1
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024:10.1038/s41551-024-01230-6. [PMID: 38951139 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Hillman T. The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines. Discov Oncol 2024; 15:136. [PMID: 38683256 PMCID: PMC11058161 DOI: 10.1007/s12672-024-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The use of cancer immunotherapeutics is currently increasing. Cancer vaccines, as a form of immunotherapy, are gaining much attention in the medical community since specific tumor-antigens can activate immune cells to induce an anti-tumor immune response. However, the delivery of cancer vaccines presents many issues for research scientists when designing cancer treatments and requires further investigation. Nanoparticles, synthetic liposomes, bacterial vectors, viral particles, and mammalian exosomes have delivered cancer vaccines. In contrast, the use of many of these nanotechnologies produces many issues of cytotoxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system (MPS). Plant-exosome-like nanovesicles (PELNVs) can provide solutions for many of these challenges because they are innocuous and nonimmunogenic when delivering nanomedicines. Hence, this review will describe the potential use of PELNVs to deliver cancer vaccines. In this review, different approaches of cancer vaccine delivery will be detailed, the mechanism of oral vaccination for delivering cancer vaccines will be described, and the review will discuss the use of PELNVs as improved drug delivery systems for cancer vaccines via oral administration while also addressing the subsequent challenges for advancing their usage into the clinical setting.
Collapse
|
3
|
Luo HD, Moon H, Siren E, Clark M, Drayton M, Kizhakkedathu JN. Investigation on Adaptability and Applicability of Polymer-Mediated Cell Surface Engineering by Ligation with Transglutaminase. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15893-15906. [PMID: 38512725 DOI: 10.1021/acsami.3c19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.
Collapse
Affiliation(s)
- Haiming D Luo
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
| | - Haisle Moon
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C V6T 1Z7, Canada
| | - Erika Siren
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
| | - Meredith Clark
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Matthew Drayton
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C V6T 1Z7, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, B.C. V6T 2B9, Canada
| |
Collapse
|
4
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
5
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
6
|
Wang T, Wu M, Cao L, Liu B. Organic functional substance engineered living materials for biomedical applications. Biomaterials 2023; 301:122248. [PMID: 37487360 DOI: 10.1016/j.biomaterials.2023.122248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Modifying living materials with organic functional substances (OFS) is a convenient and effective strategy to control and monitor the transport, engraftment, and secretion processes in living organisms. OFSs, including small organic molecules and organic polymers, own the merit of design flexibility, satisfying performance, and excellent biocompatibility, which allow for living materials functionalization to realize real-time sensing, controlled drug release, enhanced biocompatibility, accurate diagnosis, and precise treatment. In this review, we discuss the different principles of OFS modification on living materials and demonstrate the applications of engineered living materials in health monitoring, drug delivery, wound healing, and tissue regeneration.
Collapse
Affiliation(s)
- Tongtong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Lei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
7
|
Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. EXPLORATION (BEIJING, CHINA) 2023; 3:20210263. [PMID: 37933383 PMCID: PMC10624393 DOI: 10.1002/exp.20210263] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2023]
Abstract
The advent of immunotherapy has revolutionized the treating modalities of cancer. Cancer vaccine, aiming to harness the host immune system to induce a tumor-specific killing effect, holds great promises for its broad patient coverage, high safety, and combination potentials. Despite promising, the clinical translation of cancer vaccines faces obstacles including the lack of potency, limited options of tumor antigens and adjuvants, and immunosuppressive tumor microenvironment. Biomimetic and bioinspired nanotechnology provides new impetus for the designing concepts of cancer vaccines. Through mimicking the stealth coating, pathogen recognition pattern, tissue tropism of pathogen, and other irreplaceable properties from nature, biomimetic and bioinspired cancer vaccines could gain functions such as longstanding, targeting, self-adjuvanting, and on-demand cargo release. The specific behavior and endogenous molecules of each type of living entity (cell or microorganism) offer unique features to cancer vaccines to address specific needs for immunotherapy. In this review, the strategies inspired by eukaryotic cells, bacteria, and viruses will be overviewed for advancing cancer vaccine development. Our insights into the future cancer vaccine development will be shared at the end for expediting the clinical translation.
Collapse
Affiliation(s)
- Chenchao Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng Tan
- Klarman Cell ObservatoryBroad Institute of MIT and HarvardCambridgeUSA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouChina
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
| |
Collapse
|
8
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Udyavara Nagaraj V, Juhász T, Quemé-Peña M, Szigyártó IC, Bogdán D, Wacha A, Mihály J, Románszki L, Varga Z, Andréasson J, Mándity I, Beke-Somfai T. Stimuli-Responsive Membrane Anchor Peptide Nanofoils for Tunable Membrane Association and Lipid Bilayer Fusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55320-55331. [PMID: 36473125 PMCID: PMC9782321 DOI: 10.1021/acsami.2c11946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/22/2022] [Indexed: 06/07/2023]
Abstract
Self-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif (GLFD) and coupled it to a spiropyran photoswitch. Under physiological conditions, these conjugates assemble into ∼3.5 nm thick, foil-like peptide bilayer morphologies. Photoisomerization from the closed spiro (SP) form to the open merocyanine (MC) form of the photoswitch triggers rearrangements within the foils. This results in substantial changes in their membrane-binding properties, which also varies sensitively to lipid composition, ranging from reversible nanofoil reformation to stepwise membrane adsorption. The formed peptide layers in the assembly are also able to attach to various liposomes with different surface charges, enabling the fusion of their lipid bilayers. Here, SP-to-MC conversion can be used both to trigger and to modulate the liposome fusion efficiency.
