1
|
Maiti D, Yokoyama M, Shiraishi K. Impact of the Hydrophilicity of Poly(sarcosine) on Poly(ethylene glycol) (PEG) for the Suppression of Anti-PEG Antibody Binding. ACS OMEGA 2024; 9:34577-34588. [PMID: 39157078 PMCID: PMC11325419 DOI: 10.1021/acsomega.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
A method of poly(ethylene glycol) (PEG) conjugation is known as PEGylation, which has been employed to deliver therapeutic drugs, proteins, or nanoparticles by considering the intrinsic non- or very low immunogenic property of PEG. However, PEG has its weaknesses, and one major concern is the potential immunogenicity of PEGylated proteins. Because of its hydrophilicity, poly(sarcosine) (P(Sar)) may be an attractive-and superior-substitute for PEG. In the present study, we designed a double hydrophilic diblock copolymer, methoxy-PEG-b-P(Sar) m (m = 5-55) (mPEG-P(Sar) m ), and synthesized a triblock copolymer with hydrophobic poly(l-isoleucine) (P(Ile)). We validated that double hydrophilic mPEG-P(Sar) block copolymers suppressed the specific binding of three monoclonal anti-PEG antibodies (anti-PEG mAbs) to PEG. The results of our indirect ELISAs indicate that P(Sar) significantly helps to reduce the binding of anti-PEG mAbs to PEG. Importantly, the steady suppression of this binding was made possible, in part, thanks to the maximum number of sarcosine units in the triblock copolymer, as evidenced by sandwich ELISA and biolayer interferometry assay (BLI): the intrinsic hydrophilicity of P(Sar) had a clear supportive effect on PEG. Finally, because we used P(Ile) as a hydrophobic block, PEG-P(Sar) might be an attractive alternative to PEG in the search for protein shields that minimize the immunogenicity of PEGylated proteins.
Collapse
Affiliation(s)
- Debabrata Maiti
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| | - Masayuki Yokoyama
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| | - Kouichi Shiraishi
- Research Center for Medical
Sciences, The Jikei University School of
Medicine, 163-1, Kashiwa-shita, Kashiwa, Chiba 277-0004, Japan
| |
Collapse
|
2
|
Watumlawar EC, Park BD. A Novel Method of Self-Cross-Linking of Syringaldehyde with Activated Methoxy Groups via Cross-Coupling for Lignin-Based Wood Adhesives. ACS OMEGA 2024; 9:28167-28175. [PMID: 38973923 PMCID: PMC11223239 DOI: 10.1021/acsomega.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
As steric hindrance, methoxy groups are limiting the valorization of hardwood lignin. This paper reports a novel method of self-cross-linking of the syringaldehyde with activated methoxy groups (-OCH3) via cross-coupling reaction to obtain thermosetting polymers for lignin-based wood adhesives. The methoxy groups of syringaldehyde have been activated via cross-coupling reaction by substituting Ar-OCH3 with Ar-CH2-SiMe3, and dichloromethane, leading to cross-linking via methylene bridges to build a thermosetting polymer. FTIR spectra showed a decrease in the intensity of a -CH3 and -OH group, owing to the substitution of the methoxy group. 13C NMR spectra also supported these results with the -SiMe3 signal that disappeared after the cross-linking reaction. Furthermore, cross-linking between the activated methoxy groups was confirmed with a strong exothermic peak at 130 °C, resulting in an increase in the adhesion strength as hot-pressing temperature increased from 160 to 180 °C. These results suggest that the cross-linking between the activated methoxy groups of syringaldehyde is an important understanding of valorizing hardwood lignin via building thermosetting polymers for lignin-based adhesives.
Collapse
Affiliation(s)
- Ega Cyntia Watumlawar
- Department of Wood and Paper
Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper
Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Zai W, Yang M, Jiang K, Guan J, Wang H, Hu K, Huang C, Chen J, Fu W, Zhan C, Yuan Z. Optimized RNA interference therapeutics combined with interleukin-2 mRNA for treating hepatitis B virus infection. Signal Transduct Target Ther 2024; 9:150. [PMID: 38902241 PMCID: PMC11189933 DOI: 10.1038/s41392-024-01871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
This study aimed to develop a pan-genotypic and multifunctional small interfering RNA (siRNA) against hepatitis B virus (HBV) with an efficient delivery system for treating chronic hepatitis B (CHB), and explore combined RNA interference (RNAi) and immune modulatory modalities for better viral control. Twenty synthetic siRNAs targeting consensus motifs distributed across the whole HBV genome were designed and evaluated. The lipid nanoparticle (LNP) formulation was optimized by adopting HO-PEG2000-DMG lipid and modifying the molar ratio of traditional polyethylene glycol (PEG) lipid in LNP prescriptions. The efficacy and safety of this formulation in delivering siHBV (tLNP/siHBV) along with the mouse IL-2 (mIL-2) mRNA (tLNP/siHBVIL2) were evaluated in the rAAV-HBV1.3 mouse model. A siRNA combination (terms "siHBV") with a genotypic coverage of 98.55% was selected, chemically modified, and encapsulated within an optimized LNP (tLNP) of high efficacy and security to fabricate a therapeutic formulation for CHB. The results revealed that tLNP/siHBV significantly reduced the expression of viral antigens and DNA (up to 3log10 reduction; vs PBS) in dose- and time-dependent manners at single-dose or multi-dose frequencies, with satisfactory safety profiles. Further studies showed that tLNP/siHBVIL2 enables additive antigenic and immune control of the virus, via introducing potent HBsAg clearance through RNAi and triggering strong HBV-specific CD4+ and CD8+ T cell responses by expressed mIL-2 protein. By adopting tLNP as nucleic acid nanocarriers, the co-delivery of siHBV and mIL-2 mRNA enables synergistic antigenic and immune control of HBV, thus offering a promising translational therapeutic strategy for treating CHB.
Collapse
Affiliation(s)
- Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, P. R. China
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- Eye Institute and Department of Ophthamology, Eye and ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Juan Guan
- Pharmacy Department of Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, P. R. China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, P. R. China.
