1
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Audira G, Lee JS, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD. Assessments of carbon nanotubes toxicities in zebrafish larvae using multiple physiological and molecular endpoints. Chem Biol Interact 2024; 392:110925. [PMID: 38452846 DOI: 10.1016/j.cbi.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 900391, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines; The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Espana Blvd., Manila, 1015, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
5
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
6
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Kulikov OA, Yunina DV, Ageev VP, Shlyapkina VI, Avdyushkina IS, Akmaeva IA, Zaborovsky AV, Tararina LA, Tsaregorodtsev SV, Pyataev NA. Evaluation of Cellular Toxicity and Preclinical Safety of Using an Inhalable Liposomal form of Dexamethasone. Pharm Chem J 2023; 56:1573-1576. [PMID: 37020507 PMCID: PMC10022986 DOI: 10.1007/s11094-023-02829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 03/19/2023]
Abstract
A liposomal form of dexamethasone was obtained. Liposomal vesicles were formed. The efficiency of incorporating dexamethasone into the liposomes was 99.7%. The cytotoxicity of the obtained liposomes was studied on a culture of human lung fibroblast cells using the MTT assay. The toxicity of liposomal dexamethasone was less than that of dexamethasone solution after a 24-h incubation. The half-maximum inhibitory concentration (IC50) was not achieved after 24 h when exposed to liposomal dexamethasone whereas IC50 was 27.5 mg/mL for lecithin (empty liposomes) and 177 µg/mL for dexamethasone solution. The toxicity of liposomal dexamethasone increased much more than that of dexamethasone solution after 48 h of incubation with IC50 values of 36 and 156 µg/mL, respectively. Thus, the liposomal form of dexamethasone has a latent period for implementation of the cytostatic (antiproliferative) action. Experiments on laboratory white rats of both sexes revealed that the inhalation use of liposomal dexamethasone insignificantly changed the functional parameters of their respiratory and cardiovascular systems. The study results could be used for conducting clinical trials.
Collapse
|
8
|
Jiang Y, Tan Z, Zhao T, Wu J, Li Y, Jia Y, Peng Z. Indocyanine green derived carbon dots with significantly enhanced properties for efficient photothermal therapy. NANOSCALE 2023; 15:1925-1936. [PMID: 36625142 DOI: 10.1039/d2nr06058b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A simple yet effective strategy to enhance the properties of traditional dye indocyanine green (ICG) in all aspects was proposed and demonstrated. Specifically, indocyanine green-derived carbon dots (ICGCDs) were synthesized from ICG via a simple hydrothermal treatment. The ICGCDs exhibited significantly enhanced thermal stability and anti-photobleaching compared to ICG. Furthermore, their photothermal properties were also notably strengthened, in which a wider functional pH range, 50% improvement in photothermal conversion efficiency and superior photothermal cyclability were achieved. Thanks to these superior properties, ICGCDs were demonstrated as efficient NIR bioimaging and photothermal agents in both in vitro and in vivo experiments. Most excitingly, the strategy demonstrated in this study is likely to have broad applications in other systems.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Zhuomin Tan
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China.
| | - Tianshu Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Jiajia Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Ya Li
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China.
| | - Zhili Peng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
9
|
Ruan H, Zhang X, Yuan J, Fang X. Effect of water-soluble fullerenes on macrophage surface ultrastructure revealed by scanning ion conductance microscopy. RSC Adv 2022; 12:22197-22201. [PMID: 36043103 PMCID: PMC9364078 DOI: 10.1039/d2ra02403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
C60-fullerenes have unique potential in antiviral, drug delivery, photodynamic therapy and other biomedical applications. However, little is known about their effects on macrophage surface morphology and ultrastructure. Here by using contact-free scanning ion conductance microscopy (SICM), we investigated the effects of two water-soluble fullerenes on the surface ultrastructure and function of macrophages. The results showed that these fullerenes would be a promising phagocytosis inhibitor and SICM would be an excellent tool to study the morphological information of adhesive and fragile samples. Nanoscale morphological changes of macrophages characterized by contact-free SICM and their relationship with phagocytosis after C60-fullerene treatment demonstrate they are a potential phagocytosis inhibitor.![]()
Collapse
Affiliation(s)
- Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing China .,Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University Beijing China
| | - Xuejie Zhang
- Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University Beijing China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
11
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
12
|
Marui T, Tomonaga T, Izumi H, Yoshiura Y, Nishida C, Higashi H, Wang K, Shijo M, Kubo M, Shimada M, Morimoto Y. Pulmonary toxicity of tungsten trioxide nanoparticles in an inhalation study and an intratracheal instillation study. J Occup Health 2022; 64:e12367. [PMID: 36366872 PMCID: PMC9650236 DOI: 10.1002/1348-9585.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We conducted inhalation and intratracheal instillation studies in order to examine the effects of tungsten trioxide (WO3) nanoparticles on the lung, and evaluated whether or not the nanoparticles would cause persistent lung inflammation. Methods In the inhalation study, male 10‐week‐old Fischer 334 rats were classified into 3 groups. The control, low‐dose, and high‐dose groups inhaled clean air, 2, and 10 mg/m3 WO3 nanoparticles, respectively, for 6 h each day for 4 weeks. The rats were dissected at 3 days, 1 month, and 3 months after the inhalation, and the bronchoalveolar lavage fluid (BALF) and lung tissue were examined. In the intratracheal instillation study, male 12‐week‐old Fischer 334 rats were divided into 3 subgroups. The control, low‐dose, and high‐dose groups were intratracheally instilled 0.4 ml distilled water, 0.2, and 1.0 mg WO3 nanoparticles, respectively, dissolved in 0.4 ml distilled water. The rats were sacrificed at 3 days, 1 week, and 1 month after the intratracheal instillation, and the BALF and lung tissue were analyzed as in the inhalation study. Results The inhalation and instillation of WO3 nanoparticles caused transient increases in the number and rate of neutrophils, cytokine‐induced neutrophil chemoattractant (CINC)‐1, and CINC‐2 in BALF, but no histopathological changes or upregulation of heme oxygenase (HO)‐1 in the lung tissue. Conclusion Our results suggest that WO3 nanoparticles have low toxicity to the lung. According to the results of the inhalation study, we also propose that the no observed adverse effect level (NOAEL) of WO3 nanoparticles is 2 mg/m3.
Collapse
Affiliation(s)
- Takashi Marui
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences University of Occupational and Environmental Health Fukuoka Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences University of Occupational and Environmental Health Fukuoka Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences University of Occupational and Environmental Health Fukuoka Japan
| | - Yukiko Yoshiura
- Center for Stress‐related Disease control and Prevention University of Occupational and Environmental Health Fukuoka Japan
| | - Chinatsu Nishida
- Department of Respiratory Medicine University of Occupational and Environmental Health Fukuoka Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences University of Occupational and Environmental Health Japan Fukuoka Japan
| | - Ke‐Yong Wang
- Shared‐Use Research Center, School of Medicine University of Occupational and Environmental Health Fukuoka Japan
| | - Miyako Shijo
- Shared‐Use Research Center, School of Medicine University of Occupational and Environmental Health Fukuoka Japan
| | - Masaru Kubo
- Department of Advanced Science and Engineering Graduate School of Advanced Science and Engineering, Hiroshima University Hiroshima Japan
| | - Manabu Shimada
- Department of Advanced Science and Engineering Graduate School of Advanced Science and Engineering, Hiroshima University Hiroshima Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences University of Occupational and Environmental Health Fukuoka Japan
| |
Collapse
|
13
|
Lee H, Kim S, Hwang KS, Lim NR, Oh HB, Cho IJ, Kim J, Kim KH, Kim HN. Effect of carbon nanomaterial dimension on the functional activity and degeneration of neurons. Biomaterials 2021; 279:121232. [PMID: 34739983 DOI: 10.1016/j.biomaterials.2021.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022]
Abstract
Despite growing concerns regarding the threat of airborne nanoparticle-mediated brain degeneration, the underlying pathological mechanisms remain unclear. Carbon nanomaterials, the main components of airborne nanoparticles, have multi-dimensional structures. Therefore, the dimensional effect of carbon-based nanomaterials on the regulation of neural function in brain disorders requires additional clarification. Herein, we report the interaction between zero-to three-dimensional carbon nanostructures and the amyloid-beta protein, which can either activate or interrupt neuronal functions, depending on the dimension of the carbon nanostructures. The carbon nanomaterials induced significant cellular activation by short-term exposure, while prolonged exposure eventually caused neuronal cell death. Such dimension-dependent activation or degeneration was more evident in the higher-dimension carbon nanomaterials, as confirmed by the increases in neurotransmitter secretion and synapse-related protein levels to more than five times at 72 h of monitoring and calcium signaling in the neurons. The inclusion of amyloid-beta proteins ameliorated the cytotoxic effects of carbon nanomaterials in higher-dimensional carbon nanomaterials by regulating 333 genes. We found that the ɑ-synuclein gene is the key factor in carbon-induced abnormal neuronal function. Therefore, through biological analyses and in vitro feasibility studies, this new insight may contribute toward understanding the pathological mechanism and finding a new target for therapy in human brain pathologies.
