1
|
van der Horst D, Carter-Timofte ME, Danneels A, Silva da Costa L, Kurmasheva N, Thielke AL, Hansen AL, Chorošajev V, Holm CK, Belouzard S, de Weber I, Beny C, Olagnier D. Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses. Antiviral Res 2024; 231:106012. [PMID: 39332537 DOI: 10.1016/j.antiviral.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for in vitro testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with in vitro testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | - Naziia Kurmasheva
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Anne L Thielke
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | | | | | - Christian K Holm
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | | | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark.
| |
Collapse
|
2
|
Haynes LM, Holding ML, DiGiovanni H, Siemieniak D, Ginsburg D. High-throughput amino acid-level characterization of the interactions of plasminogen activator inhibitor-1 with variably divergent proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612699. [PMID: 39345533 PMCID: PMC11429915 DOI: 10.1101/2024.09.16.612699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
While members of large paralogous protein families share structural features, their functional niches often diverge significantly. Serine protease inhibitors (SERPINs), whose members typically function as covalent inhibitors of serine proteases, are one such family. Plasminogen activator inhibitor-1 (PAI-1) is a prototypic SERPIN, which canonically inhibits tissue-and urokinase-type plasminogen activators (tPA and uPA) to regulate fibrinolysis. PAI-1 has been shown to also inhibit other serine proteases, including coagulation factor XIIa (FXIIa) and transmembrane serine protease 2 (TMPRSS2). The structural determinants of PAI-1 inhibitory function toward these non-canonical protease targets, and the biological significance of these functions, are unknown. We applied deep mutational scanning (DMS) to assess the effects of ∼80% of all possible single amino acid substitutions in PAI-1 on its ability to inhibit three putative serine protease targets (uPA, FXIIa, and TMPRSS2). Selection with each target protease generated a unique PAI-1 mutational landscape, with the determinants of protease specificity distributed throughout PAI-1's primary sequence. Next, we conducted a comparative analysis of extant orthologous sequences, demonstrating that key residues modulating PAI-1 inhibition of uPA and FXIIa, but not TMPRSS2, are maintained by purifying selection. PAI-1's activity toward FXIIa may reflect how protease evolutionary relationships predict SERPIN functional divergence, which we support via a cophylogenetic analysis of all secreted SERPINs and their cognate serine proteases. This work provides insight into the functional diversification of SERPINs and lays the framework for extending these studies to other proteases and their regulators.
Collapse
|
3
|
Oliveira EH, Monteleone-Cassiano AC, Tavares L, Santos JC, Lima TM, Gomes GF, Tanaka PP, Monteiro CJ, Munuera M, Batah SS, Fabro AT, Faça VM, Masson AP, Donadi EA, Dametto M, Bonacin R, Martins RB, Neto EA, daSilva LLP, Cunha TM, Passos GA. A mimetic peptide of ACE2 protects against SARS-CoV-2 infection and decreases pulmonary inflammation related to COVID-19. Antiviral Res 2024; 229:105968. [PMID: 39004311 DOI: 10.1016/j.antiviral.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jadson C Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thais M Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cintia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Munuera
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Ronaldo B Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eurico Arruda Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luis Lamberti P daSilva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Boon ACM, Bricker TL, Fritch EJ, Leist SR, Gully K, Baric RS, Graham RL, Troan BV, Mahoney M, Janetka JW. Efficacy of host cell serine protease inhibitor MM3122 against SARS-CoV-2 for treatment and prevention of COVID-19. J Virol 2024; 98:e0190323. [PMID: 38593045 PMCID: PMC11092322 DOI: 10.1128/jvi.01903-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
Collapse
Affiliation(s)
- Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kendra Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel L. Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
5
|
Zhou R, He L, Zhang J, Zhang X, Li Y, Zhan X, Tao L. Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin. Nat Commun 2024; 15:1976. [PMID: 38438396 PMCID: PMC10912200 DOI: 10.1038/s41467-024-46394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclostridium sordellii, which is a non-negligible threat to women undergoing childbirth or abortions. Recently, Transmembrane Serine Protease 2 (TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This receptor binding mode is unique among LCTs. Five top surface loops of TMPRSS2SPD, which also determine the protease substrate specificity, constitute the structural determinants recognized by TcsH. The binding of TcsH inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease manifestations remains unclear. We further show that mutations selectively disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium of the female mice. These findings together shed light on the distinct molecular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of host recognition mechanisms employed by LCTs and provides novel targets for developing therapeutics against P. sordellii infections.
Collapse
Affiliation(s)
- Ruoyu Zhou
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Liuqing He
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Liang Tao
- College of Life Sciences, Fudan University, Shanghai, 200433, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Boon ACM, L Bricker T, Fritch EJ, Leist SR, Gully K, Baric RS, Graham RL, Troan BV, Mahoney M, Janetka JW. Efficacy of Host Cell Serine Protease Inhibitor MM3122 against SARS-CoV-2 for Treatment and Prevention of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579701. [PMID: 38405752 PMCID: PMC10888838 DOI: 10.1101/2024.02.09.579701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
Collapse
|
7
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. Does vaping increase the likelihood of SARS-CoV-2 infection? Paradoxically yes and no. Am J Physiol Lung Cell Mol Physiol 2024; 326:L175-L189. [PMID: 38147795 PMCID: PMC11280677 DOI: 10.1152/ajplung.00300.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Man Wong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Ann Song
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Teresa Martinez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| |
Collapse
|
8
|
Kumar V, Sari AN, Gupta D, Ishida Y, Terao K, Kaul SC, Vrati S, Sundar D, Wadhwa R. Anti-COVID-19 Potential of Withaferin-A and Caffeic Acid Phenethyl Ester. Curr Top Med Chem 2024; 24:830-842. [PMID: 38279743 DOI: 10.2174/0115680266280720231221100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND The recent COVID-19 (coronavirus disease 2019) pandemic triggered research on the development of new vaccines/drugs, repurposing of clinically approved drugs, and assessment of natural anti-COVID-19 compounds. Based on the gender difference in the severity of the disease, such as a higher number of men hospitalized and in intense care units, variations in sex hormones have been predicted to play a role in disease susceptibility. Cell surface receptors (Angiotensin-Converting Enzyme 2; ACE2 and a connected transmembrane protease serine 2- TMPSS2) are upregulated by androgens. Conversely, androgen antagonists have also been shown to lower ACE2 levels, implying their usefulness in COVID-19 management. OBJECTIVES In this study, we performed computational and cell-based assays to investigate the anti- COVID-19 potential of Withaferin-A and Caffeic acid phenethyl ester, natural compounds from Withania somnifera and honeybee propolis, respectively. METHODS Structure-based computational approach was adopted to predict binding stability, interactions, and dynamics of the two test compounds to three target proteins (androgen receptor, ACE2, and TMPRSS2). Further, in vitro, cell-based experimental approaches were used to investigate the effect of compounds on target protein expression and SARS-CoV-2 replication. RESULTS Computation and experimental analyses revealed that (i) CAPE, but not Wi-A, can act as androgen antagonist and hence inhibit the transcriptional activation function of androgen receptor, (ii) while both Wi-A and CAPE could interact with ACE2 and TMPRSS2, Wi-A showed higher binding affinity, and (iii) combination of Wi-A and CAPE (Wi-ACAPE) caused strong downregulation of ACE2 and TMPRSS2 expression and inhibition of virus infection. CONCLUSION Wi-A and CAPE possess multimodal anti-COVID-19 potential, and their combination (Wi-ACAPE) is expected to provide better activity and hence warrant further attention in the laboratory and clinic.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Dharmender Gupta
- Regional Centre for Biotechnology (RCB), Faridabad, 121 001, India
| | - Yoshiyuki Ishida
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Kobe, 6500047, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Kobe, 6500047, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology (RCB), Faridabad, 121 001, India
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| |
Collapse
|
9
|
Saunders N, Fernandez I, Planchais C, Michel V, Rajah MM, Baquero Salazar E, Postal J, Porrot F, Guivel-Benhassine F, Blanc C, Chauveau-Le Friec G, Martin A, Grzelak L, Oktavia RM, Meola A, Ahouzi O, Hoover-Watson H, Prot M, Delaune D, Cornelissen M, Deijs M, Meriaux V, Mouquet H, Simon-Lorière E, van der Hoek L, Lafaye P, Rey F, Buchrieser J, Schwartz O. TMPRSS2 is a functional receptor for human coronavirus HKU1. Nature 2023; 624:207-214. [PMID: 37879362 PMCID: PMC11331971 DOI: 10.1038/s41586-023-06761-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.
