1
|
Ortalli S, Ford J, Szpera R, Stoessel B, Trabanco AA, Tredwell M, Gouverneur V. 18F-Difluoromethyl(ene) Motifs via Oxidative Fluorodecarboxylation with [ 18F]Fluoride. Org Lett 2024; 26:9368-9372. [PMID: 39441191 PMCID: PMC11536415 DOI: 10.1021/acs.orglett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Herein, we report that α-fluorocarboxylic acids undergo manganese-mediated oxidative 18F-fluorodecarboxylation with [18F]fluoride affording biologically relevant 18F-difluoromethyl(ene)-containing molecules. This no-carrier added process provides a solution to a known challenge in radiochemistry and expands the radiochemical space available for positron emission tomography (PET) ligand discovery. Scalability on a fully automated radiosynthetic platform is exemplified with the production of [18F]4,4-difluoropiperidine that, we demonstrate, is amenable to postlabeling functionalization including N-heteroarylation and amide as well as sulfonamide bond formation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert Szpera
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Barbara Stoessel
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales
Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
2
|
Kanagasundaram T, Sun Y, Lee KK, MacMillan SN, Brugarolas P, Wilson JJ. Fluorine-18 incorporation and radiometal coordination in macropa ligands for PET imaging and targeted alpha therapy. Chem Commun (Camb) 2024; 60:11940-11943. [PMID: 39352495 DOI: 10.1039/d4cc04165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The development of theranostic agents for radiopharmaceuticals based on therapeutic alpha emitters marks an important clinical need. We describe a strategy for the development of theranostic agents of this type via the functionalization of the ligand with the diagnostic radionuclide fluorine-18. An analogue of macropa, an 18-membered macrocyclic chelator with high affinity for alpha therapeutic radiometals, was synthesized and its complexation properties with metal ions were determined. The new macropa-F ligand was used for quantitative radiometal complexation with lead-203 and bismuth-207, as surrogates for their alpha-emitting radioisotopes. As a diagnostic partner, a radiofluorinated macropa ligand was used for quantitative bismuth(III) and lead(II) complexation. All fluorine-18 and radiometal complexes are highly stable in human serum over several days. This study presents a new proof-of-principle approach for developing theranostic agents based on alpha-emitting radionuclides and fluorine-18.
Collapse
Affiliation(s)
- Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA-02114, USA.
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA-93106, USA.
| |
Collapse
|
3
|
Wright JS, Sharninghausen LS, Lapsys A, Sanford MS, Scott PJH. C-H Labeling with [ 18F]Fluoride: An Emerging Methodology in Radiochemistry. ACS CENTRAL SCIENCE 2024; 10:1674-1688. [PMID: 39364044 PMCID: PMC11447958 DOI: 10.1021/acscentsci.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Fluorine-18 is the most routinely employed radioisotope for positron emission tomography, a dynamic nuclear imaging modality. The radiolabeling of C-H bonds is an attractive method for installing fluorine-18 into organic molecules since it can preclude the cumbersome prefunctionalization of requisite precursors. Although electrophilic "F+" reagents (e.g., [18F]F2) are effective for C-H radiolabeling, state-of-the-art methodologies predominantly leverage high molar activity nucleophilic [18F]fluoride sources (e.g., [18F]KF) with substantial (pre)clinical advantages. Reflecting this, multiple nucleophilic C-H radiolabeling techniques of high utility have been disclosed over the past decade. However, the adoption of (pre)clinical C-H radiolabeling has been slow, and PET imaging agents are still routinely prepared via methods that, despite a high level of practicality, are limited in scope (e.g., SNAr, SN2 radiofluorinations). By addressing the drawbacks inherent to these strategies, C-H radiofluorination and radiofluoroalkylation carry the potential to complement and supersede state-of-the-art labeling methods, facilitating the expedited production of PET agents used in disease staging and drug development. In this Outlook, we showcase recent C-H labeling developments with fluorine-18 and discuss the merits, potential, and barriers to adoption in (pre)clinical settings. In addition, we highlight trends, challenges, and directions in this emerging field of study.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alex Lapsys
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Yang WP, Miao HJ, Liu L, Duan XH, Guo LN. Visible Light-Promoted Aromatization-Driven Deconstructive Fluorination of Spiro Carbocycles. Org Lett 2024; 26:7442-7446. [PMID: 39186378 DOI: 10.1021/acs.orglett.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A visible light-promoted aromatization-driven deconstructive fluorination of spiro carbocycles is presented. A series of spiro dihydroquinazolinones reacted efficiently with NFSI under visible light irradiation to afford the 2-(4-fluoroalkyl)quinazolin-4(3H)-ones in good yields with excellent functional group tolerance. A radical pathway involving C-C bond cleavage and F atom transfer is proposed for the reaction. In addition, the ring-opening chlorination of spiro dihydroquinazolinones with NCS was also applicable.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Andrew J, Ezra-Manicum AL, Witika BA. Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer. EJNMMI Radiopharm Chem 2024; 9:62. [PMID: 39180599 PMCID: PMC11344754 DOI: 10.1186/s41181-024-00295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Prostate Cancer (PCa) is the second most diagnosed urological cancer among men worldwide. Conventional methods used for diagnosis of PCa have several pitfalls which include lack of sensitivity and specificity. On the other hand, traditional treatment of PCa poses challenges such as long-term side effects and the development of multidrug resistance (MDR). MAIN BODY Hence, there is a need for novel PCa agents with the potential to lessen the burden of these adverse effects on patients. Nanotechnology has emerged as a promising approach to support both early diagnosis and effective treatment of tumours by ensuring precise delivery of the drug to the targeted site of the disease. Most cancer-related biological processes occur on the nanoscale hence application of nanotechnology has been greatly appreciated and implemented in the management and therapeutics of cancer. Nuclear medicine plays a significant role in the non-invasive diagnosis and treatment of PCa using appropriate radiopharmaceuticals. This review aims to explore the different radiolabelled nanomaterials to enhance the specific delivery of imaging and therapeutic agents to cancer cells. Thereafter, the review appraises the advantages and disadvantages of these modalities and then discusses and outlines the benefits of radiolabelled nanomaterials in targeting cancerous prostatic tumours. Moreover, the nanoradiotheranostic approaches currently developed for PCa are discussed and finally the prospects of combining radiopharmaceuticals with nanotechnology in improving PCa outcomes will be highlighted. CONCLUSION Nanomaterials have great potential, but safety and biocompatibility issues remain. Notwithstanding, the combination of nanomaterials with radiotherapeutics may improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Jubilee Andrew
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Amanda-Lee Ezra-Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
6
|
Sire C, Meneyrol V, Saffon-Merceron N, Terreno E, Garello F, Tei L, Jestin E, Tripier R, Troadec T. A versatile fluorinated azamacrocyclic chelator enabling 18F PET or 19F MRI: a first step towards new multimodal and smart contrast agents. Chem Sci 2024; 15:13550-13557. [PMID: 39183922 PMCID: PMC11339802 DOI: 10.1039/d4sc02871f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Macrocyclic chelators play a central role in medical imaging and nuclear medicine owing to their unparalleled metal cation coordination abilities. Their functionalization by fluorinated groups is an attractive design, to combine their properties with those of 18F for Positron Emission Tomography (PET) or natural 19F for Magnetic Resonance Imaging (MRI), and access potential theranostic or smart medical imaging probes. For the first time, a compact fluorinated macrocyclic architecture has been synthesized, based on a cyclen chelator bearing additional pyridine coordinating units and simple methyltrifluoroborate prosthetic groups. This ligand and its corresponding model Zn(ii) complex were investigated to evaluate the 18F-PET or 19F MRI abilities provided by this novel molecular structure. The chelator and the complex were obtained via a simple and high-yielding synthetic route, present excellent solvolytic stability of the trifluoroborate groups at various pH, and provide facile late-stage 18F-radiolabeling (up to 68% radiochemical yield with high activity) as well as a satisfying detection limit for 19F MRI imaging (low mM range).