Collapse
Affiliation(s)
- Hyojin Lee
- Center for Biomaterials, Biomedical Engineering Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Seongchan Kim
- Center for Biomaterials, Biomedical Engineering Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Nu Ri Lim
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jongbaeg Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
Zakharova OV, Mastalygina EE, Golokhvast KS, Gusev AA. Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2425. [PMID: 34578739 PMCID: PMC8469389 DOI: 10.3390/nano11092425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Graphene nanoribbons are a type of graphene characterized by remarkable electrical and mechanical properties. This review considers the prospects for the application of graphene ribbons in biomedicine, taking into account safety aspects. According to the analysis of the recent studies, the topical areas of using graphene nanoribbons include mechanical, chemical, photo- and acoustic sensors, devices for the direct sequencing of biological macromolecules, including DNA, gene and drug delivery vehicles, and tissue engineering. There is evidence of good biocompatibility of graphene nanoribbons with human cell lines, but a number of researchers have revealed toxic effects, including cytotoxicity and genotoxicity. Moreover, the damaging effects of nanoribbons are often higher than those of chemical analogs, for instance, graphene oxide nanoplates. The possible mechanism of toxicity is the ability of graphene nanoribbons to damage the cell membrane mechanically, stimulate reactive oxidative stress (ROS) production, autophagy, and inhibition of proliferation, as well as apoptosis induction, DNA fragmentation, and the formation of chromosomal aberrations. At the same time, the biodegradability of graphene nanoribbons under the environmental factors has been proven. In general, this review allows us to conclude that graphene nanoribbons, as components of high-precision nanodevices and therapeutic agents, have significant potential for biomedical applications; however, additional studies of their safety are needed. Particular emphasis should be placed on the lack of information about the effect of graphene nanoribbons on the organism as a whole obtained from in vivo experiments, as well as about their ecological toxicity, accumulation, migration, and destruction within ecosystems.
Collapse
Affiliation(s)
- Olga V. Zakharova
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33 Internatsionalnaya St., 392000 Tambov, Russia;
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISiS, 4 Leninskiy prospekt, 119049 Moscow, Russia
| | - Elena E. Mastalygina
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Laboratory of Physics-Chemistry of Synthetic and Natural Polymers Composites, Institute of Biochemical Physics Named after N.M. Emanuel RAS (IBCP RAS), Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russia
| | - Kirill S. Golokhvast
- Polytechnical Institute, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia;
- Siberian Federal Scientific Center for Agrobiotechnology RAS, Centralnaya 2B, 630501 Krasnoobsk, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| | - Alexander A. Gusev
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33 Internatsionalnaya St., 392000 Tambov, Russia;
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
- Research Educational Center Sustainable Development of the Forest Complex, Voronezh State Forestry University Named after G F Morozov, 394087 Voronezh, Russia
| |
Collapse
|
15
|
Kotzabasaki M, Sotiropoulos I, Charitidis C, Sarimveis H. Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction. NANOSCALE ADVANCES 2021; 3:3167-3176. [PMID: 36133654 PMCID: PMC9417168 DOI: 10.1039/d0na00600a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/11/2021] [Indexed: 06/15/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are made of multiple single-walled carbon nanotubes (SWCNTs) which are nested inside one another forming concentric cylinders. These nanomaterials are widely used in industrial and biomedical applications, due to their unique physicochemical characteristics. However, previous studies have shown that exposure to MWCNTs may lead to toxicity and some of the physicochemical properties of MWCNTs can influence their toxicological profiles. In silico modelling can be applied as a faster and less costly alternative to experimental (in vivo and in vitro) testing for the hazard characterization of MWCNTs. This study aims at developing a fully validated predictive nanoinformatics model based on statistical and machine learning approaches for the accurate prediction of genotoxicity of different types of MWCNTs. Towards this goal, a number of different computational workflows were designed, combining unsupervised (Principal Component Analysis, PCA) and supervised classification techniques (Support Vectors Machine, "SVM", Random Forest, "RF", Logistic Regression, "LR" and Naïve Bayes, "NB") and Bayesian optimization. The Recursive Feature Elimination (RFE) method was applied for selecting the most important variables. An RF model using only three features was selected as the most efficient for predicting the genotoxicity of MWCNTs, exhibiting 80% accuracy on external validation and high classification probabilities. The most informative features selected by the model were "Length", "Zeta average" and "Purity".
Collapse
Affiliation(s)
- Marianna Kotzabasaki
- School of Chemical Engineering, National Technical University of Athens 9 Heroon Polytechneiou Street, Zografou Campus 15780 Athens Greece +30 2107723138 +30 2107723236 +302107723237
| | - Iason Sotiropoulos
- School of Chemical Engineering, National Technical University of Athens 9 Heroon Polytechneiou Street, Zografou Campus 15780 Athens Greece +30 2107723138 +30 2107723236 +302107723237
| | - Costas Charitidis
- School of Chemical Engineering, National Technical University of Athens 9 Heroon Polytechneiou Street, Zografou Campus 15780 Athens Greece +30 2107723138 +30 2107723236 +302107723237
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens 9 Heroon Polytechneiou Street, Zografou Campus 15780 Athens Greece +30 2107723138 +30 2107723236 +302107723237
| |
Collapse
|
16
|
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007727. [PMID: 33852769 DOI: 10.1002/smll.202007727] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.
Collapse
Affiliation(s)
- Yu Guan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ziqing Hei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
17
|
Keshavan S, Andón FT, Gallud A, Chen W, Reinert K, Tran L, Fadeel B. Profiling of Sub-Lethal in Vitro Effects of Multi-Walled Carbon Nanotubes Reveals Changes in Chemokines and Chemokine Receptors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:883. [PMID: 33808372 PMCID: PMC8067081 DOI: 10.3390/nano11040883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Engineered nanomaterials are potentially very useful for a variety of applications, but studies are needed to ascertain whether these materials pose a risk to human health. Here, we studied three benchmark nanomaterials (Ag nanoparticles, TiO2 nanoparticles, and multi-walled carbon nanotubes, MWCNTs) procured from the nanomaterial repository at the Joint Research Centre of the European Commission. Having established a sub-lethal concentration of these materials using two human cell lines representative of the immune system and the lungs, respectively, we performed RNA sequencing of the macrophage-like cell line after exposure for 6, 12, and 24 h. Downstream analysis of the transcriptomics data revealed significant effects on chemokine signaling pathways. CCR2 was identified as the most significantly upregulated gene in MWCNT-exposed cells. Using multiplex assays to evaluate cytokine and chemokine secretion, we could show significant effects of MWCNTs on several chemokines, including CCL2, a ligand of CCR2. The results demonstrate the importance of evaluating sub-lethal concentrations of nanomaterials in relevant target cells.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
| | - Fernando Torres Andón
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
- IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Milan, Italy
- Center for Research in Molecular Medicine & Chronic Diseases, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Audrey Gallud
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany;
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Knut Reinert
- Department of Computer Science and Mathematics, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh EH14 4AP, UK;
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (S.K.); (F.T.A.); (A.G.)
| |
Collapse
|
18
|
Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. Toxicol Appl Pharmacol 2020; 409:115272. [PMID: 33031836 PMCID: PMC9960630 DOI: 10.1016/j.taap.2020.115272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis is characterized by destruction and remodeling of the lung due to an accumulation of collagen and other extracellular matrix components in the tissue. This results in progressive irreversible decreases in lung capacity, impaired gas exchange and eventually, hypoxemia. A number of inhaled and systemic toxicants including bleomycin, silica, asbestos, nanoparticles, mustard vesicants, nitrofurantoin, amiodarone, and ionizing radiation have been identified. In this article, we review the role of innate and adaptive immune cells and mediators they release in the pathogenesis of fibrotic pathologies induced by pulmonary toxicants. A better understanding of the pathogenic mechanisms underlying fibrogenesis may lead to the development of new therapeutic approaches for patients with these debilitating and largely irreversible chronic diseases.