Collapse
Affiliation(s)
- Nell Saunders
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Ignacio Fernandez
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Vincent Michel
- Pathogenesis of Vascular Infections Unit, Institut Pasteur, INSERM, Paris, France
| | - Maaran Michael Rajah
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Eduard Baquero Salazar
- Nanoimaging core, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Jeanne Postal
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Francoise Porrot
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Catherine Blanc
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Gaëlle Chauveau-Le Friec
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Augustin Martin
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Rischa Maya Oktavia
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Annalisa Meola
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Olivia Ahouzi
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Hunter Hoover-Watson
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
| | - Deborah Delaune
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Marion Cornelissen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Molecular Diagnostic Unit, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Laboratory of Experimental Virology, University of Amsterdam, Amsterdam, The Netherlands
| | - Véronique Meriaux
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
- National Reference Center for viruses of respiratory infections, Institut Pasteur, Paris, France
| | - Lia van der Hoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Laboratory of Experimental Virology, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Lafaye
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Felix Rey
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France.
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France.
- Vaccine Research Institute, Creteil, France.
| |
Collapse
|
10
|
Wang H, Yang Q, Liu X, Xu Z, Shao M, Li D, Duan Y, Tang J, Yu X, Zhang Y, Hao A, Wang Y, Chen J, Zhu C, Guddat L, Chen H, Zhang L, Chen X, Jiang B, Sun L, Rao Z, Yang H. Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry. Nat Commun 2023; 14:7574. [PMID: 37990007 PMCID: PMC10663540 DOI: 10.1038/s41467-023-42527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
Since 2019, SARS-CoV-2 has evolved rapidly and gained resistance to multiple therapeutics targeting the virus. Development of host-directed antivirals offers broad-spectrum intervention against different variants of concern. Host proteases, TMPRSS2 and CTSL/CTSB cleave the SARS-CoV-2 spike to play a crucial role in the two alternative pathways of viral entry and are characterized as promising pharmacological targets. Here, we identify compounds that show potent inhibition of these proteases and determine their complex structures with their respective targets. Furthermore, we show that applying inhibitors simultaneously that block both entry pathways has a synergistic antiviral effect. Notably, we devise a bispecific compound, 212-148, exhibiting the dual-inhibition ability of both TMPRSS2 and CTSL/CTSB, and demonstrate antiviral activity against various SARS-CoV-2 variants with different viral entry profiles. Our findings offer an alternative approach for the discovery of SARS-CoV-2 antivirals, as well as application for broad-spectrum treatment of viral pathogenic infections with similar entry pathways.
Collapse
Affiliation(s)
- Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, China
| | - Xiaoce Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
| | - Zili Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Maolin Shao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
| | - Dongxu Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
| | | | - Xianqiang Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumin Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Aihua Hao
- The Fifth People's Hospital of Shanghai, Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yajie Wang
- The Fifth People's Hospital of Shanghai, Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
| | - Chenghao Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leike Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | | | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Sun
- The Fifth People's Hospital of Shanghai, Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China
- Guangzhou Laboratory, Guangzhou, China
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, P.R. China.
| |
Collapse
|
11
|
Tripp RA, Martin DE. Screening Drugs for Broad-Spectrum, Host-Directed Antiviral Activity: Lessons from the Development of Probenecid for COVID-19. Viruses 2023; 15:2254. [PMID: 38005930 PMCID: PMC10675723 DOI: 10.3390/v15112254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the early stages of drug discovery, researchers develop assays that are compatible with high throughput screening (HTS) and structure activity relationship (SAR) measurements. These assays are designed to evaluate the effectiveness of new and known molecular entities, typically targeting specific features within the virus. Drugs that inhibit virus replication by inhibiting a host gene or pathway are often missed because the goal is to identify active antiviral agents against known viral targets. Screening efforts should be sufficiently robust to identify all potential targets regardless of the antiviral mechanism to avoid misleading conclusions.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
12
|
Strobelt R, Adler J, Shaul Y. The Transmembrane Protease Serine 2 (TMPRSS2) Non-Protease Domains Regulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike-Mediated Virus Entry. Viruses 2023; 15:2124. [PMID: 37896901 PMCID: PMC10612036 DOI: 10.3390/v15102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells by binding to the angiotensin-converting enzyme 2 (hACE2) receptor. This process is aided by the transmembrane protease serine 2 (TMPRSS2), which enhances entry efficiency and infectiousness by cleaving the SARS-CoV-2 surface glycoprotein (Spike). The cleavage primes the Spike protein, promoting membrane fusion instead of receptor-mediated endocytosis. Despite the pivotal role played by TMPRSS2, our understanding of its non-protease distinct domains remains limited. In this report, we present evidence indicating the potential phosphorylation of a minimum of six tyrosine residues within the cytosolic tail (CT) of TMPRSS2. Via the use of TMPRSS2 CT phospho-mimetic mutants, we observed a reduction in TMPRSS2 protease activity, accompanied by a decrease in SARS-CoV-2 pseudovirus transduction, which was found to occur mainly via the endosomal pathway. We expanded our investigation beyond TMPRSS2 CT and discovered the involvement of other non-protease domains in regulating infection. Our co-immunoprecipitation experiments demonstrated a strong interaction between TMPRSS2 and Spike. We revealed a 21 amino acid long TMPRSS2-Spike-binding region (TSBR) within the TMPRSS2 scavenger receptor cysteine-rich (SRCR) domain that contributes to this interaction. Our study sheds light on novel functionalities associated with TMPRSS2's cytosolic tail and SRCR region. Both of these regions have the capability to regulate SARS-CoV-2 entry pathways. These findings contribute to a deeper understanding of the complex interplay between viral entry and host factors, opening new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
14
|
Sinha A, Sangeet S, Roy S. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS OMEGA 2023; 8:23283-23304. [PMID: 37426203 PMCID: PMC10324094 DOI: 10.1021/acsomega.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Novel coronavirus (SARS-CoV-2) enters its host cell through a surface spike protein. The viral spike protein has undergone several modifications/mutations at the genomic level, through which it modulated its structure-function and passed through several variants of concern. Recent advances in high-resolution structure determination and multiscale imaging techniques, cost-effective next-generation sequencing, and development of new computational methods (including information theory, statistical methods, machine learning, and many other artificial intelligence-based techniques) have hugely contributed to the characterization of sequence, structure, function of spike proteins, and its different variants to understand viral pathogenesis, evolutions, and transmission. Laying on the foundation of the sequence-structure-function paradigm, this review summarizes not only the important findings on structure/function but also the structural dynamics of different spike components, highlighting the effects of mutations on them. As dynamic fluctuations of three-dimensional spike structure often provide important clues for functional modulation, quantifying time-dependent fluctuations of mutational events over spike structure and its genetic/amino acidic sequence helps identify alarming functional transitions having implications for enhanced fusogenicity and pathogenicity of the virus. Although these dynamic events are more difficult to capture than quantifying a static, average property, this review encompasses those challenging aspects of characterizing the evolutionary dynamics of spike sequence and structure and their implications for functions.