| |
Collapse
|
4
|
Luppi BT, Primrose WL, Hudson ZM. Polymer Dots with Delayed Fluorescence and Tunable Cellular Uptake for Photodynamic Therapy and Time-Gated Imaging. Angew Chem Int Ed Engl 2024; 63:e202400712. [PMID: 38439710 DOI: 10.1002/anie.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
By combining bioimaging and photodynamic therapy (PDT), it is possible to treat cancer through a theranostic approach with targeted action for minimum invasiveness and side effects. Thermally activated delayed fluorescence (TADF) probes have gained recent interest in theranostics due to their ability to generate singlet oxygen (1O2) while providing delayed emission that can be used in time-gated imaging. However, it is still challenging to design systems that simultaneously show (1) high contrast for imaging, (2) low dark toxicity but high phototoxicity and (3) tunable biological uptake. Here, we circumvent shortcomings of TADF systems by designing block copolymers and their corresponding semiconducting polymer dots (Pdots) that encapsulate a TADF dye in the core and expose an additional boron-dipyrromethene (BODIPY) oxygen sensitizer in the corona. This architecture provides orange-red luminescent particles (ΦPL up to 18 %) that can efficiently promote PDT (1O2 QY=42 %) of HeLa cells with very low photosensitizer loading (IC50 ~0.05-0.13 μg/mL after 30 min). Additionally, we design Pdots with tunable cellular uptake but similar PDT efficiencies using either polyethylene glycol or guanidinium-based coronas. Finally, we demonstrate that these Pdots can be used for time-gated imaging to effectively filter out background fluorescence from biological samples and improve image contrast.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
5
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
7
|
Davis E, Caparco AA, Jones E, Steinmetz NF, Pokorski JK. Study of uricase-polynorbornene conjugates derived from grafting-from ring-opening metathesis polymerization. J Mater Chem B 2024; 12:2197-2206. [PMID: 38323642 DOI: 10.1039/d3tb02726k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PEGylation has been the 'gold standard' in bioconjugation due to its ability to improve the pharmacokinetics and pharmacodynamics of native proteins. However, growing clinical evidence of hypersensitivity reactions to PEG due to pre-existing anti-PEG antibodies in healthy humans have raised concerns. Advancements in controlled polymerization techniques and conjugation chemistries have paved the way for the development of protein-polymer conjugates that can circumvent these adverse reactions while retaining the benefits of such modifications. Herein, we show the development of polynorbornene based bioconjugates of therapeutically relevant urate oxidase (UO) enzymes used in the treatment of gout synthesized by grafting-from ring-opening metathesis polymerization (ROMP). Notably, these conjugates exhibit comparable levels of bioactivity to PEGylated UO and demonstrate increased stability across varying temperatures and pH conditions. Immune recognition of conjugates by anti-UO antibodies reveal low protein immunogenicity following the conjugation process. Additionally, UO conjugates employing zwitterionic polynorbornene successfully avoid recognition by anti-PEG antibodies, further highlighting a potential replacement for PEG.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Adam A Caparco
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Jones
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Chen X, Luo Z, Hu Z, Sun D, He Y, Lu J, Chen L, Liu S. Discovery of potent thiazolidin-4-one sulfone derivatives for inhibition of proliferation of osteosarcoma in vitro and in vivo. Eur J Med Chem 2024; 266:116082. [PMID: 38232462 DOI: 10.1016/j.ejmech.2023.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Chemotherapy combining with surgical treatment has been the main strategy for osteosarcoma treatment in clinical. Due to unclear pathogenesis and unidentified drug targets, significant progress has not been made in the development of targeted drugs for osteosarcoma during the past 50 years. Our previous discovery reported compound R-8i with a high potency for the treatment of osteosarcoma by phenotypic screening. However, both the metabolic stability and bioavailability of R-8i are poor (T1/2 = 5.36 min, mouse liver microsome; and bioavailability in vivo F = 52.1 %, intraperitoneal administration) which limits it use for further drug development. Here, we described an extensive structure-activity relationship study of thiazolidine-4-one sulfone inhibitors from R-8i, which led to the discovery of compound 68. Compound 68 had a potent cellular activity with an IC50 value of 0.217 μM, much higher half-life (T1/2 = 73.8 min, mouse liver microsome) and an excellent pharmacokinetic profile (in vivo bioavailability F = 115 %, intraperitoneal administration). Compound 68 also showed good antitumor effects and low toxicity in a xenograft model (44.6 % inhibition osteosarcoma growth in BALB/c mice). These results suggest that compound 68 is a potential drug candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhengli Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zongjing Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Donghui Sun
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yingying He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
9
|
Gaballa SA, Shimizu T, Takata H, Ando H, Ibrahim M, Emam SE, Amorim Matsuo NC, Kim Y, Naguib YW, Mady FM, Khaled KA, Ishida T. Impact of Anti-PEG IgM Induced via the Topical Application of a Cosmetic Product Containing PEG Derivatives on the Antitumor Effects of PEGylated Liposomal Antitumor Drug Formulations in Mice. Mol Pharm 2024; 21:622-632. [PMID: 38273445 DOI: 10.1021/acs.molpharmaceut.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Institute of Innovative Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Institute of Innovative Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Mohamed Ibrahim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nana Cristina Amorim Matsuo
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Yuri Kim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
- Institute of Innovative Drug Delivery System, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
10
|
Zeng Z, Chen S, Chen Y. Zwitterionic Polymer: A New Paradigm for Protein Conjugation beyond PEG. ChemMedChem 2023; 18:e202300245. [PMID: 37675618 DOI: 10.1002/cmdc.202300245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
To render protein drugs more suitable for clinical treatment, PEGylation has been widely used to ameliorate their inherent deficiencies, such as poor stability, rapid elimination in the bloodstream, and high immunogenicity. While increasingly PEGylated protein drugs have been approved by the FDA, the non-degradability of PEG and the emergence of anti-PEG antibodies after injection raise concerns about their cumulative chronic toxicity and long-term therapeutic efficacy. Zwitterionic polymer, with a unique structure containing equal amounts of positively charged and negatively charged groups, shows a different hydration behavior to PEG, which may be a superior PEG alternative for protein conjugation. In this concept review, a series of features beyond that of PEGylated protein exhibited by protein-zwitterionic polymer conjugate are discussed and some suggestions are presented for their future direction.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shi Chen
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongming Chen
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Deuker MFS, Mailänder V, Morsbach S, Landfester K. Anti-PEG antibodies enriched in the protein corona of PEGylated nanocarriers impact the cell uptake. NANOSCALE HORIZONS 2023; 8:1377-1385. [PMID: 37591816 DOI: 10.1039/d3nh00198a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Poly(ethylene glycol) (PEG) is the gold standard used to reduce unspecific protein adsorption and prolong nanocarrier circulation time. However, this stealth effect could be counteracted by the increasing prevalence of anti-PEG antibodies in the bloodstream. Up to now, the presence of anti-PEG antibodies in the protein corona and their effect on cell uptake has not been investigated yet. Our results showed a high concentration and prevalence of anti-PEG antibodies in the German population. PEGylated nanocarriers exhibited a higher level of anti-PEG antibodies in the protein corona compared to non-PEGylated, which lead to higher uptake in macrophages. Consequently, the anti-PEG antibodies in the protein corona could mitigate the stealth effect of PEG, leading to accelerated blood clearance and unwanted side effects.
Collapse
Affiliation(s)
- Mareike F S Deuker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Jia Y, Fernandez A, Sampath J. PEGylation of Insulin and Lysozyme To Stabilize against Thermal Denaturation: A Molecular Dynamics Simulation Study. J Phys Chem B 2023; 127:6856-6866. [PMID: 37498538 DOI: 10.1021/acs.jpcb.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biologic drugs or "biologics" (proteins derived from living organisms) are one of the fastest-growing classes of FDA-approved therapeutics. These compounds are often fragile and require conjugation to polymers for stabilization, with many proteins too ephemeral for therapeutic use. During storage or administration, proteins tend to unravel and lose their secondary structure due to changes in solution temperature, pH, and other external stressors. To enhance their lifetime, protein drugs currently in the market are conjugated with polyethylene glycol (PEG), owing to its ability to increase the stability, solubility, and pharmacokinetics of protein drugs. Here, we perform all-atom molecular dynamics simulations to study the unfolding process of egg-white lysozyme and insulin at elevated temperatures. We test the validity of two force fields─CHARMM36 and Amber ff99SB-ILDN─in the unfolding process. By calculating global and local properties, we capture residues that deteriorate first─these are the "weak links" in the proteins. Next, we conjugate both proteins with PEG and find that PEG preserves the native structure of the proteins at elevated temperatures by blocking water molecules from entering the hydrophobic core, thereby causing the secondary structure to stabilize.
Collapse
Affiliation(s)
- Yinhao Jia
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Fernandez
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Abd-Ellah HS, Mudududdla R, Carter GP, Baell JB. Novel Perspectives on the Design and Development of a Long-Acting Subcutaneous Raltegravir Injection for Treatment of HIV-In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051530. [PMID: 37242770 DOI: 10.3390/pharmaceutics15051530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antiretrovirals (ARVs) are a highly effective therapy for treatment and prevention of HIV infection, when administered as prescribed. However, adherence to lifelong ARV regimens poses a considerable challenge and places HIV patients at risk. Long-acting ARV injections may improve patient adherence as well as maintaining long-term continuous drug exposure, resulting in improved pharmacodynamics. In the present work, we explored the aminoalkoxycarbonyloxymethyl (amino-AOCOM) ether prodrug concept as a potential approach to long-acting ARV injections. As a proof of concept, we synthesised model compounds containing the 4-carboxy-2-methyl Tokyo Green (CTG) fluorophore and assessed their stability under pH and temperature conditions that mimic those found in the subcutaneous (SC) tissue. Among them, probe 21 displayed very slow fluorophore release under SC-like conditions (98% of the fluorophore released over 15 d). Compound 25, a prodrug of the ARV agent raltegravir (RAL), was subsequently prepared and evaluated using the same conditions. This compound showed an excellent in vitro release profile, with a half-life (t½) of 19.3 d and 82% of RAL released over 45 d. In mice, 25 extended the half-life of unmodified RAL by 4.2-fold (t½ = 3.18 h), providing initial proof of concept of the ability of amino-AOCOM prodrugs to extend drug lifetimes in vivo. Although this effect was not as pronounced as seen in vitro-presumably due to enzymatic degradation and rapid clearance of the prodrug in vivo-the present results nevertheless pave the way for development of more metabolically stable prodrugs, to facilitate long-acting delivery of ARVs.