Collapse
Affiliation(s)
- Charline Sire
- Univ. Brest, UMR CNRS 6521 CEMCA 6 Avenue Victor Le Gorgeu 29200 Brest France
| | - Vincent Meneyrol
- Cyclotron Réunion Océan Indien CYROI 2 rue Maxime Rivière 97490 Sainte-Clotilde France
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Lorenzo Tei
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Emmanuelle Jestin
- Cyclotron Réunion Océan Indien CYROI 2 rue Maxime Rivière 97490 Sainte-Clotilde France
| | - Raphaël Tripier
- Univ. Brest, UMR CNRS 6521 CEMCA 6 Avenue Victor Le Gorgeu 29200 Brest France
| | - Thibault Troadec
- Univ. Brest, UMR CNRS 6521 CEMCA 6 Avenue Victor Le Gorgeu 29200 Brest France
| |
Collapse
|
7
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
8
|
Hanson GSM, Coxon CR. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem 2024; 25:e202400195. [PMID: 38744671 DOI: 10.1002/cbic.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The incorporation of fluorine atoms into a biomacromolecule provides a background-free and environmentally sensitive reporter of structure, conformation and interactions using 19F NMR. There are several methods to introduce the 19F reporter - either by synthetic incorporation via solid phase peptide synthesis; by suppressing the incorporation or biosynthesis of a natural amino acid and supplementing the growth media with a fluorinated counterpart during protein expression; and by genetic code expansion to add new amino acids to the amino acid alphabet. This review aims to discuss progress in the field of introducing fluorinated handles into biomolecules for NMR studies by post-translational bioconjugation or 'fluorine-tagging'. We will discuss the range of chemical tagging 'warheads' that have been used, explore the applications of fluorine tags, discuss ways to enhance reporter sensitivity and how the signal to noise ratios can be boosted. Finally, we consider some key challenges of the field and offer some ideas for future directions.
Collapse
Affiliation(s)
- George S M Hanson
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
9
|
Dierick H, Navarro L, Ceuppens H, Ertveldt T, Pombo Antunes AR, Keyaerts M, Devoogdt N, Breckpot K, D'Huyvetter M, Lahoutte T, Caveliers V, Bridoux J. Generic semi-automated radiofluorination strategy for single domain antibodies: [ 18F]FB-labelled single domain antibodies for PET imaging of fibroblast activation protein-α or folate receptor-α overexpression in cancer. EJNMMI Radiopharm Chem 2024; 9:54. [PMID: 39048805 PMCID: PMC11269545 DOI: 10.1186/s41181-024-00286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Radiofluorination of single domain antibodies (sdAbs) via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) has shown to be a promising strategy in the development of sdAb-based PET tracers. While automation of the prosthetic group (PG) [18F]SFB production, has been successfully reported, no practical method for large scale sdAb labelling has been reported. Therefore, we optimized and automated the PG production, enabling a subsequently efficient manual conjugation reaction to an anti-fibroblast activation protein (FAP)-α sdAb (4AH29) and an anti-folate receptor (FR)-α sdAb (2BD42). Both the alpha isoform of FAP and the FR are established tumour markers. FAP-α is known to be overexpressed mainly by cancer-associated fibroblasts in breast, ovarian, and other cancers, while its expression in normal tissues is low or undetectable. FR-α has an elevated expression in epithelial cancers, such as ovarian, brain and lung cancers. Non-invasive imaging techniques, such as PET-imaging, using tracers targeting specific tumour markers can provide molecular information over both the tumour and its environment, which aides in the diagnosis, therapy selection and assessment of the cancer treatment. RESULTS [18F]SFB was synthesized using a fully automated three-step, one-pot reaction. The total procedure time was 54 min and results in [18F]SFB with a RCP > 90% and a RCY d.c. of 44 ± 4% (n = 13). The manual conjugation reaction after purification produced [18F]FB-sdAbs with a RCP > 95%, an end of synthesis activity > 600 MBq and an apparent molar activity > 10 GBq/µmol. Overall RCY d.c., corrected to the trapping of [18F]F- on the QMA, were 9% (n = 1) and 5 ± 2% (n = 3) for [18F]FB-2BD42 and [18F]FB-4AH29, respectively. CONCLUSION [18F]SFB synthesis was successfully automated and upscaled on a Trasis AllInOne module. The anti-hFAP-α and anti-hFR-α sdAbs were radiofluorinated, yielding similar RCYs d.c. and RCPs, showing the potential of this method as a generic radiofluorination strategy for sdAbs. The radiofluorinated sdAbs showed a favourable biodistribution pattern and are attractive for further characterization as new PET tracers for FAP-α and FR-α imaging.
Collapse
Affiliation(s)
- Herlinde Dierick
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium.
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Laurent Navarro
- Precirix NV, Burgemeester Etienne Demunterlaan 3, 1090, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy (LCMT), Department of Biomedical Sciences, Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building E, 1090, Brussels, Belgium
| | - Thomas Ertveldt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Laboratory for Molecular and Cellular Therapy (LCMT), Department of Biomedical Sciences, Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building E, 1090, Brussels, Belgium
| | | | - Marleen Keyaerts
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LCMT), Department of Biomedical Sciences, Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building E, 1090, Brussels, Belgium
| | - Matthias D'Huyvetter
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Precirix NV, Burgemeester Etienne Demunterlaan 3, 1090, Brussels, Belgium
| | - Tony Lahoutte
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Vicky Caveliers
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Jessica Bridoux
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
| |
Collapse
|
10
|
Banka VK, Sainas S, Martino E, Wang J, Lolli ML, Ding YS. Radiosynthesis of [ 18F]brequinar for in vivo PET imaging of hDHODH for potential studies of acute myeloid leukemia and cancers. RSC Med Chem 2024:d4md00433g. [PMID: 39149561 PMCID: PMC11320022 DOI: 10.1039/d4md00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the de novo pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an in vivo imaging probe that is able to demonstrate in vivo target engagement is critical and desirable. Brequinar is one of the most potent hDHODH inhibitors so far discovered. In this work, we use a copper-mediated radiofluorination (CMRF) strategy and compare the chemical design and radiosynthesis starting from either pinacole boronate p-nitrobenzyl ester (4) or tributylstannate (tin) p-nitrobenzyl ester (5), chosen for their suitability as a precursor to [18F]brequinar. We report here the design, synthesis, radiolabeling and characterization of [18F]brequinar, and a preliminary PET imaging study of DHODH in vivo. This study provides the strategies to create [18F]brequinar, the first hDHODH inhibitor PET radiotracer, which will facilitate its use as a tool (theranostics) for hDHODH drug development and for diagnosis and monitoring therapeutic efficacy in AML and cancers.