Collapse
|
15
|
Ye X, Ling X, Wu M, Bai G, Yuan M, Rao L. Improving Soluble Expression of SARS-CoV-2 Spike Priming Protease TMPRSS2 with an Artificial Fusing Protein. Int J Mol Sci 2023; 24:10475. [PMID: 37445653 DOI: 10.3390/ijms241310475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
SARS-CoV-2 relies on the recognition of the spike protein by the host cell receptor ACE2 for cellular entry. In this process, transmembrane serine protease 2 (TMPRSS2) plays a pivotal role, as it acts as the principal priming agent catalyzing spike protein cleavage to initiate the fusion of the cell membrane with the virus. Thus, TMPRSS2 is an ideal pharmacological target for COVID-19 therapy development, and the effective production of high-quality TMPRSS2 protein is essential for basic and pharmacological research. Unfortunately, as a mammalian-originated protein, TMPRSS2 could not be solubly expressed in the prokaryotic system. In this study, we applied different protein engineering methods and found that an artificial protein XXA derived from an antifreeze protein can effectively promote the proper folding of TMPRSS2, leading to a significant improvement in the yield of its soluble form. Our study also showed that the fused XXA protein did not influence the enzymatic catalytic activity; instead, it greatly enhanced TMPRSS2's thermostability. Therefore, our strategy for increasing TMPRSS2 expression would be beneficial for the large-scale production of this stable enzyme, which would accelerate aniti-SARS-CoV-2 therapeutics development.
Collapse
Affiliation(s)
- Xiao Ye
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| | - Xue Ling
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Min Wu
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guijie Bai
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Yuan
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
16
|
Peiffer A, Garlick JM, Wu Y, Wotring JW, Arora S, Harmata AS, Bochar DA, Stephenson CJ, Soellner MB, Sexton JZ, Brooks CL, Mapp AK. TMPRSS2 Inhibitor Discovery Facilitated through an In Silico and Biochemical Screening Platform. ACS Med Chem Lett 2023; 14:860-866. [PMID: 37284689 PMCID: PMC10237299 DOI: 10.1021/acsmedchemlett.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
The COVID-19 pandemic has highlighted the need for new antiviral approaches because many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a promising antiviral target because it plays a role in priming the spike protein before viral entry occurs for the most virulent variants. Further, TMPRSS2 has no established physiological role, thereby increasing its attractiveness as a target for antiviral agents. Here, we utilize virtual screening to curate large libraries into a focused collection of potential inhibitors. Optimization of a recombinant expression and purification protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical screening and characterization of selected compounds from the curated collection in a kinetic assay. In doing so, we identify new noncovalent TMPRSS2 inhibitors that block SARS-CoV-2 infectivity in a cellular model. One such inhibitor, debrisoquine, has high ligand efficiency, and an initial structure-activity relationship study demonstrates that debrisoquine is a tractable hit compound for TMPRSS2.
Collapse
Affiliation(s)
- Amanda
L. Peiffer
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie M. Garlick
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse W. Wotring
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sahil Arora
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander S. Harmata
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A. Bochar
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey J. Stephenson
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Z. Sexton
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- University
of Michigan Medical School, Ann
Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Farkaš B, Minneci M, Misevicius M, Rozas I. A Tale of Two Proteases: M Pro and TMPRSS2 as Targets for COVID-19 Therapies. Pharmaceuticals (Basel) 2023; 16:834. [PMID: 37375781 PMCID: PMC10301481 DOI: 10.3390/ph16060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the importance of the 2019 outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19) pandemic, an overview of two proteases that play an important role in the infection by SARS-CoV-2, the main protease of SARS-CoV-2 (MPro) and the host transmembrane protease serine 2 (TMPRSS2), is presented in this review. After summarising the viral replication cycle to identify the relevance of these proteases, the therapeutic agents already approved are presented. Then, this review discusses some of the most recently reported inhibitors first for the viral MPro and next for the host TMPRSS2 explaining the mechanism of action of each protease. Afterward, some computational approaches to design novel MPro and TMPRSS2 inhibitors are presented, also describing the corresponding crystallographic structures reported so far. Finally, a brief discussion on a few reports found some dual-action inhibitors for both proteases is given. This review provides an overview of two proteases of different origins (viral and human host) that have become important targets for the development of antiviral agents to treat COVID-19.
Collapse
Affiliation(s)
| | | | | | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland; (B.F.); (M.M.); (M.M.)
| |
Collapse
|
18
|
C AM, Wessler S, Ponnuraj K. Inhibition of Listeria Monocytogenes HtrA Protease with Camostat, Gabexate and Nafamostat Mesylates and the Binding Mode of the Inhibitors. Protein J 2023:10.1007/s10930-023-10114-8. [PMID: 37093417 PMCID: PMC10123570 DOI: 10.1007/s10930-023-10114-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
In many bacteria, the High Temperature requirement A (HtrA) protein functions as a chaperone and protease. HtrA is an important factor in stress tolerance and plays a significant role in the virulence of several pathogenic bacteria. Camostat, gabexate and nafamostat mesylates are serine protease inhibitors and have recently shown a great impact in the inhibition studies of SARS-CoV2. In this study, the inhibition of Listeria monocytogenes HtrA (LmHtrA) protease activity was analysed using these three inhibitors. The cleavage assay, using human fibrinogen and casein as substrates, revealed that the three inhibitors effectively inhibit the protease activity of LmHtrA. The agar plate assay and spectrophotometric analysis concluded that the inhibition of nafamostat (IC50 value of 6.6 ± 0.4 µM) is more effective compared to the other two inhibitors. Previous studies revealed that at the active site of the protease, these inhibitors are hydrolysed and one of the hydrolysates is covalently bound to the active site serine. To understand the mode of binding of these inhibitors at the active site of LmHtrA, docking of the inhibitors followed by molecular dynamics simulations were carried out. Analysis of the LmHtrA-inhibitor complex structures revealed that the covalently bound inhibitor is unable to occupy the S1 pocket of the LmHtrA which is in contrast to the previously determined camostat and nafamostat complex structures. This observation provides the first glimpse of the substrate specificity of LmHtrA which is not known. The obtained results also suggest that the development of novel inhibitors of LmHtrA and its homologs with active site architecture similar to LmHtrA can be pursued with suitable modification of these inhibitors. To date, only a very few studies have been carried out on identifying the inhibitors of HtrA proteolytic activity.
Collapse
Affiliation(s)
- Amrutha M C
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Silja Wessler
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Str. 34, Salzburg, A-5020, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
19
|
Li Y, Wang K, Sun H, Wu S, Wang H, Shi Y, Li X, Yan H, Yang G, Wu M, Li Y, Ding X, Si S, Jiang J, Du Y, Li Y, Hong B. Omicsynin B4 potently blocks coronavirus infection by inhibiting host proteases cathepsin L and TMPRSS2. Antiviral Res 2023; 214:105606. [PMID: 37076089 PMCID: PMC10110284 DOI: 10.1016/j.antiviral.2023.105606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate as a broad-spectrum anti-coronavirus agent that could rapidly respond to emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Yihua Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu Du
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
20
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. New insights into how popular electronic cigarette aerosols and aerosol constituents affect SARS-CoV-2 infection of human bronchial epithelial cells. Sci Rep 2023; 13:5807. [PMID: 37037851 PMCID: PMC10086046 DOI: 10.1038/s41598-023-31592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Few studies have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Responses of BEAS-2B cells to JUUL aerosols or their individual constituents were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex system, which produces authentic heated EC aerosols. In general, nicotine and nicotine + propylene glycol/vegetable glycerin aerosols increased ACE2 (angiotensin converting enzyme 2) levels, the SARS-CoV-2 receptor; and increased the activity of TMPRSS2 (transmembrane serine protease 2), an enzyme essential for viral entry. Lentivirus pseudoparticles with spike protein were used to test viral penetration. Exposure to nicotine, EC fluids, or aerosols altered the infection machinery and increased viral entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. While both nicotine and JUUL aerosols increased SARS-CoV-2 infection, JUUL significantly decreased the effect of nicotine alone. These data support the idea that vaping can increase the likelihood of contracting COVID-19 and that e-liquid composition may modulate this effect.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Man Wong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Ann Song
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Teresa Martinez
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA
| | - Prue Talbot
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
22
|
Cheng Y, Clark AE, Yim W, Borum RM, Chang YC, Jin Z, He T, Carlin AF, Jokerst JV. Protease-Responsive Potential-Tunable AIEgens for Cell Selective Imaging of TMPRSS2 and Accurate Inhibitor Screening. Anal Chem 2023; 95:3789-3798. [PMID: 36753444 PMCID: PMC10614162 DOI: 10.1021/acs.analchem.2c04988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Transmembrane protease serine 2 (TMPRSS2) is a plasma membrane protease that activates both spike protein of coronaviruses for cell entry and oncogenic signaling pathways for tumor progression. TMPRSS2 inhibition can reduce cancer invasion and metastasis and partially prevent the entry of SARS-CoV-2 into host cells. Thus, there is an urgent need for both TMPRSS2-selective imaging and precise screening of TMPRSS2 inhibitors. Here, we report a TMPRSS2-responsive surface-potential-tunable peptide-conjugated probe (EGTP) with aggregation-induced emission (AIE) features for TMPRSS2 selective imaging and accurate inhibitor screening. The amphiphilic EGTP was constructed with tunable surface potential and responsive efficiency with TMPRSS2 and its inhibitor. The rational construction of AIE luminogens (AIEgens) with modular peptides indicated that the cleavage of EGTP led to a gradual aggregation with bright fluorescence in high TMPRSS2-expressing cells. This strategy may have value for selective detection of cancer cells, SARS-CoV-2-target cells, and screening of protease inhibitors.
