:2197. [PMID: 37765167 PMCID: PMC10536304 DOI: 10.3390/pharmaceutics15092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
A novel tri-pyrene polyamine (TAL3PYR) bearing net five positive charges at biorelevant conditions revealed strong intramolecular interactions in aqueous medium between pyrenes, characterised by pronounced excimer fluorescence. A novel compound revealed strong binding to ds-DNA and ds-RNA, along with pronounced thermal stabilisation of DNA/RNA and extensive changes in DNA/RNA structure, as evidenced by circular dichroism. New dye caused pronounced ds-DNA or ds-RNA condensation, which was attributed to a combination of electrostatic interactions between 5+ charge of dye and negatively charged polynucleotide backbone, accompanied by aromatic and hydrophobic interactions of pyrenes within polynucleotide grooves. New dye also showed intriguing antiproliferative activity, strongly enhanced upon photo-induced activation of pyrenes, and is thus a promising lead compound for theranostic applications on ds-RNA or ds-DNA targets, applicable as a new strategy in cancer and gene therapy.
Collapse
Affiliation(s)
- Marta Jurković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Estefanía Delgado-Pinar
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
| | - Mario Inclán
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
- Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| |
Collapse
|
2
|
Kulkarni B, Qutub S, Khashab NM, Hadjichristidis N. Rhodamine B-Conjugated Fluorescent Block Copolymer Micelles for Efficient Chlorambucil Delivery and Intracellular Imaging. ACS OMEGA 2023; 8:22698-22707. [PMID: 37396240 PMCID: PMC10308396 DOI: 10.1021/acsomega.3c01514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023]
Abstract
The clinical development of the anticancer drug chlorambucil (CHL) is limited by its low solubility in water, poor bioavailability, and off-target toxicity. Besides, another constraint for monitoring intracellular drug delivery is the non-fluorescent nature of CHL. Nanocarriers based on block copolymers of poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO) and poly(ε-caprolactone) (PCL) are an elegant choice for drug delivery applications due to their high biocompatibility and inherent biodegradability properties. Here, we have designed and prepared block copolymer micelles (BCM) containing CHL (BCM-CHL) from a block copolymer having fluorescent probe rhodamine B (RhB) end-groups to achieve efficient drug delivery and intracellular imaging. For this purpose, the previously reported tetraphenylethylene (TPE)-containing poly(ethylene oxide)-b-poly(ε-caprolactone) [TPE-(PEO-b-PCL)2] triblock copolymer was conjugated with RhB by a feasible and effective post-polymerization modification method. In addition, the block copolymer was obtained by a facile and efficient synthetic strategy of one-pot block copolymerization. The amphiphilicity of the resulting block copolymer TPE-(PEO-b-PCL-RhB)2 led to the spontaneous formation of micelles (BCM) in aqueous media and successful encapsulation of the hydrophobic anticancer drug CHL (CHL-BCM). Dynamic light scattering and transmission electron microscopy analyses of BCM and CHL-BCM revealed a favorable size (10-100 nm) for passive targeting of tumor tissues via the enhanced permeability and retention effect. The fluorescence emission spectrum (λex 315 nm) of BCM demonstrated Förster resonance energy transfer between TPE aggregates (donor) and RhB (acceptor). On the other hand, CHL-BCM revealed TPE monomer emission, which may be attributed to the π-π stacking interaction between TPE and CHL molecules. The in vitro drug release profile showed that CHL-BCM exhibits drug release in a sustained manner over 48 h. A cytotoxicity study proved the biocompatibility of BCM, while CHL-BCM revealed significant toxicity to cervical (HeLa) cancer cells. The inherent fluorescence of RhB in the block copolymer offered an opportunity to directly monitor the cellular uptake of the micelles by confocal laser scanning microscopy imaging. These results demonstrate the potential of these block copolymers as drug nanocarriers and as bioimaging probes for theranostic applications.