Collapse
Affiliation(s)
- Heba S Abd-Ellah
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ramesh Mudududdla
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Glen P Carter
- Microbiology and Immunology Department, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3001, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
14
|
Tenchov R, Sasso JM, Zhou QA. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug Chem 2023. [PMID: 37162501 DOI: 10.1021/acs.bioconjchem.3c00174] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lipid nanoparticles (LNPs) have been recognized as efficient vehicles to transport a large variety of therapeutics. Currently in the spotlight as important constituents of the COVID-19 mRNA vaccines, LNPs play a significant role in protecting and transporting mRNA to cells. As one of their key constituents, polyethylene glycol (PEG)-lipid conjugates are important in defining LNP physicochemical characteristics and biological activity. PEGylation has proven particularly efficient in conferring longer systemic circulation of LNPs, thus greatly improving their pharmacokinetics and efficiency. Along with revealing the benefits of PEG conjugates, studies have revealed unexpected immune reactions against PEGylated nanocarriers such as accelerated blood clearance (ABC), involving the production of anti-PEG antibodies at initial injection, which initiates accelerated blood clearance upon subsequent injections, as well as a hypersensitivity reaction referred to as complement activation-related pseudoallergy (CARPA). Further, data have been accumulated indicating consistent yet sometimes controversial correlations between various structural parameters of the PEG-lipids, the properties of the PEGylated LNPs, and the magnitude of the observed adverse effects. Detailed knowledge and comprehension of such correlations are of foremost importance in the efforts to diminish and eliminate the undesirable immune reactions and improve the safety and efficiency of the PEGylated medicines. Here, we present an overview based on analysis of data from the CAS Content Collection regarding the PEGylated LNP immunogenicity and overall safety concerns. A comprehensive summary has been compiled outlining how various structural parameters of the PEG-lipids affect the immune responses and activities of the LNPs, with regards to their efficiency in drug delivery. This Review is thus intended to serve as a helpful resource in understanding the current knowledge in the field, in an effort to further solve the remaining challenges and to achieve full potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
15
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
16
|
Chen WA, Chang DY, Chen BM, Lin YC, Barenholz Y, Roffler SR. Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines. ACS NANO 2023; 17:5757-5772. [PMID: 36926834 PMCID: PMC10062034 DOI: 10.1021/acsnano.2c12193] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 06/09/2023]
Abstract
Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.
Collapse
Affiliation(s)
- Wei-An Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Deng-Yuan Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Life Sciences, National Defense
Medical Center, Taipei 11529, Taiwan
| | - Yechezekel Barenholz
- Department
of Biochemistry, Faculty of Medicine, The
Hebrew University, Jerusalem 91120, Israel
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Ju Y, Carreño JM, Simon V, Dawson K, Krammer F, Kent SJ. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat Rev Immunol 2023; 23:135-136. [PMID: 36539526 PMCID: PMC9764299 DOI: 10.1038/s41577-022-00825-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yi Ju
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- School of Science and School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Lin YC, Chen BM, Tran TTM, Chang TC, Al-Qaisi TS, Roffler SR. Accelerated clearance by antibodies against methoxy PEG depends on pegylation architecture. J Control Release 2023; 354:354-367. [PMID: 36641121 DOI: 10.1016/j.jconrel.2023.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/16/2023]
Abstract
Methoxy polyethylene glycol (mPEG) is attached to many proteins, peptides, nucleic acids and nanomedicines to improve their biocompatibility. Antibodies that bind PEG are present in many individuals and can be generated upon administration of pegylated therapeutics. Anti-PEG antibodies that bind to the PEG "backbone" can accelerate drug clearance and detrimentally affect drug activity and safety, but no studies have examined how anti-methoxy PEG (mPEG) antibodies, which selectively bind the terminus of mPEG, affect pegylated drugs. Here, we investigated how defined IgG and IgM monoclonal antibodies specific to the PEG backbone (anti-PEG) or terminal methoxy group (anti-mPEG) affect pegylated liposomes or proteins with a single PEG chain, a single branched PEG chain, or multiple PEG chains. Large immune complexes can be formed between all pegylated compounds and anti-PEG antibodies but only pegylated liposomes formed large immune complexes with anti-mPEG antibodies. Both anti-PEG IgG and IgM antibodies accelerated the clearance of all pegylated compounds but anti-mPEG antibodies did not accelerate clearance of proteins with a single or branched PEG molecule. Pegylated liposomes were primarily taken up by Kupffer cells in the liver, but both anti-PEG and anti-mPEG antibodies directed uptake of a heavily pegylated protein to liver sinusoidal endothelial cells. Our results demonstrate that in contrast to anti-PEG antibodies, immune complex formation and drug clearance induced by anti-mPEG antibodies depends on pegylation architecture; compounds with a single or branched PEG molecule are unaffected by anti-mPEG antibodies but are increasingly affected as the number of PEG chain in a structure increases.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Trieu Thi My Tran
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Talal Salem Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Steve R Roffler
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
19
|
Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022; 191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Nanoparticle based imaging agents (NIAs) have been intensively explored in bench studies. Unfortunately, only a few cases have made their ways to clinical translation. In this review, clinical trials of NIAs were investigated for understanding possible barriers behind that. First, the complexity of multifunctional NIAs is considered a main barrier because it brings uncertainty to batch-to-batch fabrication, and results in sophisticated in vivo behaviors. Second, inadequate biosafety studies slow down the translational work. Third, NIA uptake at disease sites is highly heterogeneous, and often exhibits poor targeting efficiency. Focusing on the aforementioned problems, key design parameters were analyzed including NIAs' size, composition, surface characteristics, dosage, administration route, toxicity, whole-body distribution and clearance in clinical trials. Possible strategies were suggested to overcome these barriers. Besides, regulatory guidelines as well as scale-up and reproducibility during manufacturing process were covered as they are also key factors to consider during clinical translation of NIAs.
Collapse
Affiliation(s)
- Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Lam JH, Shivhare D, Chia TW, Chew SL, Sinsinbar G, Aw TY, Wong S, Venkataraman S, Lim FWI, Vandepapeliere P, Nallani M. Artificial Cell Membrane Polymersome-Based Intranasal Beta Spike Formulation as a Second Generation Covid-19 Vaccine. ACS NANO 2022; 16:16757-16775. [PMID: 36223228 PMCID: PMC9578649 DOI: 10.1021/acsnano.2c06350] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 05/25/2023]
Abstract
Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine (ClinicalTrials.gov identifier: NCT05385991).
Collapse
Affiliation(s)
- Jian Hang Lam
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Devendra Shivhare
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Suet Li Chew
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Ting Yan Aw
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Siamy Wong
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Shrinivas Venkataraman
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| | - Francesca Wei Inng Lim
- Department of Hematology, Singapore General
Hospital, Outram Road, Block 7, Level 2, 169608,
Singapore
| | | | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71
Nanyang Drive, #02M-02, NTU Innovation Center, 638075, Singapore
| |
Collapse
|
21
|
Chen J, Rizvi A, Patterson JP, Hawker CJ. Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity. J Am Chem Soc 2022; 144:19466-19474. [PMID: 36240519 DOI: 10.1021/jacs.2c07859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(ethylene glycol) (PEG) is an important and widely used polymer in biological and pharmaceutical applications for minimizing nonspecific binding while improving blood circulation for therapeutic/imaging agents. However, commercial PEG samples are polydisperse, which hampers detailed studies on chain length-dependent properties and potentially increases antibody responses in pharmaceutical applications. Here, we report a practical and scalable method to prepare libraries of discrete PEG analogues with a branched, nonlinear structure. These lipid-PEG derivatives have a monodisperse backbone with side chains containing a discrete number of ethylene glycol units (3 or 4) and unique functionalizable chain ends. Significantly, the branched, nonlinear structure is shown to allow for efficient nanoparticle assembly while reducing anti-PEG antibody recognition when compared to commercial polydisperse linear systems, such as DMG-PEG2000. By enabling the scalable synthesis of a broad library of graft copolymers, fundamental self-assembly properties can be understood and shown to directly correlate with the total number of PEG units, nature of the chain ends, and overall backbone length. These results illustrate the advantages of discrete macromolecules when compared to traditional disperse materials.