Collapse
|
19
|
Leibrock LB, Jungnickel H, Tentschert J, Katz A, Toman B, Petersen EJ, Bierkandt FS, Singh AV, Laux P, Luch A. Parametric Optimization of an Air-Liquid Interface System for Flow-Through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2369. [PMID: 33260672 PMCID: PMC7760223 DOI: 10.3390/nano10122369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
Air-liquid interface (ALI) systems have been widely used in recent years to investigate the inhalation toxicity of many gaseous compounds, chemicals, and nanomaterials and represent an emerging and promising in vitro method to supplement in vivo studies. ALI exposure reflects the physiological conditions of the deep lung more closely to subacute in vivo inhalation scenarios compared to submerged exposure. The comparability of the toxicological results obtained from in vivo and in vitro inhalation data is still challenging. The robustness of ALI exposure scenarios is not yet well understood, but critical for the potential standardization of these methods. We report a cause-and-effect (C&E) analysis of a flow through ALI exposure system. The influence of five different instrumental and physiological parameters affecting cell viability and exposure parameters of a human lung cell line in vitro (exposure duration, relative humidity, temperature, CO2 concentration and flow rate) was investigated. After exposing lung epithelia cells to a CeO2 nanoparticle (NP) aerosol, intracellular CeO2 concentrations reached values similar to those found in a recent subacute rat inhalation study in vivo. This is the first study showing that the NP concentration reached in vitro using a flow through ALI system were the same as those in an in vivo study.
Collapse
Affiliation(s)
- Lars B. Leibrock
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Aaron Katz
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Blaza Toman
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaitherburg, MD 20899-8311, USA;
| | - Elijah J. Petersen
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaitherburg, MD 20899-8311, USA;
| | - Frank S. Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (H.J.); (J.T.); (A.K.); (F.S.B.); (A.V.S.); (P.L.); (A.L.)
| |
Collapse
|
20
|
Lee DK, Ha S, Jeon S, Jeong J, Kim DJ, Lee SW, Cho WS. The sp3/sp2 carbon ratio as a modulator of in vivo and in vitro toxicity of the chemically purified detonation-synthesized nanodiamond via the reactive oxygen species generation. Nanotoxicology 2020; 14:1213-1226. [PMID: 32924690 DOI: 10.1080/17435390.2020.1813825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanodiamonds have been suggested as biocompatible materials and are suitable for various biomedical applications, but little is known about how to synthesize safer nanodiamonds. Herein, seven different detonation-synthesized nanodiamonds (DNDs) with sequential sp3/sp2 carbon ratios were assembled by controlling the chemical purification parameters and the role of sp3/sp2 carbon ratio on the toxicity of DNDs was investigated. Carbon black and nickel oxide nanoparticles were used as reference particles. The intrinsic reactive oxygen species (ROS) generation potential of DNDs was estimated by a 2'7'-dichlorofluorescein diacetate (DCFH-DA) assay, and these values showed a good negative correlation with the sp3/sp2 carbon ratios, which implies that ROS generation increased as the sp3/sp2 carbon ratio decreased. As a model to investigate inflammogenic potential of DND samples, a rat intratracheal instillation model was used as the lung is very sensitive to nanoparticle exposures. The sp3/sp2 carbon ratios or the estimated values of ROS generation potential showed excellent linear correlations with the number of neutrophils and pro-inflammatory cytokines in bronchoalveolar lavage fluid at 24 h after instillation. Treatment of DND samples to THP-1 derived macrophages also showed that the sp3/sp2 carbon ratios or the estimated values of ROS generation potential were closely related with the toxicity endpoints such as cell viability and pro-inflammatory cytokines. Taken together, these data demonstrate that the sp3/sp2 carbon ratio is the key determinant for the toxicity of DNDs, which can be a useful tool for the safer-by-design approach of DNDs and the safety assessment of carbon nanoparticles.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Sangwook Ha
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, DGIST, Daegu, Republic of Korea
| | - Seung Whan Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
21
|
Fan J, Chen Y, Yang D, Shen J, Guo X. Multi-walled carbon nanotubes induce IL-1β secretion by activating hemichannels-mediated ATP release in THP-1 macrophages. Nanotoxicology 2020; 14:929-946. [PMID: 32538272 DOI: 10.1080/17435390.2020.1777476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are known to induce pulmonary inflammatory effects through stimulating pro-inflammatory cytokine secretion from alveolar macrophages. Despite extensive studies on MWCNTs' pro-inflammatory reactivity, the understanding of molecular mechanisms involved is still incomplete. In this study, we investigated hemichannel's involvement in MWCNTs-induced macrophage IL-1β release. Our results showed that the unmodified and COOH MWCNTs could induce ATP release and ATP-P2X7R axis-dependent IL-1β secretion from THP-1 macrophages. By using various inhibitors, we confirmed that the MWCNTs-induced ATP release was primarily through hemichannels. EtBr dye uptake assay detected significant hemichannels opening in MWCNTs exposed THP-1 macrophages. Inhibition of hemichannels by CBX, 43Gap27, or 10Panx1 pretreatment results in decreased ATP and IL-1β release. The addition of ATP restored the reduced IL-1β secretion level from hemichannel inhibition. We also confirmed with five other types of MWCNTs that the induction of hemichannels by MWCNTs strongly correlates with their capacity to induce IL-1β secretion. Taken together, we conclude that hemichannels-mediated ATP release and subsequent NLRP3 inflammasome activation through P2X7R may be one mechanism by which MWCNTs induce macrophage IL-1β secretion. Our findings may provide a novel molecular mechanism for MWCNTs induced IL-1β secretion.
Collapse
Affiliation(s)
- Jingpu Fan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yiyong Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jie Shen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
22
|
O’Shaughnessy P, Stoltenberg A, Holder C, Altmaier R. Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:262-273. [PMID: 32286917 PMCID: PMC7282999 DOI: 10.1080/15459624.2020.1740237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aethalometers are direct-reading instruments primarily used for measuring black carbon (BC) concentrations in workplace and ambient atmospheres. Aethalometer BC measurements of carbon nanotubes (CNTs) were compared to measurements made by other methods when subjected to high (>30 µg/m3) and low (1-30 µg/m3) CNT aerosol concentrations representing worst-case and typical workplace concentrations, respectively. A laboratory-based system was developed to generate carbon black, as an example of a nearly pure carbon, micron-sized aerosol, and two forms of multi-walled carbon nanotubes (CNTs): small-diameter (<8 nm) and large-diameter (50-80 nm). High-concentration trials were conducted during which a scanning mobility particle sizer (SMPS) was used to track particle count concentrations over time. Relative to the behavior of the SMPS counts over time, aethalometer readings exhibited a downward drift, which is indicative of aethalometer response subjected to high BC loading on the receiving filter of the instrument. A post-sample mathematical method was applied that adequately corrected for the drift. Low-concentration trials, during which concentration drift did not occur, were conducted to test aethalometer accuracy. The average BC concentration during a trial was compared to elemental carbon (EC) concentration sampled with a quartz-fiber filter and quantified by NIOSH Method 5040. The CB and large-diameter CNT concentrations measured with the aethalometer produced slopes when regressed on EC that were not significantly different from unity, whereas the small-diameter CNTs were under-sampled by the aethalometer relative to EC. These results indicate that aethalometer response may drift when evaluating CNT exposure scenarios, such as cleaning and powder handling, that produce concentrations >30 µg/m3. However, aethalometer accuracy remains consistent over time when sampling general work zones in which CNT concentrations are expected to be <30 µg/m3. A calibration check of aethalometer response relative to EC measured with Method 5040 is recommended to ensure that the aethalometer readings are not under sampling CNT concentrations as occurred with one of the CNTs evaluated in this study.