Collapse
Affiliation(s)
- Vignesh Udyavara Nagaraj
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Hevesy
György Ph.D. School of Chemistry, Eötvös Loránd University, BudapestH-1117, Hungary
| | - Tünde Juhász
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Mayra Quemé-Peña
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Hevesy
György Ph.D. School of Chemistry, Eötvös Loránd University, BudapestH-1117, Hungary
| | - Imola Cs. Szigyártó
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Dóra Bogdán
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, BudapestH-1092, Hungary
| | - András Wacha
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Judith Mihály
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Loránd Románszki
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Zoltán Varga
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Joakim Andréasson
- Department
of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, GothenburgSE-412 96, Sweden
| | - István Mándity
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, BudapestH-1092, Hungary
| | - Tamás Beke-Somfai
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, GothenburgSE-412 96, Sweden
| |
Collapse
|
10
|
DNA-Based Molecular Engineering of the Cell Membrane. MEMBRANES 2022; 12:membranes12020111. [PMID: 35207033 PMCID: PMC8876765 DOI: 10.3390/membranes12020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023]
Abstract
The cell membrane serves as a barrier and gatekeeper to regulate the cellular transportation of substances and information. It plays a significant role in protecting the cell from the extracellular environment, maintaining intracellular homeostasis, and regulating cellular function and behaviors. The capability to engineer the cell membrane with functional modules that enable dynamic monitoring and manipulating the cell-surface microenvironment would be critical for studying molecular mechanisms underlying various biological processes. To meet this goal, DNA, with intrinsic advantages of high versatility, programmability, and biocompatibility, has gained intense attention as a molecular tool for cell-surface engineering. The past three decades have witnessed the rapid advances of diverse nucleic acid materials, including functional nucleic acids (FNAs), dynamic DNA circuits, and exquisite DNA nanostructures. In this mini review, we have summarized the recent progress of DNA technology for cell membrane engineering, particularly focused on their applications for molecular sensing and imaging, precise cell identification, receptor activity regulation, and artificial membrane structures. Furthermore, we discussed the challenge and outlook on using nucleic acid materials in this specific research area.
Collapse
|
11
|
Lee H, Kim N, Rheem HB, Kim BJ, Park JH, Choi IS. A Decade of Advances in Single-Cell Nanocoating for Mammalian Cells. Adv Healthc Mater 2021; 10:e2100347. [PMID: 33890422 DOI: 10.1002/adhm.202100347] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Strategic advances in the single-cell nanocoating of mammalian cells have noticeably been made during the last decade, and many potential applications have been demonstrated. Various cell-coating strategies have been proposed via adaptation of reported methods in the surface sciences and/or materials identification that ensure the sustainability of labile mammalian cells during chemical manipulation. Here an overview of the methodological development and potential applications to the healthcare sector in the nanocoating of mammalian cells made during the last decade is provided. The materials used for the nanocoating are categorized into polymers, hydrogels, polyphenolic compounds, nanoparticles, and minerals, and the corresponding strategies are described under the given set of materials. It also suggests, as a future direction, the creation of the cytospace system that is hierarchically composed of the physically separated but mutually interacting cellular hybrids.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Nayoung Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeong Bin Rheem
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Beom Jin Kim
- Department of Chemistry University of Ulsan Ulsan 44610 Korea
| | - Ji Hun Park
- Department of Science Education Ewha Womans University Seoul 03760 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| |
Collapse
|
12
|
Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. NANOSCALE HORIZONS 2021; 6:78-94. [PMID: 33400747 DOI: 10.1039/d0nh00605j] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liposomes are a unique platform for drug delivery, and a number of liposomal formulations have already been commercialized. Doxil is a representative example, which uses PEGylated liposomes to load doxorubicin for cancer therapy. Its delivery relies on the enhanced permeability and retention (EPR) effect or passive targeting. Drug loading can be achieved using both standard liposomes and also those containing a solid core such as mesoporous silica and poly(lactide-co-glycolide) (PLGA). Developments have also been made on active targeted delivery using bioaffinity ligands such as small molecules, antibodies, peptides and aptamers. Compared to other types of nanoparticles, the surface of liposomes is fluid, allowing dynamic organization of targeting ligands to achieve optimal binding to cell surface receptors. This review article summarizes development of liposomal targeted drug delivery systems, with an emphasis on the biophysical properties of lipids. In both passive and active targeting, the effects of liposome size, charge, fluidity, rigidity, head-group chemistry and PEGylation are discussed along with recent examples. Most of the examples are focused on targeting tumors or cancer cells. Finally, a few examples of commercialized formulations are described, and some future research opportunities are discussed.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | |
Collapse
|
13
|
Roy S, Cha JN, Goodwin AP. Nongenetic Bioconjugation Strategies for Modifying Cell Membranes and Membrane Proteins: A Review. Bioconjug Chem 2020; 31:2465-2475. [PMID: 33146010 DOI: 10.1021/acs.bioconjchem.0c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell membrane possesses an extensive library of proteins, carbohydrates, and lipids that control a significant portion of inter- and intracellular functions, including signaling, proliferation, migration, and adhesion, among others. Augmenting the cell surface composition would open possibilities for advances in therapy, tissue engineering, and probing fundamental cell processes. While genetic engineering has proven effective for many in vitro applications, these techniques result in irreversible changes to cells and are difficult to apply in vivo. Another approach is to instead attach exogenous functional groups to the cell membrane without changing the genetic nature of the cell. This review focuses on more recent approaches of nongenetic methods of cell surface modification through metabolic pathways, anchorage by hydrophobic interactions, and chemical conjugation. Benefits and drawbacks of each approach are considered, followed by a discussion of potential applications for nongenetic cell surface modification and an outlook on the future of the field.