Collapse
Affiliation(s)
- Junfeng Chen
- Materials Department, Materials Research Laboratory, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Craig J Hawker
- Materials Department, Materials Research Laboratory, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Carreño JM, Singh G, Tcheou J, Srivastava K, Gleason C, Muramatsu H, Desai P, Aberg JA, Miller RL, Study Group P, Pardi N, Simon V, Krammer F. mRNA-1273 but not BNT162b2 induces antibodies against polyethylene glycol (PEG) contained in mRNA-based vaccine formulations. Vaccine 2022; 40:6114-6124. [PMID: 36115801 PMCID: PMC9474432 DOI: 10.1016/j.vaccine.2022.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022]
Abstract
Two messenger RNA (mRNA)-based vaccines are widely used globally to prevent coronavirus disease 2019 (COVID-19). Both vaccine formulations contain PEGylated lipids in their composition, in the form of polyethylene glycol [PEG] 2000 dimyristoyl glycerol for mRNA-1273, and 2 [(polyethylene glycol)-2000]-N,N-ditetradecylacetamide for BNT162b2. It is known that some PEGylated drugs and products for human use which contain PEG are capable of eliciting immune responses that lead to to detectable PEG-specific antibodies in serum. In this study, we determined if any of the components of mRNA-1273 or BNT162b2 formulations elicited PEG-specific antibody responses in serum by enzyme linked immunosorbent assay (ELISA). We detected an increase in the reactivity to mRNA vaccine formulations in mRNA-1273 but not BNT162b2 vaccinees' sera in a prime-boost dependent manner. Furthermore, we observed the same pattern of reactivity against irrelevant lipid nanoparticles from an influenza virus mRNA formulation and found that the reactivity of such antibodies correlated well with antibody levels against high and low molecular weight PEG. Using sera from participants selected based on the vaccine-associated side effects experienced after vaccination, including delayed onset, injection site or severe allergic reactions, we found no obvious association between PEG antibodies and adverse reactions. Overall, our data shows a differential induction of anti-PEG antibodies by mRNA-1273 and BNT162b2. The clinical relevance of PEG reactive antibodies induced by administration of the mRNA-1273 vaccine, and the potential interaction of these antibodies with other PEGylated drugs remains to be explored.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Parnavi Desai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paris Study Group
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Ishima Y, Yamazaki N, Chuang VTG, Shimizu T, Ando H, Ishida T. A Maleimide-Terminally Modified PEGylated Liposome Induced the Accelerated Blood Clearance Independent of the Production of Anti-PEG IgM Antibodies. Biol Pharm Bull 2022; 45:1518-1524. [PMID: 36184510 DOI: 10.1248/bpb.b22-00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PEGylated liposomes (PL) lose their long-circulating characteristic when administered repeatedly, called the accelerated blood clearance (ABC) phenomenon. The ABC phenomenon is generally thought to occur when the anti-polyethylene glycol (PEG) antibody (anti-PEG immunoglobulin M (IgM)) expressed in the spleen B cells triggered by the first dose of PL binds to the second and subsequent doses of PL, leading to activation of the complement system. MAL-PEG-DSPE, a PEG lipid with a maleimide (MAL) group at the PEG terminal, is used in various studies as a linker for ligand-bound liposomes such as antibody-modified liposomes. However, most ABC phenomenon research used PL with a terminal methoxy group (PL-OCH3). In this study, we prepared MAL-PEG-DSPE liposomes (PL-MAL) to evaluate the effect of PL-MAL on the ABC phenomenon induction compared to PL-OCH3. Pharmacokinetic, anti-PEG IgM secretion and complement activation analyses of these liposomes were conducted in mice. Interestingly, despite C3 bound to the surface of the initially administered PL-MAL, the administered PL-MAL showed high blood retention, demonstrating the same results as PL-OCH3. On the other hand, although the secretion of anti-PEG IgM induced by PL-MAL was lower than PL-OCH3, the second dose of PL-MAL rapidly disappeared from the blood. These results suggest that the antibody produced from the first dose of PL-MAL binds to the second dose of PL-MAL, thereby activating C3 to act as an opsonin which promotes phagocytic uptake. In conclusion, PL-MAL induced the ABC phenomenon independent of the production of IgM antibodies against PEG. This study provides valuable findings for further studies using ligand-bound liposomes.
Collapse
Affiliation(s)
- Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Nio Yamazaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Victor T G Chuang
- Curtin Medical School, Faculty of Health Sciences, Curtin University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
24
|
Hu J, Liu S. Emerging Trends of Discrete Poly(ethylene glycol) in Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Ju Y, Lee WS, Pilkington EH, Kelly HG, Li S, Selva KJ, Wragg KM, Subbarao K, Nguyen THO, Rowntree LC, Allen LF, Bond K, Williamson DA, Truong NP, Plebanski M, Kedzierska K, Mahanty S, Chung AW, Caruso F, Wheatley AK, Juno JA, Kent SJ. Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS NANO 2022; 16:11769-11780. [PMID: 35758934 PMCID: PMC9261834 DOI: 10.1021/acsnano.2c04543] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.
Collapse
Affiliation(s)
- Yi Ju
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- School of Health and Biomedical Sciences,
RMIT University, Bundoora, VIC 3083,
Australia
- Department of Chemical Engineering, The
University of Melbourne, Melbourne, VIC 3000,
Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Emily H. Pilkington
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Department of Drug Delivery, Disposition and Dynamics,
Monash Institute of Pharmaceutical Sciences, Monash University,
Melbourne, VIC 3000, Australia
| | - Hannah G. Kelly
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Shiyao Li
- Department of Chemical Engineering, The
University of Melbourne, Melbourne, VIC 3000,
Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Kathleen M. Wragg
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on
Influenza, Peter Doherty Institute for Infection and Immunity,
Melbourne, VIC 3000, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Lilith F. Allen
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Bond
- Department of Microbiology, Royal Melbourne
Hospital, Melbourne, VIC 3000, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Department of Microbiology, Royal Melbourne
Hospital, Melbourne, VIC 3000, Australia
| | - Nghia P. Truong
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Department of Drug Delivery, Disposition and Dynamics,
Monash Institute of Pharmaceutical Sciences, Monash University,
Melbourne, VIC 3000, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences,
RMIT University, Bundoora, VIC 3083,
Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Siddhartha Mahanty
- Department of Infectious Diseases, Peter Doherty Institute
for Infection and Immunity, The University of Melbourne,
Melbourne, VIC 3000, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The
University of Melbourne, Melbourne, VIC 3000,
Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter
Doherty Institute for Infection and Immunity, The University of
Melbourne, Melbourne, VIC 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious
Diseases, Alfred Hospital and Central Clinical School, Monash
University, Melbourne, VIC 3000, Australia
| |
Collapse
|
26
|
Liang Y, Zhang C, Wei H, Du H, Zhang G, Yang Y, Zhang H, Gong H, Li P, Song F, Xu Z, He R, Zhou W, Zheng H, Sun L, Luo X. The pharmacokinetic and pharmacodynamic properties and short-term outcome of a novel once-weekly PEGylated recombinant human growth hormone for children with growth hormone deficiency. Front Endocrinol (Lausanne) 2022; 13:922304. [PMID: 36034448 PMCID: PMC9405430 DOI: 10.3389/fendo.2022.922304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the pharmacokinetics (PK) and pharmacodynamics (PD) of Y-shape branched PEGylated recombinant human growth hormone (YPEG-rhGH) and evaluate its short-term efficacy and safety in children with growth hormone deficiency (GHD). Methods A total of 43 children with GHD from 12 sites in China were enrolled in this randomized, multicenter, active-controlled, double-blind (YPEG-rhGH doses) trial. Patients were randomized 1:1:1:1 to 100, 120, and 140 μg/kg/week of YPEG-rhGH groups and daily rhGH 35 μg/kg/day groups. The treatment lasted 12 weeks. The primary outcome was the area under the curve of the change of insulin-like growth factor-1 (IGF-1). The secondary outcome was the height velocity (HV) increment at week 12. Results A dose-dependent response of maximum plasma concentration (Cmax) and area under the concentration-time curves from 0 to 168 hours (AUC0-168h) were observed for YPEG-rhGH. The ratio of Cmax and the ratio of AUC0-168h from the first to the last dosing were 1.09~1.11 and 1.22~1.26 respectively. A YPEG-rhGH dose-dependent increase in area under effect curve (AUEC) of IGF-1 fold change was observed. Model-derived mean IGF-1 SDS was in the normal range for all three YPEG-rhGH doses. At week 12, HV was 7.07, 10.39, 12.27 cm/year, and 11.58 cm/year for YPEG-rhGH 100, 120, and 140 μg/kg/week and daily rhGH respectively. Adherence and safety were consistent with the profile of daily rhGH. No related serious adverse events were reported. Conclusion The PK/PD suggests that YPEG-rhGH is suitable for the once-weekly treatment of pediatric GHD. YPEG-rhGH 120 ~ 140 μg/kg/week provides the closest HV increment with similar safety and tolerability compared to daily rhGH 35 μg/kg/day in children with GHD. Clinical Trial Registration ClinicalTrials.gov, identifier [NCT04513171].