Collapse
Affiliation(s)
- Patrick O’Shaughnessy
- Department of Occupational and Environmental Health, College of Public Health, 100 CPHB, S320, The University of Iowa, Iowa City, Iowa
| | - Adrianne Stoltenberg
- Department of Occupational and Environmental Health, College of Public Health, 100 CPHB, S320, The University of Iowa, Iowa City, Iowa
| | - Craig Holder
- Department of Occupational and Environmental Health, College of Public Health, 100 CPHB, S320, The University of Iowa, Iowa City, Iowa
| | - Ralph Altmaier
- Department of Occupational and Environmental Health, College of Public Health, 100 CPHB, S320, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
23
|
Cytotoxic or Not? Disclosing the Toxic Nature of Carbonaceous Nanomaterials through Nano-Bio Interactions. MATERIALS 2020; 13:ma13092060. [PMID: 32365624 PMCID: PMC7254307 DOI: 10.3390/ma13092060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The cytotoxic influence of two different carbonaceous nanomaterials on human mesenchymal stem cells (MSCs) cultured in vitro was compared in the short (1-3 days) and long term (up to 60 days). Amorphous carbon and single-walled carbon nanotubes were chosen and evaluated due to their contrasting physicochemical properties. Both materials, though supposed similarly low-toxic in basic short-term cytotoxicity assays, demonstrated dramatically different properties in the long-term study. The surface chemistry and biomolecule-adsorption capacity turned out to be crucial factors influencing cytotoxicity. We proved that amorphous carbon is able to weakly bind a low-affinity protein coat (so-called soft corona), while carbon nanotubes behaved oppositely. Obtained results from zeta-potential and adsorption measurements for both nanomaterials confirmed that a hard protein corona was present on the single-walled carbon-nanotube surface that aggravated their cytotoxic influence. The long-term exposure of the mesenchymal stem cells to carbon nanotubes, coated by the strongly bound proteins, showed a significant decrease in cell-growth rate, followed by cell senescence and death. These results are of great importance in the light of increasing nanomaterial applications in biomedicine and cell-based therapies. Our better understanding of the puzzling cytotoxicity of carbonaceous nanomaterials, reflecting their surface chemistry and interactions, is helpful in adjusting their properties when tailored for specific applications.
Collapse
|
24
|
Shinde RB, Veerapandian M, Kaushik A, Manickam P. State-of-Art Bio-Assay Systems and Electrochemical Approaches for Nanotoxicity Assessment. Front Bioeng Biotechnol 2020; 8:325. [PMID: 32411681 PMCID: PMC7198831 DOI: 10.3389/fbioe.2020.00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Innovations in the field of nanotechnology, material science and engineering has rendered fruitful utilities in energy, environment and healthcare. Particularly, emergence of surface engineered nanomaterials offered novel varieties in the daily consumables and healthcare products including therapeutics and diagnostics. However, the nanotoxicity and bioactivity of the nanomaterials upon interaction with biological system has raised critical concerns to individual as well as to the environment. Several biological models including plant and animal sources have been identified to study the toxicity of novel nanomaterials, correlating the physio-chemical properties. Biological interaction of nanomaterials and its mediated physiological functions are studied using conventional cell/molecular biological assays to understand the expression levels of genetic information specific to intra/extra cellular enzymes, cell viability, proliferation and function. However, modern research still demands advanced bioassay methods to screen the acute and chronic effects of nanomaterials at the real-time. In this regard, bioelectrochemical techniques, with the recent advancements in the microelectronics, proved to be capable of providing non-invasive measurement of the nanotoxicity effects (in vivo and in vitro) both at single cellular and multicellular levels. This review attempted to provide a detailed information on the recent advancements made in development of bioassay models and systems for assessing the nanotoxicology. With a short background information on engineered nanomaterials and physiochemical properties specific to consumer application, present review highlights the multiple bioassay models evolved for toxicological studies. Emphasize on multiple mechanisms involved in the cell toxicity and electrochemical probing of the biological interactions, revealing the cytotoxicity were also provided. Limitations in the existing electrochemical techniques and opportunities for the future research focusing the advancement in single molecular and whole cell bioassay has been discussed.
Collapse
Affiliation(s)
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, United States
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
26
|
Rabha S, Saikia BK. An environmental evaluation of carbonaceous aerosols in PM10 at micro- and nano-scale levels reveals the formation of carbon nanodots. CHEMOSPHERE 2020; 244:125519. [PMID: 31812765 DOI: 10.1016/j.chemosphere.2019.125519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Carbonaceous aerosols play significant roles in air quality and the climate; their oxidation at the nano-scale level may possibly increase the reactivity and toxicity of atmospheric particulates. In the present study, a laboratory experiment on the atmospheric carbonaceous aerosol was done by using H2O2 as an oxidizing agent. An extensive study made with advanced analytical tools revealed the formation of photoluminescent carbon nanoparticles (carbon nanodots) in the carbonaceous aerosol. The carbon nanoparticles are mostly at the sp2 hybridization state and contain various surface functional groups such as carboxyl and carbonyl groups. The properties of these carbon nanoparticles resemble the engineered carbon nanoparticles such as carbon dots (CDs). The carbon nanoparticles, mainly less than 10 nm, are composed of carbon nanocrystals containing a few other elements such as Ca and Fe. Fluorescence spectroscopy revealed the characteristic excitation-dependent emission spectra of blue fluorescent carbon nanoparticles. The results indicate the presence of characteristic carbon nanoparticles in the carbonaceous aerosol in PM10, opening a new road for predicting environmental processes occurring in the atmospheric environment.
Collapse
Affiliation(s)
- Shahadev Rabha
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India
| | - Binoy K Saikia
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India.
| |
Collapse
|
27
|
Lee DK, Jeon S, Jeong J, Yu IJ, Song KS, Kang A, Yun WS, Kim JS, Cho WS. Potential Role of Soluble Metal Impurities in the Acute Lung Inflammogenicity of Multi-Walled Carbon Nanotubes. NANOMATERIALS 2020; 10:nano10020379. [PMID: 32098206 PMCID: PMC7075329 DOI: 10.3390/nano10020379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have variable metal impurities, but little is known about the impact of soluble metal impurities on the toxicity of MWCNTs. Here, we evaluated the role of soluble metal impurities to the acute inflammogenic potential of MWCNTs, using five types of high purity MWCNTs (>95%). MWCNTs and their soluble fractions collected at 24 h after incubation in phosphate-buffered saline showed diverse metal impurities with variable concentrations. The fiber-free soluble fractions produced variable levels of reactive oxygen species (ROS), and the iron level was the key determinant for ROS production. The acute inflammation at 24 h after intratracheal instillation of MWCNTs to rats at 0.19, 0.63, and 1.91 mg MWCNT/kg body weight (bw) or fiber-free supernatants from MWCNT suspensions at 1.91 and 7.64 mg MWCNT/kg bw showed that the number of granulocytes, a marker for acute inflammation, was significantly increased with a good dose-dependency. The correlation study showed that neither the levels of iron nor the ROS generation potential of the soluble fractions showed any correlations with the inflammogenic potential. However, the total concentration of transition metals in the soluble fractions showed a good correlation with the acute lung inflammogenic potential. These results implied that metal impurities, especially transitional metals, can contribute to the acute inflammogenic potential of MWCNTs, although the major parameter for the toxicity of MWCNTs is size and shape.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Il Je Yu
- HCTm Co., LTD., 74, Seoicheon-ro 578 beon-gil Majang-myeon, Icheon-si, Gyeonggi-do 17383, Korea;
| | - Kyung Seuk Song
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon 21999, Korea;
| | - Aeyeon Kang
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (A.K.); (W.S.Y.)
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (A.K.); (W.S.Y.)
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS B3H4R2, Canada;
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
- Correspondence: ; Tel.:+82-51-200-7563
| |
Collapse
|
28
|
Tang Z, Luo C, Jun Y, Yao M, Zhang M, He K, Jin L, Ma J, Chen S, Sun S, Tao M, Ding L, Sun X, Chen X, Zhang L, Gao Y, Wang QL. Nanovector Assembled from Natural Egg Yolk Lipids for Tumor-Targeted Delivery of Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7984-7994. [PMID: 31971362 DOI: 10.1021/acsami.9b22293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomedicine uses nanotechnology-based strategies for precision tumor therapy, including passive and ligand-mediated active tumor targeting by nanocarriers. However, the possible biotoxicity of chemosynthetic nanovectors limits their clinical applications. A novel natural egg yolk lipid nanovector (EYLN) was developed for effective loading and delivery of therapeutic agents. Lipids were extracted from egg yolks and reassembled into nanosized particles. EYLNs' stability, cellular uptake, toxicity, and delivery capacity for therapeutic agents were evaluated in vitro. The systemic toxicity and biodistribution of EYLNs were analyzed in normal mice, and the therapeutic effects of doxorubicin (Dox)-loaded EYLNs were evaluated in mouse breast cancer and hepatoma models. EYLNs had a particle size of ∼40 nm and a surface ζ-potential of -45 mV and were effectively internalized by tumor cells, without showing toxicity and side effects in vitro and in vivo. Importantly, their excellent permeability and retention effect significantly enhanced the distribution of EYLNs at tumor sites, and EYLN-Dox effectively inhibited the tumor growth in both mouse models. Targeted modification with folic acid further promoted vector-mediated drug distribution in tumors. This study demonstrates that lipids with specific proportions in the egg yolk can be used to construct natural drug vectors, providing a new strategy for nano-oncology research.