Collapse
Affiliation(s)
- Bhagyashree Kulkarni
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Somayah Qutub
- Smart
Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
3
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Para-N-Methylpyridinium Pyrenes: Impact of Positive Charge on ds-DNA/RNA and Protein Recognition, Photo-Induced Bioactivity, and Intracellular Localisation. Pharmaceutics 2022; 14:pharmaceutics14112499. [PMID: 36432689 PMCID: PMC9696974 DOI: 10.3390/pharmaceutics14112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
The 2- and 2,7- substituted para-N-methylpyridinium pyrene cations show high-affinity intercalation into ds-DNAs, whereas their non-methylated analogues interacted with ds-DNA/RNA only in the protonated form (at pH 5), but not at physiological conditions (pH 7). The fluorescence from non-methylated analogues was strongly dependent on the protonation of the pyridines; consequently, they act as fluorescence ratiometric probes for simultaneous detection of both ds-DNA and BSA at pH 5, relying on the ratio between intensities at 420 nm (BSA specific) and 520 nm (DNA specific), whereby exclusively ds-DNA sensing could be switched-off by adjustment to pH 7. Only methylated, permanently charged pyrenes show photoinduced cleavage of circular DNA, attributed to pyrene-mediated irradiation-induced production of singlet oxygen. Consequently, the moderate toxicity of these cations against human cell lines is strongly increased upon irradiation. Detailed studies revealed increased total ROS production in cells treated by the compounds studied, accompanied by cell swelling and augmentation of cellular complexity. The most photo-active 2-para-N-methylpyridinium pyrene showed significant localization at mitochondria, its photo-bioactivity likely due to mitochondrial DNA damage. Other derivatives were mostly non-selectively distributed between various cytoplasmic organelles, thus being less photoactive.
Collapse
|
5
|
Krošl I, Košćak M, Ribičić K, Žinić B, Majhen D, Božinović K, Piantanida I. Impact of the Histidine-Triazole and Tryptophan-Pyrene Exchange in the WHW Peptide: Cu(II) Binding, DNA/RNA Interactions and Bioactivity. Int J Mol Sci 2022; 23:ijms23137006. [PMID: 35806009 PMCID: PMC9266797 DOI: 10.3390/ijms23137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
In three novel peptidoids based on the tryptophan—histidine—tryptophan (WHW) peptide, the central histidine was replaced by Ala-(triazole), and two derivatives also had one tryptophan replaced with pyrene-alkyls of different lengths and flexibility. Pyrene analogues show strong fluorescence at 480–500 nm, attributed to intramolecular exciplex formation with tryptophan. All three peptidoids bind Cu2+ cation in water with strong affinity, with Trp- Ala-(triazole)-Trp binding comparably to the parent WHW, and the pyrene analogues even stronger, demonstrating that replacement of histidine with triazole in peptides does not hamper Cu2+ coordination. The studied peptidoids strongly bind to ds-DNA and ds-RNA, whereby their complexes with Cu2+ exhibit distinctively different interactions in comparison to metal-free analogues, particularly in the stabilization of ds-DNA against thermal denaturation. The pyrene peptidoids efficiently enter living cells with no apparent cytotoxic effect, whereby their red-shifted emission compared to the parent pyrene allows intracellular confocal microscopy imaging, showing accumulation in cytoplasmic organelles. However, irradiation with 350 nm light resulted in evident antiproliferative effect on cells treated with micromolar concentrations of the pyrene analogues, presumably attributed to pyrene-induced production of singlet oxygen and consecutive cellular damage.
Collapse
Affiliation(s)
- Ivona Krošl
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Marta Košćak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Karla Ribičić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Biserka Žinić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (D.M.); (K.B.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (D.M.); (K.B.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
- Correspondence: ; Tel.: +385-1-4571-326
| |
Collapse
|
6
|
Bis-Pyrene Photo-Switch Open- and Closed-Form Differently Bind to ds-DNA, ds-RNA and Serum Albumin and Reveal Light-Induced Bioactivity. Int J Mol Sci 2021; 22:ijms22094916. [PMID: 34066402 PMCID: PMC8125568 DOI: 10.3390/ijms22094916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Newly designed and synthesized diarylethene (DAE) derivatives with aliphatic amine sidearms and one with two pyrenes, revealed excellent photo-switching property of central DAE core in MeOH and water. The only exception was bis-pyrene analogue, its DAE core very readily photochemically closed, but reversible opening completely hampered by aromatic stacking interaction of pyrene(s) with cyclic DAE. In this process, pyrene fluorescence showed to be a reliable monitoring method, an open form characterized by strong emission at 480 nm (typical for pyrene-aggregate), while closed form emitted weakly at 400 nm (typical for pyrene-DAE quenching). Only open DAE-bis-pyrene form interacted measurably with ds-DNA/RNA by flexible insertion in polynucleotide grooves, while self-stacked closed form did not bind to DNA/RNA. For the same steric reasons, flexible open DAE-bis-pyrene form was bound to at least three different binding sites at bovine serum albumin (BSA), while rigid, self-stacked closed form interacted dominantly with only one BSA site. Preliminary screening of antiproliferative activity against human lung carcinoma cell line A549 revealed that all DAE-derivatives are non-toxic. However, bis-pyrene analogue efficiently entered cells and located in the cytoplasm, whereby irradiation by light (315–400 nm) resulted in a strong, photo-induced cytotoxic effect, typical for pyrene-related singlet oxygen species production.