Collapse
Affiliation(s)
- Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Wei
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Hongwei Du
- Department of Pediatrics, The First Affiliated Hospital, Jilin University, Changchun, China
| | - Gaixiu Zhang
- Department of Pediatric Endocrinology, Shanxi Provincial Children’s Hospital, Taiyuan, China
| | - Yu Yang
- Department of Endocrinology, Genetics and Metabolism, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Hua Zhang
- Department of Pediatrics, Sanya Central Hospital, Sanya, China
| | - Haihong Gong
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pin Li
- Department of Endocrinology, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Fuying Song
- Department of Endocrinology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Zhuangjian Xu
- Department of Pediatrics, Wuxi Fourth People’s Hospital, Wuxi, China
| | - Ruoyi He
- Office of General Manager, Xiamen Amoytop Biotech Co., Ltd, Xiamen, China
| | - Weidong Zhou
- Office of General Manager, Xiamen Amoytop Biotech Co., Ltd, Xiamen, China
| | - Heng Zheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Sun
- Office of General Manager, Xiamen Amoytop Biotech Co., Ltd, Xiamen, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Nguyen MTT, Shih YC, Lin MH, Roffler SR, Hsiao CY, Cheng TL, Lin WW, Lin EC, Jong YJ, Chang CY, Su YC. Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group. Commun Chem 2022; 5:88. [PMID: 35936993 PMCID: PMC9340711 DOI: 10.1038/s42004-022-00709-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of methoxy poly(ethylene) glycol (mPEG) to therapeutic molecules is widely employed to improve their systemic circulation time and therapeutic efficacy. mPEG, however, can induce anti-PEG antibodies that negatively impact drug therapeutic effects. However, the underlying mechanism for specific binding of antibodies to mPEG remains unclear. Here, we determined the first co-crystal structure of the humanized 15-2b anti-mPEG antibody in complex with mPEG, which possesses a deep pocket in the antigen-binding site to accommodate the mPEG polymer. Structural and mutational analyses revealed that mPEG binds to h15-2b via Van der Waals and hydrogen bond interactions, whereas the methoxy group of mPEG is stabilized in a hydrophobic environment between the VH:VL interface. Replacement of the heavy chain hydrophobic V37 residue with a neutral polar serine or threonine residue offers additional hydrogen bond interactions with methoxyl and hydroxyl groups, resulting in cross-reactivity to mPEG and OH-PEG. Our findings provide insights into understanding mPEG-binding specificity and antigenicity of anti-mPEG antibodies.
Collapse
Affiliation(s)
- Minh-Tram T. Nguyen
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chien Shih
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Meng-Hsuan Lin
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yu Hsiao
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Chi Lin
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Departments of Pediatrics and Laboratory Medicine, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Su
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Science and Environmental Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Shin K, Suh HW, Grundler J, Lynn AY, Pothupitiya JU, Moscato ZM, Reschke M, Bracaglia LG, Piotrowski-Daspit AS, Saltzman WM. Polyglycerol and Poly(ethylene glycol) exhibit different effects on pharmacokinetics and antibody generation when grafted to nanoparticle surfaces. Biomaterials 2022; 287:121676. [PMID: 35849999 DOI: 10.1016/j.biomaterials.2022.121676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
Poly(ethylene glycol) (PEG) is widely employed for passivating nanoparticle (NP) surfaces to prolong blood circulation and enhance localization of NPs to target tissue. However, the immune response of PEGylated NPs-including anti-PEG antibody generation, accelerated blood clearance (ABC), and loss of delivery efficacy-is of some concern, especially for treatments that require repeat administrations. Although polyglycerol (PG), which has the same ethylene oxide backbone as PEG, has received attention as an alternative to PEG for NP coatings, the pharmacokinetic and immunogenic impact of PG has not been studied systematically. Here, linear PG, hyperbranched PG (hPG), and PEG-coated polylactide (PLA) NPs with varying surface densities were studied in parallel to determine the pharmacokinetics and immunogenicity of PG and hPG grafting, in comparison with PEG. We found that linear PG imparted the NPs a stealth property comparable to PEG, while hPG-grafted NPs needed a higher surface density to achieve the same pharmacokinetic impact. While linear PG-grafted NPs induced anti-PEG antibody production in mice, they exhibited minimal accelerated blood clearance (ABC) effects due to the poor interaction with anti-PEG immunoglobulin M (IgM). Further, we observed no anti-polymer IgM responses or ABC effects for hPG-grafted NPs.
Collapse
Affiliation(s)
- Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Julian Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Anna Y Lynn
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jinal U Pothupitiya
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Zoe M Moscato
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Melanie Reschke
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
29
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
30
|
Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, Turjeman K, Barenholz Y, Crommelin DJA, Dobrovolskaia MA. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. NATURE NANOTECHNOLOGY 2022; 17:337-346. [PMID: 35393599 DOI: 10.1038/s41565-022-01071-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/04/2022] [Indexed: 05/24/2023]
Abstract
After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Biomaterials Science and Technology, University of Twente, Enschede, the Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
31
|
Ozer I, Kelly G, Gu R, Li X, Zakharov N, Sirohi P, Nair SK, Collier JH, Hershfield MS, Hucknall AM, Chilkoti A. Polyethylene Glycol-Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103672. [PMID: 35133079 PMCID: PMC9008788 DOI: 10.1002/advs.202103672] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Indexed: 05/13/2023]
Abstract
Protein therapeutics, except for antibodies, have a short plasma half-life and poor stability in circulation. Covalent coupling of polyethylene glycol (PEG) to protein drugs addresses this limitation. However, unlike previously thought, PEG is immunogenic. In addition to induced PEG antibodies, ≈70% of the US population has pre-existing anti-PEG antibodies. Both induced and preexisting anti-PEG antibodies result in accelerated drug clearance, reduced clinical efficacy, and severe hypersensitivity reactions that have limited the clinical utility of uricase, an enzyme drug for treatment for refractory gout that is decorated with a PEG corona. Here, the authors synthesize a poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) conjugate of uricase that decorates the protein with multiple polymer chains to create a corona to solve these problems. The resulting uricase-POEGMA is well-defined, has high bioactivity, and outperforms its PEG counterparts in its pharmacokinetics (PK). Furthermore, the conjugate does not induce anti-POEGMA antibodies and is not recognized by anti-PEG antibodies. These findings suggest that POEGMA conjugation may provide a solution to the immunogenicity and antigenicity limitations of PEG while improving upon its PK benefits. These results transcend uricase and can be applied to other PEGylated therapeutics and the broader class of biologics with suboptimal PK.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Garrett Kelly
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Renpeng Gu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Xinghai Li
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Nikita Zakharov
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Parul Sirohi
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Smita K. Nair
- Department of SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Joel H. Collier
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Michael S. Hershfield
- Department of MedicineDivision of RheumatologyDuke University Medical CenterDurhamNC27710USA
- Department of BiochemistryDuke University School of MedicineDurhamNC27710USA
| | | | | |
Collapse
|
32
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
33
|
Chen BM, Cheng TL, Roffler SR. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS NANO 2021; 15:14022-14048. [PMID: 34469112 DOI: 10.1021/acsnano.1c05922] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tian-Lu Cheng
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
34
|