Collapse
Affiliation(s)
- Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Alex E Clark
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Raina M Borum
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Aaron F Carlin
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pathology, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Tachoua W, Kabrine M, Mushtaq M, Selmi A, Ul-Haq Z. Highlights in TMPRSS2 inhibition mechanism with guanidine derivatives approved drugs for COVID-19 treatment. J Biomol Struct Dyn 2023; 41:12908-12922. [PMID: 36709428 DOI: 10.1080/07391102.2023.2169762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Transmembrane protease serine 2 (TMPRSS2) has been identified as a critical key for the entry of coronaviruses into human cells by cleaving and activating the spike protein of SARS-CoV-2. To block the TMPRSS2 function, 18 approved drugs, containing the guanidine group were tested against TMPRSS2's ectodomain (7MEQ). Among these drugs, Famotidine, Argatroban, Guanadrel and Guanethidine strongly binds with TMPRSS2 S1 pocket with estimated Fullfitness energies of -1847.12, -1630.87, -1605.81 and -1600.52 kcal/mol, respectively. A significant number of non-covalent interactions such as hydrogen bonding, hydrophobic and electrostatic interactions were detected in protein-ligand complexes. In addition, the ADMET analysis revealed a perfect concurrence with the aptitude of these drugs to be developed as an anti-SARS-CoV-2 therapeutics. Further, MD simulation and binding free energy calculations were performed to evaluate the dynamic behavior and stability of protein-ligand complexes. The results obtained herein highlight the enhanced stability and good binding affinities of the Argatroban and Famotidine towards the target protein, hence might act as new scaffolds for TMPRSS2 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Tachoua
- Nature and Life Sciences department, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | - Mohamed Kabrine
- Faculty of Biological Sciences, Cellular and Molecular Biology, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | - Ahmed Selmi
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| |
Collapse
|
24
|
Yang Z, Cai X, Ye Q, Zhao Y, Li X, Zhang S, Zhang L. High-Throughput Screening for the Potential Inhibitors of SARS-CoV-2 with Essential Dynamic Behavior. Curr Drug Targets 2023; 24:532-545. [PMID: 36876836 DOI: 10.2174/1389450124666230306141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
Global health security has been challenged by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. Due to the lengthy process of generating vaccinations, it is vital to reposition currently available drugs in order to relieve anti-epidemic tensions and accelerate the development of therapies for Coronavirus Disease 2019 (COVID-19), the public threat caused by SARS-CoV-2. High throughput screening techniques have established their roles in the evaluation of already available medications and the search for novel potential agents with desirable chemical space and more cost-effectiveness. Here, we present the architectural aspects of highthroughput screening for SARS-CoV-2 inhibitors, especially three generations of virtual screening methodologies with structural dynamics: ligand-based screening, receptor-based screening, and machine learning (ML)-based scoring functions (SFs). By outlining the benefits and drawbacks, we hope that researchers will be motivated to adopt these methods in the development of novel anti- SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xinhui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
25
|
Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. PRECISION CLINICAL MEDICINE 2022; 5:pbac024. [PMID: 36268466 PMCID: PMC9579963 DOI: 10.1093/pcmedi/pbac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic poses a fundamental challenge to global health. Since the outbreak of SARS-CoV-2, great efforts have been made to identify antiviral strategies and develop therapeutic drugs to combat the disease. There are different strategies for developing small molecular anti-SARS-CoV-2 drugs, including targeting coronavirus structural proteins (e.g. spike protein), non-structural proteins (nsp) (e.g. RdRp, Mpro, PLpro, helicase, nsp14, and nsp16), host proteases (e.g. TMPRSS2, cathepsin, and furin) and the pivotal proteins mediating endocytosis (e.g. PIKfyve), as well as developing endosome acidification agents and immune response modulators. Favipiravir and chloroquine are the anti-SARS-CoV-2 agents that were identified earlier in this epidemic and repurposed for COVID-19 clinical therapy based on these strategies. However, their efficacies are controversial. Currently, three small molecular anti-SARS-CoV-2 agents, remdesivir, molnupiravir, and Paxlovid (PF-07321332 plus ritonavir), have been granted emergency use authorization or approved for COVID-19 therapy in many countries due to their significant curative effects in phase III trials. Meanwhile, a large number of promising anti-SARS-CoV-2 drug candidates have entered clinical evaluation. The development of these drugs brings hope for us to finally conquer COVID-19. In this account, we conducted a comprehensive review of the recent advances in small molecule anti-SARS-CoV-2 agents according to the target classification. Here we present all the approved drugs and most of the important drug candidates for each target, and discuss the challenges and perspectives for the future research and development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
| | | | - Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nat Chem Biol 2022; 18:963-971. [PMID: 35676539 DOI: 10.1038/s41589-022-01059-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-CoV-2. Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) protein, enabling virus-host membrane fusion and infection of the airways. We present here a recombinant production strategy for enzymatically active TMPRSS2 and characterization of its matured proteolytic activity, as well as its 1.95 Å X-ray cocrystal structure with the synthetic protease inhibitor nafamostat. Our study provides a structural basis for the potent but nonspecific inhibition by nafamostat and identifies distinguishing features of the TMPRSS2 substrate binding pocket that explain specificity. TMPRSS2 cleaved SARS-CoV-2 S protein at multiple sites, including the canonical S1/S2 cleavage site. We ranked the potency of clinical protease inhibitors with half-maximal inhibitory concentrations ranging from 1.4 nM to 120 µM and determined inhibitor mechanisms of action, providing the groundwork for drug development efforts to selectively inhibit TMPRSS2.