Collapse
Affiliation(s)
- Vinay Kumar Banka
- Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605
| | - Stefano Sainas
- Department of Drug Science and Technology (DSTF), University of Torino Turin Italy
| | - Elena Martino
- Department of Drug Science and Technology (DSTF), University of Torino Turin Italy
| | - Jiacheng Wang
- Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605
| | - Marco Lucio Lolli
- Department of Drug Science and Technology (DSTF), University of Torino Turin Italy
| | - Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, Center for Biomedical Imaging 660 First Ave., 4th Floor New York NY 10016 USA +1 (212)263 7541 +1 (212)263 6605
- Department of Psychiatry, New York University School of Medicine New York NY USA
| |
Collapse
|
11
|
Doyle MGJ, Bsharat O, Sib A, Derdau V, Lundgren RJ. Enantioselective Carbon Isotope Exchange. J Am Chem Soc 2024; 146:18804-18810. [PMID: 38968381 DOI: 10.1021/jacs.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established. We describe the first example of an enantioselective carbon isotope exchange reaction, where (radio)labeled α-amino acids can be generated from their unlabeled precursors using a stoichiometric chiral aldehyde receptor with isotopically labeled CO2 followed by imine hydrolysis. Many proteinogenic and non-natural derivatives undergo enantioselective labeling, including the late-stage radiolabeling of complex drug targets.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anna Sib
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Volker Derdau
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Maujean T, Ramanoudjame SM, Riché S, Le Guen C, Boisson F, Muller S, Bonnet D, Gulea M, Marchand P. Hetero-Diels-Alder and CuAAC Click Reactions for Fluorine-18 Labeling of Peptides: Automation and Comparative Study of the Two Methods. Molecules 2024; 29:3198. [PMID: 38999148 PMCID: PMC11243578 DOI: 10.3390/molecules29133198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.
Collapse
Affiliation(s)
- Timothé Maujean
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Sridévi M. Ramanoudjame
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Stéphanie Riché
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Clothilde Le Guen
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
- Inovarion, F-75005 Paris, France
| | - Frédéric Boisson
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sylviane Muller
- Université de Strasbourg, CNRS, Biotechnologie et Signalisation Cellulaire UMR 7242, F-67000 Strasbourg, France
| | - Dominique Bonnet
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Mihaela Gulea
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
13
|
Li B, Liao X, Wen L, Mi M, Xing X, Feng P, Xu S. Electrochemically Direct Fluorination Functionalization of Styrenes with Different Fluorine Source: Access to Fluoroalkyl Derivatives. J Org Chem 2024; 89:9440-9449. [PMID: 38875179 DOI: 10.1021/acs.joc.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A mild protocol for electrochemically oxidative fluorodifunctionalization of styrenes has been demonstrated. The reaction proceeds under metal, external oxidant, and catalyst free conditions, allowing tunable access to a wide variety of synthetically useful fluoroalkyl derivatives, such as β-fluorosulfone/fluoromethyl, fluorothiocyanation, and vinylsulfonyl derivatives. Moreover, CsF was shown to be the proper fluorine source for this electrochemical fluorodifunctionalization transformation.
Collapse
Affiliation(s)
- Boao Li
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiaojian Liao
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Linzi Wen
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Mengyao Mi
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiwen Xing
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Shihai Xu
- Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Kleynhans J, Ebenhan T, Sathekge MM. Expanding Role for Gallium-68 PET Imaging in Oncology. Semin Nucl Med 2024:S0001-2998(24)00054-0. [PMID: 38964934 DOI: 10.1053/j.semnuclmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Gallium-68 has gained substantial momentum since 2003 as a versatile radiometal that is extremely useful for application in the development of novel oncology targeting diagnostic radiopharmaceuticals. It is available through both generator produced radioactivity and via cyclotron production methods and can therefore be implemented in either small- or large-scale production facilities. It can also be implemented within different spectrum of infrastructure settings with relative ease. Whilst many of the radiopharmaceuticals are being development and investigated, which is summarized in this manuscript, [68Ga]Ga-SSTR2 and [68Ga]Ga-PSMA has prominence in current clinical guidelines. The novel tracer [68Ga]Ga-FAPi has also gained significant interest in the clinical context. A comparison of the labelling strategies followed to incorporate gallium-68 and fluorine-18 into the same molecular targeting constructs clearly demonstrate that gallium-68 complexation is the most convenient approach. Recently, cold kit based starting products are available to make the small-scale production of gallium-68 radiopharmaceuticals even more efficient when combined with generator produced gallium-68. The regulatory aspects is currently changing to support the implementation of gallium-68 and other diagnostic radiopharmaceuticals, simplifying the translation towards clinical use. Overall, the development of gallium-68 based radiopharmaceuticals is not only rapidly changing the landscape of diagnosis in oncology, but this growth also promotes innovation and progress in new applications of therapeutic radiometals such as lutetium-177 and actinium-225.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological Sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Mike Machaba Sathekge
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
15
|
Doyle MGJ, Mair BA, Sib A, Bsharat O, Munch M, Derdau V, Rotstein BH, Lundgren RJ. A practical guide for the preparation of C1-labeled α-amino acids using aldehyde catalysis with isotopically labeled CO 2. Nat Protoc 2024; 19:2147-2179. [PMID: 38548937 DOI: 10.1038/s41596-024-00974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 07/10/2024]
Abstract
Isotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO2 (* = 14, 13, 11). This late-stage labeling strategy is enabled by the one-pot carboxylate exchange of unprotected α-amino acids with [*C]CO2. The protocol consists of three separate procedures, describing the syntheses of (±)-[1-13C]phenylalanine, (±)-[1-11C]phenylalanine and (±)-[1-14C]phenylalanine from unlabeled phenylalanine. Although the delivery of [*C]CO2 is operationally distinct for each experiment, each procedure relies on the same fundamental chemistry and can be executed by heating the reaction components at 50-90 °C under basic conditions in dimethylsulfoxide. Performed on scales of up to 0.5 mmol, this methodology is amenable to C1-labeling of many proteinogenic α-amino acids and nonnatural derivatives, which is a breakthrough from existing methods. The synthesis of (±)-[1-13C]phenylalanine requires ~2 d, with product typically obtained in a 60-80% isolated yield (n = 3, μ = 71, σ = 8.3) with an isotopic incorporation of 70-88% (n = 18, μ = 72, σ = 9.0). Starting from the preformed imino acid (~3 h preparation time), rapid synthesis of (±)-[1-11C]phenylalanine can be completed in ~1 h with an isolated radiochemical yield of 13%. Finally, (±)-[1-14C]phenylalanine can be accessed in ~2 d with a 51% isolated yield and 11% radiochemical yield.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
17
|
Luu T, Gristwood K, Knight JC, Jörg M. Click Chemistry: Reaction Rates and Their Suitability for Biomedical Applications. Bioconjug Chem 2024; 35:715-731. [PMID: 38775705 PMCID: PMC11191409 DOI: 10.1021/acs.bioconjchem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Click chemistry has become a commonly used synthetic method due to the simplicity, efficiency, and high selectivity of this class of chemical reactions. Since their initial discovery, further click chemistry methods have been identified and added to the toolbox of click chemistry reactions for biomedical applications. However, selecting the most suitable reaction for a specific application is often challenging, as multiple factors must be considered, including selectivity, reactivity, biocompatibility, and stability. Thus, this review provides an overview of the benefits and limitations of well-established click chemistry reactions with a particular focus on the importance of considering reaction rates, an often overlooked criterion with little available guidance. The importance of understanding each click chemistry reaction beyond simply the reaction speed is discussed comprehensively with reference to recent biomedical research which utilized click chemistry. This review aims to provide a practical resource for researchers to guide the selection of click chemistry classes for different biomedical applications.