Ohashi M, Tamura A, Yui N. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11102-11114. [PMID: 34478294 DOI: 10.1021/acs.langmuir.1c01894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmacological and biomedical applications of cyclodextrin (CD)-threaded polyrotaxanes (PRXs) have gained increasing attention. We had previously investigated the therapeutic effects of oligo(ethylene glycol) (OEG)-modified β-CD PRXs in congenital metabolic disorders. Although the chemical modification of PRXs is crucial for these applications, the influences of the chemical structure of OEG modified on PRXs were not completely understood. The current study focuses on the terminal group structures of triethylene glycol (TEG)-tethered chains, wherein three series of TEG-tethered PRXs (TEG-PRXs) with various TEG terminal group structures (hydroxy, methoxy, and ethoxy) were synthesized to investigate their physicochemical properties and biointeractions. The methoxy and ethoxy-terminated TEG-PRXs exhibited temperature-dependent phase transitions in phosphate buffer saline and formed coacervate droplets above their cloud points. A comprehensive analysis revealed that the hydrophobicity of the terminal group structures of the TEG-tethered chains played a dominant role in exhibiting temperature-dependent phase transition. Furthermore, the hydrophobicity of the terminal group structures of TEG-tethered chains on PRXs also affected the interactions with lipids and proteins, with the hydrophobic ethoxy-terminated TEG-tethered chains showing the highest interactions. However, in normal human skin fibroblasts, the moderately hydrophobic methoxy-terminated TEG-modified PRXs showed the highest intracellular uptake levels. As a result, we concluded that methoxy-terminated TEG is a suitable chemical modification for the biomedical applications of PRXs due to the negligible temperature responsivity around physiological temperature and significant intracellular uptake levels. The findings of this study shall contribute significantly to the rational design of PRXs and CD-based materials for future pharmacological and biomedical applications.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
35
|
Elalouf A. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol 2021; 69:101446. [PMID: 34389430 DOI: 10.1016/j.trim.2021.101446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/26/2022]
Abstract
Regenerative medicine has developed promising approaches for healing and replacing defective and damaged organs or tissues with functional ones. Three-dimensional (3D) bioprinting innovation has integrated a potential to design organs or tissues specific to the patient with the capability of rapid construction to fulfill the storage of organs and the need for transplantation. 3D bioprinting of organs has the main goal to develop a structural and functional organ or tissue mimic to the original one. The highly complex fabrication of tissue engineering scaffolds containing biomaterials, tissue models, and biomedical devices has made it possible to print small blood vessels to mimic organs to reduce organ or tissue rejection. 3D bioprinting has the concept of bioinks containing biomaterials that may trigger the immune responses in the body. Nevertheless, foreign body response (FBR) is mediated by various cell types such as B-cells, dendritic cells, macrophages, natural killer cells, neutrophils, and T-cells, and molecular signals such as antibodies (Abs), cytokines, and reactive radical species. Typically, the biomaterial is shielded by the fibrous encapsulation that is regulated by molecular signals. This review explored the progress in 3D bioprinting of vital organs and basic immune response against the biomaterials used in this approach. Thus, evaluating immune response against biomaterials used in 3D printed organs is necessary to mitigate tissue rejection after the transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
36
|
Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. NANOSCALE 2021; 13:10748-10764. [PMID: 34132312 DOI: 10.1039/d1nr02065j] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The rapid development of drug nanocarriers has benefited from the surface hydrophilic polymers of particles, which has improved the pharmacokinetics of the drugs. Polyethylene glycol (PEG) is a kind of polymeric material with unique hydrophilicity and electrical neutrality. PEG coating is a crucial factor to improve the biophysical and chemical properties of nanoparticles and is widely studied. Protein adherence and macrophage removal are effectively relieved due to the existence of PEG on the particles. This review discusses the PEGylation methods of nanoparticles and related techniques that have been used to detect the PEG coverage density and thickness on the surface of the nanoparticles in recent years. The molecular weight (MW) and coverage density of the PEG coating on the surface of nanoparticles are then described to explain the effects on the biophysical and chemical properties of nanoparticles.
Collapse
Affiliation(s)
- Liwang Shi
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd., Daqing 163319, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, He P, Zhang P, Yi X, Xiao C, Chen X. Polypeptides-Drug Conjugates for Anticancer Therapy. Adv Healthc Mater 2021; 10:e2001974. [PMID: 33929786 DOI: 10.1002/adhm.202001974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Polypeptides are an important class of biodegradable polymers that have been widely used in drug delivery field. Owing to the controllable synthesis and robust side chain-functionalization ability, polypeptides have long been ideal candidates for conjugation with anticancer drugs. The chemical conjugation of anticancer drugs with polypeptides, termed polypeptides-drug conjugates, has demonstrated several advantages in improving pharmacokinetics, enhancing drug targeting, and controlling drug release, thereby leading to enhanced therapeutic outcomes with reduced side toxicities. This review focuses on the recent advances in the design and preparation of polypeptides-drug conjugates for enhanced anticancer therapy. Strategies for conjugation of different types of drugs, including small-molecule chemotherapeutic drugs, proteins, vascular disrupting agents, and gas molecules, onto polypeptides backbone are summarized. Finally, the challenges and future perspectives on the development of innovative polypeptides-drug conjugates for clinical cancer treatment are also presented.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Pan He
- School of Materials Science and Engineering Changchun University of Science and Technology Changchun 130022 P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
38
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
López S, Ramos M, García-Vargas J, García M, Rodríguez J, Gracia I. Carbon dioxide sorption and melting behaviour of mPEG-alkyne. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Freire Haddad H, Burke JA, Scott EA, Ameer GA. Clinical Relevance of Pre-Existing and Treatment-Induced Anti-Poly(Ethylene Glycol) Antibodies. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:32-42. [PMID: 33786367 PMCID: PMC7993857 DOI: 10.1007/s40883-021-00198-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/05/2022]
Abstract
Abstract Poly(ethylene glycol) (PEG) is a nontoxic, hydrophilic polymer that is often covalently attached to proteins, drugs, tissues, or materials; a procedure commonly referred to as PEGylation. PEGylation improves solubility, circulation time, and reduces immunogenicity of therapeutic molecules. Currently, there are 21 PEGylated drugs approved by the Food and Drug Administration (FDA), and more in the developmental stage. In addition to the polymer's applications in the clinic, PEG is widely used as a solvent and emulsifying agent in the formulation of cosmetics, cleaning, and personal care products. Due to the ubiquitous presence of the polymer in everyday products, patients can develop antibodies against PEG (αPEG Abs) that can be problematic when a PEGylated drug is administered. These αPEG Abs can provoke hypersensitivity reactions, accelerated drug clearance, and decreased therapeutic efficacy. Herein, we review how the prevalence of PEG in everyday products has induced αPEG Abs within the general public as well as the effect of these Abs on the performance of PEGylated therapeutics. We will focus on clinical manifestations following the administration of PEGylated drugs. Lay Summary Poly(ethylene glycol) (PEG) is a polymer found in products including cosmetics, personal care products, cleaning agents, medicine, and food. Due to the prevalence of PEG, people can develop antibodies (αPEG Abs) against the polymer, which recognize PEG as foreign. Of note, PEG is frequently incorporated into drug formulations to improve therapeutic efficacy. Complications can arise when a patient receiving a PEGylated drug has previously developed αPEG Abs from interactions with PEG in everyday products. The presence of high concentrations of αPEG Abs in blood can result in decreased treatment efficacy and allergic reactions to a wide range of therapeutics.