Collapse
|
14
|
Cell membrane fusing liposomes for cytoplasmic delivery in brain endothelial cells. Colloids Surf B Biointerfaces 2020; 194:111193. [DOI: 10.1016/j.colsurfb.2020.111193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
|
15
|
Gardner TJ, Bourne CM, Dacek MM, Kurtz K, Malviya M, Peraro L, Silberman PC, Vogt KC, Unti MJ, Brentjens R, Scheinberg D. Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers (Basel) 2020; 12:E2175. [PMID: 32764348 PMCID: PMC7465970 DOI: 10.3390/cancers12082175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Christopher M. Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Immunology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Megan M. Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Keifer Kurtz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Manish Malviya
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Kristen C. Vogt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mildred J. Unti
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Renier Brentjens
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| | - David Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| |
Collapse
|
16
|
Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced Bottom-Up Engineering of Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903975. [PMID: 31823448 DOI: 10.1002/adma.201903975] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/30/2019] [Indexed: 05/08/2023]
Abstract
Bottom-up tissue engineering is a promising approach for designing modular biomimetic structures that aim to recapitulate the intricate hierarchy and biofunctionality of native human tissues. In recent years, this field has seen exciting progress driven by an increasing knowledge of biological systems and their rational deconstruction into key core components. Relevant advances in the bottom-up assembly of unitary living blocks toward the creation of higher order bioarchitectures based on multicellular-rich structures or multicomponent cell-biomaterial synergies are described. An up-to-date critical overview of long-term existing and rapidly emerging technologies for integrative bottom-up tissue engineering is provided, including discussion of their practical challenges and required advances. It is envisioned that a combination of cell-biomaterial constructs with bioadaptable features and biospecific 3D designs will contribute to the development of more robust and functional humanized tissues for therapies and disease models, as well as tools for fundamental biological studies.
Collapse
Affiliation(s)
- Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Borges
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
|
18
|
Csizmar CM, Petersburg JR, Wagner CR. Programming Cell-Cell Interactions through Non-genetic Membrane Engineering. Cell Chem Biol 2018; 25:931-940. [PMID: 29909993 PMCID: PMC6470397 DOI: 10.1016/j.chembiol.2018.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 05/11/2018] [Indexed: 12/28/2022]
Abstract
The ability to direct targeted intercellular interactions has the potential to enable and expand the use of cell-based therapies for regenerative medicine, tissue engineering, and immunotherapy. While genetic engineering approaches have proven effective, these techniques are not amenable to all cell types and often yield permanent modifications with potentially long-lasting adverse effects, restricting their application. To circumvent these limitations, there is intense interest in developing non-genetic methods to modify cell membranes with functional groups that will enable the recognition of target cells. While many such techniques have been developed, relatively few have been applied to directing specific cell-cell interactions. This review details these non-genetic membrane engineering approaches-namely, hydrophobic membrane insertion, chemical modification, liposome fusion, metabolic engineering, and enzymatic remodeling-and summarizes their major applications. Based on this analysis, perspective is provided on the ideal features of these systems with an emphasis on the potential for clinical translation.
Collapse
Affiliation(s)
- Clifford M Csizmar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob R Petersburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
20
|
Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 2018. [PMID: 29849930 DOI: : 10.4252/wjsc.v10.i5.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
Collapse
Affiliation(s)
- Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency County Hospital Saint Spiridon Iasi Romania, Iasi 700000, Romania
| | - Dumitru Daniel Herea
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Bioinformatics and Modelling SBIM, Frankfurt 45367, Germany
| |
Collapse
|
21
|
Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 2018; 10:43-56. [PMID: 29849930 PMCID: PMC5973910 DOI: 10.4252/wjsc.v10.i5.43] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
Collapse
Affiliation(s)
- Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency County Hospital Saint Spiridon Iasi Romania, Iasi 700000, Romania
| | - Dumitru Daniel Herea
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Bioinformatics and Modelling SBIM, Frankfurt 45367, Germany
| |
Collapse
|
22
|
Csizmar CM, Petersburg JR, Hendricks A, Stern LA, Hackel BJ, Wagner CR. Engineering Reversible Cell-Cell Interactions with Lipid Anchored Prosthetic Receptors. Bioconjug Chem 2018. [PMID: 29537253 DOI: 10.1021/acs.bioconjchem.8b00058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-engineered cells displaying antigen-targeting ligands are useful as both scientific tools and clinical therapeutics. While genetically encoded artificial receptors have proven efficacious, their scope remains limited, as this approach is not amenable to all cell types and the modification is often permanent. Our group has developed a nongenetic method to rapidly, stably, and reversibly modify any cell membrane with a chemically self-assembled nanoring (CSAN) that can function as a prosthetic receptor. Bifunctional CSANs displaying epithelial cell adhesion molecule (EpCAM)-targeted fibronectin domains were installed on the cell membrane through hydrophobic insertion and remained stably bound for ≥72 h in vitro. These CSAN-labeled cells were capable of recognizing EpCAM-expressing target cells, forming intercellular interactions that were subsequently reversed by disassembling the nanoring with the FDA-approved antibiotic, trimethoprim. This study demonstrates the use of this system to engineer cell surfaces with prosthetic receptors capable of directing specific and reversible cell-cell interactions.