Collapse
|
27
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. New Insights into How JUUL™ Electronic Cigarette Aerosols and Aerosol Constituents Affect SARS-CoV-2 Infection of Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.23.505031. [PMID: 36052374 PMCID: PMC9435402 DOI: 10.1101/2022.08.23.505031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Background The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Most studies have been done with tobacco cigarettes, while few have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with high concentrations of nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Methods Responses of BEAS-2B cells to authentic JUUL™ aerosols or their individual constituents (propylene glycol (PG)/vegetable glycerin (VG) and nicotine) were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex® system, which produces authentic heated EC aerosols. SARS-CoV-2 infection machinery was assessed using immunohistochemistry and Western blotting. Specifically, the levels of the SARS-CoV-2 receptor ACE2 (angiotensin converting enzyme 2) and a spike modifying enzyme, TMPRSS2 (transmembrane serine protease 2), were evaluated. Following each exposure, lentivirus pseudoparticles with spike protein and a green-fluorescent reporter were used to test viral penetration and the susceptibility of BEAS-2B cells to infection. Results Nicotine, EC fluids, and authentic JUUL™ aerosols increased both ACE2 levels and TMPRSS2 activity, which in turn increased viral particle entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. In the Cultex system, PG/VG, PG/VG/nicotine, and JUUL™ aerosols significantly increased infection above clean air controls. However, both the PG/VG and JUUL™ treatments were significantly lower than nicotine/PG/VG. PG/VG increased infection only in the Cultex® system, which produces heated aerosol. Conclusion Our data are consistent with the conclusion that authentic JUUL™ aerosols or their individual constituents (nicotine or PG/VG) increase SARS-CoV-2 infection. The strong effect produced by nicotine was modulated in authentic JUUL aerosols, demonstrating the importance of studying mixtures and aerosols from actual EC products. These data support the idea that vaping increases the likelihood of contracting COVID-19.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Man Wong
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Ann Song
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Teresa Martinez
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Exploring the phytochemicals of Platycodon grandiflorus for TMPRSS2 inhibition in the search for SARS-CoV-2 entry inhibitors. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102155. [PMID: 35702062 PMCID: PMC9181276 DOI: 10.1016/j.jksus.2022.102155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Platycodon grandiflorus (Jacq.) A. DC. (Campanulaceae) is commonly known as a balloon flower whose rhizomes have been widely utilized in traditional Chinese medicine (TCM) and in various Japanese prescriptions for the treatment of respiratory diseases, diabetes, and inflammatory disorders. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) global pandemic requires priming of the virus's spike (S) protein by cleavage of the S proteins by a multi-domain type II transmembrane serine protease, transmembrane protease serine 2 (TMPRSS2) to gain entry into the host cell. The current research aims at the screening of active phytocompounds of P. grandiflorus as potential inhibitors of cellular TMPRSS2 using molecular docking and molecular dynamics simulations approach. In silico toxicity analyses show that out of a total of 34 phytocompounds selected for the study, 12 compounds obey Lipinski’s rule of five and have favourable pharmacokinetic properties. The top three lead molecules identified here were Apigenin, Luteolin and Ferulic acid which exhibited binding energies of −7.47 kcal/mol, −6.8 kcal/mol and −6.62 kcal/mol respectively with corresponding inhibition constants of 3.33 µM, 10.39 µM and 13.95 µM. The complexes between the lead molecules and the receptor were held by hydrogen bond interactions with key residues such as Gly383, Gly385, Glu389, Lys390, Asp435, Ser436, Ser441, Cys465 and Lys467, and hydrophobic interactions with surrounding residues. The stability of the protein–ligand complexes was evaluated during 100 ns molecular dynamics (MD) simulation by analysing key geometric properties such as RMSD, RMSF, radius of gyration, total solvent accessible surface area and the number of hydrogen bonds. The binding free energies analysis using MD simulations revealed that the compounds and TMPRSS2 have favourable thermodynamic interactions, which are primarily driven by van der Waals forces. As a result, the selected bioactive phytochemicals from P. grandiflorus that target the cellular TMPRSS2 could offer an alternative treatment option against SARS-CoV-2 infections.
Collapse
|
29
|
Improving the selectivity of 3-amidinophenylalanine-derived matriptase inhibitors. Eur J Med Chem 2022; 238:114437. [DOI: 10.1016/j.ejmech.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
30
|
Shrimp JH, Janiszewski J, Chen CZ, Xu M, Wilson KM, Kales SC, Sanderson PE, Shinn P, Schneider R, Itkin Z, Guo H, Shen M, Klumpp-Thomas C, Michael SG, Zheng W, Simeonov A, Hall MD. Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19. ACS Infect Dis 2022; 8:1191-1203. [PMID: 35648838 PMCID: PMC9172053 DOI: 10.1021/acsinfecdis.2c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.
Collapse
Affiliation(s)
- Jonathan H. Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - John Janiszewski
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Philip E. Sanderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Rick Schneider
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| |
Collapse
|
31
|
Saito T, Nishida Y, Tabata M, Isobayashi A, Tomizawa H, Miyahara Y, Sugizaki Y. Molecular Interactions between an Enzyme and Its Inhibitor for Selective Detection of Limonene. Anal Chem 2022; 94:7692-7702. [PMID: 35543317 DOI: 10.1021/acs.analchem.2c01110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers widely apply enzyme inhibition to chemicals such as pesticides, nerve gases, and anti-Alzheimer's drugs. However, application of enzyme inhibition to odorant sensors is less common because the corresponding reaction mechanisms have not yet been clarified in detail. In this study, we propose a new strategy for highly selective detection of odorant molecules by using an inhibitor-specific enzyme. As an example, we analyzed the selective interactions between acetylcholinesterase (AChE) and limonene─the major odorant of citrus and an AChE inhibitor─using molecular dynamics simulations. In these simulations, limonene was found to be captured at specific binding sites of AChE by modifying the binding site of acetylcholine (ACh), which induced inhibition of the catalytic activity of AChE toward ACh hydrolysis. We confirmed the simulation results by experiments using an ion-sensitive field-effect transistor, and the degree of inhibition of ACh hydrolysis depended on the limonene concentration. Accordingly, we quantitatively detected limonene at a detection limit of 5.7 μM. We furthermore distinguished the response signals to limonene from those to other odorants, such as pinene and perillic acid. Researchers will use our proposed odorant detection method for other odorant-enzyme combinations and applications of miniaturized odorant-sensing systems based on rapid testing.
Collapse
Affiliation(s)
- Tatsuro Saito
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Yasutaka Nishida
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Miyuki Tabata
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsunobu Isobayashi
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Hideyuki Tomizawa
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yoshiaki Sugizaki
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| |
Collapse
|
32
|
Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, Vandal T, Thompson CAH, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, Diel DG, Van de Walle GR, August A, Whittaker GR, Boudreault PL, Leduc R, Aguilar HC, Jean F. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 2022; 605:340-348. [PMID: 35344983 PMCID: PMC9095466 DOI: 10.1038/s41586-022-04661-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Sébastien P Dion
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David W Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Andrea D Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mason Jager
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Thierry Vandal
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaleigha Chin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - William D Rees
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theodore Steiner
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Kosinsky Y, Peskov K, Stanski DR, Wetmore D, Vinetz J. Semi-Mechanistic Pharmacokinetic-Pharmacodynamic Model of Camostat Mesylate-Predicted Efficacy against SARS-CoV-2 in COVID-19. Microbiol Spectr 2022; 10:e0216721. [PMID: 35412356 PMCID: PMC9047529 DOI: 10.1128/spectrum.02167-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 coronavirus, which causes COVID-19, uses a viral surface spike protein for host cell entry and the human cell-surface transmembrane serine protease, TMPRSS2, to process the spike protein. Camostat mesylate, an orally available and clinically used serine protease inhibitor, inhibits TMPRSS2, supporting clinical trials to investigate its use in COVID-19. A one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model for camostat and the active metabolite FOY-251 was developed, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. The model predicts that 95% inhibition of TMPRSS2 is required for 50% inhibition of viral entry efficiency. For camostat 200 mg dosed four times daily, 90% inhibition of TMPRSS2 is predicted to occur but with only about 40% viral entry inhibition. For 3-fold higher camostat dosing, marginal improvement of viral entry rate inhibition, up to 54%, is predicted. Because respiratory tract viral load may be associated with negative outcome, even modestly reducing viral entry and respiratory tract viral load may reduce disease progression. This modeling also supports medicinal chemistry approaches to enhancing PK/PD and potency of the camostat molecule. IMPORTANCE Strategies to repurpose already-approved drugs for the treatment of COVID-19 has been attractive since the beginning of the pandemic. Camostat mesylate, a serine protease inhibitor approved in Japan for the treatment of acute exacerbations of chronic pancreatitis, inhibits TMPRSS1, a host cell surface serine protease essential for SARS-CoV-2 viral entry. In vitro experiments provided data suggesting that camostat might be effective in the treatment of COVID-19. Multiple clinical trials were planned to test the hypothesis that camostat would be beneficial for treating COVID-19 (for example, clinicaltrials.gov, NCT04353284). The present work used a one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) mathematical model for camostat and the active metabolite FOY-251, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. This work is valuable to guide further development of camostat mesylate and possible medicinal chemistry derivatives for the treatment of COVID-19.