Collapse
Affiliation(s)
- Helena Freire Haddad
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road 2145 Sheridan Rd. E310, Evanston, IL 60208 USA
- Center for Advanced Regenerative Engineering, Northwestern University, 2145 Sheridan Road, E311, Evanston, IL 60208 USA
| | - Jacqueline A. Burke
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road 2145 Sheridan Rd. E310, Evanston, IL 60208 USA
- Center for Advanced Regenerative Engineering, Northwestern University, 2145 Sheridan Road, E311, Evanston, IL 60208 USA
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road 2145 Sheridan Rd. E310, Evanston, IL 60208 USA
- Center for Advanced Regenerative Engineering, Northwestern University, 2145 Sheridan Road, E311, Evanston, IL 60208 USA
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208 USA
- Chemistry of Life Processes Institute, Northwestern University, 2179 Campus Drive, Evanston, IL 60208 USA
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, 11th Floor, Chicago, IL 60611 USA
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, 676 N. St. Clair Street, 19th Floor, Chicago, IL 60611 USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St. Clair Street, Suite 1200, Chicago, IL 60611 USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road 2145 Sheridan Rd. E310, Evanston, IL 60208 USA
- Center for Advanced Regenerative Engineering, Northwestern University, 2145 Sheridan Road, E311, Evanston, IL 60208 USA
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208 USA
- Chemistry of Life Processes Institute, Northwestern University, 2179 Campus Drive, Evanston, IL 60208 USA
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, 11th Floor, Chicago, IL 60611 USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St. Clair Street, Suite 2320, Chicago, IL 60611 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, K111, Evanston, IL 60208 USA
| |
Collapse
|
41
|
López S, Gracia I, García MT, Rodríguez JF, Ramos MJ. Synthesis and Operating Optimization of the PEG Conjugate via CuAAC in scCO 2. ACS OMEGA 2021; 6:6163-6171. [PMID: 33718707 PMCID: PMC7948234 DOI: 10.1021/acsomega.0c05466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A new sustainable green protocol for obtaining polyethylene glycol (PEG) conjugates, with a prototype molecule, which in this work was coumarin, by means of click chemistry is presented. The organic solvents commonly used for this type of reaction were replaced by supercritical carbon dioxide (scCO2). The synthesis and characterization of PEG-coumarin were successfully reported using FTIR, 1H NMR, and MALDI TOF. Subsequently, a preliminary study was carried out using the response surface methodology to examine the variables that most affect the use of scCO2 as a reaction medium. The main effects caused by these variables, individually and their binary interaction, have been estimated. The response surface methodology has been used in this work to screen variables using a factorial design 23. The p-values of temperature and pressure were 0.006 and 0.0117, being therefore the most significant variables of the response surface methodology study. Subsequently, a more intensive study has been carried out on the variables that have shown the greatest significant effect on reaction performance where an 82.32% synthesis success was achieved, which broadens the scope of the use of scCO2 as a reaction medium. The conjugated coumarin with mPEG-alkyne and coumarin were evaluated for their in vitro antioxidant activities by the DPPH radical scavenging assay and were found to exhibit substantial activities. The click product showed comparable or even better efficacy than the initial coumarin.
Collapse
|
42
|
Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice. J Control Release 2021; 331:142-153. [PMID: 33444669 DOI: 10.1016/j.jconrel.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
The generation of anti-PEG antibodies in response to PEGylated proteins, peptides, and carriers significantly limits their clinical applicability. IgM antibodies mediate the clearance of these therapeutics upon repeat injection, resulting in toxicity and hindered therapeutic efficacy. We observed this phenomenon in our polymer platform, virus-inspired polymer for endosomal release (VIPER), which employs pH-sensitive triggered display of a lytic peptide, melittin, to facilitate endosomal escape. While the polymer-peptide conjugate was well tolerated after a single injection, we observed unexpected mortality upon repeat injection. Thus, the goal of this work was to enhance the safety and tolerability of VIPER for frequent dosing. Based on previous reports on anti-PEG antibodies and the adjuvant activity of melittin, we characterized the antibody response to polymer, peptide, and polymer-peptide conjugates after repeat-dosing and measured high IgM titers that bound PEG. By substituting the L-amino acid peptide for its D-amino acid enantiomer, we significantly attenuated the anti-PEG antibody generation and toxicity, permitting repeat-injections. We attempted to rescue mice from L-melittin induced toxicity by prophylactic injection of platelet activating factor (PAF) antagonist CV-6209, but observed minimal effect, suggesting that PAF is not the primary mediator of the observed hypersensitivity response. Overall, we demonstrated that the D-amino acid polymer-peptide conjugates, unlike L-amino acid polymer-peptide conjugates, exhibit good tolerability in vivo, even upon repeat administration, and do not elicit the generation of anti-PEG antibodies.
Collapse
|
43
|
Fang JL, Beland FA, Tang Y, Roffler SR. Flow cytometry analysis of anti-polyethylene glycol antibodies in human plasma. Toxicol Rep 2020; 8:148-154. [PMID: 33437656 PMCID: PMC7787990 DOI: 10.1016/j.toxrep.2020.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
A rapid, sensitive, and specific flow cytometry assay was developed to detect anti-PEG IgG and IgM in human blood plasma. Using the method, anti-PEG IgG or IgM were detected in 65% of plasma samples from 300 healthy blood donors. The presence of anti-PEG IgG and IgM was confirmed using three validation assays. The highest prevalence of both anti-IgG and anti-IgM was in individuals 18–24 years of age. No correlation was found between anti-PEG IgG and IgM concentrations.
Polyethylene glycol (PEG) is a biocompatible polymer used in biotherapeutics to increase bioavailability, reduce the frequency of administration, and optimize pharmacokinetics. Anti-PEG antibodies have been detected in healthy individuals and may decrease efficacy and alter the pharmacokinetics of PEGylated therapeutics; however, the prevalence of anti-PEG antibodies is unclear. In this study, a flow cytometry assay was optimized to detect anti-PEG IgG and IgM in human blood plasma. Three hundred (300) plasma samples from healthy blood donors were screened; anti-PEG IgG or IgM was detected in 65.3% of the total population, with 21.3% having anti-PEG IgG, 19.0% having anti-PEG IgM, and 25.0% having both anti-PEG IgG and IgM. The presence of anti-PEG IgG and IgM was confirmed using a 0.5% Tween-20 interference assay, a 20 kDa PEGylated polystyrene bead binding assay, and Western blotting of purified plasma from human IgG and IgM purification columns. The concentrations of anti-PEG IgG and IgM in positive samples ranged from 39 ng/mL to 18.7 μg/mL and 26 ng/mL to 11.6 μg/mL, respectively. The highest prevalence of both anti-IgG and anti-IgM was in individuals 18–24 years of age. The prevalence of anti-PEG IgG and IgM tended to be higher in women but did not differ among races. Age, sex, and race were not associated with the concentrations of anti-PEG IgG or IgM. No correlation was found between anti-PEG IgG and IgM concentrations. Our study indicates that flow cytometry can be used to detect anti-PEG IgG and IgM antibodies in human plasma.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, 72079, USA
| | - Yangshun Tang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, 72079, USA
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
44
|
Development of an anti-drug antibody assay to detect anti-drug antibodies to protein and PEG in a PEGylated molecule. Bioanalysis 2020; 12:1671-1679. [PMID: 33179526 DOI: 10.4155/bio-2020-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: PEGylation technology is one of long-acting delivery (LAD) platforms used to increase half-life of protein therapeutics. However, PEGylation of anti-Factor D Fab (PEG-aFD) poses challenges for detecting anti-drug antibody (ADA) to both Fab and polyethylene glycol (PEG) portions. Results: Although the bridging ELISA using traditional assay diluent containing Tween 20 is good for detecting ADA to Fab, it failed to detect ADA to PEG. Instead of only reducing Tween 20 in assay diluent, using a proprietary commercial buffer PEG50-1 as assay diluent successfully enabled the detection of ADA to both Fab and PEG with fit-for-purpose sensitivity and drug tolerance. Conclusion: Identification of appropriate assay diluent is critical for detection of ADA to both Fab and PEG in a PEGylated molecule.
Collapse
|
45
|
Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev 2020; 156:80-118. [PMID: 32980449 DOI: 10.1016/j.addr.2020.09.009] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023]
Abstract
Over the last three decades, polymeric micelles have emerged as a highly promising drug delivery platform for therapeutic compounds. Particularly, poorly soluble small molecules with high potency and significant toxicity were encapsulated in polymeric micelles. Polymeric micelles have shown improved pharmacokinetic profiles in preclinical animal models and enhanced efficacy with a superior safety profile for therapeutic drugs. Several polymeric micelle formulations have reached the clinical stage and are either in clinical trials or are approved for human use. This furthers interest in this field and underscores the need for additional learning of how to best design and apply these micellar carriers to improve the clinical outcomes of many drugs. In this review, we provide detailed information on polymeric micelles for the solubilization of poorly soluble small molecules in topics such as the design of block copolymers, experimental and theoretical analysis of drug encapsulation in polymeric micelles, pharmacokinetics of drugs in polymeric micelles, regulatory approval pathways of nanomedicines, and current outcomes from micelle formulations in clinical trials. We aim to describe the latest information on advanced analytical approaches for elucidating molecular interactions within the core of polymeric micelles for effective solubilization as well as for analyzing nanomedicine's pharmacokinetic profiles. Taking into account the considerations described within, academic and industrial researchers can continue to elucidate novel interactions in polymeric micelles and capitalize on their potential as drug delivery vehicles to help improve therapeutic outcomes in systemic delivery.