Collapse
|
7
|
Kumar R, Mukherjee S, Lakshminarasimhan N, Shunmugam R. Unique polymer gel with magnetizable cobalt domains via photoinduced thiol-alkene hydrothiolation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Mukherjee S, Patra D, Dash TK, Chakraborty I, Bhattacharyya R, Senapati S, Shunmugam R. Design and synthesis of a dual imageable theranostic platinum prodrug for efficient cancer therapy. Polym Chem 2019. [DOI: 10.1039/c8py01535j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based chemotherapeutic agents are considered first-line treatments for various cancers but their application is limited by the lack of site specificity and severe side effects.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Diptendu Patra
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Tapan K. Dash
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Ipsita Chakraborty
- Department of Physical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Rangeet Bhattacharyya
- Department of Physical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory
- Department of Translational Research
- Institute of Life Sciences
- Bhubaneswar
- India
| | - Raja Shunmugam
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
9
|
Saha B, Choudhury N, Seal S, Ruidas B, De P. Aromatic Nitrogen Mustard-Based Autofluorescent Amphiphilic Brush Copolymer as pH-Responsive Drug Delivery Vehicle. Biomacromolecules 2018; 20:546-557. [PMID: 30521313 DOI: 10.1021/acs.biomac.8b01468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of clinically approved nonfluorescent drugs is facing challenges because it is difficult to monitor the intracellular drug delivery without incorporating any integrated fluorescence moiety into the drug carrier. The present investigation reports the synthesis of a pH-responsive autofluorescent polymeric nanoscaffold for the administration of nonfluorescent aromatic nitrogen mustard chlorambucil (CBL) drug into the cancer cells. Copolymerization of poly(ethylene glycol) (PEG) appended styrene and CBL conjugated N-substituted maleimide monomers enables the formation of well-defined luminescent alternating copolymer. These amphiphilic brush copolymers self-organized in aqueous medium into 25-68 nm nanoparticles, where the CBL drug is enclosed into the core of the self-assembled nanoparticles. In vitro studies revealed ∼70% drug was retained under physiological conditions at pH 7.4 and 37 °C. At endolysosomal pH 5.0, 90% of the CBL was released by the pH-induced cleavage of the aliphatic ester linkages connecting CBL to the maleimide unit. Although the nascent nanoparticle (without drug conjugation) is nontoxic, the drug conjugated nanoparticle showed higher toxicity and superior cell killing capability in cervical cancer (HeLa) cells rather than in normal cells. Interestingly, the copolymer without any conventional chromophore exhibited photoluminescence under UV light irradiation due to the presence of "through-space" π-π interaction between the C═O group of maleimide unit and the adjacent benzene ring of the styrenic monomer. This property helped us intracellular tracking of CBL conjugated autofluorescent nanocarriers through fluorescence microscope imaging. Finally, the 4-(4-nitrobenzyl)pyridine (NBP) colorimetric assay was executed to examine the ability of CBL-based polymeric nanomaterials toward alkylation of DNA.
Collapse
Affiliation(s)
| | | | | | - Bhuban Ruidas
- Centre for Healthcare Science and Technology , Indian Institute of Engineering Science and Technology , Shibpur - 711103 , West Bengal , India
| | | |
Collapse
|
10
|
Norris MD, Seidel K, Kirschning A. Externally Induced Drug Release Systems with Magnetic Nanoparticle Carriers: An Emerging Field in Nanomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew D. Norris
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| | - Katja Seidel
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| | - Andreas Kirschning
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
11
|
Preparation of Layer-by-Layer Films with Remarkably Different pH-Stability and Release Properties Using Dual Responsive Block Copolymer Micelles. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Hu X, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Rational Design of an Amphiphilic Chlorambucil Prodrug Realizing Self-Assembled Micelles for Efficient Anticancer Therapy. ACS Biomater Sci Eng 2018; 4:973-980. [PMID: 33418779 DOI: 10.1021/acsbiomaterials.7b00892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of anticancer drug chlorambucil (CLB) in chemotherapy is severely restricted by its insolubility, lability, and toxic side effects; therefore, it is challenging to realize a highly efficient anticancer therapy of chlorambucil. To solve the above drawbacks encountered by chlorambucil, herein we proposed an amphiphilic chlorambucil prodrug-based self-assembled micelle strategy to realize the highly efficient anticancer therapy of chlorambucil. 1,6-Hexanediamine hydrochloride (HDH) serving as the hydrophilic segment was covalently bound to hydrophobic CLB to prepare an amphiphilic prodrug CLB-HDH which could self-assemble into micelles in aqueous solution. These micelles can passively target tumor tissues via the enhanced permeability and retention (EPR) effect, leading to enhanced cellular internalization. Both the cytotoxicity assay in vitro and anticancer study in vivo confirmed the excellent therapeutic activity of CLB-HDH micelles in comparison with free chlorambucil. Moreover, the hemolysis examination and histological analysis demonstrated the designed CLB-HDH micelles are safe in drug delivery. Therefore, our designed amphiphilic prodrug CLB-HDH micelles bring new opportunity for chlorambucil clinical application to combat cancers.