Collapse
Affiliation(s)
- Zhuang Tang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Chao Luo
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Yali Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Mengchu Yao
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Mengyan Zhang
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Kang He
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Luhao Jin
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Jianshe Ma
- School of Basic Medicine , Wenzhou Medical University , Wenzhou 325035 , China
| | - Song Chen
- Institute of Medicinal Biotechnology , Jiangsu College of Nursing , Huai'an 223300 , China
| | - SuAn Sun
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Mingyue Tao
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Xiaoyang Sun
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Xiaofei Chen
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Li Zhang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Yong Gao
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Qi-Long Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| |
Collapse
|
29
|
Liu M, Anderson RC, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev 2019; 40:909-930. [PMID: 31650619 DOI: 10.1002/med.21642] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
This review explores recent work directed toward the development of nanoparticles (NPs) for multimodality cancer imaging and targeted cancer therapy. In the growing era of precision medicine, theranostics, or the combined use of targeted molecular probes in diagnosing and treating diseases is playing a particularly powerful role. There is a growing interest, particularly over the past few decades, in the use of NPs as theranostic tools due to their excellent performance in receptor target specificity and reduction in off-target effects when used as therapeutic agents. This review discusses recent advances, as well as the advantages and challenges of the application of NPs in cancer imaging and therapy.
Collapse
Affiliation(s)
- Mei Liu
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Redmond-Craig Anderson
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
30
|
Tomonaga T, Izumi H, Yoshiura Y, Myojo T, Oyabu T, Lee BW, Okada T, Marui T, Wang KY, Kubo M, Shimada M, Noguchi S, Nishida C, Yatera K, Morimoto Y. Usefulness of myeloperoxidase as a biomarker for the ranking of pulmonary toxicity of nanomaterials. Part Fibre Toxicol 2018; 15:41. [PMID: 30352603 PMCID: PMC6199695 DOI: 10.1186/s12989-018-0277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2-1.0 mg) and inhalation exposures (exposure concentration: 0.32-10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure. RESULTS Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure. CONCLUSION These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Hiroto Izumi
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Yukiko Yoshiura
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Toshihiko Myojo
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Takako Oyabu
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Byeong-Woo Lee
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Takami Okada
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Takashi Marui
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Masaru Kubo
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Manabu Shimada
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Chinatsu Nishida
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Yasuo Morimoto
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| |
Collapse
|
31
|
Rajendrakumar SK, Cherukula K, Park HJ, Uthaman S, Jeong YY, Lee BI, Park IK. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J Control Release 2018; 276:72-83. [PMID: 29499218 DOI: 10.1016/j.jconrel.2018.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/10/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Stimuli-responsive polymeric nanoparticles are useful for overcoming challenges such as transfection efficiency and the specific and safe delivery of genes to cancer cells. Transfection outcomes can be improved through spatially and temporally controlled gene release. We formulated a nanoassembly comprising a disulfide-crosslinked polyethylenimine (ssPEI) conjugated with a tumor-specific cell-penetrating peptide (DS 4-3) (SPD) polyplex and bovine serum albumin (BSA)-loaded IR780 (BI) nanoparticle, thereby forming a dual-stimulus-triggered, tumor-penetrating and gene-carrying nanoassembly (BI-SPD) via electrostatic complexing. BI-SPD nanoassembly were composed of highly stable nanosized complexes with an average size of 457 ± 27.5 nm, exhibiting an up to two-fold enhanced transfection efficiency with no sign of potential cytotoxicity in breast cancer cells. Moreover, upon laser irradiation, a four-fold increase in transfection efficiency was achieved due to the rapid endosomal escape of polyplexes triggered by the local heat induced by the BI-SPD nanoassembly. Additionally, the high redox environment in tumor cells facilitated the disassembly of the SPD polyplex for efficient plasmid release in the cytosol. The BI-SPD nanoassembly also exhibited high penetration and enhanced photothermally triggered gene expression in the 4T1 spheroid model. This BI-SPD nanoassembly has the potential to enhance the expression of therapeutic genes in tumor models without causing significant toxicity to surrounding healthy tissues, since it has shown higher tumor targeting and accumulation in the 4T1 tumor in mice model.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Hyeong Ju Park
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju 61007, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 58128, South Korea
| | - Byeong-Il Lee
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju 61007, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea.
| |
Collapse
|
32
|
MORIMOTO Y, IZUMI H, YOSHIURA Y, FUJISAWA Y, YATERA K, FUJITA K, MARU J, ENDOH S, HONDA K. Basic study of intratracheal instillation study of nanomaterials for the estimation of the hazards of nanomaterials. INDUSTRIAL HEALTH 2018; 56:30-39. [PMID: 28883208 PMCID: PMC5800863 DOI: 10.2486/indhealth.2017-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
In order to examine the usefulness of intratracheal instillation of nanoparticles for the screening of the harmful effects of nanoparticles, we performed intratracheal instillation studies of nanomaterials on rats using different delivery devices and postures as a basic study. Multiwall carbon nanotubes (MWCNTs) with a geometric mean length and secondary diameter of 2.16 μm and 752 nm, respectively, were used as the nanomaterials. Male F344 rats were intratracheally exposed to 0.04 or 0.2 mg/rat of MWCNT, were dissected at 1 d and 3 d, and cell analyses of the bronchoalveolar lavage fluid (BALF) were analyzed. Two delivery devices were used for the intratracheal instillation of the MWCNTs: a gavage needle and a microsprayer aerolizer. Both induced neutrophil influx in the lung at 1 and 3 d, and there were no significant differences in neutrophil inflammation between the two delivery devices. The main distribution of pulmonary inflammation by both delivery devices was in the centrilobular spaces in the lung. Two postures were used: an angle of approximately 45 degrees and a standing posture on a board, both of which also induced pulmonary influx in BALF and pulmonary inflammation mainly in the centrilobular spaces, with no large difference in pulmonary inflammation between the two postures. Taken together, the differences in the delivery devices and postures of the rats in the intratracheal instillation did not affect the acute pulmonary toxicity of the nanomaterials.