Collapse
Affiliation(s)
| | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- STU “Sirius,” Sochi, Russia
| | | | - Diana Wetmore
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Yan Y, Yang J, Xiao D, Yin J, Song M, Xu Y, Zhao L, Dai Q, Li Y, Wang C, Wang Z, Ren X, Yang X, Ni J, Liu M, Guo X, Li W, Chen X, Liu Z, Cao R, Zhong W. Nafamostat mesylate as a broad-spectrum candidate for the treatment of flavivirus infections by targeting envelope proteins. Antiviral Res 2022; 202:105325. [PMID: 35460703 DOI: 10.1016/j.antiviral.2022.105325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/24/2023]
Abstract
Epidemics caused by flaviviruses occur globally; however, no antiviral drugs treating flaviviruses infections have yet been developed. Nafamostat (NM) is a protease inhibitor approved for pancreatitis and anti-coagulation. The anti-flavivirus potential of NM has yet to be determined. Here, utilizing in vitro and in vivo infection assays, we present that NM effectively inhibits Zika virus (ZIKV) and other flaviviruses in vitro. NM inhibited the production of ZIKV viral RNA and proteins originating from Asia and African lineage in human-, mouse- and monkey-derived cell lines and the in vivo anti-ZIKV efficacy of NM was verified. Mode-of-action analysis using time-of-drug-addition assay, infectivity inhibition assay, surface plasmon resonance assay, and molecular docking revealed that NM interacted with viral particles and blocked the early stage of infection by targeting the domain III of ZIKV envelope protein. Analysing the anti-flavivirus effects of NM-related compounds suggested that the antiviral effect depended on the unique structure of NM. These findings suggest the potential use of NM as an anti-flavivirus candidate, and a novel drug design approach targeting the flavivirus envelope protein.
Collapse
Affiliation(s)
- Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingjing Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiye Yin
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Mengwen Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhuang Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaofeng Ren
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jie Ni
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Miaomiao Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xingjuan Chen
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
35
|
Rokni M, Heidari Nia M, Sarhadi M, Mirinejad S, Sargazi S, Moudi M, Saravani R, Rahdar S, Kargar M. Association of TMPRSS2 Gene Polymorphisms with COVID-19 Severity and Mortality: a Case-Control Study with Computational Analyses. Appl Biochem Biotechnol 2022; 194:3507-3526. [PMID: 35386063 PMCID: PMC8986508 DOI: 10.1007/s12010-022-03885-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a severe disease caused by a new variant of beta-coronavirus that first appeared in China. Human genetic factors, including polymorphisms, serve pivotal roles in the high transmission of SARS-CoV-2 and the stubbornly progressing sickness seen in a small but significant percentage of infected people; however, but these factors remain ill-defined. A total of 288 COVID-19 patients and 288 controls were genotyped for TMPRSS2 polymorphisms using both restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) and amplification refractory mutation system (ARMS)-PCR techniques. Different genotypes of TMPRSS2 polymorphisms were compared in terms of disease susceptibility and mortality. The statistical analysis showed that minor alleles of all studied variants statistically increased the risk of COVID-19, except for the rs75603675 C > A variant. The T allele of rs12329760 conferred an increased risk of COVID-19. Moreover, the AG/AC/TT/AG combination of genotypes significantly enhanced the risk of COVID-19 in our population. Different haplotypes of rs17854725/rs75603675/rs12329760/rs4303795 polymorphisms, including GACA, GACG, GATG, GATA, AATA, ACCG, ACTG, ACTA, GCCA, and GCTG, were found to be associated with increased risk of the disease (odds ratio > 1). Regarding the clinical and paraclinical characteristics, a statistically significant difference was found between non-severe and severe forms except for gender, platelet, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and underlying diseases. In addition, case genotypes of TMPRSS2 rs17854725 A > G, rs12329760 C > T, and rs4303795 A > G were significantly different regarding severe and non-severe forms of the disease (P-value < 0.001). Specifically, death was more frequent in carriers of the AG genotype of rs17854725 A > G (P-value = 0.022). Patients who carry the minor alleles of the four studied TMPRSS2 variants were rather vulnerable to COVID-19 infection. Our findings indicated that rs17854725 A > G (AA vs. AG and AA vs. GG), rs12329760 C > T (CC vs. CT and CC vs. TT), and rs4303795 A > G (AA vs. AG) genotypes of TMPRSS2 variations are associated with a more invasive disorder pattern. More studies on larger populations are needed to confirm our results.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Mahdiyeh Moudi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Rahdar
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Maryam Kargar
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Abstract
The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2′. The “priming” of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2′ as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2′. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2′ cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.
Collapse
|
37
|
Mantzourani C, Vasilakaki S, Gerogianni VE, Kokotos G. The discovery and development of transmembrane serine protease 2 (TMPRSS2) inhibitors as candidate drugs for the treatment of COVID-19. Expert Opin Drug Discov 2022; 17:231-246. [PMID: 35072549 PMCID: PMC8862169 DOI: 10.1080/17460441.2022.2029843] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the devastating pandemic named coronavirus disease 2019 (COVID-19). Unfortunately, the discovery of antiviral agents to combat COVID-19 is still an unmet need. Transmembrane serine protease 2 (TMPRSS2) is an important mediator in viral infection and thus, TMPRRS2 inhibitors may be attractive agents for COVID-19 treatment. AREAS COVERED This review article discusses the role of TMPRSS2 in SARS-CoV-2 cell entry and summarizes the inhibitors of TMPRSS2 and their potential anti-SARS activity. Two known TMPRSS2 inhibitors, namely camostat and nafamostat, approved drugs for the treatment of pancreatitis, are under clinical trials as potential drugs against COVID-19. EXPERT OPINION Due to the lack of the crystal structure of TMPRSS2, homology models have been developed to study the interactions of known inhibitors, including repurposed drugs, with the enzyme. However, novel TMPRSS2 inhibitors have been identified through high-throughput screening, and appropriate assays studying their in vitro activity have been set up. The discovery of TMPRSS2's crystal structure will facilitate the rational design of novel inhibitors and in vivo studies and clinical trials will give a clear answer if TMPRSS2 inhibitors could be a new weapon against COVID-19.
Collapse
Affiliation(s)
- Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Vasilakaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| | - Velisaria-Eleni Gerogianni
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Haddad M, Gaudreault R, Sasseville G, Nguyen PT, Wiebe H, Van De Ven T, Bourgault S, Mousseau N, Ramassamy C. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. Int J Mol Sci 2022; 23:2643. [PMID: 35269785 PMCID: PMC8910432 DOI: 10.3390/ijms23052643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-β-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohamed Haddad
- Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada;
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Roger Gaudreault
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Gabriel Sasseville
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Phuong Trang Nguyen
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada; (P.T.N.); (S.B.)
| | - Hannah Wiebe
- Département de Chimie, Université McGill, 3420 Rue University, Montréal, QC H3A 2A7, Canada; (H.W.); (T.V.D.V.)
| | - Theo Van De Ven
- Département de Chimie, Université McGill, 3420 Rue University, Montréal, QC H3A 2A7, Canada; (H.W.); (T.V.D.V.)
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada; (P.T.N.); (S.B.)
| | - Normand Mousseau
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada;
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
39
|
Shrimp JH, Janiszewski J, Chen CZ, Xu M, Wilson KM, Kales SC, Sanderson PE, Shinn P, Itkin Z, Guo H, Shen M, Klumpp-Thomas C, Michael SG, Zheng W, Simeonov A, Hall MD. A Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.04.479134. [PMID: 35169799 PMCID: PMC8845423 DOI: 10.1101/2022.02.04.479134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allowed for rapid movement of existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites on the spike protein. TMPRSS2 has a protease domain capable of cleaving the two cut sites; therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.