Collapse
Affiliation(s)
- Tracey Luu
- Medicinal
Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Katie Gristwood
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| | - James C. Knight
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| | - Manuela Jörg
- Medicinal
Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| |
Collapse
|
18
|
Bartkova S, Zapotoczna M, Sanka I, Scheler O. A Guide to Biodetection in Droplets. Anal Chem 2024; 96:9745-9755. [PMID: 38842026 PMCID: PMC11190884 DOI: 10.1021/acs.analchem.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Droplet-based methods for optical biodetection enable unprecedented high-throughput experimental parameters. The methods, however, remain underused due to the accompanying multidisciplinary and complicated experimental workflows. Here, we provide a tutorial for droplet-based optical biodetection workflows with a focus on the key aspect of label selection. By discussing and guiding readers through recent state-of-the-art studies, we aim to make droplet-based approaches more accessible to the general scientific public.
Collapse
Affiliation(s)
- Simona Bartkova
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Marta Zapotoczna
- Faculty
of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Immanuel Sanka
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Ott Scheler
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
19
|
Zhou YP, Zhang LL, Sun Y, Brugarolas P. Imaging of Pain using Positron Emission Tomography. IRADIOLOGY 2024; 2:339-361. [PMID: 39440326 PMCID: PMC11493400 DOI: 10.1002/ird3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 10/25/2024]
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. As such, the information obtained using PET often combined with MRI or CT can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow to receptor-specific tracers such as ion channels and neurotransmitters. For tracer type, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Ortalli S, Ford J, Trabanco AA, Tredwell M, Gouverneur V. Photoredox Nucleophilic (Radio)fluorination of Alkoxyamines. J Am Chem Soc 2024; 146:11599-11604. [PMID: 38651661 PMCID: PMC11066844 DOI: 10.1021/jacs.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Herein, we report a photoredox nucleophilic (radio)fluorination using TEMPO-derived alkoxyamines, a class of substrates accessible in a single step from a diversity of readily available carboxylic acids, halides, alkenes, alcohols, aldehydes, boron reagents, and C-H bonds. This mild and versatile one-electron pathway affords radiolabeled aliphatic fluorides that are typically inaccessible applying conventional nucleophilic substitution technologies due to insufficient reactivity and competitive elimination. Automation of this photoredox process is also demonstrated with a user-friendly and commercially available photoredox flow reactor and radiosynthetic platform, therefore expediting access to labeled aliphatic fluorides in high molar activity (Am) for (pre)clinical evaluation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales Research
and Diagnostic PET Imaging Centre, Cardiff
University, University
Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
21
|
Spatz P, Chen X, Reichau K, Huber ME, Mühlig S, Matsusaka Y, Schiedel M, Higuchi T, Decker M. Development and Initial Characterization of the First 18F-CXCR2-Targeting Radiotracer for PET Imaging of Neutrophils. J Med Chem 2024; 67:6327-6343. [PMID: 38570909 DOI: 10.1021/acs.jmedchem.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Kora Reichau
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Saskia Mühlig
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Yohji Matsusaka
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
- Pharmaceutical and Medicinal Chemistry, Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
22
|
Nerella SG, Alvala R, Kalle AM, Alvala M. Design and synthesis of novel coumarin-benzimidazole hybrids as human galectin-1 inhibitors. Future Med Chem 2024; 16:843-857. [PMID: 38606540 PMCID: PMC11188815 DOI: 10.4155/fmc-2023-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/31/2024] [Indexed: 04/13/2024] Open
Abstract
Aim: To develop novel non-carbohydrate inhibitors of human galectin-1 (GAL-1), we have designed a series of coumarin-benzimidazole hybrids. Methods: We synthesized and characterized the coumarin-benzimidazole hybrids and further evaluated them using an in vitro GAL-1 enzyme-linked immunosorbent assay and in silico methods. Results: Among all, the compounds 6p and 6q were found to be potent, with GAL-1 inhibition of 37.61 and 36.92%, respectively, at 10 μM in GAL-1-expressed cell culture supernatant of MCF-7 cells. These two compounds are feasible for fluorine-18 radiolabeling to develop GAL-1 selective PET radiotracers. Computational studies revealed strong binding interactions of GAL-1 with these novel coumarin-benzimidazole hybrids. Conclusion: Coumarin-benzimidazole hybrids can serve as potential leads to develop selective non-carbohydrate GAL-1 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Sridhar G Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Ravi Alvala
- G. Pulla reddy College of Pharmacy (GPRCP), Hyderabad, 500028, India
| | - Arunasree M Kalle
- School of Life Sciences, University of Hyderabad (UOH), Hyderabad, 500046, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
- MARS training Academy, Hyderabad
| |
Collapse
|
23
|
Lin D, Lechermann LM, Huestis MP, Marik J, Sap JBI. Light-Driven Radiochemistry with Fluorine-18, Carbon-11 and Zirconium-89. Angew Chem Int Ed Engl 2024; 63:e202317136. [PMID: 38135665 DOI: 10.1002/anie.202317136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.
Collapse
Affiliation(s)
- Daniel Lin
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Current address: University of Southern California Department of Chemistry, Loker Hydrocarbon Research Institute, 837 Bloom Walk, Los Angeles, CA 90089, USA
| | - Laura M Lechermann
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Malcolm P Huestis
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jan Marik
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jeroen B I Sap
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
24
|
Schlein E, Rokka J, Odell LR, van den Broek SL, Herth MM, Battisti UM, Syvänen S, Sehlin D, Eriksson J. Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET. EJNMMI Radiopharm Chem 2024; 9:21. [PMID: 38446356 PMCID: PMC10917718 DOI: 10.1186/s41181-024-00250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.
Collapse
Affiliation(s)
- Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden
| | | | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| |
Collapse
|
25
|
Kepes Z, Hegedus E, Sass T, Csikos C, Szabo JP, Szugyiczki V, Hajdu I, Kertesz I, Opposits G, Imrek J, Balkay L, Kalman FK, Trencsenyi G. Concomitant [ 18F]F-FAZA and [ 18F]F-FDG Imaging of Gynecological Cancer Xenografts: Insight into Tumor Hypoxia. In Vivo 2024; 38:574-586. [PMID: 38418132 PMCID: PMC10905447 DOI: 10.21873/invivo.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Herein we assessed the feasibility of imaging protocols using both hypoxia-specific [18F]F-FAZA and [18F]F-FDG in bypassing the limitations derived from the non-specific findings of [18F]F-FDG PET imaging of tumor-related hypoxia. MATERIALS AND METHODS CoCl2-generated hypoxia was induced in multidrug resistant (Pgp+) or sensitive (Pgp-) human ovarian (Pgp- A2780, Pgp+ A2780AD), and cervix carcinoma (Pgp- KB-3-1, Pgp+ KB-V-1) cell lines to establish corresponding tumor-bearing mouse models. Prior to [18F]F-FDG/[18F]F-FAZA-based MiniPET imaging, in vitro [18F]F-FDG uptake measurements and western blotting were used to verify the presence of hypoxia. RESULTS Elevated GLUT-1, and hexokinase enzyme-II expression driven by CoCl2-induced activation of hypoxia-inducible factor-1α explains enhanced cellular [18F]F-FDG accumulation. No difference was observed in the [18F]F-FAZA accretion of Pgp+ and Pgp- tumors. Tumor-to-muscle ratios for [18F]F-FAZA measured at 110-120 min postinjection (6.2±0.1) provided the best contrasted images for the delineation of PET-oxic and PET-hypoxic intratumor regions. Although all tumors exhibited heterogenous uptake of both radiopharmaceuticals, greater differences for [18F]F-FAZA between the tracer avid and non-accumulating regions indicate its superiority over [18F]F-FDG. Spatial correlation between [18F]F-FGD and [18F]F-FAZA scans confirms that hypoxia mostly occurs in regions with highly active glucose metabolism. CONCLUSION The addition of [18F]F-FAZA PET to [18F]F-FGD imaging may add clinical value in determining hypoxic sub-regions.