Collapse
Affiliation(s)
- Yasuo MORIMOTO
- University of Occupational and Environmental Health, Japan
| | - Hiroto IZUMI
- University of Occupational and Environmental Health, Japan
| | | | - Yuri FUJISAWA
- University of Occupational and Environmental Health, Japan
| | | | - Katsuhide FUJITA
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Junko MARU
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Shigehisa ENDOH
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Kazumasa HONDA
- National Institute of Advanced Industrial Science and Technology, Japan
| |
Collapse
|
33
|
Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health 2017; 59:394-407. [PMID: 28794394 PMCID: PMC5635148 DOI: 10.1539/joh.17-0089-ra] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE We reviewed studies on pulmonary, reproductive, and developmental toxicity caused by carbon nanotubes (CNTs). In paricular, we analyzed how CNT exposure affects the several processes of pulmonary toxicity, including inflammation, injury, fibrosis, and pulmonary tumors. METHODS In pulmonary toxicity, there are various processes, including inflammation, injury, fibrosis, respiratory tumor in the lungs, and biopersistence of CNTs and genotoxicity as tumor-related factors, to develop the respiratory tumor. We evaluated the evidence for the carcinogenicity of CNTs in each process. In the fields of reproductive and developmental toxicity, studies of CNTs have been conducted mainly with mice. We summarized the findings of reproductive and developmental toxicity studies of CNTs. RESULTS In animal studies, exposure to CNTs induced sustained inflammation, fibrosis, lung cancer following long-term inhalation, and gene damage in the lung. CNTs also showed high biopersistence in animal studies. Fetal malformations after intravenous and intraperitoneal injections and intratracheal instillation, fetal loss after intravenous injection, behavioral changes in offsprings after intraperitoneal injection, and a delay in the delivery of the first litter after intratracheal instillation were reported in mice-administered multi-walled carbon nanotubes (MWCNTs). Single-walled carbon nanotubes (SWCNTs) appeared to be embryolethal and teratogenic in mice when given by intravenous injection; moreover, the tubes induced death and growth retardation in chicken embryos. CONCLUSION CNTs are considered to have carcinogenicity and can cause lung tumors. However, the carcinogenicity of CNTs may attenuate if the fiber length is shorter. The available data provide initial information on the potential reproductive and developmental toxicity of CNTs.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Division of Environmental Chemistry, National Institute of Health Sciences
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health
| |
Collapse
|
34
|
Pujalté I, Serventi A, Noël A, Dieme D, Haddad S, Bouchard M. Characterization of Aerosols of Titanium Dioxide Nanoparticles Following Three Generation Methods Using an Optimized Aerosolization System Designed for Experimental Inhalation Studies. TOXICS 2017; 5:toxics5030014. [PMID: 29051446 PMCID: PMC5634700 DOI: 10.3390/toxics5030014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/26/2017] [Accepted: 06/10/2017] [Indexed: 11/16/2022]
Abstract
Nanoparticles (NPs) can be released in the air in work settings, but various factors influence the exposure of workers. Controlled inhalation experiments can thus be conducted in an attempt to reproduce real-life exposure conditions and assess inhalation toxicology. Methods exist to generate aerosols, but it remains difficult to obtain nano-sized and stable aerosols suitable for inhalation experiments. The goal of this work was to characterize aerosols of titanium dioxide (TiO₂) NPs, generated using a novel inhalation system equipped with three types of generators-a wet collision jet nebulizer, a dry dust jet and an electrospray aerosolizer-with the aim of producing stable aerosols with a nano-diameter average (<100 nm) and monodispersed distribution for future rodent exposures and toxicological studies. Results showed the ability of the three generation systems to provide good and stable dispersions of NPs, applicable for acute (continuous up to 8 h) and repeated (21-day) exposures. In all cases, the generated aerosols were composed mainly of small aggregates/agglomerates (average diameter <100 nm) with the electrospray producing the finest (average diameter of 70-75 mm) and least concentrated aerosols (between 0.150 and 2.5 mg/m³). The dust jet was able to produce concentrations varying from 1.5 to 150 mg/m³, and hence, the most highly concentrated aerosols. The nebulizer collision jet aerosolizer was the most versatile generator, producing both low (0.5 mg/m³) and relatively high concentrations (30 mg/m³). The three optimized generators appeared suited for possible toxicological studies of inhaled NPs.
Collapse
Affiliation(s)
- Igor Pujalté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and University of Montreal Public Health, Research Institute (IRSPUM), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, QC H3C 3J7, Canada.
| | - Alessandra Serventi
- Institute of Research of Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, QC J3X 1S1, Canada.
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Denis Dieme
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and University of Montreal Public Health, Research Institute (IRSPUM), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, QC H3C 3J7, Canada.
| | - Sami Haddad
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and University of Montreal Public Health, Research Institute (IRSPUM), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, QC H3C 3J7, Canada.
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and University of Montreal Public Health, Research Institute (IRSPUM), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
35
|
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 2017; 47:767-810. [DOI: 10.1080/10408444.2017.1328400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William K. Boyes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brittany Lila M. Thornton
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Souhail R. Al-Abed
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Christian P. Andersen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Dermont C. Bouchard
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Burgess
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Elaine A. Cohen Hubal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kay T. Ho
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kirk Kitchin
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kim R. Rogers
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey A. Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul T. Rygiewicz
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard G. Zepp
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Zucker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
36
|
Wang Z, Wang C, Liu S, He W, Wang L, Gan J, Huang Z, Wang Z, Wei H, Zhang J, Dong L. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis. ACS NANO 2017; 11:1659-1672. [PMID: 28085241 DOI: 10.1021/acsnano.6b07461] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A corona is a layer of macromolecules formed on a nanoparticle surface in vivo. It can substantially change the biological identity of nanomaterials and possibly trigger adverse responses from the body tissues. Dissecting the role of the corona in the development of a particular disease may provide profound insights for understanding toxicity of nanomaterials in general. In our present study, we explored the capability of different silica nanoparticles (SiNPs) to induce silicosis in the mouse lung and analyzed the composition of coronas formed on these particles. We found that SiNPs of certain size and surface chemistry could specifically recruit transforming growth factor β1 (TGF-β1) into their corona, which subsequently induces the development of lung fibrosis. Once embedded into the corona on SiNPs, TGF-β1 was remarkably more stable than in its free form, and its fibrosis-triggering activity was significantly prolonged. Our study meaningfully demonstrates that a specific corona component on a certain nanoparticle could initiate a particular pathogenic process in a clinically relevant disease model. Our findings may shed light on the understanding of molecular mechanisms of human health risks correlated with exposure to small-scale substances.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR, China
| | - Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Wei He
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - JingJing Gan
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhenheng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Haoyang Wei
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
- Jiangsu Provincial Laboratory for Nano-Technology, Nanjing University , Nanjing 210093, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| |
Collapse
|
37
|
Kinaret P, Ilves M, Fortino V, Rydman E, Karisola P, Lähde A, Koivisto J, Jokiniemi J, Wolff H, Savolainen K, Greco D, Alenius H. Inhalation and Oropharyngeal Aspiration Exposure to Rod-Like Carbon Nanotubes Induce Similar Airway Inflammation and Biological Responses in Mouse Lungs. ACS NANO 2017; 11:291-303. [PMID: 28045493 DOI: 10.1021/acsnano.6b05652] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes (CNTs) have the potential to impact technological and industrial progress, but their production and use may, in some cases, cause serious health problems. Certain rod-shaped multiwalled CNTs (rCNTs) can, in fact, induce severe asbestos-like pathogenicity in mice, including granuloma formation, fibrosis, and even cancer. Evaluating the comparability between alternative hazard assessment methods is needed to ensure fast and reliable evaluation of the potentially adverse effects of these materials. To compare two alternative airway exposure methods, C57BL/6 mice were exposed to rCNTs by a state-of-the-art but laborious and expensive inhalation method (6.2-8.2 mg/m3, 4 h/day for 4 days) or by oropharyngeal aspiration (10 or 40 μg/day for 4 days), which is cheaper and easier to perform. In addition to histological and cytological studies, transcriptome analysis was also carried out on the lung tissue samples. Both inhalation and low-dose (10 μg/day) aspiration exposure to rCNTs promoted strong accumulation of eosinophils in the lungs and recruited also a few neutrophils and lymphocytes. In contrast, the aspiration of a high-dose (40 μg/day) rCNT caused only a mild pulmonary eosinophilia but enhanced accumulation of neutrophils in the airways. Inhalation and low-dose aspiration exposure promoted comparable giant cell formation, mucus production, and IL-13 expression in the lungs. Both exposure methods also exacerbated similar expression alterations with 154 (56.4%) differentially expressed, overlapping genes in microarray analyses. Of all differentially expressed genes, up to 80% of the activated biological functions were shared according to pathway enrichment analyses. Inhalation and low-dose aspiration elicited very similar pulmonary inflammation providing evidence that oropharyngeal aspiration is a valid approach and a convenient alternative to the inhalation exposure for the hazard assessment of nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Elina Rydman
- Finnish Institute of Occupational Health , Helsinki 00251, Finland
| | | | - Anna Lähde
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland , Kuopio 80100, Finland
| | - Joonas Koivisto
- National Research Centre for the Working Environment , Copenhagen DK-2100, Denmark
| | - Jorma Jokiniemi
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland , Kuopio 80100, Finland
| | - Henrik Wolff
- Finnish Institute of Occupational Health , Helsinki 00251, Finland
| | - Kai Savolainen
- Finnish Institute of Occupational Health , Helsinki 00251, Finland
| | | | - Harri Alenius
- Institute of Environmental Medicine (IMM), Karolinska Institutet , Stockholm 171 77, Sweden
| |
Collapse
|
38
|
Mandler WK, Nurkiewicz TR, Porter DW, Olfert IM. Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. Nanotoxicology 2017; 11:112-122. [PMID: 28024456 DOI: 10.1080/17435390.2016.1277275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) has been shown to disrupt endothelium-dependent arteriolar dilation in the peripheral microcirculation. The molecular mechanisms behind these arteriolar disruptions have yet to be fully elucidated. The secreted matricellular matrix protein thrombospondin-1 (TSP-1) is capable of moderating arteriolar vasodilation by inhibiting soluble guanylate cyclase activity. We hypothesized that TSP-1 may be a link between nanomaterial exposure and observed peripheral microvascular dysfunction. To test this hypothesis, wild-type C57B6J (WT) and TSP-1 knockout (KO) mice were exposed via lung aspiration to 50 μg MWCNT or a Sham dispersion medium control. Following exposure (24 h), arteriolar characteristics and reactivity were measured in the gluteus maximus muscle using intravital microscopy (IVM) coupled with microiontophoretic delivery of acetylcholine (ACh) or sodium nitroprusside (SNP). In WT mice exposed to MWCNT, skeletal muscle TSP-1 protein increased > fivefold compared to Sham exposed, and exhibited a 39% and 47% decrease in endothelium-dependent and -independent vasodilation, respectively. In contrast, TSP-1 protein was not increased following MWCNT exposure in KO mice and exhibited no loss in dilatory capacity. Microvascular leukocyte-endothelium interactions were measured by assessing leukocyte adhesion and rolling activity in third order venules. The WT + MWCNT group demonstrated 223% higher leukocyte rolling compared to the WT + Sham controls. TSP-1 KO animals exposed to MWCNT showed no differences from the WT + Sham control. These data provide evidence that TSP-1 is likely a central mediator of the systemic microvascular dysfunction that follows pulmonary MWCNT exposure.