Collapse
|
23
|
Vidiasheva IV, Abalymov AA, Kurochkin MA, Mayorova OA, Lomova MV, German SV, Khalenkow DN, Zharkov MN, Gorin DA, Skirtach AG, Tuchin VV, Sukhorukov GB. Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers. Biomater Sci 2018; 6:2219-2229. [DOI: 10.1039/c8bm00479j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeted cell delivery via electromagnetic tweezers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dmitry A. Gorin
- Saratov State University
- Saratov
- Russia
- Skolkovo Institute of Science and Technology
- Moscow
| | | | - Valery V. Tuchin
- Saratov State University
- Saratov
- Russia
- Tomsk State University
- Tomsk
| | - Gleb B. Sukhorukov
- Saratov State University
- Saratov
- Russia
- Queen Mary University of London
- England
| |
Collapse
|
24
|
Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. NANOSCALE 2017; 10:184-194. [PMID: 29210401 PMCID: PMC6450097 DOI: 10.1039/c7nr07255d] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Image-guided drug delivery is an emerging strategy in the field of nanomedicine. The addition of image guidance to a traditional drug delivery system is expected to achieve highly efficient treatment by tracking the drug carriers in the body and monitoring their effective accumulation in the targeted tissues. In this study, we developed multifunctional magneto-plasmonic liposomes (MPLs), a hybrid system combining liposomes and magneto-plasmonic nanoparticles for a triple-modality image-guided drug delivery. Tenofovir disoproxil fumarate, an antiretroviral drug used to treat human immunodeficiency virus type 1 (HIV-1), was encapsulated into the MPLs to enable the treatment in the brain microenvironment, which is inaccessible to most of the drugs. We found strong negative and positive contrasts originating from the magnetic core of MPLs in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), respectively. The gold shell of MPLs showed bright positive contrast in X-ray computed tomography (CT). MPLs achieved enhanced transmigration across an in vitro blood-brain barrier (BBB) model by magnetic targeting. Moreover, MPLs provided desired therapeutic effects against HIV infected microglia cells.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng 2017; 4:3658-3677. [DOI: 10.1021/acsbiomaterials.7b00514] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
O’Brien PJ, Elahipanah S, Rogozhnikov D, Yousaf MN. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering. ACS CENTRAL SCIENCE 2017; 3:489-500. [PMID: 28573212 PMCID: PMC5445537 DOI: 10.1021/acscentsci.7b00132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 05/03/2023]
Abstract
The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types. Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry.
Collapse
Affiliation(s)
- Paul J. O’Brien
- Department
of Chemistry and Biology, York University, Toronto, Canada, M3J 1P3
| | - Sina Elahipanah
- Department
of Chemistry and Biology, York University, Toronto, Canada, M3J 1P3
| | - Dmitry Rogozhnikov
- Department
of Chemistry and Biology, York University, Toronto, Canada, M3J 1P3
| | - Muhammad N. Yousaf
- Department
of Chemistry and Biology, York University, Toronto, Canada, M3J 1P3
- OrganoLinX
Inc., Toronto, Canada
| |
Collapse
|
27
|
Elahipanah S, O'Brien PJ, Rogozhnikov D, Yousaf MN. General Dialdehyde Click Chemistry for Amine Bioconjugation. Bioconjug Chem 2017; 28:1422-1433. [PMID: 28436674 DOI: 10.1021/acs.bioconjchem.7b00106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click-conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.
Collapse
Affiliation(s)
- Sina Elahipanah
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3
| | - Paul J O'Brien
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3
| | - Dmitry Rogozhnikov
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3
| | - Muhammad N Yousaf
- Department of Chemistry and Biology, Laboratory for Biomolecular Interactions, York University , Toronto, Ontario, Canada M3J 1P3.,OrganoLinX Inc. , Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
28
|
Whitehead SA, McNitt CD, Mattern-Schain SI, Carr AJ, Alam S, Popik VV, Best MD. Artificial Membrane Fusion Triggered by Strain-Promoted Alkyne-Azide Cycloaddition. Bioconjug Chem 2017; 28:923-932. [PMID: 28248084 PMCID: PMC5990007 DOI: 10.1021/acs.bioconjchem.6b00578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artificial systems for controlled membrane fusion applicable for drug delivery would ideally use triggers that are orthogonal to biology. To apply the strain-promoted alkyne-azide cycloaddition (SPAAC) to drive membrane fusion, oxo-dibenzocyclooctyne (ODIBO)-lipid 1 was designed, synthesized, and studied alongside azadibenzocyclooctyne (ADIBO)-lipids 2-4 to assess fusion with liposomes containing azido-lipid 5. Lipids 1-2 were first shown to be effective for liposome derivatization. Next, fusion was evaluated using liposomes containing 1 and varying ratios of PC and PE via a FRET dilution fusion assay, and a 1:1 PC-to-PE ratio yielded the greatest signal change attributed to fusion. Finally, lipids 1-4 were compared, and 1 yielded the greatest triggering of fusion, while 2-4 yielded varying efficacies depending on the structural features of each lipid. Fusion was further validated through STEM studies showing larger multilamellar assemblies after liposome mixing, and FRET assay results supporting the mixing of liposome aqueous contents. This work provides a platform for triggered fusion toward drug delivery applications and an understanding of the effects of lipid structure and membrane composition on fusion.
Collapse
Affiliation(s)
- Stuart A Whitehead
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Christopher D McNitt
- Department of Chemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Samuel I Mattern-Schain
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam J Carr
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Shahrina Alam
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Vladimir V Popik
- Department of Chemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
29
|
Kube S, Hersch N, Naumovska E, Gensch T, Hendriks J, Franzen A, Landvogt L, Siebrasse JP, Kubitscheck U, Hoffmann B, Merkel R, Csiszár A. Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1051-1059. [PMID: 28059515 DOI: 10.1021/acs.langmuir.6b04304] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Direct delivery of proteins and peptides into living mammalian cells has been accomplished using phospholipid liposomes as carrier particles. Such liposomes are usually taken up via endocytosis where the main part of their cargo is degraded in lysosomes before reaching its destination. Here, fusogenic liposomes, a newly developed molecular carrier system, were used for protein delivery. When such liposomes were loaded with water-soluble proteins and brought into contact with mammalian cells, the liposomal membrane efficiently fused with the cellular plasma membrane delivering the liposomal content to the cytoplasm without degradation. To explore the key factors of proteofection processes, the complex formation of fusogenic liposomes and proteins of interest and the size and zeta potential of the formed fusogenic proteoliposoms were monitored. Intracellular protein delivery was analyzed using fluorescence microscopy and flow cytometry. Proteins such as EGFP, Dendra2, and R-phycoerythrin or peptides such as LifeAct-FITC and NTF2-AlexaFluor488 were successfully incorporated into mammalian cells with high efficiency. Moreover, correct functionality and faithful transport to binding sites were also proven for the imported proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa Landvogt
- Biophysical Chemistry, Friedrich-Wilhelms-University Bonn , D-53012 Bonn, Germany
| | - Jan-Peter Siebrasse
- Biophysical Chemistry, Friedrich-Wilhelms-University Bonn , D-53012 Bonn, Germany
| | - Ulrich Kubitscheck
- Biophysical Chemistry, Friedrich-Wilhelms-University Bonn , D-53012 Bonn, Germany
| | | | | | | |
Collapse
|
30
|
Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering. Sci Rep 2016; 6:39806. [PMID: 28008983 PMCID: PMC5180231 DOI: 10.1038/srep39806] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023] Open
Abstract
There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.