Collapse
Affiliation(s)
- Jonathan H. Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - John Janiszewski
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Philip E. Sanderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| |
Collapse
|
40
|
Niemeyer BF, Miller CM, Ledesma‐Feliciano C, Morrison JH, Jimenez‐Valdes R, Clifton C, Poeschla EM, Benam KH. Broad antiviral and anti-inflammatory efficacy of nafamostat against SARS-CoV-2 and seasonal coronaviruses in primary human bronchiolar epithelia. NANO SELECT 2022; 3:437-449. [PMID: 34541574 PMCID: PMC8441815 DOI: 10.1002/nano.202100123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Antiviral strategies that target host systems needed for SARS-CoV-2 replication and pathogenesis may have therapeutic potential and help mitigate resistance development. Here, we evaluate nafamostat mesylate, a potent broad-spectrum serine protease inhibitor that blocks host protease activation of the viral spike protein. SARS-CoV-2 is used to infect human polarized mucociliated primary bronchiolar epithelia reconstituted with cells derived from healthy donors, smokers and subjects with chronic obstructive pulmonary disease. Nafamostat markedly inhibits apical shedding of SARS-CoV-2 from all donors (log10 reduction). We also observe, for the first-time, anti-inflammatory effects of nafamostat on airway epithelia independent of its antiviral effects, suggesting a dual therapeutic advantage in the treatment of COVID-19. Nafamostat also exhibits antiviral properties against the seasonal human coronaviruses 229E and NL6. These findings suggest therapeutic promise for nafamostat in treating SARS-CoV-2 and other human coronaviruses.
Collapse
Affiliation(s)
- Brian F. Niemeyer
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Caitlin M. Miller
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Carmen Ledesma‐Feliciano
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - James H. Morrison
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Rocio Jimenez‐Valdes
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Clarissa Clifton
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eric M. Poeschla
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kambez H. Benam
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
41
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
42
|
Ma XR, Alugubelli YR, Ma Y, Vatansever EC, Scott DA, Qiao Y, Yu G, Xu S, Liu WR. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L. ChemMedChem 2022; 17:e202100456. [PMID: 34242492 PMCID: PMC8427127 DOI: 10.1002/cmdc.202100456] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/06/2022]
Abstract
A number of inhibitors have been developed for the SARS-CoV-2 main protease (MPro ) as potential COVID-19 medications but little is known about their selectivity. Using enzymatic assays, we characterized inhibition of TMPRSS2, furin, and cathepsins B/K/L by more than a dozen of previously developed MPro inhibitors including MPI1-9, GC376, 11a, 10-1, 10-2, and 10-3. MPI1-9, GC376 and 11a all contain an aldehyde for the formation of a reversible covalent hemiacetal adduct with the MPro active site cysteine and 10-1, 10-2 and 10-3 contain a labile ester to exchange with the MPro active site cysteine for the formation of a thioester. Our data revealed that all these inhibitors are inert toward TMPRSS2 and furin. Diaryl esters also showed low inhibition of cathepsins. However, all aldehyde inhibitors displayed high potency in inhibiting three cathepsins. Their determined IC50 values vary from 4.1 to 380 nM for cathepsin B, 0.079 to 2.3 nM for cathepsin L, and 0.35 to 180 nM for cathepsin K. All aldehyde inhibitors showed similar inhibition levels toward cathepsin L. A cellular analysis indicated high potency of MPI5 and MPI8 in inhibiting lysosomal activity, which is probably attributed to their inhibition of cathepsins. Among all aldehyde inhibitors, MPI8 shows the best selectivity toward cathepsin L. With respect to cathepsins B and K, the selective indices are 192 and 150, respectively. MPI8 is the most potent compound among all aldehyde inhibitors in cellular MPro inhibition potency and anti-SARS-CoV-2 activity in Vero E6 cells. Cathepsin L has been demonstrated to play a critical role in the SARS-CoV-2 cell entry. By selectively inhibiting both SARS-CoV-2 MPro and the host cathepsin L, MPI8 potentiates dual inhibition effects to synergize its overall antiviral potency and efficacy. Due to its high selectivity toward cathepsin L that reduces potential toxicity toward host cells and high cellular and antiviral potency, we urge serious consideration of MPI8 for preclinical and clinical investigations for treating COVID-19.
Collapse
Affiliation(s)
- Xinyu R. Ma
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Yugendar R. Alugubelli
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Yuying Ma
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Erol C. Vatansever
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Danielle A. Scott
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Yuchen Qiao
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Ge Yu
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Shiqing Xu
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX 77843USA
- Institute of Biosciences and Technology and Department of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX 77030USA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTX 77843USA
- Department of Molecular and Cellular MedicineCollege of MedicineTexas A&M UniversityCollege StationTX 77843USA
| |
Collapse
|
43
|
Xu YM, Inacio MC, Liu MX, Gunatilaka AAL. Discovery of diminazene as a dual inhibitor of SARS-CoV-2 human host proteases TMPRSS2 and furin using cell-based assays. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100023. [PMID: 35815069 PMCID: PMC8920474 DOI: 10.1016/j.crchbi.2022.100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteases TMPRSS2 (transmembrane protease serine 2) and furin are known to play important roles in viral infectivity including systematic COVID-19 infection through priming of the spike protein of SARS-CoV-2 and related viruses. To discover small-molecules capable of inhibiting these host proteases, we established convenient and cost-effective cell-based assays employing Vero cells overexpressing TMPRSS2 and furin. A cell-based proteolytic assay for broad-spectrum protease inhibitors was also established using human prostate cancer cell line LNCaP. Evaluation of camostat, nafamostat, and gabexate in these cell-based assays confirmed their known TMPRSS2 inhibitory activities. Diminazene, a veterinary medicinal agent and a known furin inhibitor was found to inhibit both TMPRSS2 and furin with IC50s of 1.35 and 13.2 μM, respectively. Establishment and the use of cell-based assays for evaluation TMPRSS2 and furin inhibitory activity and implications of dual activity of diminazene vs TMPRSS2 and furin are presented.
Collapse
Affiliation(s)
- Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706, USA
| | - Marielle Cascaes Inacio
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706, USA
| | - Manping X Liu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706, USA
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706, USA
| |
Collapse
|
44
|
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I, Karteris E. Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 2021; 49:20. [PMID: 34935057 PMCID: PMC8722767 DOI: 10.3892/ijmm.2021.5075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
The pathophysiology of coronavirus disease 2019 (COVID-19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide-repertoire of possible cell entry mediators that appear to co-localise in a cell- and tissue-specific manner. The present study provides an over-view of the 'canonical' SARS-CoV-2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin-1, expanding on the involvement of novel candidates, including glucose-regulated protein 78, basigin, kidney injury molecule-1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor-α convertase) and Toll-like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID-19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS-CoV-2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID-19 warrants further investigation.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Harpal S Randeva
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Sayeh Saravi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ioannis Kyrou
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
45
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
46
|
Ribone SR, Paz SA, Abrams CF, Villarreal MA. Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking. J Comput Aided Mol Des 2021; 36:25-37. [PMID: 34825285 PMCID: PMC8616721 DOI: 10.1007/s10822-021-00432-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Screening already approved drugs for activity against a novel pathogen can be an important part of global rapid-response strategies in pandemics. Such high-throughput repurposing screens have already identified several existing drugs with potential to combat SARS-CoV-2. However, moving these hits forward for possible development into drugs specifically against this pathogen requires unambiguous identification of their corresponding targets, something the high-throughput screens are not typically designed to reveal. We present here a new computational inverse-docking protocol that uses all-atom protein structures and a combination of docking methods to rank-order targets for each of several existing drugs for which a plurality of recent high-throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of this method with known drug-target pairs, including both non-antiviral and antiviral compounds. We subjected 152 distinct drugs potentially suitable for repurposing to the inverse docking procedure. The most common preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro. All compounds that selected TMPRSS2 are known serine protease inhibitors, and those that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis of the docking poses revealed important insights into why these selections arose, and could potentially lead to more rational design of new drugs against these targets.