Collapse
Affiliation(s)
- Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary;
| | - Eva Hegedus
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sass
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit P Szabo
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Szugyiczki
- Department of Nuclear Medicine, Békés County Pándy Kálmán Hospital, Semmelweis, Hungary
| | - István Hajdu
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Kertesz
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Opposits
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jozsef Imrek
- Institute of Physics, University of Debrecen, Debrecen, Hungary
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Gyorgy Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
26
|
Zhang X, Qiu L, Sultan DH, Luehmann HP, Yu Y, Zhang X, Heo GS, Li A, Lahad D, Rho S, Tu Z, Liu Y. Development of a CCR2 targeted 18F-labeled radiotracer for atherosclerosis imaging with PET. Nucl Med Biol 2024; 130-131:108893. [PMID: 38422918 PMCID: PMC10964492 DOI: 10.1016/j.nucmedbio.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease and the leading cause of morbidity and mortality worldwide. CC motif chemokine ligand 2 and its corresponding cognate receptor 2 (CCL2/CCR2) signaling has been implicated in regulating monocyte recruitment and macrophage polarization during inflammatory responses that plays a pivotal role in atherosclerosis initiation and progression. In this study, we report the design and synthesis of a novel 18F radiolabeled small molecule radiotracer for CCR2-targeted positron emission tomography (PET) imaging in atherosclerosis. The binding affinity of this radiotracer to CCR2 was evaluated via in vitro binding assay using CCR2+ membrane and cells. Ex vivo biodistribution was carried out in wild type mice to assess radiotracer pharmacokinetics. CCR2 targeted PET imaging of plaques was performed in two murine atherosclerotic models. The sensitive detection of atherosclerotic lesions highlighted the potential of this radiotracer for CCR2 targeted PET and warranted further optimization.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lin Qiu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debbie H Sultan
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hannah P Luehmann
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanbo Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiuli Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Shinji Rho
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Mc Veigh M, Bellan LM. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. LAB ON A CHIP 2024; 24:1226-1243. [PMID: 38165824 DOI: 10.1039/d3lc00779k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Positron emission tomography (PET) is a powerful diagnostic tool that holds incredible potential for clinicians to track a wide variety of biological processes using specialized radiotracers. Currently, however, a single radiotracer accounts for over 95% of procedures, largely due to the cost of radiotracer synthesis. Microfluidic platforms provide a solution to this problem by enabling a dose-on-demand pipeline in which a single benchtop platform would synthesize a wide array of radiotracers. In this review, we will explore the field of microfluidic production of radiotracers from early research to current development. Furthermore, the benefits and drawbacks of different microfluidic reactor designs will be analyzed. Lastly, we will discuss the various engineering considerations that must be addressed to create a fully developed, commercially effective platform that can usher the field from research and development to commercialization.
Collapse
Affiliation(s)
- Mark Mc Veigh
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Henary E, Casa S, Dost TL, Sloop JC, Henary M. The Role of Small Molecules Containing Fluorine Atoms in Medicine and Imaging Applications. Pharmaceuticals (Basel) 2024; 17:281. [PMID: 38543068 PMCID: PMC10975950 DOI: 10.3390/ph17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
The fluorine atom possesses many intrinsic properties that can be beneficial when incorporated into small molecules. These properties include the atom's size, electronegativity, and ability to block metabolic oxidation sites. Substituents that feature fluorine and fluorine-containing groups are currently prevalent in drugs that lower cholesterol, relieve asthma, and treat anxiety disorders, as well as improve the chemical properties of various medications and imaging agents. The dye scaffolds (fluorescein/rhodamine, coumarin, BODIPY, carbocyanine, and squaraine dyes) reported will address the incorporation of the fluorine atom in the scaffold and the contribution it provides to its application as an imaging agent. It is also important to recognize radiolabeled fluorine atoms used for PET imaging in the early detection of diseases. This review will discuss the many benefits of incorporating fluorine atoms into small molecules and give examples of fluorinated molecules used in the pharmaceutical industry and imaging techniques.
Collapse
Affiliation(s)
- Emily Henary
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Stefanie Casa
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Tyler L. Dost
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Joseph C. Sloop
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Maged Henary
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
- Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
29
|
Liu J, Rong J, Wood DP, Wang Y, Liang SH, Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J Am Chem Soc 2024; 146:4380-4392. [PMID: 38300825 PMCID: PMC11219133 DOI: 10.1021/jacs.3c10989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)-F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and the poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a photoredox-mediated polar-radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radiopharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calculations, unveiled the involvement of both carbocation and CoIV-alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.
Collapse
Affiliation(s)
- Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Devin P. Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Jiang Y, Yao M, Niu H, Wang W, He J, Qiao B, Li B, Dong M, Xiao W, Yuan Y. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1203-1212. [PMID: 38179953 DOI: 10.1021/acs.jafc.3c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organofluorine compounds have attracted substantial attention owing to their wide application in agrochemistry. Fluorinase (FlA) is a unique enzyme in nature that can incorporate fluorine into an organic molecule. Chlorinase (SalL) has a similar mechanism as fluorinase and can use chloride but not fluoride as a substrate to generate 5'-chloro-deoxyadenosine (5'-ClDA) from S-adenosyl-l-methionine (SAM). Therefore, identifying the features that lead to this selectivity for halide ions is highly important. Here, we engineered SalL to gain the function of FlA. We found that residue Tyr70 plays a key role in this conversion through alanine scanning. Site-saturation mutagenesis experiments demonstrated that Y70A/C/S/T/G all exhibited obvious fluorinase activity. The G131S mutant of SalL, in which the previously thought crucial residue Ser158 for fluoride binding in FlA was introduced, did not exhibit fluorination activity. Compared with the Y70T single mutant, the double mutant Y70T/W129F increased 5'-fluoro-5-deoxyadenosine (5'-FDA) production by 76%. The quantum mechanics (QM)/molecular mechanics (MM) calculations suggested that the lower energy barriers and shorter nucleophilic distance from F- to SAM in the mutants than in the SalL wild-type may contribute to the activity. Therefore, our study not only renders SalL the activity of FlA but also sheds light on the enzyme selectivity between fluoride versus chloride.