Collapse
|
31
|
Rogozhnikov D, Luo W, Elahipanah S, O'Brien PJ, Yousaf MN. Generation of a Scaffold-Free Three-Dimensional Liver Tissue via a Rapid Cell-to-Cell Click Assembly Process. Bioconjug Chem 2016; 27:1991-8. [PMID: 27508505 DOI: 10.1021/acs.bioconjchem.6b00187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There has been tremendous interest in constructing in vitro liver organ models for a range of fundamental studies of cell signaling, metabolism, and infectious diseases, and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress toward studying two-dimensional hepatic function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free three-dimensional multiple cell line coculture tissue models of liver. Herein, we develop and employ a strategy to induce specific and stable cell-cell contacts among multiple hepatic cell lines to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a three cell line coculture 3D liver tissue model by assembling hepatocytes, hepatic endothelial cells, and hepatic stellate cells via a rapid intercell click ligation process. We compare and analyze the function of the superior 3D liver tissue chips with 2D coculture monolayer by assessing mitochondrial metabolic activity and evaluating drug toxicity.
Collapse
Affiliation(s)
- Dmitry Rogozhnikov
- Department of Chemistry and Biology, York University , Toronto, Ontario M3J 1P3, Canada
| | - Wei Luo
- Department of Chemistry and Biology, York University , Toronto, Ontario M3J 1P3, Canada
| | - Sina Elahipanah
- Department of Chemistry and Biology, York University , Toronto, Ontario M3J 1P3, Canada
| | - Paul J O'Brien
- Department of Chemistry and Biology, York University , Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N Yousaf
- Department of Chemistry and Biology, York University , Toronto, Ontario M3J 1P3, Canada.,OrganoLinX Inc. , Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
32
|
Cavatorta E, Verheijden ML, van Roosmalen W, Voskuhl J, Huskens J, Jonkheijm P. Functionalizing the glycocalyx of living cells with supramolecular guest ligands for cucurbit[8]uril-mediated assembly. Chem Commun (Camb) 2016; 52:7146-9. [PMID: 27169698 DOI: 10.1039/c6cc01693f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple naphthol ligands were installed on the glycocalyx of white blood cells via metabolic labeling and subsequent strain promoted azide-alkyne cycloaddition. Only when cucurbit[8]uril was present to drive the formation of ternary complexes, cells specifically assembled on a methylviologen functionalized supported lipid bilayer through multivalent interactions.
Collapse
Affiliation(s)
- Emanuela Cavatorta
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Elahipanah S, Radmanesh P, Luo W, O'Brien PJ, Rogozhnikov D, Yousaf MN. Rewiring Gram-Negative Bacteria Cell Surfaces with Bio-Orthogonal Chemistry via Liposome Fusion. Bioconjug Chem 2016; 27:1082-9. [PMID: 27019118 DOI: 10.1021/acs.bioconjchem.6b00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to tailor bacteria cell surfaces with non-native molecules is critical to advance the study of bacteria communication, cell behavior, and for next-generation therapeutics to improve livestock and human health. Such modifications would allow for novel control over cell behavior, cell-cell interactions, biofilm formation, adjuvant conjugation, and imaging. Current methods to engineer bacteria surfaces have made major advances but rely on complicated, slow, and often expensive molecular biology and metabolic manipulation methods with limited scope on the type of molecules installed onto the surface. In this report, we introduce a new straightforward method based on liposome fusion to engineer Gram-negative bacteria cells with bio-orthogonal groups that can subsequently be conjugated to a range of molecules (biomolecules, small molecules, probes, proteins, nucleic acids, ligands, and radiolabels) for further studies and programmed behavior of bacteria. This method is fast, efficient, inexpensive, and useful for installing a broad scope of ligands and biomolecules to Gram-negative bacteria surfaces.