Collapse
Affiliation(s)
- Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
46
|
Bivi N, Swearingen CA, Shockley TE, Sloan JH, Pottanat TG, Carter QL, Hodsdon ME, Siegel RW, Konrad RJ. Development and validation of a novel immunogenicity assay to detect anti-drug and anti-PEG antibodies simultaneously with high sensitivity. J Immunol Methods 2020; 486:112856. [PMID: 32916164 DOI: 10.1016/j.jim.2020.112856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Polyethylene glycol (PEG) represents an effective strategy to improve the pharmacokinetic profile of a molecule as it extends the biotherapeutic's half-life, masks immunogenic epitopes or modifies its distribution. The addition of one or multiple PEG moieties, in either linear or branched form, is known to carry the risk of potentially inducing an immunogenic response against PEG. The importance of accurately quantifying anti-PEG antibodies during a clinical study is well recognized and stems from the fact that anti-PEG antibodies have been shown to negatively impact the efficacy of the biotherapeutic that the PEG is coupled to. As a consequence, sponsors are encouraged to develop immunogenicity assays to assess appropriately the presence of anti-drug antibodies (ADA) against the protein component as well as the PEG. However, detection of anti-PEG antibodies is complicated by a number of technical challenges, including the availability of appropriate positive control material. In addition, the fact that some anti-PEG antibodies are known to circulate as low-affinity IgM, drives the need for an assay able to detect low affinity anti-PEG ADA even in the presence of high concentrations of the biotherapeutic. To address this need, we developed and validated an Affinity Capture Elution (ACE)-AGL assay to detect anti-drug and anti-PEG antibodies. In this assay, which we call ACE-AGL, ADA are captured by biotin-PEG-drug, acid eluted and re-captured on a second plate coated with protein AGL. ADA are then detected using Ruthenium-PEG-drug. The new assay format described is highly sensitive to both anti-drug and anti-PEG antibodies and very drug-tolerant. The ACE-AGL assay is easy to perform and has been successfully validated at two separate CROs. We propose the ACE-AGL format as a valid and effective alternative to the currently available assay methods.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America.
| | - Craig A Swearingen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - Travis E Shockley
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - John H Sloan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - Quincy Lasha Carter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - Michael E Hodsdon
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States of America
| |
Collapse
|
47
|
Zhang C, Fan K, Luo H, Cheng Y, Lu Y, Zheng J, Chen Z, Xue J, Zhao Q, Zhang M, Ge Y, Hu C, Bai Y, Yang L, Ma X, Chen M, Zhao Z, Shi X. Species and sex differences in the blood clearance and immunogenicity of PEGylated uricase: A comparative 26-week toxicity study in rats and monkeys. Life Sci 2020; 255:116892. [PMID: 31610209 DOI: 10.1016/j.lfs.2019.116892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022]
Abstract
Low response rates and high immunogenicity were observed after repeated injections of pegloticase (Krystexxa) into gout patients during clinical trials. However, related research had not been reported in preclinical animal experiments, which has limited the development of this drug. In this study, the toxicity of mPEG-UHC was studied in rats and monkeys over a 26-week period of repeated intravenous dosing. There were no obvious toxic reactions in the tested animals, with the exception of mPEG-UHC blood clearance and immunogenicity. After repeated injections of mPEG-UHC, rapid loss of uricolytic activity (RLA) was not detected in rats, whereas RLA was observed in 44.4% of drug-treated monkeys. In these monkeys, RLA was observed in 11.1% of males and 77.8% of females, and such incidences increased with higher dosing. High titres of anti-uricase IgG antibodies were associated with RLA but did not result in any toxicity. Remission and recurrence of RLA occurred in one female monkey in the high-dose group because of suppressed and altered immune responses in this animal. The predicted incidence of RLA after repeated injections of mPEG-UHC in gout patients may be lower than that of pegloticase. In this study, the no-observed-adverse-effect levels (NOAELs) of mPEG-UHC in rats and monkeys were 32.0 mg/kg and 20.0 mg/kg, respectively. Therefore, the results showed that rats and monkeys could tolerate long-term and high-dose administrations of mPEG-UHC, and mPEG-UHC blood clearance and immunogenicity showed obvious species and sex differences. These findings will provide valuable information to direct the clinical use of mPEG-UHC.
Collapse
Affiliation(s)
- Chun Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China; Fagen Biomedical Inc, Chongqing, PR China
| | - Kai Fan
- Fagen Biomedical Inc, Chongqing, PR China
| | - Hua Luo
- Fagen Biomedical Inc, Chongqing, PR China
| | - Yumei Cheng
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yongxin Lu
- Suzhou Drug Safety Evaluation and Research Center, Suzhou Xishan Zhongke Laboratory Animal Co., Ltd, Jiangsu, PR China
| | - Jiaxin Zheng
- Suzhou Drug Safety Evaluation and Research Center, Suzhou Xishan Zhongke Laboratory Animal Co., Ltd, Jiangsu, PR China
| | - Zhengmin Chen
- Suzhou Drug Safety Evaluation and Research Center, Suzhou Xishan Zhongke Laboratory Animal Co., Ltd, Jiangsu, PR China
| | - Junping Xue
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China
| | - Qinghua Zhao
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China
| | - Min Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China
| | - Yanyan Ge
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China
| | - Chunlan Hu
- Fagen Biomedical Inc, Chongqing, PR China
| | - Yanmin Bai
- Fagen Biomedical Inc, Chongqing, PR China
| | - Li Yang
- Fagen Biomedical Inc, Chongqing, PR China
| | - Xuefeng Ma
- Fagen Biomedical Inc, Chongqing, PR China
| | - Min Chen
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China
| | - Zhilong Zhao
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China.
| | - Xiaowei Shi
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, PR China; School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, Shandong, PR China.
| |
Collapse
|
48
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
49
|
Yu Y, Xu W, Huang X, Xu X, Qiao R, Li Y, Han F, Peng H, Davis TP, Fu C, Whittaker AK. Proteins Conjugated with Sulfoxide-Containing Polymers Show Reduced Macrophage Cellular Uptake and Improved Pharmacokinetics. ACS Macro Lett 2020; 9:799-805. [PMID: 35648529 DOI: 10.1021/acsmacrolett.0c00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conjugation of hydrophilic polymers to proteins is an effective approach to prolonging their circulation time in the bloodstream and, hence, improving their delivery to the target region of interest. In this work, we report the synthesis of protein-polymer conjugates using a highly water-soluble sulfoxide-containing polymer, poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA), through a combination of "grafting-to" and "grafting-from" methods. Oligomeric MSEA was synthesized by conventional reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently conjugated to lysozyme to produce a macromolecular chain transfer agent. This was followed by a visible light-mediated chain extension polymerization of MSEA to obtain a lysozyme-PMSEA conjugate (Lyz-PMSEA). It was found that the Lyz-PMSEA conjugate exhibited much reduced macrophage cellular uptake compared with unmodified and PEGylated lysozyme. Moreover, the Lyz-PMSEA conjugate was able to circulate longer in the bloodstream, demonstrating significantly improved pharmacokinetics demanded for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
50
|
Li B, Yuan Z, He Y, Hung HC, Jiang S. Zwitterionic Nanoconjugate Enables Safe and Efficient Lymphatic Drug Delivery. NANO LETTERS 2020; 20:4693-4699. [PMID: 32379455 DOI: 10.1021/acs.nanolett.0c01713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The lymphatic system provides a major route for the dissemination of many diseases such as tumor metastasis and virus infection. At present, treating these diseases remains a knotty task due to the difficulty of delivering sufficient drugs into lymphatics. After subcutaneous (SC) injection, the transferring of drugs to lymphatic vessels is significantly attenuated by physiological barriers in the interstitial space. Moreover, SC injection represents a highly challenging administration route for biological drugs, as it increases the risk of undesirable immune responses. Here, we demonstrate a simple and effective strategy to address this dilemma by conjugating protein therapeutics with zwitterionic poly(carboxy betaine) (PCB) polymers. PCB conjugation to l-asparaginase (ASP), a highly immunogenic enzyme drug, manifests to significantly promote the diffusion of ASP into the lymphatic system while mitigating its immunogenicity. This platform will facilitate the development of new therapies against diverse lymph-related diseases by enabling safe and efficient lymphatic drug delivery.
Collapse
Affiliation(s)
- Bowen Li
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zhefan Yuan
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yuwei He
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|