Collapse
Affiliation(s)
- W Kyle Mandler
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- b Department of Physiology and Pharmacology , West Virginia University School of Medicine , Morgantown , WV , USA.,c Center for Cardiovascular & Respiratory Sciences , West Virginia University, Robert C. Byrd Health Sciences Center , Morgantown , WV , USA
| | - Dale W Porter
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - I Mark Olfert
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,c Center for Cardiovascular & Respiratory Sciences , West Virginia University, Robert C. Byrd Health Sciences Center , Morgantown , WV , USA
| |
Collapse
|
39
|
Li J, Zhou Q, Liu Y, Lei M. Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:3-16. [PMID: 28179954 PMCID: PMC5256256 DOI: 10.1080/14686996.2016.1246941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 05/30/2023]
Abstract
In this study, nanoscale zero-valent iron nanoparticles (NZVIs) were coated with silica and polydopamine using a two-step process. The coated nanoparticles were applied as adsorbents for removal of two common polycyclic aromatic hydrocarbons pollutants, phenanthrene (PHE) and anthracene (ANT) from aqueous system. Adsorption kinetics followed a pseudo-second-order model. Isotherms and thermodynamics were investigated and the results indicated that the adsorption process fit best to the Freundlich model and exhibited the characteristics of an exothermal physical adsorption process. Owing to their superparamagnetic characteristics and stability, these adsorbents could be easily collected and recycled for reuse.
Collapse
Affiliation(s)
- Jing Li
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum Beijing, Beijing, P.R. China
| | - Qingxiang Zhou
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum Beijing, Beijing, P.R. China
| | - Yongli Liu
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum Beijing, Beijing, P.R. China
| | - Man Lei
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum Beijing, Beijing, P.R. China
| |
Collapse
|
40
|
Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:230-248. [PMID: 28632040 PMCID: PMC6127079 DOI: 10.1080/10937404.2017.1305924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.
Collapse
Affiliation(s)
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
41
|
Ruenraroengsak P, Chen S, Hu S, Melbourne J, Sweeney S, Thorley AJ, Skepper JN, Shaffer MSP, Tetley TD, Porter AE. Translocation of Functionalized Multi-Walled Carbon Nanotubes across Human Pulmonary Alveolar Epithelium: Dominant Role of Epithelial Type 1 Cells. ACS NANO 2016; 10:5070-85. [PMID: 27035850 PMCID: PMC6682507 DOI: 10.1021/acsnano.5b08218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Uptake and translocation of short functionalized multi-walled carbon nanotubes (short-fMWCNTs) through the pulmonary respiratory epithelial barrier depend on physicochemical property and cell type. Two monoculture models, immortalized human alveolar epithelial type 1 (TT1) cells and primary human alveolar epithelial type 2 cells (AT2), which constitute the alveolar epithelial barrier, were employed to investigate the uptake and transport of 300 and 700 nm in length, poly(4-vinylpyridine)-functionalized, multi-walled carbon nanotubes (p(4VP)-MWCNTs) using quantitative imaging and spectroscopy techniques. The p(4VP)-MWCNT exhibited no toxicity on TT1 and AT2 cells, but significantly decreased barrier integrity (*p < 0.01). Uptake of p(4VP)-MWCNTs was observed in 70% of TT1 cells, correlating with compromised barrier integrity and basolateral p(4VP)-MWCNT translocation. There was a small but significantly greater uptake of 300 nm p(4VP)-MWCNTs than 700 nm p(4VP)-MWCNTs by TT1 cells. Up to 3% of both the 300 and 700 nm p(4VP)-MWCNTs reach the basal chamber; this relatively low amount arose because the supporting transwell membrane minimized the amount of p(4VP)-MWCNT translocating to the basal chamber, seen trapped between the basolateral cell membrane and the membrane. Only 8% of AT2 cells internalized p(4VP)-MWCNT, accounting for 17% of applied p(4VP)-MWCNT), with transient effects on barrier function, which initially fell then returned to normal; there was no MWCNT basolateral translocation. The transport rate was MWCNT length modulated. The comparatively lower p(4VP)-MWCNT uptake by AT2 cells is proposed to reflect a primary barrier effect of type 2 cell secretions and the functional differences between the type 1 and type 2 alveolar epithelial cells.
Collapse
Affiliation(s)
- Pakatip Ruenraroengsak
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
- Correspondence should be addressed to: Dr Pakatip Ruenraroengsak, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, ; Prof. Teresa D. Tetley, Department of Lung Cell Biology, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK Phone: +44-207-5942984, ; Dr Alexandra E. Porter, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, Phone: +44-207-594691,
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
| | - Sheng Hu
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK
| | - Jodie Melbourne
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
| | - Sinbad Sweeney
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
| | - Andrew J. Thorley
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
| | - Jeremy N. Skepper
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, UK, CB2 3DY
| | - Milo S. P. Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK
| | - Teresa D. Tetley
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
- Correspondence should be addressed to: Dr Pakatip Ruenraroengsak, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, ; Prof. Teresa D. Tetley, Department of Lung Cell Biology, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK Phone: +44-207-5942984, ; Dr Alexandra E. Porter, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, Phone: +44-207-594691,
| | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
- Correspondence should be addressed to: Dr Pakatip Ruenraroengsak, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, ; Prof. Teresa D. Tetley, Department of Lung Cell Biology, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK Phone: +44-207-5942984, ; Dr Alexandra E. Porter, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, Phone: +44-207-594691,
| |
Collapse
|
42
|
Lyubartsev AP, Rabinovich AL. Force Field Development for Lipid Membrane Simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2483-2497. [PMID: 26766518 DOI: 10.1016/j.bbamem.2015.12.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
With the rapid development of computer power and wide availability of modelling software computer simulations of realistic models of lipid membranes, including their interactions with various molecular species, polypeptides and membrane proteins have become feasible for many research groups. The crucial issue of the reliability of such simulations is the quality of the force field, and many efforts, especially in the latest several years, have been devoted to parametrization and optimization of the force fields for biomembrane modelling. In this review, we give account of the recent development in this area, covering different classes of force fields, principles of the force field parametrization, comparison of the force fields, and their experimental validation. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91, Stockholm, Sweden.
| | - Alexander L Rabinovich
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk, 185910, Russian Federation.