Collapse
Affiliation(s)
- Sina Elahipanah
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Parham Radmanesh
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Wei Luo
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Paul J O'Brien
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Dmitry Rogozhnikov
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N Yousaf
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada.,OrganoLinX Inc. , Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
34
|
Hu T, Cao H, Yang C, Zhang L, Jiang X, Gao X, Yang F, He G, Song X, Tong A, Guo G, Gong C, Li R, Zhang X, Wang X, Zheng Y. LHD-Modified Mechanism-Based Liposome Coencapsulation of Mitoxantrone and Prednisolone Using Novel Lipid Bilayer Fusion for Tissue-Specific Colocalization and Synergistic Antitumor Effects. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6586-601. [PMID: 26907854 DOI: 10.1021/acsami.5b10598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coencapsulation liposomes are of interest to researchers because they maximize the synergistic effect of loaded drugs. A combination regimen of mitoxantrone (MTO) and prednisolone (PLP) has been ideal for tumor therapy. MTO and PLP offer synergistic antitumor effects confirmed by several experiments in this research. The deduced synergistic mechanism is regulation of Akt signaling pathway including the targets of p-Akt, p-GSK-3β, p-s6 ribosomal protein, and p-AMPK by MTO reactivating PLP-induced apoptosis. The liposome fusion method is adopted to create coencapsulation liposomes (PLP-MTO-YM). Low molecular weight heparin-sodium deoxycholate conjugate (LHD) then is used as a targeting ligand to prove target binding and inhibition of angiogenesis. LHD-modified liposomes (PLP-MTO-HM) have a high entrapment efficiency around 95% for both MTO and PLP. DSC results indicate that both drugs interacted with liposomes to prevent drug leak during liposome fusion. DiD-C6-HM dyes colocalize well to tumor tissue, and coadministration of DiD-HM and C6-CM did not achieve dye colocalization until 24 h after administration. In both CT26 and B16F10 mouse model, PLP-MTO-HM shows a significantly higher tumor inhibition rate relative to the coadministration of MTO-HM and PLP-CM (p < 0.05 or p < 0.01). Thus, the coencapsulation system (PLP-MTO-HM) offers ideal antitumor effects relative to coadministration therapy due to enhanced synergistic effect, and this suggests a promising future for the tumor targeting vectors.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Hua Cao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Chengli Yang
- School of Pharmacy, Zunyi Medical University , 201#, Dalian Road, Zunyi, Guizhou 563000, People's Republic of China
| | - Lijing Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Fan Yang
- Department of Gynecology, West China Second University Hospital, Sichuan University , Chengdu 610041, People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Rui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaoning Zhang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University , 30#, Shuangqing Road, Haidian Dist, Beijing 100084, People's Republic of China
| | - Xinchun Wang
- School of Pharmacy, Shihezi University , No. 221, North Fourth Road, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , 17#, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
35
|
Luo W, Westcott N, Dutta D, Pulsipher A, Rogozhnikov D, Chen J, Yousaf MN. A Dual Receptor and Reporter for Multi-Modal Cell Surface Engineering. ACS Chem Biol 2015. [PMID: 26204094 DOI: 10.1021/acschembio.5b00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid development of new small molecule drugs, nanomaterials, and genetic tools to modulate cellular function through cell surface manipulation has revolutionized the diagnosis, study, and treatment of disorders in human health. Since the cell membrane is a selective gateway barrier that serves as the first line of defense/offense and communication to its environment, new approaches that molecularly engineer or tailor cell membrane surfaces would allow for a new era in therapeutic design, therapeutic delivery, complex coculture tissue construction, and in situ imaging probe tracking technologies. In order to develop the next generation of multimodal therapies, cell behavior studies, and biotechnologies that focus on cell membrane biology, new tools that intersect the fields of chemistry, biology, and engineering are required. Herein, we develop a liposome fusion and delivery strategy to present a novel dual receptor and reporter system at cell surfaces without the use of molecular biology or metabolic biosynthesis. The cell surface receptor is based on bio-orthogonal functional groups that can conjugate a range of ligands while simultaneously reporting the conjugation through the emission of fluorescence. We demonstrate this dual receptor and reporter system by conjugating and tracking various cell surface ligands for temporal control of cell fluorescent signaling, cell-cell interaction, and tissue assembly construction.
Collapse
Affiliation(s)
- Wei Luo
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3 Canada
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Nathan Westcott
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Debjit Dutta
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Abigail Pulsipher
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Dmitry Rogozhnikov
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3 Canada
| | - Jean Chen
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3 Canada
| | - Muhammad N. Yousaf
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3 Canada
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
36
|
Hersch N, Wolters B, Ungvari Z, Gautam T, Deshpande D, Merkel R, Csiszar A, Hoffmann B, Csiszár A. Biotin-conjugated fusogenic liposomes for high-quality cell purification. J Biomater Appl 2015; 30:846-56. [DOI: 10.1177/0885328215603026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Purification of defined cell populations from mixed primary cell sources is essential for many biomedical and biotechnological applications but often very difficult to accomplish due to missing specific surface markers. In this study, we developed a new approach for efficient cell population separation based on the specific membrane fusion characteristics of distinct cell types upon treatment with fusogenic liposomes. When such liposomes are conjugated with biotin, specific cell populations can be efficiently surface functionalized by biotin after liposomal treatment while other populations remain unlabeled. Due to the high affinity of biotin for avidin-like proteins, biotin functionalized cells are ideal targets for conjugation of e.g. avidin tagged magnetic beads, fluorophores or antibodies with bioanalytical relevance. Here, based on the differential biotinylation of distinct cell populations high quality separation of cardiac fibroblasts from myocytes, and cerebromicrovascular endothelial cells from fibroblasts was successfully established.
Collapse
Affiliation(s)
- Nils Hersch
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Benjamin Wolters
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Dhruva Deshpande
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Agnes Csiszár
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
37
|
O’Brien PJ, Luo W, Rogozhnikov D, Chen J, Yousaf MN. Spheroid and Tissue Assembly via Click Chemistry in Microfluidic Flow. Bioconjug Chem 2015; 26:1939-49. [DOI: 10.1021/acs.bioconjchem.5b00376] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paul J. O’Brien
- Department of Chemistry,
Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wei Luo
- Department of Chemistry,
Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Dmitry Rogozhnikov
- Department of Chemistry,
Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jean Chen
- Department of Chemistry,
Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N. Yousaf
- Department of Chemistry,
Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
38
|
Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015; 84:3-16. [PMID: 25770356 PMCID: PMC4526354 DOI: 10.1016/j.ymeth.2015.03.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
39
|
A molecular smart surface for spatio-temporal studies of cell mobility. PLoS One 2015; 10:e0118126. [PMID: 26030281 PMCID: PMC4452080 DOI: 10.1371/journal.pone.0118126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/07/2015] [Indexed: 11/19/2022] Open
Abstract
Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions.
Collapse
|
40
|
Miller DM, Gulbis JM. Engineering protocells: prospects for self-assembly and nanoscale production-lines. Life (Basel) 2015; 5:1019-53. [PMID: 25815781 PMCID: PMC4500129 DOI: 10.3390/life5021019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The increasing ease of producing nucleic acids and proteins to specification offers potential for design and fabrication of artificial synthetic "organisms" with a myriad of possible capabilities. The prospects for these synthetic organisms are significant, with potential applications in diverse fields including synthesis of pharmaceuticals, sources of renewable fuel and environmental cleanup. Until now, artificial cell technology has been largely restricted to the modification and metabolic engineering of living unicellular organisms. This review discusses emerging possibilities for developing synthetic protocell "machines" assembled entirely from individual biological components. We describe a host of recent technological advances that could potentially be harnessed in design and construction of synthetic protocells, some of which have already been utilized toward these ends. More elaborate designs include options for building self-assembling machines by incorporating cellular transport and assembly machinery. We also discuss production in miniature, using microfluidic production lines. While there are still many unknowns in the design, engineering and optimization of protocells, current technologies are now tantalizingly close to the capabilities required to build the first prototype protocells with potential real-world applications.