Collapse
Affiliation(s)
- Yixun Jiang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Haoran Niu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrui Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiale He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Zhou D, Chu W, Chen H, Xu J. Exploration of Directing-Group-Assisted, Copper-Mediated Radiofluorination and Radiosynthesis of [ 18F]Olaparib. ACS Med Chem Lett 2024; 15:116-122. [PMID: 38229754 PMCID: PMC10788942 DOI: 10.1021/acsmedchemlett.3c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Copper-mediated radiofluorination (CMRF) of organoboronic precursors is the method of choice for late-stage radiofluorination of aromatic compounds as positron emission tomography (PET) radiotracers. However, CMRF generally requires harsh reaction conditions, a large amount of substrates, and harsh solvents (e.g., DMA) to proceed, affording variable radiochemical yields (RCYs). Using [18F]tosyl fluoride as the source of [18F]fluoride, we have found a highly efficient CMRF of organoboronic precursors, assisted by a directing group (DG) at the ortho position. The reaction can be carried out under mild conditions (even at room temperature) in acetonitrile and results in high RCYs, providing a novel strategy for the radiofluorination of aromatic compounds. The exploration of this strategy also provided more information about side reactions in CMRF. Using this strategy, [18F]olaparib has been radiosynthesized in high RCYs, with high molar activity and high chemical and radiochemical purities, demonstrating the great potential of DG-assisted CMRF in the preparation of 18F-labeled PET radiotracers.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of
Medicine, Washington University in Saint
Louis, Saint Louis, Missouri 63110, United States
| | - Wenhua Chu
- Department of Radiology, School of
Medicine, Washington University in Saint
Louis, Saint Louis, Missouri 63110, United States
| | - Huaping Chen
- Department of Radiology, School of
Medicine, Washington University in Saint
Louis, Saint Louis, Missouri 63110, United States
| | - Jinbin Xu
- Department of Radiology, School of
Medicine, Washington University in Saint
Louis, Saint Louis, Missouri 63110, United States
| |
Collapse
|
32
|
Tang X, Lv S, Mou Z, Liu X, Li Z. Cu(II)-Mediated direct 18F-dehydrofluorination of phosphine oxides in high molar activity. EJNMMI Radiopharm Chem 2024; 9:4. [PMID: 38183524 PMCID: PMC10771395 DOI: 10.1186/s41181-023-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The 18F/19F-isotope exchange method employing P(V)-centered prosthetic groups demonstrates advantages in addressing mild one-step aqueous 18F-labeling of peptides and proteins. However, the molar activity (Am) achieved through isotope exchange remains relatively low, unless employing a high initial activity of [18F]F-. To overcome this drawback, our work introduces a novel approach through a Cu-mediated direct 18F-dehydrofluorination of phosphine oxides. This method leverages the straightforward separation of the 18F-labeled product from the phosphine oxide precursors, aiming to primarily increase Am. RESULTS Through a 19F-dehydrofluorination efficiency test, Cu(OAc)2 was identified as the optimal oxidative metal salt, exhibiting a remarkable 100% conversion within one hour. Leveraging the straightforward separation of phosphine oxide precursors and phosphinic fluoride products, the Am of an activated ester, [18F]4, sees an impressive nearly 15-fold increase compared to the 18F/19F-isotope exchange, with the same initial activity of [18F]F-. Furthermore, this Cu(II)-mediated 18F-dehydrofluorination approach demonstrates tolerance up to 20% solvent water content, which enables the practical radiosynthesis of 18F-labeled water-soluble molecules under non-drying conditions. CONCLUSIONS The direct 18F-dehydrofluorination of phosphine oxide prosthetic groups has been successfully accomplished, achieving a high Am via Cu(II)-mediated oxidative addition and reductive elimination.
Collapse
Affiliation(s)
- Xiaoqun Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengji Lv
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhaobiao Mou
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zijing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
33
|
Gower-Fry L, Wängler C, Bartenstein P, Beyer L, Lindner S, Jurkschat K, Wängler B, Bailey JJ, Schirrmacher R. Silicon-Fluoride Acceptors (SiFA) for 18F-Radiolabeling: From Bench to Bedside. Methods Mol Biol 2024; 2729:29-43. [PMID: 38006489 DOI: 10.1007/978-1-0716-3499-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Fluorine-18 (18F) is undoubtedly one of the most frequently applied radionuclides for the development of new radiotracers for positron emission tomography (PET) in the context of clinical cancer, neurological, and metabolic imaging. Until recently, the available radiochemical methodologies to introduce 18F into organic molecules ranging from small- to medium- and large-sized compounds were limited to a few applicable protocols. With the advent of late-stage fluorination of small aromatic, nonactivated compounds and various noncanonical labeling strategies geared toward the labeling of peptides and proteins, the molecular toolbox for PET radiotracer development was substantially extended. Especially, the noncanonical labeling methodologies characterized by the formation of Si-18F, B-18F, and Al-18F bonds give access to kit-like 18F-labeling of complex and side-group unprotected compounds, some of them already in clinical use. This chapter will particularly focus on silicon-fluoride acceptor (SiFA) chemistry and cover the history of its conceptual design and its translation into the clinical practice.
Collapse
Affiliation(s)
- Lexi Gower-Fry
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Justin J Bailey
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
34
|
Yuan Z, Britton R. Development and application of decatungstate catalyzed C-H 18F- and 19F-fluorination, fluoroalkylation and beyond. Chem Sci 2023; 14:12883-12897. [PMID: 38023504 PMCID: PMC10664588 DOI: 10.1039/d3sc04027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Over the past few decades, photocatalytic C-H functionalization reactions have received increasing attention due to the often mild reaction conditions and complementary selectivities to conventional functionalization processes. Now, photocatalytic C-H functionalization is a widely employed tool, supporting activities ranging from complex molecule synthesis to late-stage structure-activity relationship studies. In this perspective, we will discuss our efforts in developing a photocatalytic decatungstate catalyzed C-H fluorination reaction as well as its practical application realized through collaborations with industry partners at Hoffmann-La Roche and Merck, and extension to radiofluorination with radiopharmaceutical chemists and imaging experts at TRIUMF and the BC Cancer Agency. Importantly, we feel that our efforts address a question of utility posed by Professor Tobias Ritter in "Late-Stage Fluorination: Fancy Novelty or Useful Tool?" (ACIE, 2015, 54, 3216). In addition, we will discuss decatungstate catalyzed C-H fluoroalkylation and the interesting electrostatic effects observed in decatungstate-catalyzed C-H functionalization. We hope this perspective will inspire other researchers to explore the use of decatungstate for the purposes of photocatalytic C-H functionalization and further advance the exploitation of electrostatic effects for both rate acceleration and directing effects in these reactions.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
| |
Collapse
|
35
|
Reusser E, Albrecht M. Electronically flexible PYA ligands for efficient palladium-catalyzed α-arylation of ketones. Dalton Trans 2023; 52:16688-16697. [PMID: 37882141 PMCID: PMC10660196 DOI: 10.1039/d3dt03182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Palladium-catalyzed cross-coupling chemistry and in particular ketone α-arylation has been relying on a rather narrow range of supporting ligands with almost no alternatives to phosphines and N-heterocyclic carbenes. Here we introduce a class of well-defined palladium(II) complexes supported by N,N'-chelating and electronically flexible pyridylidene amide (PYA)-pyridyl ligands as catalysts for efficient α-arylation of ketones. Steric and electronic variations of the N,N'-bidentate ligand indicate that the introduction of an ortho-methyl group on the pyridinum heterocycle of the PYA ligand enhances the arylation rate and prevents catalyst deactivation, reaching turnover numbers up to 7300 and turnover frequencies of almost 10 000 h-1, which is similar to that of the best phosphine complexes known to date. Introducing a shielding xylyl substituent accelerates catalysis further, however at the expense of lower selectivity towards arylated ketones. Substrate scope investigations revealed that both electron-rich and -poor aryl bromides as well as a broad range of electronically and sterically modified ketones are efficiently converted, including aliphatic ketones. Mechanistic investigations using Hammett and Eyring analyses indicated that both, oxidative addition and reductive elimination are relatively fast, presumably as a consequence of the electronic flexibility of the PYA ligand, while enolate coordination was identified as the turnover-limiting step.