Collapse
Affiliation(s)
- Sergio R Ribone
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), X5000HUA, Córdoba, Argentina
| | - S Alexis Paz
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , X5000HUA, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto de Fisicoquímica de Córdoba (INFIQC), X5000HUA, Córdoba, Argentina
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Marcos A Villarreal
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , X5000HUA, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto de Fisicoquímica de Córdoba (INFIQC), X5000HUA, Córdoba, Argentina.
| |
Collapse
|
47
|
Zhao X, Luo S, Huang K, Xiong D, Zhang JZH, Duan L. Targeting mechanism for SARS-CoV-2 in silico: interaction and key groups of TMPRSS2 toward four potential drugs. NANOSCALE 2021; 13:19218-19237. [PMID: 34787160 DOI: 10.1039/d1nr06313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously endangered human health. The number of confirmed cases is still increasing; however, treatment options are limited. Transmembrane protease serine 2 (TMPRSS2), as a key protease that primes the binding of SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2), has become an attractive target and received widespread attention. Thus, four potential drugs (bromhexine, camostat, gabexate, and nafamostat) were used to explore the mechanism of binding with TMPRSS2 in this work. A 65 ns molecular dynamics simulation was performed three times for each drug-TMPRSS2 system for reliable energy calculation and conformational analysis, of which the simulations of nafamostat-TMPRSS2 systems were further extended to 150 ns three times due to the discovery of two binding modes. Through the results of calculating binding free energy by nine methods, the binding affinity of camostat, gabexate, and nafamostat to TMPRSS2 showed great advantages compared with bromhexine, where the nafamostat was surprisingly found to present two reasonable binding conformations (forward and reverse directions). Two negatively charged amino acids (Asp435 and Glu299) can clamp the two positively charged groups (guanidinium group and amidinium group) in either forward or reverse fashion, and the forward one is more stable than the reverse. In addition, compared with gabexate, the dimethylamino group in camostat forms more van der Waals interactions with surrounding hot-spots His296 and Val280, resulting in a stronger affinity to TMPRSS2. For bromhexine, multiple binding sites are displayed in the binding pocket due to its small molecular structure, and van der Waals interactions play the dominant role in the binding process. In particular, six typical hot-spots were identified in the last three serine protease inhibitor systems, i.e., Asp435, Ser436, Gln438, Trp461, Ser463, and Gly464. The guanidinium groups of the drugs have powerful interactions with adjacent residues due to the formation of more hydrogen bonds, suggesting that this may be the critical site for drug design against TMPRSS2. This work provides valuable molecular insight into these four drug-TMPRSS2 binding mechanisms and is helpful for designing and screening drugs targeting TMPRSS2.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Kaifang Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
- Department of Chemistry, New York University, NY, NY 10003, USA
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
48
|
Carter-Timofte ME, Arulanandam R, Kurmasheva N, Fu K, Laroche G, Taha Z, van der Horst D, Cassin L, van der Sluis RM, Palermo E, Di Carlo D, Jacobs D, Maznyi G, Azad T, Singaravelu R, Ren F, Hansen AL, Idorn M, Holm CK, Jakobsen MR, van Grevenynghe J, Hiscott J, Paludan SR, Bell JC, Seguin J, Sabourin LA, Côté M, Diallo JS, Alain T, Olagnier D. Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infect Dis 2021; 7:3034-3051. [PMID: 34658235 PMCID: PMC8547501 DOI: 10.1021/acsinfecdis.1c00278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/22/2022]
Abstract
The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.
Collapse
Affiliation(s)
| | - Rozanne Arulanandam
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
| | - Naziia Kurmasheva
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - Kathy Fu
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Zaid Taha
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | | | - Lena Cassin
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - Renée M. van der Sluis
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
- Aarhus Institute of Advanced Studies, Aarhus
University, Aarhus 8000, Denmark
| | - Enrico Palermo
- Istituto Pasteur Italia-Cenci Bolognetti
Foundation, Viale Regina Elena 291, Rome 00161,
Italy
| | - Daniele Di Carlo
- Istituto Pasteur Italia-Cenci Bolognetti
Foundation, Viale Regina Elena 291, Rome 00161,
Italy
| | - David Jacobs
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Glib Maznyi
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
| | - Taha Azad
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | - Ragunath Singaravelu
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
| | - Fanghui Ren
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | | | - Manja Idorn
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - Christian K. Holm
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | | | - Julien van Grevenynghe
- Institut National de la Recherche
Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie,
Laval, Québec H7V 1B7, Canada
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti
Foundation, Viale Regina Elena 291, Rome 00161,
Italy
| | - Søren R. Paludan
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| | - John C. Bell
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | - Jean Seguin
- CCFP, Dipl. Sport Med., CareMedics
McArthur, 311 McArthur Avenue suite 103, Ottawa, Ontario K1L 8M3,
Canada
| | - Luc A. Sabourin
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Cellular and Molecular Medicine,
University of Ottawa, Ottawa, Ontario K1H 8M5,
Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Center for Infection, Immunity, and Inflammation,
University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Ottawa Institute of Systems
Biology, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research,
Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6,
Canada
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology, and
Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1,
Canada
- Children’s Hospital of Eastern
Ontario Research Institute, Ottawa, Ontario K1H 8L1,
Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus
University, Aarhus C 8000, Denmark
| |
Collapse
|
49
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenço AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz NP, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings CL, Rothenberg ME, Pöhlmann S, Whelan SPJ, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci U S A 2021; 118:e2108728118. [PMID: 34635581 PMCID: PMC8694051 DOI: 10.1073/pnas.2108728118] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| | - Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael A Tartell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Dong Hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Dustin Pwee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Jorine Voss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Program in Virology, Harvard Medical School, Boston, MA 02115
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Melody Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | | | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen 37077, Germany
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110;
- ProteXase Therapeutics, Inc., Saint Louis, MO 63108
| |
Collapse
|
50
|
Ali A, Mughal H, Ahmad N, Babar Q, Saeed A, Khalid W, Raza H, Liu A. Novel therapeutic drug strategies to tackle immune-oncological challenges faced by cancer patients during COVID-19. Expert Rev Anticancer Ther 2021; 21:1371-1383. [PMID: 34643141 DOI: 10.1080/14737140.2021.1991317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the clinical treatment of cancer patients, coronavirus (SARS-CoV-2) can cause serious immune-related problems. Cancer patients, who experience immunosuppression due to the pathogenesis and severity of disease, may become more aggressive due to multiple factors such as age, comorbidities, and immunosuppression. In this pandemic era, COVID-19 causes lymphopenia, cancer cell awakening, inflammatory diseases, and a cytokine storm that worsens disease-related morbidity and prognosis. AREAS COVERED We discuss all the risk factors of COVID-19 associated with cancer patients and propose new strategies to use antiviral and anticancer drugs for therapeutic purposes. We bring new drugs, cancers and COVID-19 treatment strategies together to address the immune system challenges faced by oncologists. EXPERT OPINION The chronic inflammatory microenvironment caused by COVID-19 awakens dormant cancer cells through inflammation and autoimmune activation. Drug-related strategies to ensure that clinical treatment can reduce the susceptibility of cancer patients to COVID-19, and possible counter-measures to minimize the harm caused by the COVID-19 have been outlined. The response to the pandemic and recovery has been elaborated, which can provide information for long-term cancer treatment and speed up the optimization process.
Collapse
Affiliation(s)
- Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China.,Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | - Hafsa Mughal
- Department of Nutrition, Aziz Fatima Medical and Dental College, and Aziz Fatima Hospital, Faisalabad, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Quratulain Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Hasnain Raza
- Department of Social Sciences, Yangzhou University, Yangzhou, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|