Collapse
Affiliation(s)
- David M Miller
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| | - Jacqueline M Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| |
Collapse
|
41
|
Liang R, Zhang JP, Skibsted LH. Evaluation of physical integrity of lipid bilayer under oxidative stress: application of fluorescence microscopy and digital image processing. Methods Mol Biol 2015; 1208:111-121. [PMID: 25323503 DOI: 10.1007/978-1-4939-1441-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Membrane damage as a result of oxidative stress is quantified using digital image heterogeneity analysis of single giant unilamellar vesicles (GUVs) composed of soy phosphatidylcholine (PC), which were found to undergo budding when containing chlorophyll a (Chla) as photosensitizer in the lipid bilayer. Based on digital image heterogeneity analysis, a dimensionless scalar parameter "entropy" for the budding process was found to change linearly during an initial budding stage. Photo-induced peroxidation of PC to form linoleoyl hydroperoxides, further leading to domains of higher polarities in GUVs, was suggested to initiate the budding process. The effect on budding process of GUVs was suggested for use in assays for evaluation of potential protectors of lipid bilayer integrity under oxidative stress, and "entropy" seemed to be a valid descriptor of such membranal integrity. The one-step procedure for quantification of prooxidative effects and antioxidative protection provided by drug candidates and potential food ingredients in membranes could be easily automated for direct measurement of oxidative and antioxidative effects on cellular integrity.
Collapse
Affiliation(s)
- Ran Liang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | | | | |
Collapse
|
42
|
Tang L, Yin Q, Xu Y, Zhou Q, Cai K, Yen J, Dobrucki LW, Cheng J. Bioorthogonal Oxime Ligation Mediated In Vivo Cancer Targeting. Chem Sci 2015; 6:2182-2186. [PMID: 26146536 PMCID: PMC4486360 DOI: 10.1039/c5sc00063g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, we report an in vivo cancer targeting strategy mediated by bioorthogonal oxime ligation.
Current cancer targeting relying on specific biological interaction between the cell surface antigen and respective antibody or its analogue has proven to be effective in the treatment of different cancers; however, this strategy has its own limitations, such as the heterogeneity of cancer cells and immunogenicity of the biomacromolecule binding ligands. Bioorthogonal chemical conjugation has emerged as an attractive alternative to biological interaction for in vivo cancer targeting. Here, we report an in vivo cancer targeting strategy mediated by bioorthogonal oxime ligation. An oxyamine group, the artificial target, is introduced onto 4T1 murine breast cancer cells through liposome delivery and fusion. Poly(ethylene glycol)-polylactide (PEG-PLA) nanoparticles (NPs) are surface-functionalized with aldehyde groups as targeting ligands. The improved in vivo cancer targeting of PEG-PLA NPs is achieved through specific and efficient chemical reaction between the oxyamine and aldehyde groups.
Collapse
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA. ; Tel: +1 217-244-3924
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA. ; Tel: +1 217-244-3924
| | - Yunxiang Xu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA. ; Tel: +1 217-244-3924
| | - Qin Zhou
- Department of Pharmaceutical Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA. ; Tel: +1 217-244-3924
| | - Jonathan Yen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA. ; Tel: +1 217-244-3924
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA. ; Tel: +1 217-244-3924 ; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Pulsipher A, Park S, Dutta D, Luo W, Yousaf MN. In situ modulation of cell behavior via smart dual-ligand surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13656-66. [PMID: 25373713 PMCID: PMC4334223 DOI: 10.1021/la503521x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Due to the highly complex nature of the extracellular matrix (ECM), the design and implementation of dynamic, stimuli-responsive surfaces that present well-defined ligands and serve as model ECM substrates have been of tremendous interest to biomaterials, biosensor, and cell biology communities. Such tools provide strategies for identifying specific ligand-receptor interactions that induce vital biological consequences. Herein, we report a novel dual-ligand-presenting surface methodology that modulates dynamic ECM properties to investigate various cell behaviors. Peptides PHSRN, cRGD, and KKKTTK, which mimic the cell- and heparan sulfate-binding domains of fibronectin, and carbohydrates Gal and Man were combined with cell adhesive RGD to survey possible synergistic or antagonist ligand effects on cell adhesion, spreading, growth, and migration. Soluble molecule and enzymatic inhibition assays were also performed, and the levels of focal adhesion kinase in cells subjected to different ligand combinations were quantified. A redox-responsive trigger was incorporated into this surface strategy to spontaneously release ligands in the presence of adhered cells, and cell spreading, growth, and migration responses were measured and compared. The identity and nature of the dual-ligand combination directly influenced cell behavior.
Collapse
Affiliation(s)
- Abigail Pulsipher
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sungjin Park
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Debjit Dutta
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Wei Luo
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department
of Chemistry and Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N. Yousaf
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department
of Chemistry and Biology, York University, Toronto, Ontario M3J 1P3, Canada
- E-mail: . Tel: (416) 736-2100, ext
77718
| |
Collapse
|
44
|
Abstract
A new strategy to create a dynamic scaffold for three-dimensional (3D) cell experiments based on a photo-activated cell adhesive peptide ligand is described. After polymerization, the inert matrix becomes cell adhesive by chemoselective modification through the conjugation of oxyamine-terminated ligands. Furthermore, spatial and temporal control of cell culture within the 3D matrix was achieved by the use of a biospecific photoprotected peptide and visualized by confocal microscopy.