Collapse
Affiliation(s)
- Xu Hu
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, P. R. China
| | - Ruiling Liu
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, P. R. China
| | - Di Zhang
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, P. R. China
| | - Jing Zhang
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, P. R. China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong Province 250100, P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, P. R. China
| |
Collapse
|
13
|
Miksa B, Sierant M, Skorupska E, Michalski A, Kazmierski S, Steinke U, Rozanski A, Uznanski P. Chlorambucil labelled with the phenosafranin scaffold as a new chemotherapeutic for imaging and cancer treatment. Colloids Surf B Biointerfaces 2017; 159:820-828. [DOI: 10.1016/j.colsurfb.2017.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
|
14
|
|
15
|
Mukherjee S, Dinda H, Chakraborty I, Bhattacharyya R, Das Sarma J, Shunmugam R. Engineering Camptothecin-Derived Norbornene Polymers for Theranostic Application. ACS OMEGA 2017; 2:2848-2857. [PMID: 30023678 PMCID: PMC6044807 DOI: 10.1021/acsomega.7b00221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/08/2017] [Indexed: 06/01/2023]
Abstract
A multifunctional stimuli-responsive nanotheranostic agent provides huge benefits in nanomedicine by combining both the diagnostic agent and the drug molecule in a single system. This nanosystem is capable of doing multiple tasks, for example, diagnosis, drug delivery, and monitoring the therapeutic response. Hence, theranostic agents are expected to play a significant role in personalized medicine. Herein, a new class of nanotheranostic agents, Pnr-Cbt-Cpt-Pg-Bn, is proposed for the effective delivery of camptothecin. This new class of polymer has been functionalized with a superparamagnetic norbornene cobalt unit for its use in magnetic resonance imaging (MRI). The NMR one-dimensional image confirms the MRI capability of this nanotheranostic agent. This is further modified with the poly(ethylene glycol)-biotin moiety for biocompatibility and site-specificity. The uniqueness of the design is confirmed by an in vitro study where a greater uptake of the nanotheranostic agent is observed when compared with free drugs. Hence, this new class of copolymer shows improved potential as nanotheranostic agents in drug delivery.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Polymer
Research Centre, Department of Chemical Sciences, Department of Physical
Sciences, and Department of Biological Sciences, Indian
Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
| | - Himadri Dinda
- Polymer
Research Centre, Department of Chemical Sciences, Department of Physical
Sciences, and Department of Biological Sciences, Indian
Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
| | - Ipsita Chakraborty
- Polymer
Research Centre, Department of Chemical Sciences, Department of Physical
Sciences, and Department of Biological Sciences, Indian
Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
| | - Rangeet Bhattacharyya
- Polymer
Research Centre, Department of Chemical Sciences, Department of Physical
Sciences, and Department of Biological Sciences, Indian
Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
| | - Jayasri Das Sarma
- Polymer
Research Centre, Department of Chemical Sciences, Department of Physical
Sciences, and Department of Biological Sciences, Indian
Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
| | - Raja Shunmugam
- Polymer
Research Centre, Department of Chemical Sciences, Department of Physical
Sciences, and Department of Biological Sciences, Indian
Institute of Science Education and Research, Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
16
|
Ganivada MN, Kumar P, Babu A, Das Sarma J, Shunmugam R. Engineering a New Class of Multiarm Homopolymer for Sustainable Drug Delivery. ACS Biomater Sci Eng 2017; 3:903-908. [DOI: 10.1021/acsbiomaterials.7b00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mutyala Naidu Ganivada
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Pawan Kumar
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Ajin Babu
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jayasri Das Sarma
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Raja Shunmugam
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|