Collapse
Affiliation(s)
- Esaïe Reusser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
36
|
Lu Y, He Y, Schibli R, Mu L, van Dam RM. Proof-of-concept optimization of a copper-mediated 18F-radiosynthesis of a novel MAGL PET tracer on a high-throughput microdroplet platform and its macroscale translation. LAB ON A CHIP 2023; 23:4652-4663. [PMID: 37818614 PMCID: PMC10608794 DOI: 10.1039/d3lc00735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Copper-mediated radiofluorination has demonstrated remarkable potential in forming aromatic C-18F bonds of radioligands for positron emission tomography (PET). Achieving optimal results often requires optimization efforts, requiring a substantial amount of radiolabeling precursor and time, severely limiting the experimental throughput. Recently, we successfully showcased the feasibility of performing and optimizing Cu-mediated radiosynthesis on a high-throughput microdroplet platform using the well-known and clinically used radioligand [18F]FDOPA as an illustrative example. In our current work, we optimized the Cu-mediated synthesis of a novel monoacylglycerol lipase (MAGL) PET tracer ([18F]YH149), showing the versatility of droplet-based techniques for early stage tracer development. Across 5 days, we conducted a total of 117 experiments, studying 36 distinct conditions, while utilizing <15 mg of total organoboron precursor. Compared to the original report in which the radiochemical yield (RCY) was 4.4 ± 0.5% (n = 5), the optimized droplet condition provided a substantial improvement in RCY (52 ± 8%, n = 4) and showed excellent radiochemical purity (100%) and molar activity (77-854 GBq μmol-1), using a starting activity of 0.2-1.45 GBq. Furthermore, we showed for the first time a translation of the optimized microscale conditions to a vial-based method. With similar starting activity (0.2-1.44 GBq), the translated synthesis exhibited a comparable RCY of 50 ± 10% (n = 4) while maintaining excellent radiochemical purity (100%) and acceptable molar activity (20-46 GBq μmol-1). The successful translation to vial-based reactions ensures wider applicability of the optimized synthesis by leveraging widely available commercial vial-based synthesis modules.
Collapse
Affiliation(s)
- Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| | - Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Chen CL, Wang HY, Weng ZZ, Long LS, Zheng LS, Kong XJ. Uranyl Polyoxotungstate Cluster for Visible-Light-Driven Heterogeneous C-H Selective Fluorination. Inorg Chem 2023; 62:17041-17045. [PMID: 37819767 DOI: 10.1021/acs.inorgchem.3c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.
Collapse
Affiliation(s)
- Chao-Long Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Hai-Ying Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Zhen-Zhang Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| |
Collapse
|
38
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
39
|
Stéen EJL, Park AY, Beaino W, Gadhe CG, Kooijman E, Schuit RC, Schreurs M, Leferink P, Hoozemans JJM, Kim JE, Lee J, Windhorst AD. Development of 18F-Labeled PET Tracer Candidates for Imaging of the Abelson Non-receptor Tyrosine Kinase in Parkinson's Disease. J Med Chem 2023; 66:12990-13006. [PMID: 37712438 DOI: 10.1021/acs.jmedchem.3c00902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Activated Abelson non-receptor tyrosine kinase (c-Abl) plays a harmful role in neurodegenerative conditions such as Parkinson's disease (PD). Inhibition of c-Abl is reported to have a neuroprotective effect and be a promising therapeutic strategy for PD. We have previously identified a series of benzo[d]thiazole derivatives as selective c-Abl inhibitors from which one compound showed high therapeutic potential. Herein, we report the development of a complementary positron emission tomography (PET) tracer. In total, three PET tracer candidates were developed and eventually radiolabeled with fluorine-18 for in vivo evaluation studies in mice. Candidate [18F]3 was identified as the most promising compound, since it showed sufficient brain uptake, good washout kinetics, and satisfactory metabolic stability. In conclusion, we believe this tracer provides a good starting point to further validate and explore c-Abl as a target for therapeutic strategies against PD supported by PET.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - A Yeong Park
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Changdev Gorakshnath Gadhe
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Esther Kooijman
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maxime Schreurs
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Prisca Leferink
- Industry Alliance Office, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jae Eun Kim
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Jinhwa Lee
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Gröner B, Willmann M, Donnerstag L, Urusova EA, Neumaier F, Humpert S, Endepols H, Neumaier B, Zlatopolskiy BD. 7-[ 18F]Fluoro-8-azaisatoic Anhydrides: Versatile Prosthetic Groups for the Preparation of PET Tracers. J Med Chem 2023; 66:12629-12644. [PMID: 37625106 PMCID: PMC10510393 DOI: 10.1021/acs.jmedchem.3c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 08/27/2023]
Abstract
18F-Fluorination of sensitive molecules is often challenging, but can be accomplished under suitably mild conditions using radiofluorinated prosthetic groups (PGs). Herein, 1-alkylamino-7-[18F]fluoro-8-azaisatoic anhydrides ([18F]AFAs) are introduced as versatile 18F-labeled building blocks that can be used as amine-reactive or "click chemistry" PGs. [18F]AFAs were efficiently prepared within 15 min by "on cartridge" radiolabeling of readily accessible trimethylammonium precursors. Conjugation with a range of amines afforded the corresponding 2-alkylamino-6-[18F]fluoronicotinamides in radiochemical conversions (RCCs) of 15-98%. In addition, radiolabeling of alkyne- or azide-functionalized precursors with azidopropyl- or propargyl-substituted [18F]AFAs using Cu-catalyzed click cycloaddition afforded the corresponding conjugates in RCCs of 44-88%. The practical utility of the PGs was confirmed by the preparation of three 18F-labeled PSMA ligands in radiochemical yields of 28-42%. Biological evaluation in rats demonstrated excellent in vivo stability of all three conjugates. In addition, one conjugate ([18F]JK-PSMA-15) showed favorable imaging properties for high-contrast visualization of small PSMA-positive lesions.
Collapse
Affiliation(s)
- Benedikt Gröner
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
| | - Michael Willmann
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Lisa Donnerstag
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
| | - Elizaveta A. Urusova
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
| | - Felix Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
| | - Swen Humpert
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Heike Endepols
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
- Faculty
of Medicine and University Hospital Cologne, Department of Nuclear
Medicine, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
- Max
Planck Institute for Metabolism Research, Gleueler Straße 50, 50931 Cologne, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Faculty
of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, 50937 Cologne, Germany
- Max
Planck Institute for Metabolism Research, Gleueler Straße 50, 50931 Cologne, Germany
| |
Collapse
|
41
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
42
|
Németh E, Gyuricza B, Forgács V, Cumming P, Henriksen G, Marton J, Bauer B, Mikecz P, Fekete A. Optimization of a Nucleophilic Two-Step Radiosynthesis of 6- O-(2-[ 18F]fluoroethyl)-6- O-desmethyl-diprenorphine ([ 18F]FE-DPN) for PET Imaging of Brain Opioid Receptors. Int J Mol Sci 2023; 24:13152. [PMID: 37685958 PMCID: PMC10487412 DOI: 10.3390/ijms241713152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
We have established a method for nucleophilic one-pot, two-step radiosynthesis of the popular opioid receptor radioligand 6-O-(2-[18F]fluoroethyl)-6-O-desmethyl-diprenorphine ([18F]FE-DPN) from the novel precursor 6-O-(2-tosyloxyethyl)-6-O-desmethyl- 3-O-trityl-diprenorphine (TE-TDDPN), which we designate as the Henriksen precursor. We undertook an optimization of the synthesis conditions, aiming to enhance the accessibility of [18F]FE-DPN for positron emission tomography (PET) studies of μ-opioid receptors. Herein, we report an optimized direct nucleophilic 18F-fluorination and the deprotection conditions for a fully automated radiosynthesis of [18F]FE-DPN on a modified GE Tracerlab FX FE synthesis panel. Starting from 1-1.5 GBq of [18F]fluoride and applying an Oasis Max 1cc cartridge for fluorine-18 trapping with a reduced amount of K2CO3 (5.06 μmol K+ ion), [18F]FE-DPN ([18F]11) was produced with 44.5 ± 10.6 RCY (decay-corrected), high radiochemical purity (>99%), and a molar activity of 32.2 ± 11.8 GBq/μmol in 60-65 min.