| |
Collapse
|
43
|
Shinohara N, Nakazato T, Ohkawa K, Tamura M, Kobayashi N, Morimoto Y, Oyabu T, Myojo T, Shimada M, Yamamoto K, Tao H, Ema M, Naya M, Nakanishi J. Long-term retention of pristine multi-walled carbon nanotubes in rat lungs after intratracheal instillation. J Appl Toxicol 2015; 36:501-9. [PMID: 26712168 PMCID: PMC4784168 DOI: 10.1002/jat.3271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
As a result of the growing potential industrial and medical applications of multi‐walled carbon nanotubes (MWCNTs), people working in or residing near facilities that manufacture them may be exposed to airborne MWCNTs in the future. Because of concerns regarding their toxicity, quantitative data on the long‐term clearance of pristine MWCNTs from the lungs are required. We administered pristine MWCNTs well dispersed in 0.5 mg ml−1 Triton‐X solution to rats at doses of 0.20 or 0.55 mg via intratracheal instillation and investigated clearance over a 12‐month observation period. The pristine MWCNTs pulmonary burden was determined 1, 3, 7, 28, 91, 175 and 364 days after instillation using a method involving combustive oxidation and infrared analysis, combined with acid digestion and heat pretreatment. As 0.15‐ and 0.38‐mg MWCNTs were detected 1 day after administration of 0.20 and 0.55 mg MWCNTs, respectively, approximately 30% of administrated MWCNTs may have been cleared by bronchial ciliary motion within 24 h of administration. After that, the pulmonary MWCNT burden did not decrease significantly over time for up to 364 days after instillation, suggesting that MWCNTs were not readily cleared from the lung. Transmission electron microscopy (TEM) showed that alveolar macrophages internalized the MWCNTs and retained in the lung for at least 364 days after instillation. MWCNTs were not detected in the liver or brain within the 364‐day study period (<0.04 mg per liver, < 0.006 mg per brain). Copyright © 2015 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Well‐dispersed pristine MWCNTs were administered to rats at doses of 0.20 or 0.55 mg via intratracheal instillation, and investigated clearance over a 12‐month observation period. Approximately 30% of administrated MWCNTs may have been cleared by bronchial ciliary motion within 24 h of administration. After that, the pulmonary MWCNT burden did not decrease significantly over time for up to 364 days after instillation, suggesting that MWCNTs were not readily cleared from the lung. MWCNTs were not detected in the liver or brain within the 364‐day study period.
Collapse
Affiliation(s)
- Naohide Shinohara
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tetsuya Nakazato
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Kumiko Ohkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Moritaka Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Norihiro Kobayashi
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan.,National Institute of Health Sciences, Kamiyouga 1-18-1, Setagaya, Tokyo, 158-0098, Japan
| | - Yasuo Morimoto
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Takako Oyabu
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshihiko Myojo
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Manabu Shimada
- Graduate School of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi Hiroshima, Hiroshima, 739-8527, Japan
| | - Kazuhiro Yamamoto
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroaki Tao
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Makoto Ema
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Masato Naya
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan.,BioSafety Research Center (BSRC), Shioshinden 582-2, Iwata, Shizuoka, 437-1213, Japan
| | - Junko Nakanishi
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
44
|
Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee BW, Okada T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, Yamamoto K, Kitajima S, Kuroda E, Horie M, Kawaguchi K, Sasaki T. Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles. Nanotoxicology 2015; 10:607-18. [DOI: 10.3109/17435390.2015.1104740] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. NANOMATERIALS 2015; 5:1163-1180. [PMID: 28347058 PMCID: PMC5304638 DOI: 10.3390/nano5031163] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS) levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins)-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB) signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo. In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle- induced oxidative stress and propose possible strategies to circumvent nanotoxicity.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Cynthia Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| |
Collapse
|
46
|
Fatkhutdinova LM, Khaliullin TO, Shvedova AA. Carbon nanotubes exposure risk assessment: From toxicology to epidemiologic studies (Overview of the current problem). ACTA ACUST UNITED AC 2015; 10:501-509. [DOI: 10.1134/s1995078015030064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Yoshiura Y, Izumi H, Oyabu T, Hashiba M, Kambara T, Mizuguchi Y, Lee BW, Okada T, Tomonaga T, Myojo T, Yamamoto K, Kitajima S, Horie M, Kuroda E, Morimoto Y. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:241. [PMID: 26069452 PMCID: PMC4451463 DOI: 10.1007/s11051-015-3054-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/26/2015] [Indexed: 05/31/2023]
Abstract
In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.
Collapse
Affiliation(s)
- Yukiko Yoshiura
- />Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Hiroto Izumi
- />Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Takako Oyabu
- />Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Masayoshi Hashiba
- />Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Tatsunori Kambara
- />Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Yohei Mizuguchi
- />Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Byeong Woo Lee
- />Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Takami Okada
- />Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Taisuke Tomonaga
- />Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Toshihiko Myojo
- />Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Kazuhiro Yamamoto
- />National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Shinichi Kitajima
- />National Sanatorium Hoshizuka Keiaien, 4204 Hoshizuka-cho, Kanoya, Kagoshima 893-8502 Japan
| | - Masanori Horie
- />Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395 Japan
| | - Etsushi Kuroda
- />Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 6F IFReC Research Building, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Yasuo Morimoto
- />Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| |
Collapse
|
48
|
Valle RP, Wu T, Zuo YY. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant. ACS NANO 2015; 9:5413-21. [PMID: 25929264 PMCID: PMC4856476 DOI: 10.1021/acsnano.5b01181] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.
Collapse
Affiliation(s)
- Russell P. Valle
- Department of Mechanical Engineering, University of Hawaii at Mnoa, Honolulu, Hawaii 96822, United States
| | - Tony Wu
- Department of Mechanical Engineering, University of Hawaii at Mnoa, Honolulu, Hawaii 96822, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Mnoa, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
- Address correspondence to
| |
Collapse
|
49
|
Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Roszek K, Czarnecka J, Bolibok P, Rychlicki G. Conscious Changes of Carbon Nanotubes Cytotoxicity by Manipulation with Selected Nanofactors. Appl Biochem Biotechnol 2015; 176:730-41. [PMID: 25894948 PMCID: PMC4500856 DOI: 10.1007/s12010-015-1607-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/06/2015] [Indexed: 12/14/2022]
Abstract
We discuss eight major challenges in the field of carbon nanomaterial toxicity. Generally, we pick up some of them, and the most important challenge is searching of the qualitative relationships between nanofactors and cytotoxicity. This is important since it can provide the possibility of conscious changes of carbon nanotubes cytotoxicity by manipulation with selected nanofactors. Therefore, the toxicity of a series of gradually oxidized carbon nanotubes is studied. We show, for the first time, that toxicity of those materials depends strongly on the ratio of acidic to basic group concentration—the higher is this ratio value, the more toxic are nanotubes. In this way, by changing this ratio, one can change toxicity. This correlation is more evident after ultrasonication, and it is connected with the accessibility of charged groups for interactions with proteins. Toxicity also depends on the ability of nanotubes for protein adsorption. We suggest that the changes in the protein composition of medium, especially lack of important growth factors, inhibit cell proliferation.
Collapse
Affiliation(s)
- Karolina Werengowska-Ciećwierz
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100, Toruń, Poland
| | | | | | | | | | | | | |
Collapse
|
50
|
Wu Y, Ma J, Woods PS, Chesarino NM, Liu C, Lee LJ, Nana-Sinkam SP, Davis IC. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes. J Control Release 2015; 203:140-9. [PMID: 25687308 DOI: 10.1016/j.jconrel.2015.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 12/20/2022]
Abstract
Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48h, and did not accumulate at significant levels in other lung cell types or viscera. 48h after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for the treatment of pulmonary diseases that result primarily from ATII cell dysfunction.
Collapse
Affiliation(s)
- Yun Wu
- Dept. of Biomedical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260, USA; Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Smith Laboratory, 174W. 18th Ave., Columbus, OH 43210, USA.
| | - Junyu Ma
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Smith Laboratory, 174W. 18th Ave., Columbus, OH 43210, USA.
| | - Parker S Woods
- Dept. of Veterinary Biosciences, The Ohio State University, Goss Laboratories, 1925 Coffey Road, Columbus, OH 43210, USA.
| | - Nicholas M Chesarino
- Dept. of Microbial Infection & Immunity, The Ohio State University, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA.
| | - Chang Liu
- Dept. of Biomedical Engineering, State University of New York at Buffalo, Bonner Hall, Buffalo, NY 14260, USA.
| | - L James Lee
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Smith Laboratory, 174W. 18th Ave., Columbus, OH 43210, USA; William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Koffolt Laboratories, 140W. 19th Ave., Columbus, OH 43210, USA.
| | - Serge P Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Davis Heart and Lung Research Institute, 473W. 12th Ave., Columbus, OH 43210, USA.
| | - Ian C Davis
- Dept. of Veterinary Biosciences, The Ohio State University, Goss Laboratories, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|