Collapse
|
45
|
Luo W, Pulsipher A, Dutta D, Lamb BM, Yousaf MN. Remote control of tissue interactions via engineered photo-switchable cell surfaces. Sci Rep 2014; 4:6313. [PMID: 25204325 PMCID: PMC4159631 DOI: 10.1038/srep06313] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023] Open
Abstract
We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.
Collapse
Affiliation(s)
- Wei Luo
- Department of Chemistry, Carolina Center for Genome Science, Carolina Center for Cancer Nanotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry and Biology, Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Abigail Pulsipher
- Department of Chemistry, Carolina Center for Genome Science, Carolina Center for Cancer Nanotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Debjit Dutta
- Department of Chemistry, Carolina Center for Genome Science, Carolina Center for Cancer Nanotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian M. Lamb
- Department of Chemistry, Carolina Center for Genome Science, Carolina Center for Cancer Nanotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Muhammad N. Yousaf
- Department of Chemistry, Carolina Center for Genome Science, Carolina Center for Cancer Nanotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry and Biology, Centre for Research in Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
46
|
Wang HJ, Liang R, Fu LM, Han RM, Zhang JP, Skibsted LH. Nutritional aspects of β-carotene and resveratrol antioxidant synergism in giant unilamellar vesicles. Food Funct 2014; 5:1573-8. [PMID: 24867711 DOI: 10.1039/c4fo00225c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Giant unilamellar vesicles of soy phosphatidylcholine are found to undergo budding when sensitized with chlorophyll a ([phosphatidylcholine] : [chlorophyll a] = 1500 : 1) under light irradiation (400-440 nm, 16 mW mm(-2)). 'Entropy' as a dimensionless image heterogeneity measurement is found to increase linearly with time during an initial budding process. For β-carotene addition ([phosphatidylcholine] : [β-carotene] = 500 : 1), a lag phase of 23 s is observed, followed by a budding process at an initial rate lowered by a factor of 3.8, whereas resveratrol ([phosphatidylcholine] : [resveratrol] = 500 : 1) has little if any protective effect against budding. However, resveratrol, when combined with β-carotene, is found to further reduce the initial budding rate by a total factor of 4.7, exhibiting synergistic antioxidation effects. It is also interesting that β-carotene alone determines the lag phase for the initiation of budding, while resveratrol supports β-carotene in reducing the rate of the budding process following the lag phase; however, it alone has no observable effect on the lag phase. Resveratrol is suggested to regenerate β-carotene following its sacrificial protection of unsaturated lipids from oxidative stress, modeling the synergistic effects in cell membranes by combinations of dietary antioxidants.
Collapse
Affiliation(s)
- Hui-Jing Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | | | |
Collapse
|
47
|
Gabrielse K, Gangar A, Kumar N, Lee JC, Fegan A, Shen JJ, Li Q, Vallera D, Wagner CR. Reversible Re-programing of Cell-Cell Interactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Gabrielse K, Gangar A, Kumar N, Lee JC, Fegan A, Shen JJ, Li Q, Vallera D, Wagner CR. Reversible Re‐programing of Cell–Cell Interactions. Angew Chem Int Ed Engl 2014; 53:5112-6. [DOI: 10.1002/anie.201310645] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/17/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Kari Gabrielse
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Amit Gangar
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Nigam Kumar
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Jae Chul Lee
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Adrian Fegan
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Jing Jing Shen
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Qing Li
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
| | - Daniel Vallera
- Department of Therapeutic Radiology, University of Minnesota (USA)
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455 (USA)
- Department of Chemistry, University of Minnesota (USA)
| |
Collapse
|
49
|
Brinkmann J, Cavatorta E, Sankaran S, Schmidt B, van Weerd J, Jonkheijm P. About supramolecular systems for dynamically probing cells. Chem Soc Rev 2014; 43:4449-69. [PMID: 24681633 DOI: 10.1039/c4cs00034j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the state of the art in the development of strategies for generating supramolecular systems for dynamic cell studies. Dynamic systems are crucial to further our understanding of cell biology and are consequently at the heart of many medical applications. Increasing interest has therefore been focused recently on rendering systems bioactive and dynamic that can subsequently be employed to engage with cells. Different approaches using supramolecular chemistry are reviewed with particular emphasis on their application in cell studies. We conclude with an outlook on future challenges for dynamic cell research and applications.
Collapse
Affiliation(s)
- Jenny Brinkmann
- MESA+ Institute for Nanotechnology and Department of Science and Technology, Laboratory Group of Bioinspired Molecular Engineering, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Park S, Westcott NP, Luo W, Dutta D, Yousaf MN. General chemoselective and redox-responsive ligation and release strategy. Bioconjug Chem 2014; 25:543-51. [PMID: 24559434 PMCID: PMC3983135 DOI: 10.1021/bc400565y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
We
report a switchable redox click and cleave reaction strategy for conjugating
and releasing a range of molecules on demand. This chemoselective
redox-responsive ligation (CRRL) and release strategy is based on
a redox switchable oxime linkage that is controlled by mild chemical
or electrochemical redox signals and can be performed at physiological
conditions without the use of a catalyst. Both conjugation and release
reactions are kinetically well behaved and quantitative. The CRRL
strategy is synthetically modular and easily monitored and characterized
by routine analytical techniques. We demonstrate how the CRRL strategy
can be used for the dynamic generation of cyclic peptides and the
ligation of two different peptides that are stable but can be selectively
cleaved upon changes in the redox environment. We also demonstrate
a new redox based delivery of cargoes to live cells strategy via the
CRRL methodology by synthesizing a FRET redox-responsive probe that
is selectively activated within a cellular environment. We believe
the ease of the CRRL strategy should find wide use in a range of applications
in biology, tissue engineering, nanoscience, synthetic chemistry,
and material science and will expand the suite of current conjugation
and release strategies.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|