Collapse
Affiliation(s)
- Enikő Németh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Barbara Gyuricza
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Viktória Forgács
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD-4059, Australia
| | - Gjermund Henriksen
- Norwegian Medical Cyclotron Centre Ltd., Sognsvannsveien 20, N-0372 Oslo, Norway;
- Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Institute of Physics, University of Oslo, Sem Sælands Vei 24, N-0371 Oslo, Norway
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany; (J.M.); (B.B.)
| | - Beate Bauer
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany; (J.M.); (B.B.)
| | - Pál Mikecz
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| |
Collapse
|
43
|
Sharma A, Fernandes DC, Reis RL, Gołubczyk D, Neumann S, Lukomska B, Janowski M, Kortylewski M, Walczak P, Oliveira JM, Maciaczyk J. Cutting-edge advances in modeling the blood-brain barrier and tools for its reversible permeabilization for enhanced drug delivery into the brain. Cell Biosci 2023; 13:137. [PMID: 37501215 PMCID: PMC10373415 DOI: 10.1186/s13578-023-01079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a sophisticated structure whose full functionality is required for maintaining the executive functions of the central nervous system (CNS). Tight control of transport across the barrier means that most drugs, particularly large size, which includes powerful biologicals, cannot reach their targets in the brain. Notwithstanding the remarkable advances in characterizing the cellular nature of the BBB and consequences of BBB dysfunction in pathology (brain metastasis, neurological diseases), it remains challenging to deliver drugs to the CNS. Herein, we outline the basic architecture and key molecular constituents of the BBB. In addition, we review the current status of approaches that are being explored to temporarily open the BBB in order to allow accumulation of therapeutics in the CNS. Undoubtedly, the major concern in field is whether it is possible to open the BBB in a meaningful way without causing negative consequences. In this context, we have also listed few other important key considerations that can improve our understanding about the dynamics of the BBB.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Stereotacitc and Functional Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Diogo C Fernandes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Dominika Gołubczyk
- Ti-Com, Polish Limited Liability Company, 10-683, Olsztyn, Poland
- Center for Translational Medicine, Warsaw University of Life Sciences, 02-797, Warsaw, Poland
| | - Silke Neumann
- Department of Pathology, University of Otago, Dunedin, 9054, New Zealand
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga, Portugal.
| | - Jarek Maciaczyk
- Department of Stereotacitc and Functional Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany.
- Department of Surgical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
44
|
Bansode AH, Damuka N, Bashetti N, Gollapelli KK, Krizan I, Bhoopal B, Miller M, Jv SK, Whitlow CT, McClain D, Ma T, Jorgensen MJ, Solingapuram Sai KK. First GPR119 PET Imaging Ligand: Synthesis, Radiochemistry, and Preliminary Evaluations. J Med Chem 2023; 66:9120-9129. [PMID: 37315328 PMCID: PMC10999001 DOI: 10.1021/acs.jmedchem.3c00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.
Collapse
Affiliation(s)
- Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Shanmukha Kumar Jv
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Donald McClain
- Department of Endocrinology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Matthew J Jorgensen
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | | |
Collapse
|
45
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
46
|
Liu J, Guo X, Wen L, Wang L, Liu F, Song G, Zhu H, Zhou N, Yang Z. Comparison of renal clearance of [ 18F]AlF-RESCA-HER2-BCH and [ 18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients. Eur J Nucl Med Mol Imaging 2023; 50:2775-2786. [PMID: 37093312 DOI: 10.1007/s00259-023-06232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A novel HER2 affibody-based molecular probe, [18F]AlF-RESCA-HER2-BCH, was developed for reducing renal uptake, evaluated, and compared with [18F]AlF-NOTA-HER2-BCH. METHODS In preclinical studies, micro-PET/CT was performed using HER2-positive gastric cancer patient-derived xenografts (PDX) model at 0.5-1 (dynamic), 2, 4, and 6 h post-injection. For blocking experiment, 0.5 mg cold affibody was co-injected with probes. Biodistribution were performed on HER2-positive PDX models at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of 231.29 ± 17.77 MBq [18F]AlF-NOTA-HER2-BCH or [18F]AlF-RESCA-HER2-BCH in five breast cancer patients (4 HER2-positive and 1 HER2-low). Standardized uptake values (SUVs) were measured in tumors and source-organs for semi-quantitative analysis. The OLINDA/EXM software (version 1.2) was used to calculate the radiation doses. RESULTS [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH were stably labeled with [18F]F, with high binding specificity and affinity to HER2. Micro-PET/CT of both tracers could clearly visualize HER2-positive PDX tumors with high uptake of 16.24 ± 1.74% ID/g and 14.39 ± 2.45% ID/g at 2 h post-injection. The renal accumulation of [18F]AlF-RESCA-HER2-BCH was significantly lower than that of [18F]AlF-NOTA-HER2-BCH (5.16 ± 0.22% ID/g vs. 158.73 ± 5.44% ID/g at 2 h, p < 0.0001). In the clinical study, both [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH demonstrated favorable tumor targeting and image contrast. [18F]AlF-RESCA-HER2-BCH showed a higher SUVmax in both primary tumor and metastases, and a significantly higher target-to-nontarget ratio in metastases than [18F]AlF-NOTA-HER2-BCH. Moreover, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation (43.56 ± 7.88 vs. 79.81 ± 3.81 at 2 h, p < 0.0001; 33.23 ± 6.89 vs. 78.63 ± 4.00 at 4 h, p < 0.0001) as well as a significantly lower renal absorbed dose than [18F]AlF-NOTA-HER2-BCH (0.4450 ± 0.1117 mGy/MBq vs. 0.8030 ± 0.1604 mGy/MBq, p < 0.01). CONCLUSIONS [18F]AlF-RESCA-HER2-BCH tended to provide better image contrast than [18F]AlF-NOTA-HER2-BCH with a higher target-to-nontarget ratio in detection of metastases. Notably, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation than [18F]AlF-NOTA-HER2-BCH.
Collapse
Affiliation(s)
- Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Wen
- Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
47
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
48
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
49
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
50
|
Gillette CM, Yette GA, Cramer SD, Graham LS. Management of Advanced Prostate Cancer in the Precision Oncology Era. Cancers (Basel) 2023; 15:2552. [PMID: 37174018 PMCID: PMC10177563 DOI: 10.3390/cancers15092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Prostate cancer (PC) is the second leading cause of cancer death in men in the United States. While diversified and improved treatment options for aggressive PC have improved patient outcomes, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and an area of investigative therapeutic interest. This review will cover the seminal clinical data supporting the indication of new precision oncology-based therapeutics and explore their limitations, present utility, and potential in the treatment of PC. Systemic therapies for high-risk and advanced PC have experienced significant development over the past ten years. Biomarker-driven therapies have brought the field closer to the goal of being able to implement precision oncology therapy for every patient. The tumor agnostic approval of pembrolizumab (a PD-1 inhibitor) marked an important advancement in this direction. There are also several PARP inhibitors indicated for patients with DNA damage repair deficiencies. Additionally, theranostic agents for both imaging and treatment have further revolutionized the treatment landscape for PC and represent another advancement in precision medicine. Radiolabeled prostate-specific membrane antigen (PSMA) PET/CT is rapidly becoming a standard of care for diagnosis, and PSMA-targeted radioligand therapies have gained recent FDA approval for metastatic prostate cancer. These advances in precision-based oncology are detailed in this review.
Collapse
Affiliation(s)
- Claire M. Gillette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Laura S. Graham
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|